blob: 181f08de889ca9176b1ef2a6f13295e5d281902d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2003, 2004 Ralf Baechle
7 */
8#ifndef _ASM_HAZARDS_H
9#define _ASM_HAZARDS_H
10
11#include <linux/config.h>
12
13#ifdef __ASSEMBLY__
14
15 .macro _ssnop
16 sll $0, $0, 1
17 .endm
18
19 .macro _ehb
20 sll $0, $0, 3
21 .endm
22
23/*
24 * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
25 * use of the JTLB for instructions should not occur for 4 cpu cycles and use
26 * for data translations should not occur for 3 cpu cycles.
27 */
28#ifdef CONFIG_CPU_RM9000
29
30 .macro mtc0_tlbw_hazard
31 .set push
32 .set mips32
33 _ssnop; _ssnop; _ssnop; _ssnop
34 .set pop
35 .endm
36
37 .macro tlbw_eret_hazard
38 .set push
39 .set mips32
40 _ssnop; _ssnop; _ssnop; _ssnop
41 .set pop
42 .endm
43
44#else
45
46/*
47 * The taken branch will result in a two cycle penalty for the two killed
48 * instructions on R4000 / R4400. Other processors only have a single cycle
49 * hazard so this is nice trick to have an optimal code for a range of
50 * processors.
51 */
52 .macro mtc0_tlbw_hazard
53 b . + 8
54 .endm
55
56 .macro tlbw_eret_hazard
57 .endm
58#endif
59
60/*
61 * mtc0->mfc0 hazard
62 * The 24K has a 2 cycle mtc0/mfc0 execution hazard.
63 * It is a MIPS32R2 processor so ehb will clear the hazard.
64 */
65
66#ifdef CONFIG_CPU_MIPSR2
67/*
68 * Use a macro for ehb unless explicit support for MIPSR2 is enabled
69 */
70
71#define irq_enable_hazard
72 _ehb
73
74#define irq_disable_hazard
75 _ehb
76
77#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
78
79/*
80 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
81 */
82
83#define irq_enable_hazard
84
85#define irq_disable_hazard
86
87#else
88
89/*
90 * Classic MIPS needs 1 - 3 nops or ssnops
91 */
92#define irq_enable_hazard
93#define irq_disable_hazard \
94 _ssnop; _ssnop; _ssnop
95
96#endif
97
98#else /* __ASSEMBLY__ */
99
100__asm__(
101 " .macro _ssnop \n\t"
102 " sll $0, $2, 1 \n\t"
103 " .endm \n\t"
104 " \n\t"
105 " .macro _ehb \n\t"
106 " sll $0, $0, 3 \n\t"
107 " .endm \n\t");
108
109#ifdef CONFIG_CPU_RM9000
Ralf Baechle88d535b2005-03-02 19:18:46 +0000110
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111/*
112 * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
113 * use of the JTLB for instructions should not occur for 4 cpu cycles and use
114 * for data translations should not occur for 3 cpu cycles.
115 */
116
117#define mtc0_tlbw_hazard() \
118 __asm__ __volatile__( \
119 ".set\tmips32\n\t" \
120 "_ssnop; _ssnop; _ssnop; _ssnop\n\t" \
121 ".set\tmips0")
122
123#define tlbw_use_hazard() \
124 __asm__ __volatile__( \
125 ".set\tmips32\n\t" \
126 "_ssnop; _ssnop; _ssnop; _ssnop\n\t" \
127 ".set\tmips0")
Ralf Baechle5068deb2005-03-01 18:12:06 +0000128
129#define back_to_back_c0_hazard() do { } while (0)
130
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131#else
132
133/*
134 * Overkill warning ...
135 */
136#define mtc0_tlbw_hazard() \
137 __asm__ __volatile__( \
138 ".set noreorder\n\t" \
139 "nop; nop; nop; nop; nop; nop;\n\t" \
140 ".set reorder\n\t")
141
142#define tlbw_use_hazard() \
143 __asm__ __volatile__( \
144 ".set noreorder\n\t" \
145 "nop; nop; nop; nop; nop; nop;\n\t" \
146 ".set reorder\n\t")
147
148#endif
149
150/*
151 * mtc0->mfc0 hazard
152 * The 24K has a 2 cycle mtc0/mfc0 execution hazard.
153 * It is a MIPS32R2 processor so ehb will clear the hazard.
154 */
155
156#ifdef CONFIG_CPU_MIPSR2
157/*
158 * Use a macro for ehb unless explicit support for MIPSR2 is enabled
159 */
160__asm__(
161 " .macro\tirq_enable_hazard \n\t"
162 " _ehb \n\t"
163 " .endm \n\t"
164 " \n\t"
165 " .macro\tirq_disable_hazard \n\t"
166 " _ehb \n\t"
167 " .endm");
168
169#define irq_enable_hazard() \
170 __asm__ __volatile__( \
171 "_ehb\t\t\t\t# irq_enable_hazard")
172
173#define irq_disable_hazard() \
174 __asm__ __volatile__( \
175 "_ehb\t\t\t\t# irq_disable_hazard")
176
Ralf Baechle5068deb2005-03-01 18:12:06 +0000177#define back_to_back_c0_hazard() \
178 __asm__ __volatile__( \
179 "_ehb\t\t\t\t# back_to_back_c0_hazard")
180
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
182
183/*
184 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
185 */
186
187__asm__(
188 " .macro\tirq_enable_hazard \n\t"
189 " .endm \n\t"
190 " \n\t"
191 " .macro\tirq_disable_hazard \n\t"
192 " .endm");
193
194#define irq_enable_hazard() do { } while (0)
195#define irq_disable_hazard() do { } while (0)
196
Ralf Baechle5068deb2005-03-01 18:12:06 +0000197#define back_to_back_c0_hazard() do { } while (0)
198
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199#else
200
201/*
202 * Default for classic MIPS processors. Assume worst case hazards but don't
203 * care about the irq_enable_hazard - sooner or later the hardware will
204 * enable it and we don't care when exactly.
205 */
206
207__asm__(
208 " # \n\t"
209 " # There is a hazard but we do not care \n\t"
210 " # \n\t"
211 " .macro\tirq_enable_hazard \n\t"
212 " .endm \n\t"
213 " \n\t"
214 " .macro\tirq_disable_hazard \n\t"
215 " _ssnop; _ssnop; _ssnop \n\t"
216 " .endm");
217
218#define irq_enable_hazard() do { } while (0)
219#define irq_disable_hazard() \
220 __asm__ __volatile__( \
221 "_ssnop; _ssnop; _ssnop;\t\t# irq_disable_hazard")
222
Ralf Baechle5068deb2005-03-01 18:12:06 +0000223#define back_to_back_c0_hazard() \
224 __asm__ __volatile__( \
225 " .set noreorder \n" \
226 " nop; nop; nop \n" \
227 " .set reorder \n")
228
Linus Torvalds1da177e2005-04-16 15:20:36 -0700229#endif
230
231#endif /* __ASSEMBLY__ */
232
233#endif /* _ASM_HAZARDS_H */