Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3 |
| 3 | * |
| 4 | * (C) 2001 San Mehat <nettwerk@valinux.com> |
| 5 | * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com> |
| 6 | * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au> |
| 7 | * |
| 8 | * This driver for the Micro Memory PCI Memory Module with Battery Backup |
| 9 | * is Copyright Micro Memory Inc 2001-2002. All rights reserved. |
| 10 | * |
| 11 | * This driver is released to the public under the terms of the |
| 12 | * GNU GENERAL PUBLIC LICENSE version 2 |
| 13 | * See the file COPYING for details. |
| 14 | * |
| 15 | * This driver provides a standard block device interface for Micro Memory(tm) |
| 16 | * PCI based RAM boards. |
| 17 | * 10/05/01: Phap Nguyen - Rebuilt the driver |
| 18 | * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning |
| 19 | * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn |
| 20 | * - use stand disk partitioning (so fdisk works). |
| 21 | * 08nov2001:NeilBrown - change driver name from "mm" to "umem" |
| 22 | * - incorporate into main kernel |
| 23 | * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet |
| 24 | * - use spin_lock_bh instead of _irq |
| 25 | * - Never block on make_request. queue |
| 26 | * bh's instead. |
| 27 | * - unregister umem from devfs at mod unload |
| 28 | * - Change version to 2.3 |
| 29 | * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal) |
| 30 | * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA |
| 31 | * 15May2002:NeilBrown - convert to bio for 2.5 |
| 32 | * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect |
| 33 | * - a sequence of writes that cover the card, and |
| 34 | * - set initialised bit then. |
| 35 | */ |
| 36 | |
| 37 | #include <linux/config.h> |
| 38 | #include <linux/sched.h> |
| 39 | #include <linux/fs.h> |
| 40 | #include <linux/bio.h> |
| 41 | #include <linux/kernel.h> |
| 42 | #include <linux/mm.h> |
| 43 | #include <linux/mman.h> |
| 44 | #include <linux/ioctl.h> |
| 45 | #include <linux/module.h> |
| 46 | #include <linux/init.h> |
| 47 | #include <linux/interrupt.h> |
| 48 | #include <linux/smp_lock.h> |
| 49 | #include <linux/timer.h> |
| 50 | #include <linux/pci.h> |
| 51 | #include <linux/slab.h> |
| 52 | |
| 53 | #include <linux/fcntl.h> /* O_ACCMODE */ |
| 54 | #include <linux/hdreg.h> /* HDIO_GETGEO */ |
| 55 | |
| 56 | #include <linux/umem.h> |
| 57 | |
| 58 | #include <asm/uaccess.h> |
| 59 | #include <asm/io.h> |
| 60 | |
| 61 | #define PRINTK(x...) do {} while (0) |
| 62 | #define dprintk(x...) do {} while (0) |
| 63 | /*#define dprintk(x...) printk(x) */ |
| 64 | |
| 65 | #define MM_MAXCARDS 4 |
| 66 | #define MM_RAHEAD 2 /* two sectors */ |
| 67 | #define MM_BLKSIZE 1024 /* 1k blocks */ |
| 68 | #define MM_HARDSECT 512 /* 512-byte hardware sectors */ |
| 69 | #define MM_SHIFT 6 /* max 64 partitions on 4 cards */ |
| 70 | |
| 71 | /* |
| 72 | * Version Information |
| 73 | */ |
| 74 | |
| 75 | #define DRIVER_VERSION "v2.3" |
| 76 | #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown" |
| 77 | #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver" |
| 78 | |
| 79 | static int debug; |
| 80 | /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */ |
| 81 | #define HW_TRACE(x) |
| 82 | |
| 83 | #define DEBUG_LED_ON_TRANSFER 0x01 |
| 84 | #define DEBUG_BATTERY_POLLING 0x02 |
| 85 | |
| 86 | module_param(debug, int, 0644); |
| 87 | MODULE_PARM_DESC(debug, "Debug bitmask"); |
| 88 | |
| 89 | static int pci_read_cmd = 0x0C; /* Read Multiple */ |
| 90 | module_param(pci_read_cmd, int, 0); |
| 91 | MODULE_PARM_DESC(pci_read_cmd, "PCI read command"); |
| 92 | |
| 93 | static int pci_write_cmd = 0x0F; /* Write and Invalidate */ |
| 94 | module_param(pci_write_cmd, int, 0); |
| 95 | MODULE_PARM_DESC(pci_write_cmd, "PCI write command"); |
| 96 | |
| 97 | static int pci_cmds; |
| 98 | |
| 99 | static int major_nr; |
| 100 | |
| 101 | #include <linux/blkdev.h> |
| 102 | #include <linux/blkpg.h> |
| 103 | |
| 104 | struct cardinfo { |
| 105 | int card_number; |
| 106 | struct pci_dev *dev; |
| 107 | |
| 108 | int irq; |
| 109 | |
| 110 | unsigned long csr_base; |
| 111 | unsigned char __iomem *csr_remap; |
| 112 | unsigned long csr_len; |
| 113 | #ifdef CONFIG_MM_MAP_MEMORY |
| 114 | unsigned long mem_base; |
| 115 | unsigned char __iomem *mem_remap; |
| 116 | unsigned long mem_len; |
| 117 | #endif |
| 118 | |
| 119 | unsigned int win_size; /* PCI window size */ |
| 120 | unsigned int mm_size; /* size in kbytes */ |
| 121 | |
| 122 | unsigned int init_size; /* initial segment, in sectors, |
| 123 | * that we know to |
| 124 | * have been written |
| 125 | */ |
| 126 | struct bio *bio, *currentbio, **biotail; |
| 127 | |
| 128 | request_queue_t *queue; |
| 129 | |
| 130 | struct mm_page { |
| 131 | dma_addr_t page_dma; |
| 132 | struct mm_dma_desc *desc; |
| 133 | int cnt, headcnt; |
| 134 | struct bio *bio, **biotail; |
| 135 | } mm_pages[2]; |
| 136 | #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc)) |
| 137 | |
| 138 | int Active, Ready; |
| 139 | |
| 140 | struct tasklet_struct tasklet; |
| 141 | unsigned int dma_status; |
| 142 | |
| 143 | struct { |
| 144 | int good; |
| 145 | int warned; |
| 146 | unsigned long last_change; |
| 147 | } battery[2]; |
| 148 | |
| 149 | spinlock_t lock; |
| 150 | int check_batteries; |
| 151 | |
| 152 | int flags; |
| 153 | }; |
| 154 | |
| 155 | static struct cardinfo cards[MM_MAXCARDS]; |
| 156 | static struct block_device_operations mm_fops; |
| 157 | static struct timer_list battery_timer; |
| 158 | |
| 159 | static int num_cards = 0; |
| 160 | |
| 161 | static struct gendisk *mm_gendisk[MM_MAXCARDS]; |
| 162 | |
| 163 | static void check_batteries(struct cardinfo *card); |
| 164 | |
| 165 | /* |
| 166 | ----------------------------------------------------------------------------------- |
| 167 | -- get_userbit |
| 168 | ----------------------------------------------------------------------------------- |
| 169 | */ |
| 170 | static int get_userbit(struct cardinfo *card, int bit) |
| 171 | { |
| 172 | unsigned char led; |
| 173 | |
| 174 | led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| 175 | return led & bit; |
| 176 | } |
| 177 | /* |
| 178 | ----------------------------------------------------------------------------------- |
| 179 | -- set_userbit |
| 180 | ----------------------------------------------------------------------------------- |
| 181 | */ |
| 182 | static int set_userbit(struct cardinfo *card, int bit, unsigned char state) |
| 183 | { |
| 184 | unsigned char led; |
| 185 | |
| 186 | led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| 187 | if (state) |
| 188 | led |= bit; |
| 189 | else |
| 190 | led &= ~bit; |
| 191 | writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| 192 | |
| 193 | return 0; |
| 194 | } |
| 195 | /* |
| 196 | ----------------------------------------------------------------------------------- |
| 197 | -- set_led |
| 198 | ----------------------------------------------------------------------------------- |
| 199 | */ |
| 200 | /* |
| 201 | * NOTE: For the power LED, use the LED_POWER_* macros since they differ |
| 202 | */ |
| 203 | static void set_led(struct cardinfo *card, int shift, unsigned char state) |
| 204 | { |
| 205 | unsigned char led; |
| 206 | |
| 207 | led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| 208 | if (state == LED_FLIP) |
| 209 | led ^= (1<<shift); |
| 210 | else { |
| 211 | led &= ~(0x03 << shift); |
| 212 | led |= (state << shift); |
| 213 | } |
| 214 | writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL); |
| 215 | |
| 216 | } |
| 217 | |
| 218 | #ifdef MM_DIAG |
| 219 | /* |
| 220 | ----------------------------------------------------------------------------------- |
| 221 | -- dump_regs |
| 222 | ----------------------------------------------------------------------------------- |
| 223 | */ |
| 224 | static void dump_regs(struct cardinfo *card) |
| 225 | { |
| 226 | unsigned char *p; |
| 227 | int i, i1; |
| 228 | |
| 229 | p = card->csr_remap; |
| 230 | for (i = 0; i < 8; i++) { |
| 231 | printk(KERN_DEBUG "%p ", p); |
| 232 | |
| 233 | for (i1 = 0; i1 < 16; i1++) |
| 234 | printk("%02x ", *p++); |
| 235 | |
| 236 | printk("\n"); |
| 237 | } |
| 238 | } |
| 239 | #endif |
| 240 | /* |
| 241 | ----------------------------------------------------------------------------------- |
| 242 | -- dump_dmastat |
| 243 | ----------------------------------------------------------------------------------- |
| 244 | */ |
| 245 | static void dump_dmastat(struct cardinfo *card, unsigned int dmastat) |
| 246 | { |
| 247 | printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number); |
| 248 | if (dmastat & DMASCR_ANY_ERR) |
| 249 | printk("ANY_ERR "); |
| 250 | if (dmastat & DMASCR_MBE_ERR) |
| 251 | printk("MBE_ERR "); |
| 252 | if (dmastat & DMASCR_PARITY_ERR_REP) |
| 253 | printk("PARITY_ERR_REP "); |
| 254 | if (dmastat & DMASCR_PARITY_ERR_DET) |
| 255 | printk("PARITY_ERR_DET "); |
| 256 | if (dmastat & DMASCR_SYSTEM_ERR_SIG) |
| 257 | printk("SYSTEM_ERR_SIG "); |
| 258 | if (dmastat & DMASCR_TARGET_ABT) |
| 259 | printk("TARGET_ABT "); |
| 260 | if (dmastat & DMASCR_MASTER_ABT) |
| 261 | printk("MASTER_ABT "); |
| 262 | if (dmastat & DMASCR_CHAIN_COMPLETE) |
| 263 | printk("CHAIN_COMPLETE "); |
| 264 | if (dmastat & DMASCR_DMA_COMPLETE) |
| 265 | printk("DMA_COMPLETE "); |
| 266 | printk("\n"); |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * Theory of request handling |
| 271 | * |
| 272 | * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME |
| 273 | * We have two pages of mm_dma_desc, holding about 64 descriptors |
| 274 | * each. These are allocated at init time. |
| 275 | * One page is "Ready" and is either full, or can have request added. |
| 276 | * The other page might be "Active", which DMA is happening on it. |
| 277 | * |
| 278 | * Whenever IO on the active page completes, the Ready page is activated |
| 279 | * and the ex-Active page is clean out and made Ready. |
| 280 | * Otherwise the Ready page is only activated when it becomes full, or |
| 281 | * when mm_unplug_device is called via the unplug_io_fn. |
| 282 | * |
| 283 | * If a request arrives while both pages a full, it is queued, and b_rdev is |
| 284 | * overloaded to record whether it was a read or a write. |
| 285 | * |
| 286 | * The interrupt handler only polls the device to clear the interrupt. |
| 287 | * The processing of the result is done in a tasklet. |
| 288 | */ |
| 289 | |
| 290 | static void mm_start_io(struct cardinfo *card) |
| 291 | { |
| 292 | /* we have the lock, we know there is |
| 293 | * no IO active, and we know that card->Active |
| 294 | * is set |
| 295 | */ |
| 296 | struct mm_dma_desc *desc; |
| 297 | struct mm_page *page; |
| 298 | int offset; |
| 299 | |
| 300 | /* make the last descriptor end the chain */ |
| 301 | page = &card->mm_pages[card->Active]; |
| 302 | PRINTK("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1); |
| 303 | desc = &page->desc[page->cnt-1]; |
| 304 | |
| 305 | desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN); |
| 306 | desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN); |
| 307 | desc->sem_control_bits = desc->control_bits; |
| 308 | |
| 309 | |
| 310 | if (debug & DEBUG_LED_ON_TRANSFER) |
| 311 | set_led(card, LED_REMOVE, LED_ON); |
| 312 | |
| 313 | desc = &page->desc[page->headcnt]; |
| 314 | writel(0, card->csr_remap + DMA_PCI_ADDR); |
| 315 | writel(0, card->csr_remap + DMA_PCI_ADDR + 4); |
| 316 | |
| 317 | writel(0, card->csr_remap + DMA_LOCAL_ADDR); |
| 318 | writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4); |
| 319 | |
| 320 | writel(0, card->csr_remap + DMA_TRANSFER_SIZE); |
| 321 | writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4); |
| 322 | |
| 323 | writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR); |
| 324 | writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4); |
| 325 | |
| 326 | offset = ((char*)desc) - ((char*)page->desc); |
| 327 | writel(cpu_to_le32((page->page_dma+offset)&0xffffffff), |
| 328 | card->csr_remap + DMA_DESCRIPTOR_ADDR); |
| 329 | /* Force the value to u64 before shifting otherwise >> 32 is undefined C |
| 330 | * and on some ports will do nothing ! */ |
| 331 | writel(cpu_to_le32(((u64)page->page_dma)>>32), |
| 332 | card->csr_remap + DMA_DESCRIPTOR_ADDR + 4); |
| 333 | |
| 334 | /* Go, go, go */ |
| 335 | writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds), |
| 336 | card->csr_remap + DMA_STATUS_CTRL); |
| 337 | } |
| 338 | |
| 339 | static int add_bio(struct cardinfo *card); |
| 340 | |
| 341 | static void activate(struct cardinfo *card) |
| 342 | { |
| 343 | /* if No page is Active, and Ready is |
| 344 | * not empty, then switch Ready page |
| 345 | * to active and start IO. |
| 346 | * Then add any bh's that are available to Ready |
| 347 | */ |
| 348 | |
| 349 | do { |
| 350 | while (add_bio(card)) |
| 351 | ; |
| 352 | |
| 353 | if (card->Active == -1 && |
| 354 | card->mm_pages[card->Ready].cnt > 0) { |
| 355 | card->Active = card->Ready; |
| 356 | card->Ready = 1-card->Ready; |
| 357 | mm_start_io(card); |
| 358 | } |
| 359 | |
| 360 | } while (card->Active == -1 && add_bio(card)); |
| 361 | } |
| 362 | |
| 363 | static inline void reset_page(struct mm_page *page) |
| 364 | { |
| 365 | page->cnt = 0; |
| 366 | page->headcnt = 0; |
| 367 | page->bio = NULL; |
| 368 | page->biotail = & page->bio; |
| 369 | } |
| 370 | |
| 371 | static void mm_unplug_device(request_queue_t *q) |
| 372 | { |
| 373 | struct cardinfo *card = q->queuedata; |
| 374 | unsigned long flags; |
| 375 | |
| 376 | spin_lock_irqsave(&card->lock, flags); |
| 377 | if (blk_remove_plug(q)) |
| 378 | activate(card); |
| 379 | spin_unlock_irqrestore(&card->lock, flags); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * If there is room on Ready page, take |
| 384 | * one bh off list and add it. |
| 385 | * return 1 if there was room, else 0. |
| 386 | */ |
| 387 | static int add_bio(struct cardinfo *card) |
| 388 | { |
| 389 | struct mm_page *p; |
| 390 | struct mm_dma_desc *desc; |
| 391 | dma_addr_t dma_handle; |
| 392 | int offset; |
| 393 | struct bio *bio; |
| 394 | int rw; |
| 395 | int len; |
| 396 | |
| 397 | bio = card->currentbio; |
| 398 | if (!bio && card->bio) { |
| 399 | card->currentbio = card->bio; |
| 400 | card->bio = card->bio->bi_next; |
| 401 | if (card->bio == NULL) |
| 402 | card->biotail = &card->bio; |
| 403 | card->currentbio->bi_next = NULL; |
| 404 | return 1; |
| 405 | } |
| 406 | if (!bio) |
| 407 | return 0; |
| 408 | |
| 409 | rw = bio_rw(bio); |
| 410 | if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE) |
| 411 | return 0; |
| 412 | |
| 413 | len = bio_iovec(bio)->bv_len; |
| 414 | dma_handle = pci_map_page(card->dev, |
| 415 | bio_page(bio), |
| 416 | bio_offset(bio), |
| 417 | len, |
| 418 | (rw==READ) ? |
| 419 | PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE); |
| 420 | |
| 421 | p = &card->mm_pages[card->Ready]; |
| 422 | desc = &p->desc[p->cnt]; |
| 423 | p->cnt++; |
| 424 | if ((p->biotail) != &bio->bi_next) { |
| 425 | *(p->biotail) = bio; |
| 426 | p->biotail = &(bio->bi_next); |
| 427 | bio->bi_next = NULL; |
| 428 | } |
| 429 | |
| 430 | desc->data_dma_handle = dma_handle; |
| 431 | |
| 432 | desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle); |
| 433 | desc->local_addr= cpu_to_le64(bio->bi_sector << 9); |
| 434 | desc->transfer_size = cpu_to_le32(len); |
| 435 | offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc)); |
| 436 | desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset)); |
| 437 | desc->zero1 = desc->zero2 = 0; |
| 438 | offset = ( ((char*)(desc+1)) - ((char*)p->desc)); |
| 439 | desc->next_desc_addr = cpu_to_le64(p->page_dma+offset); |
| 440 | desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN| |
| 441 | DMASCR_PARITY_INT_EN| |
| 442 | DMASCR_CHAIN_EN | |
| 443 | DMASCR_SEM_EN | |
| 444 | pci_cmds); |
| 445 | if (rw == WRITE) |
| 446 | desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ); |
| 447 | desc->sem_control_bits = desc->control_bits; |
| 448 | |
| 449 | bio->bi_sector += (len>>9); |
| 450 | bio->bi_size -= len; |
| 451 | bio->bi_idx++; |
| 452 | if (bio->bi_idx >= bio->bi_vcnt) |
| 453 | card->currentbio = NULL; |
| 454 | |
| 455 | return 1; |
| 456 | } |
| 457 | |
| 458 | static void process_page(unsigned long data) |
| 459 | { |
| 460 | /* check if any of the requests in the page are DMA_COMPLETE, |
| 461 | * and deal with them appropriately. |
| 462 | * If we find a descriptor without DMA_COMPLETE in the semaphore, then |
| 463 | * dma must have hit an error on that descriptor, so use dma_status instead |
| 464 | * and assume that all following descriptors must be re-tried. |
| 465 | */ |
| 466 | struct mm_page *page; |
| 467 | struct bio *return_bio=NULL; |
| 468 | struct cardinfo *card = (struct cardinfo *)data; |
| 469 | unsigned int dma_status = card->dma_status; |
| 470 | |
| 471 | spin_lock_bh(&card->lock); |
| 472 | if (card->Active < 0) |
| 473 | goto out_unlock; |
| 474 | page = &card->mm_pages[card->Active]; |
| 475 | |
| 476 | while (page->headcnt < page->cnt) { |
| 477 | struct bio *bio = page->bio; |
| 478 | struct mm_dma_desc *desc = &page->desc[page->headcnt]; |
| 479 | int control = le32_to_cpu(desc->sem_control_bits); |
| 480 | int last=0; |
| 481 | int idx; |
| 482 | |
| 483 | if (!(control & DMASCR_DMA_COMPLETE)) { |
| 484 | control = dma_status; |
| 485 | last=1; |
| 486 | } |
| 487 | page->headcnt++; |
| 488 | idx = bio->bi_phys_segments; |
| 489 | bio->bi_phys_segments++; |
| 490 | if (bio->bi_phys_segments >= bio->bi_vcnt) |
| 491 | page->bio = bio->bi_next; |
| 492 | |
| 493 | pci_unmap_page(card->dev, desc->data_dma_handle, |
| 494 | bio_iovec_idx(bio,idx)->bv_len, |
| 495 | (control& DMASCR_TRANSFER_READ) ? |
| 496 | PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); |
| 497 | if (control & DMASCR_HARD_ERROR) { |
| 498 | /* error */ |
| 499 | clear_bit(BIO_UPTODATE, &bio->bi_flags); |
| 500 | printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n", |
| 501 | card->card_number, |
| 502 | le32_to_cpu(desc->local_addr)>>9, |
| 503 | le32_to_cpu(desc->transfer_size)); |
| 504 | dump_dmastat(card, control); |
| 505 | } else if (test_bit(BIO_RW, &bio->bi_rw) && |
| 506 | le32_to_cpu(desc->local_addr)>>9 == card->init_size) { |
| 507 | card->init_size += le32_to_cpu(desc->transfer_size)>>9; |
| 508 | if (card->init_size>>1 >= card->mm_size) { |
| 509 | printk(KERN_INFO "MM%d: memory now initialised\n", |
| 510 | card->card_number); |
| 511 | set_userbit(card, MEMORY_INITIALIZED, 1); |
| 512 | } |
| 513 | } |
| 514 | if (bio != page->bio) { |
| 515 | bio->bi_next = return_bio; |
| 516 | return_bio = bio; |
| 517 | } |
| 518 | |
| 519 | if (last) break; |
| 520 | } |
| 521 | |
| 522 | if (debug & DEBUG_LED_ON_TRANSFER) |
| 523 | set_led(card, LED_REMOVE, LED_OFF); |
| 524 | |
| 525 | if (card->check_batteries) { |
| 526 | card->check_batteries = 0; |
| 527 | check_batteries(card); |
| 528 | } |
| 529 | if (page->headcnt >= page->cnt) { |
| 530 | reset_page(page); |
| 531 | card->Active = -1; |
| 532 | activate(card); |
| 533 | } else { |
| 534 | /* haven't finished with this one yet */ |
| 535 | PRINTK("do some more\n"); |
| 536 | mm_start_io(card); |
| 537 | } |
| 538 | out_unlock: |
| 539 | spin_unlock_bh(&card->lock); |
| 540 | |
| 541 | while(return_bio) { |
| 542 | struct bio *bio = return_bio; |
| 543 | |
| 544 | return_bio = bio->bi_next; |
| 545 | bio->bi_next = NULL; |
| 546 | bio_endio(bio, bio->bi_size, 0); |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | ----------------------------------------------------------------------------------- |
| 552 | -- mm_make_request |
| 553 | ----------------------------------------------------------------------------------- |
| 554 | */ |
| 555 | static int mm_make_request(request_queue_t *q, struct bio *bio) |
| 556 | { |
| 557 | struct cardinfo *card = q->queuedata; |
| 558 | PRINTK("mm_make_request %ld %d\n", bh->b_rsector, bh->b_size); |
| 559 | |
| 560 | bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/ |
| 561 | spin_lock_irq(&card->lock); |
| 562 | *card->biotail = bio; |
| 563 | bio->bi_next = NULL; |
| 564 | card->biotail = &bio->bi_next; |
| 565 | blk_plug_device(q); |
| 566 | spin_unlock_irq(&card->lock); |
| 567 | |
| 568 | return 0; |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | ----------------------------------------------------------------------------------- |
| 573 | -- mm_interrupt |
| 574 | ----------------------------------------------------------------------------------- |
| 575 | */ |
| 576 | static irqreturn_t mm_interrupt(int irq, void *__card, struct pt_regs *regs) |
| 577 | { |
| 578 | struct cardinfo *card = (struct cardinfo *) __card; |
| 579 | unsigned int dma_status; |
| 580 | unsigned short cfg_status; |
| 581 | |
| 582 | HW_TRACE(0x30); |
| 583 | |
| 584 | dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL)); |
| 585 | |
| 586 | if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) { |
| 587 | /* interrupt wasn't for me ... */ |
| 588 | return IRQ_NONE; |
| 589 | } |
| 590 | |
| 591 | /* clear COMPLETION interrupts */ |
| 592 | if (card->flags & UM_FLAG_NO_BYTE_STATUS) |
| 593 | writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE), |
| 594 | card->csr_remap+ DMA_STATUS_CTRL); |
| 595 | else |
| 596 | writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16, |
| 597 | card->csr_remap+ DMA_STATUS_CTRL + 2); |
| 598 | |
| 599 | /* log errors and clear interrupt status */ |
| 600 | if (dma_status & DMASCR_ANY_ERR) { |
| 601 | unsigned int data_log1, data_log2; |
| 602 | unsigned int addr_log1, addr_log2; |
| 603 | unsigned char stat, count, syndrome, check; |
| 604 | |
| 605 | stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS); |
| 606 | |
| 607 | data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG)); |
| 608 | data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4)); |
| 609 | addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG)); |
| 610 | addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4); |
| 611 | |
| 612 | count = readb(card->csr_remap + ERROR_COUNT); |
| 613 | syndrome = readb(card->csr_remap + ERROR_SYNDROME); |
| 614 | check = readb(card->csr_remap + ERROR_CHECK); |
| 615 | |
| 616 | dump_dmastat(card, dma_status); |
| 617 | |
| 618 | if (stat & 0x01) |
| 619 | printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n", |
| 620 | card->card_number, count); |
| 621 | if (stat & 0x02) |
| 622 | printk(KERN_ERR "MM%d*: Multi-bit EDC error\n", |
| 623 | card->card_number); |
| 624 | |
| 625 | printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n", |
| 626 | card->card_number, addr_log2, addr_log1, data_log2, data_log1); |
| 627 | printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n", |
| 628 | card->card_number, check, syndrome); |
| 629 | |
| 630 | writeb(0, card->csr_remap + ERROR_COUNT); |
| 631 | } |
| 632 | |
| 633 | if (dma_status & DMASCR_PARITY_ERR_REP) { |
| 634 | printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number); |
| 635 | pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| 636 | pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| 637 | } |
| 638 | |
| 639 | if (dma_status & DMASCR_PARITY_ERR_DET) { |
| 640 | printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number); |
| 641 | pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| 642 | pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| 643 | } |
| 644 | |
| 645 | if (dma_status & DMASCR_SYSTEM_ERR_SIG) { |
| 646 | printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number); |
| 647 | pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| 648 | pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| 649 | } |
| 650 | |
| 651 | if (dma_status & DMASCR_TARGET_ABT) { |
| 652 | printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number); |
| 653 | pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| 654 | pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| 655 | } |
| 656 | |
| 657 | if (dma_status & DMASCR_MASTER_ABT) { |
| 658 | printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number); |
| 659 | pci_read_config_word(card->dev, PCI_STATUS, &cfg_status); |
| 660 | pci_write_config_word(card->dev, PCI_STATUS, cfg_status); |
| 661 | } |
| 662 | |
| 663 | /* and process the DMA descriptors */ |
| 664 | card->dma_status = dma_status; |
| 665 | tasklet_schedule(&card->tasklet); |
| 666 | |
| 667 | HW_TRACE(0x36); |
| 668 | |
| 669 | return IRQ_HANDLED; |
| 670 | } |
| 671 | /* |
| 672 | ----------------------------------------------------------------------------------- |
| 673 | -- set_fault_to_battery_status |
| 674 | ----------------------------------------------------------------------------------- |
| 675 | */ |
| 676 | /* |
| 677 | * If both batteries are good, no LED |
| 678 | * If either battery has been warned, solid LED |
| 679 | * If both batteries are bad, flash the LED quickly |
| 680 | * If either battery is bad, flash the LED semi quickly |
| 681 | */ |
| 682 | static void set_fault_to_battery_status(struct cardinfo *card) |
| 683 | { |
| 684 | if (card->battery[0].good && card->battery[1].good) |
| 685 | set_led(card, LED_FAULT, LED_OFF); |
| 686 | else if (card->battery[0].warned || card->battery[1].warned) |
| 687 | set_led(card, LED_FAULT, LED_ON); |
| 688 | else if (!card->battery[0].good && !card->battery[1].good) |
| 689 | set_led(card, LED_FAULT, LED_FLASH_7_0); |
| 690 | else |
| 691 | set_led(card, LED_FAULT, LED_FLASH_3_5); |
| 692 | } |
| 693 | |
| 694 | static void init_battery_timer(void); |
| 695 | |
| 696 | |
| 697 | /* |
| 698 | ----------------------------------------------------------------------------------- |
| 699 | -- check_battery |
| 700 | ----------------------------------------------------------------------------------- |
| 701 | */ |
| 702 | static int check_battery(struct cardinfo *card, int battery, int status) |
| 703 | { |
| 704 | if (status != card->battery[battery].good) { |
| 705 | card->battery[battery].good = !card->battery[battery].good; |
| 706 | card->battery[battery].last_change = jiffies; |
| 707 | |
| 708 | if (card->battery[battery].good) { |
| 709 | printk(KERN_ERR "MM%d: Battery %d now good\n", |
| 710 | card->card_number, battery + 1); |
| 711 | card->battery[battery].warned = 0; |
| 712 | } else |
| 713 | printk(KERN_ERR "MM%d: Battery %d now FAILED\n", |
| 714 | card->card_number, battery + 1); |
| 715 | |
| 716 | return 1; |
| 717 | } else if (!card->battery[battery].good && |
| 718 | !card->battery[battery].warned && |
| 719 | time_after_eq(jiffies, card->battery[battery].last_change + |
| 720 | (HZ * 60 * 60 * 5))) { |
| 721 | printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n", |
| 722 | card->card_number, battery + 1); |
| 723 | card->battery[battery].warned = 1; |
| 724 | |
| 725 | return 1; |
| 726 | } |
| 727 | |
| 728 | return 0; |
| 729 | } |
| 730 | /* |
| 731 | ----------------------------------------------------------------------------------- |
| 732 | -- check_batteries |
| 733 | ----------------------------------------------------------------------------------- |
| 734 | */ |
| 735 | static void check_batteries(struct cardinfo *card) |
| 736 | { |
| 737 | /* NOTE: this must *never* be called while the card |
| 738 | * is doing (bus-to-card) DMA, or you will need the |
| 739 | * reset switch |
| 740 | */ |
| 741 | unsigned char status; |
| 742 | int ret1, ret2; |
| 743 | |
| 744 | status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY); |
| 745 | if (debug & DEBUG_BATTERY_POLLING) |
| 746 | printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n", |
| 747 | card->card_number, |
| 748 | (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK", |
| 749 | (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK"); |
| 750 | |
| 751 | ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE)); |
| 752 | ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE)); |
| 753 | |
| 754 | if (ret1 || ret2) |
| 755 | set_fault_to_battery_status(card); |
| 756 | } |
| 757 | |
| 758 | static void check_all_batteries(unsigned long ptr) |
| 759 | { |
| 760 | int i; |
| 761 | |
| 762 | for (i = 0; i < num_cards; i++) |
| 763 | if (!(cards[i].flags & UM_FLAG_NO_BATT)) { |
| 764 | struct cardinfo *card = &cards[i]; |
| 765 | spin_lock_bh(&card->lock); |
| 766 | if (card->Active >= 0) |
| 767 | card->check_batteries = 1; |
| 768 | else |
| 769 | check_batteries(card); |
| 770 | spin_unlock_bh(&card->lock); |
| 771 | } |
| 772 | |
| 773 | init_battery_timer(); |
| 774 | } |
| 775 | /* |
| 776 | ----------------------------------------------------------------------------------- |
| 777 | -- init_battery_timer |
| 778 | ----------------------------------------------------------------------------------- |
| 779 | */ |
| 780 | static void init_battery_timer(void) |
| 781 | { |
| 782 | init_timer(&battery_timer); |
| 783 | battery_timer.function = check_all_batteries; |
| 784 | battery_timer.expires = jiffies + (HZ * 60); |
| 785 | add_timer(&battery_timer); |
| 786 | } |
| 787 | /* |
| 788 | ----------------------------------------------------------------------------------- |
| 789 | -- del_battery_timer |
| 790 | ----------------------------------------------------------------------------------- |
| 791 | */ |
| 792 | static void del_battery_timer(void) |
| 793 | { |
| 794 | del_timer(&battery_timer); |
| 795 | } |
| 796 | /* |
| 797 | ----------------------------------------------------------------------------------- |
| 798 | -- mm_revalidate |
| 799 | ----------------------------------------------------------------------------------- |
| 800 | */ |
| 801 | /* |
| 802 | * Note no locks taken out here. In a worst case scenario, we could drop |
| 803 | * a chunk of system memory. But that should never happen, since validation |
| 804 | * happens at open or mount time, when locks are held. |
| 805 | * |
| 806 | * That's crap, since doing that while some partitions are opened |
| 807 | * or mounted will give you really nasty results. |
| 808 | */ |
| 809 | static int mm_revalidate(struct gendisk *disk) |
| 810 | { |
| 811 | struct cardinfo *card = disk->private_data; |
| 812 | set_capacity(disk, card->mm_size << 1); |
| 813 | return 0; |
| 814 | } |
| 815 | /* |
| 816 | ----------------------------------------------------------------------------------- |
| 817 | -- mm_ioctl |
| 818 | ----------------------------------------------------------------------------------- |
| 819 | */ |
| 820 | static int mm_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg) |
| 821 | { |
| 822 | if (cmd == HDIO_GETGEO) { |
| 823 | struct cardinfo *card = i->i_bdev->bd_disk->private_data; |
| 824 | int size = card->mm_size * (1024 / MM_HARDSECT); |
| 825 | struct hd_geometry geo; |
| 826 | /* |
| 827 | * get geometry: we have to fake one... trim the size to a |
| 828 | * multiple of 2048 (1M): tell we have 32 sectors, 64 heads, |
| 829 | * whatever cylinders. |
| 830 | */ |
| 831 | geo.heads = 64; |
| 832 | geo.sectors = 32; |
| 833 | geo.start = get_start_sect(i->i_bdev); |
| 834 | geo.cylinders = size / (geo.heads * geo.sectors); |
| 835 | |
| 836 | if (copy_to_user((void __user *) arg, &geo, sizeof(geo))) |
| 837 | return -EFAULT; |
| 838 | return 0; |
| 839 | } |
| 840 | |
| 841 | return -EINVAL; |
| 842 | } |
| 843 | /* |
| 844 | ----------------------------------------------------------------------------------- |
| 845 | -- mm_check_change |
| 846 | ----------------------------------------------------------------------------------- |
| 847 | Future support for removable devices |
| 848 | */ |
| 849 | static int mm_check_change(struct gendisk *disk) |
| 850 | { |
| 851 | /* struct cardinfo *dev = disk->private_data; */ |
| 852 | return 0; |
| 853 | } |
| 854 | /* |
| 855 | ----------------------------------------------------------------------------------- |
| 856 | -- mm_fops |
| 857 | ----------------------------------------------------------------------------------- |
| 858 | */ |
| 859 | static struct block_device_operations mm_fops = { |
| 860 | .owner = THIS_MODULE, |
| 861 | .ioctl = mm_ioctl, |
| 862 | .revalidate_disk= mm_revalidate, |
| 863 | .media_changed = mm_check_change, |
| 864 | }; |
| 865 | /* |
| 866 | ----------------------------------------------------------------------------------- |
| 867 | -- mm_pci_probe |
| 868 | ----------------------------------------------------------------------------------- |
| 869 | */ |
| 870 | static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| 871 | { |
| 872 | int ret = -ENODEV; |
| 873 | struct cardinfo *card = &cards[num_cards]; |
| 874 | unsigned char mem_present; |
| 875 | unsigned char batt_status; |
| 876 | unsigned int saved_bar, data; |
| 877 | int magic_number; |
| 878 | |
| 879 | if (pci_enable_device(dev) < 0) |
| 880 | return -ENODEV; |
| 881 | |
| 882 | pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8); |
| 883 | pci_set_master(dev); |
| 884 | |
| 885 | card->dev = dev; |
| 886 | card->card_number = num_cards; |
| 887 | |
| 888 | card->csr_base = pci_resource_start(dev, 0); |
| 889 | card->csr_len = pci_resource_len(dev, 0); |
| 890 | #ifdef CONFIG_MM_MAP_MEMORY |
| 891 | card->mem_base = pci_resource_start(dev, 1); |
| 892 | card->mem_len = pci_resource_len(dev, 1); |
| 893 | #endif |
| 894 | |
| 895 | printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n", |
| 896 | card->card_number, dev->bus->number, dev->devfn); |
| 897 | |
| 898 | if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) && |
| 899 | !pci_set_dma_mask(dev, 0xffffffffLL)) { |
| 900 | printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards); |
| 901 | return -ENOMEM; |
| 902 | } |
| 903 | if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) { |
| 904 | printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number); |
| 905 | ret = -ENOMEM; |
| 906 | |
| 907 | goto failed_req_csr; |
| 908 | } |
| 909 | |
| 910 | card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len); |
| 911 | if (!card->csr_remap) { |
| 912 | printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number); |
| 913 | ret = -ENOMEM; |
| 914 | |
| 915 | goto failed_remap_csr; |
| 916 | } |
| 917 | |
| 918 | printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number, |
| 919 | card->csr_base, card->csr_remap, card->csr_len); |
| 920 | |
| 921 | #ifdef CONFIG_MM_MAP_MEMORY |
| 922 | if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) { |
| 923 | printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number); |
| 924 | ret = -ENOMEM; |
| 925 | |
| 926 | goto failed_req_mem; |
| 927 | } |
| 928 | |
| 929 | if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) { |
| 930 | printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number); |
| 931 | ret = -ENOMEM; |
| 932 | |
| 933 | goto failed_remap_mem; |
| 934 | } |
| 935 | |
| 936 | printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number, |
| 937 | card->mem_base, card->mem_remap, card->mem_len); |
| 938 | #else |
| 939 | printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n", |
| 940 | card->card_number); |
| 941 | #endif |
| 942 | switch(card->dev->device) { |
| 943 | case 0x5415: |
| 944 | card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG; |
| 945 | magic_number = 0x59; |
| 946 | break; |
| 947 | |
| 948 | case 0x5425: |
| 949 | card->flags |= UM_FLAG_NO_BYTE_STATUS; |
| 950 | magic_number = 0x5C; |
| 951 | break; |
| 952 | |
| 953 | case 0x6155: |
| 954 | card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT; |
| 955 | magic_number = 0x99; |
| 956 | break; |
| 957 | |
| 958 | default: |
| 959 | magic_number = 0x100; |
| 960 | break; |
| 961 | } |
| 962 | |
| 963 | if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) { |
| 964 | printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number); |
| 965 | ret = -ENOMEM; |
| 966 | goto failed_magic; |
| 967 | } |
| 968 | |
| 969 | card->mm_pages[0].desc = pci_alloc_consistent(card->dev, |
| 970 | PAGE_SIZE*2, |
| 971 | &card->mm_pages[0].page_dma); |
| 972 | card->mm_pages[1].desc = pci_alloc_consistent(card->dev, |
| 973 | PAGE_SIZE*2, |
| 974 | &card->mm_pages[1].page_dma); |
| 975 | if (card->mm_pages[0].desc == NULL || |
| 976 | card->mm_pages[1].desc == NULL) { |
| 977 | printk(KERN_ERR "MM%d: alloc failed\n", card->card_number); |
| 978 | goto failed_alloc; |
| 979 | } |
| 980 | reset_page(&card->mm_pages[0]); |
| 981 | reset_page(&card->mm_pages[1]); |
| 982 | card->Ready = 0; /* page 0 is ready */ |
| 983 | card->Active = -1; /* no page is active */ |
| 984 | card->bio = NULL; |
| 985 | card->biotail = &card->bio; |
| 986 | |
| 987 | card->queue = blk_alloc_queue(GFP_KERNEL); |
| 988 | if (!card->queue) |
| 989 | goto failed_alloc; |
| 990 | |
| 991 | blk_queue_make_request(card->queue, mm_make_request); |
| 992 | card->queue->queuedata = card; |
| 993 | card->queue->unplug_fn = mm_unplug_device; |
| 994 | |
| 995 | tasklet_init(&card->tasklet, process_page, (unsigned long)card); |
| 996 | |
| 997 | card->check_batteries = 0; |
| 998 | |
| 999 | mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY); |
| 1000 | switch (mem_present) { |
| 1001 | case MEM_128_MB: |
| 1002 | card->mm_size = 1024 * 128; |
| 1003 | break; |
| 1004 | case MEM_256_MB: |
| 1005 | card->mm_size = 1024 * 256; |
| 1006 | break; |
| 1007 | case MEM_512_MB: |
| 1008 | card->mm_size = 1024 * 512; |
| 1009 | break; |
| 1010 | case MEM_1_GB: |
| 1011 | card->mm_size = 1024 * 1024; |
| 1012 | break; |
| 1013 | case MEM_2_GB: |
| 1014 | card->mm_size = 1024 * 2048; |
| 1015 | break; |
| 1016 | default: |
| 1017 | card->mm_size = 0; |
| 1018 | break; |
| 1019 | } |
| 1020 | |
| 1021 | /* Clear the LED's we control */ |
| 1022 | set_led(card, LED_REMOVE, LED_OFF); |
| 1023 | set_led(card, LED_FAULT, LED_OFF); |
| 1024 | |
| 1025 | batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY); |
| 1026 | |
| 1027 | card->battery[0].good = !(batt_status & BATTERY_1_FAILURE); |
| 1028 | card->battery[1].good = !(batt_status & BATTERY_2_FAILURE); |
| 1029 | card->battery[0].last_change = card->battery[1].last_change = jiffies; |
| 1030 | |
| 1031 | if (card->flags & UM_FLAG_NO_BATT) |
| 1032 | printk(KERN_INFO "MM%d: Size %d KB\n", |
| 1033 | card->card_number, card->mm_size); |
| 1034 | else { |
| 1035 | printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n", |
| 1036 | card->card_number, card->mm_size, |
| 1037 | (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"), |
| 1038 | card->battery[0].good ? "OK" : "FAILURE", |
| 1039 | (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"), |
| 1040 | card->battery[1].good ? "OK" : "FAILURE"); |
| 1041 | |
| 1042 | set_fault_to_battery_status(card); |
| 1043 | } |
| 1044 | |
| 1045 | pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar); |
| 1046 | data = 0xffffffff; |
| 1047 | pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data); |
| 1048 | pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data); |
| 1049 | pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar); |
| 1050 | data &= 0xfffffff0; |
| 1051 | data = ~data; |
| 1052 | data += 1; |
| 1053 | |
| 1054 | card->win_size = data; |
| 1055 | |
| 1056 | |
| 1057 | if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) { |
| 1058 | printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number); |
| 1059 | ret = -ENODEV; |
| 1060 | |
| 1061 | goto failed_req_irq; |
| 1062 | } |
| 1063 | |
| 1064 | card->irq = dev->irq; |
| 1065 | printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number, |
| 1066 | card->win_size, card->irq); |
| 1067 | |
| 1068 | spin_lock_init(&card->lock); |
| 1069 | |
| 1070 | pci_set_drvdata(dev, card); |
| 1071 | |
| 1072 | if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */ |
| 1073 | pci_write_cmd = 0x07; /* then Memory Write command */ |
| 1074 | |
| 1075 | if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */ |
| 1076 | unsigned short cfg_command; |
| 1077 | pci_read_config_word(dev, PCI_COMMAND, &cfg_command); |
| 1078 | cfg_command |= 0x10; /* Memory Write & Invalidate Enable */ |
| 1079 | pci_write_config_word(dev, PCI_COMMAND, cfg_command); |
| 1080 | } |
| 1081 | pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24); |
| 1082 | |
| 1083 | num_cards++; |
| 1084 | |
| 1085 | if (!get_userbit(card, MEMORY_INITIALIZED)) { |
| 1086 | printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number); |
| 1087 | card->init_size = 0; |
| 1088 | } else { |
| 1089 | printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number); |
| 1090 | card->init_size = card->mm_size; |
| 1091 | } |
| 1092 | |
| 1093 | /* Enable ECC */ |
| 1094 | writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL); |
| 1095 | |
| 1096 | return 0; |
| 1097 | |
| 1098 | failed_req_irq: |
| 1099 | failed_alloc: |
| 1100 | if (card->mm_pages[0].desc) |
| 1101 | pci_free_consistent(card->dev, PAGE_SIZE*2, |
| 1102 | card->mm_pages[0].desc, |
| 1103 | card->mm_pages[0].page_dma); |
| 1104 | if (card->mm_pages[1].desc) |
| 1105 | pci_free_consistent(card->dev, PAGE_SIZE*2, |
| 1106 | card->mm_pages[1].desc, |
| 1107 | card->mm_pages[1].page_dma); |
| 1108 | failed_magic: |
| 1109 | #ifdef CONFIG_MM_MAP_MEMORY |
| 1110 | iounmap(card->mem_remap); |
| 1111 | failed_remap_mem: |
| 1112 | release_mem_region(card->mem_base, card->mem_len); |
| 1113 | failed_req_mem: |
| 1114 | #endif |
| 1115 | iounmap(card->csr_remap); |
| 1116 | failed_remap_csr: |
| 1117 | release_mem_region(card->csr_base, card->csr_len); |
| 1118 | failed_req_csr: |
| 1119 | |
| 1120 | return ret; |
| 1121 | } |
| 1122 | /* |
| 1123 | ----------------------------------------------------------------------------------- |
| 1124 | -- mm_pci_remove |
| 1125 | ----------------------------------------------------------------------------------- |
| 1126 | */ |
| 1127 | static void mm_pci_remove(struct pci_dev *dev) |
| 1128 | { |
| 1129 | struct cardinfo *card = pci_get_drvdata(dev); |
| 1130 | |
| 1131 | tasklet_kill(&card->tasklet); |
| 1132 | iounmap(card->csr_remap); |
| 1133 | release_mem_region(card->csr_base, card->csr_len); |
| 1134 | #ifdef CONFIG_MM_MAP_MEMORY |
| 1135 | iounmap(card->mem_remap); |
| 1136 | release_mem_region(card->mem_base, card->mem_len); |
| 1137 | #endif |
| 1138 | free_irq(card->irq, card); |
| 1139 | |
| 1140 | if (card->mm_pages[0].desc) |
| 1141 | pci_free_consistent(card->dev, PAGE_SIZE*2, |
| 1142 | card->mm_pages[0].desc, |
| 1143 | card->mm_pages[0].page_dma); |
| 1144 | if (card->mm_pages[1].desc) |
| 1145 | pci_free_consistent(card->dev, PAGE_SIZE*2, |
| 1146 | card->mm_pages[1].desc, |
| 1147 | card->mm_pages[1].page_dma); |
| 1148 | blk_put_queue(card->queue); |
| 1149 | } |
| 1150 | |
| 1151 | static const struct pci_device_id mm_pci_ids[] = { { |
| 1152 | .vendor = PCI_VENDOR_ID_MICRO_MEMORY, |
| 1153 | .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN, |
| 1154 | }, { |
| 1155 | .vendor = PCI_VENDOR_ID_MICRO_MEMORY, |
| 1156 | .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN, |
| 1157 | }, { |
| 1158 | .vendor = PCI_VENDOR_ID_MICRO_MEMORY, |
| 1159 | .device = PCI_DEVICE_ID_MICRO_MEMORY_6155, |
| 1160 | }, { |
| 1161 | .vendor = 0x8086, |
| 1162 | .device = 0xB555, |
| 1163 | .subvendor= 0x1332, |
| 1164 | .subdevice= 0x5460, |
| 1165 | .class = 0x050000, |
| 1166 | .class_mask= 0, |
| 1167 | }, { /* end: all zeroes */ } |
| 1168 | }; |
| 1169 | |
| 1170 | MODULE_DEVICE_TABLE(pci, mm_pci_ids); |
| 1171 | |
| 1172 | static struct pci_driver mm_pci_driver = { |
| 1173 | .name = "umem", |
| 1174 | .id_table = mm_pci_ids, |
| 1175 | .probe = mm_pci_probe, |
| 1176 | .remove = mm_pci_remove, |
| 1177 | }; |
| 1178 | /* |
| 1179 | ----------------------------------------------------------------------------------- |
| 1180 | -- mm_init |
| 1181 | ----------------------------------------------------------------------------------- |
| 1182 | */ |
| 1183 | |
| 1184 | static int __init mm_init(void) |
| 1185 | { |
| 1186 | int retval, i; |
| 1187 | int err; |
| 1188 | |
| 1189 | printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n"); |
| 1190 | |
| 1191 | retval = pci_module_init(&mm_pci_driver); |
| 1192 | if (retval) |
| 1193 | return -ENOMEM; |
| 1194 | |
| 1195 | err = major_nr = register_blkdev(0, "umem"); |
| 1196 | if (err < 0) |
| 1197 | return -EIO; |
| 1198 | |
| 1199 | for (i = 0; i < num_cards; i++) { |
| 1200 | mm_gendisk[i] = alloc_disk(1 << MM_SHIFT); |
| 1201 | if (!mm_gendisk[i]) |
| 1202 | goto out; |
| 1203 | } |
| 1204 | |
| 1205 | for (i = 0; i < num_cards; i++) { |
| 1206 | struct gendisk *disk = mm_gendisk[i]; |
| 1207 | sprintf(disk->disk_name, "umem%c", 'a'+i); |
| 1208 | sprintf(disk->devfs_name, "umem/card%d", i); |
| 1209 | spin_lock_init(&cards[i].lock); |
| 1210 | disk->major = major_nr; |
| 1211 | disk->first_minor = i << MM_SHIFT; |
| 1212 | disk->fops = &mm_fops; |
| 1213 | disk->private_data = &cards[i]; |
| 1214 | disk->queue = cards[i].queue; |
| 1215 | set_capacity(disk, cards[i].mm_size << 1); |
| 1216 | add_disk(disk); |
| 1217 | } |
| 1218 | |
| 1219 | init_battery_timer(); |
| 1220 | printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE); |
| 1221 | /* printk("mm_init: Done. 10-19-01 9:00\n"); */ |
| 1222 | return 0; |
| 1223 | |
| 1224 | out: |
| 1225 | unregister_blkdev(major_nr, "umem"); |
| 1226 | while (i--) |
| 1227 | put_disk(mm_gendisk[i]); |
| 1228 | return -ENOMEM; |
| 1229 | } |
| 1230 | /* |
| 1231 | ----------------------------------------------------------------------------------- |
| 1232 | -- mm_cleanup |
| 1233 | ----------------------------------------------------------------------------------- |
| 1234 | */ |
| 1235 | static void __exit mm_cleanup(void) |
| 1236 | { |
| 1237 | int i; |
| 1238 | |
| 1239 | del_battery_timer(); |
| 1240 | |
| 1241 | for (i=0; i < num_cards ; i++) { |
| 1242 | del_gendisk(mm_gendisk[i]); |
| 1243 | put_disk(mm_gendisk[i]); |
| 1244 | } |
| 1245 | |
| 1246 | pci_unregister_driver(&mm_pci_driver); |
| 1247 | |
| 1248 | unregister_blkdev(major_nr, "umem"); |
| 1249 | } |
| 1250 | |
| 1251 | module_init(mm_init); |
| 1252 | module_exit(mm_cleanup); |
| 1253 | |
| 1254 | MODULE_AUTHOR(DRIVER_AUTHOR); |
| 1255 | MODULE_DESCRIPTION(DRIVER_DESC); |
| 1256 | MODULE_LICENSE("GPL"); |