blob: d489fbd07c12b6e73bf0f73e5f3de2696d4da3c4 [file] [log] [blame]
Graham Moore14062342016-06-04 02:39:34 +02001/*
2 * Driver for Cadence QSPI Controller
3 *
4 * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18#include <linux/clk.h>
19#include <linux/completion.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/errno.h>
23#include <linux/interrupt.h>
24#include <linux/io.h>
25#include <linux/jiffies.h>
26#include <linux/kernel.h>
27#include <linux/module.h>
28#include <linux/mtd/mtd.h>
29#include <linux/mtd/partitions.h>
30#include <linux/mtd/spi-nor.h>
31#include <linux/of_device.h>
32#include <linux/of.h>
33#include <linux/platform_device.h>
34#include <linux/sched.h>
35#include <linux/spi/spi.h>
36#include <linux/timer.h>
37
38#define CQSPI_NAME "cadence-qspi"
39#define CQSPI_MAX_CHIPSELECT 16
40
41struct cqspi_st;
42
43struct cqspi_flash_pdata {
44 struct spi_nor nor;
45 struct cqspi_st *cqspi;
46 u32 clk_rate;
47 u32 read_delay;
48 u32 tshsl_ns;
49 u32 tsd2d_ns;
50 u32 tchsh_ns;
51 u32 tslch_ns;
52 u8 inst_width;
53 u8 addr_width;
54 u8 data_width;
55 u8 cs;
56 bool registered;
57};
58
59struct cqspi_st {
60 struct platform_device *pdev;
61
62 struct clk *clk;
63 unsigned int sclk;
64
65 void __iomem *iobase;
66 void __iomem *ahb_base;
67 struct completion transfer_complete;
68 struct mutex bus_mutex;
69
70 int current_cs;
71 int current_page_size;
72 int current_erase_size;
73 int current_addr_width;
74 unsigned long master_ref_clk_hz;
75 bool is_decoded_cs;
76 u32 fifo_depth;
77 u32 fifo_width;
78 u32 trigger_address;
79 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
80};
81
82/* Operation timeout value */
83#define CQSPI_TIMEOUT_MS 500
84#define CQSPI_READ_TIMEOUT_MS 10
85
86/* Instruction type */
87#define CQSPI_INST_TYPE_SINGLE 0
88#define CQSPI_INST_TYPE_DUAL 1
89#define CQSPI_INST_TYPE_QUAD 2
90
91#define CQSPI_DUMMY_CLKS_PER_BYTE 8
92#define CQSPI_DUMMY_BYTES_MAX 4
93#define CQSPI_DUMMY_CLKS_MAX 31
94
95#define CQSPI_STIG_DATA_LEN_MAX 8
96
97/* Register map */
98#define CQSPI_REG_CONFIG 0x00
99#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
100#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
101#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
102#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
103#define CQSPI_REG_CONFIG_BAUD_LSB 19
104#define CQSPI_REG_CONFIG_IDLE_LSB 31
105#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
106#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
107
108#define CQSPI_REG_RD_INSTR 0x04
109#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
110#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
111#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
112#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
113#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
114#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
115#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
116#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
117#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
118#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
119
120#define CQSPI_REG_WR_INSTR 0x08
121#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
122#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
123#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
124
125#define CQSPI_REG_DELAY 0x0C
126#define CQSPI_REG_DELAY_TSLCH_LSB 0
127#define CQSPI_REG_DELAY_TCHSH_LSB 8
128#define CQSPI_REG_DELAY_TSD2D_LSB 16
129#define CQSPI_REG_DELAY_TSHSL_LSB 24
130#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
131#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
132#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
133#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
134
135#define CQSPI_REG_READCAPTURE 0x10
136#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
137#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
138#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
139
140#define CQSPI_REG_SIZE 0x14
141#define CQSPI_REG_SIZE_ADDRESS_LSB 0
142#define CQSPI_REG_SIZE_PAGE_LSB 4
143#define CQSPI_REG_SIZE_BLOCK_LSB 16
144#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
145#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
146#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
147
148#define CQSPI_REG_SRAMPARTITION 0x18
149#define CQSPI_REG_INDIRECTTRIGGER 0x1C
150
151#define CQSPI_REG_DMA 0x20
152#define CQSPI_REG_DMA_SINGLE_LSB 0
153#define CQSPI_REG_DMA_BURST_LSB 8
154#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
155#define CQSPI_REG_DMA_BURST_MASK 0xFF
156
157#define CQSPI_REG_REMAP 0x24
158#define CQSPI_REG_MODE_BIT 0x28
159
160#define CQSPI_REG_SDRAMLEVEL 0x2C
161#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
162#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
163#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
164#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
165
166#define CQSPI_REG_IRQSTATUS 0x40
167#define CQSPI_REG_IRQMASK 0x44
168
169#define CQSPI_REG_INDIRECTRD 0x60
170#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
171#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
172#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
173
174#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
175#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
176#define CQSPI_REG_INDIRECTRDBYTES 0x6C
177
178#define CQSPI_REG_CMDCTRL 0x90
179#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
180#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
181#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
182#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
183#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
184#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
185#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
186#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
187#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
188#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
189#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
190#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
191
192#define CQSPI_REG_INDIRECTWR 0x70
193#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
194#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
195#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
196
197#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
198#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
199#define CQSPI_REG_INDIRECTWRBYTES 0x7C
200
201#define CQSPI_REG_CMDADDRESS 0x94
202#define CQSPI_REG_CMDREADDATALOWER 0xA0
203#define CQSPI_REG_CMDREADDATAUPPER 0xA4
204#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
205#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
206
207/* Interrupt status bits */
208#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
209#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
210#define CQSPI_REG_IRQ_IND_COMP BIT(2)
211#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
212#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
213#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
214#define CQSPI_REG_IRQ_WATERMARK BIT(6)
215#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
216
217#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
218 CQSPI_REG_IRQ_IND_SRAM_FULL | \
219 CQSPI_REG_IRQ_IND_COMP)
220
221#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
222 CQSPI_REG_IRQ_WATERMARK | \
223 CQSPI_REG_IRQ_UNDERFLOW)
224
225#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
226
227static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
228{
229 unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
230 u32 val;
231
232 while (1) {
233 val = readl(reg);
234 if (clear)
235 val = ~val;
236 val &= mask;
237
238 if (val == mask)
239 return 0;
240
241 if (time_after(jiffies, end))
242 return -ETIMEDOUT;
243 }
244}
245
246static bool cqspi_is_idle(struct cqspi_st *cqspi)
247{
248 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
249
250 return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
251}
252
253static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
254{
255 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
256
257 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
258 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
259}
260
261static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
262{
263 struct cqspi_st *cqspi = dev;
264 unsigned int irq_status;
265
266 /* Read interrupt status */
267 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
268
269 /* Clear interrupt */
270 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
271
272 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
273
274 if (irq_status)
275 complete(&cqspi->transfer_complete);
276
277 return IRQ_HANDLED;
278}
279
280static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
281{
282 struct cqspi_flash_pdata *f_pdata = nor->priv;
283 u32 rdreg = 0;
284
285 rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
286 rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
287 rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
288
289 return rdreg;
290}
291
292static int cqspi_wait_idle(struct cqspi_st *cqspi)
293{
294 const unsigned int poll_idle_retry = 3;
295 unsigned int count = 0;
296 unsigned long timeout;
297
298 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
299 while (1) {
300 /*
301 * Read few times in succession to ensure the controller
302 * is indeed idle, that is, the bit does not transition
303 * low again.
304 */
305 if (cqspi_is_idle(cqspi))
306 count++;
307 else
308 count = 0;
309
310 if (count >= poll_idle_retry)
311 return 0;
312
313 if (time_after(jiffies, timeout)) {
314 /* Timeout, in busy mode. */
315 dev_err(&cqspi->pdev->dev,
316 "QSPI is still busy after %dms timeout.\n",
317 CQSPI_TIMEOUT_MS);
318 return -ETIMEDOUT;
319 }
320
321 cpu_relax();
322 }
323}
324
325static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
326{
327 void __iomem *reg_base = cqspi->iobase;
328 int ret;
329
330 /* Write the CMDCTRL without start execution. */
331 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
332 /* Start execute */
333 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
334 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
335
336 /* Polling for completion. */
337 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
338 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
339 if (ret) {
340 dev_err(&cqspi->pdev->dev,
341 "Flash command execution timed out.\n");
342 return ret;
343 }
344
345 /* Polling QSPI idle status. */
346 return cqspi_wait_idle(cqspi);
347}
348
349static int cqspi_command_read(struct spi_nor *nor,
350 const u8 *txbuf, const unsigned n_tx,
351 u8 *rxbuf, const unsigned n_rx)
352{
353 struct cqspi_flash_pdata *f_pdata = nor->priv;
354 struct cqspi_st *cqspi = f_pdata->cqspi;
355 void __iomem *reg_base = cqspi->iobase;
356 unsigned int rdreg;
357 unsigned int reg;
358 unsigned int read_len;
359 int status;
360
361 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
362 dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
363 n_rx, rxbuf);
364 return -EINVAL;
365 }
366
367 reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
368
369 rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
370 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
371
372 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
373
374 /* 0 means 1 byte. */
375 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
376 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
377 status = cqspi_exec_flash_cmd(cqspi, reg);
378 if (status)
379 return status;
380
381 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
382
383 /* Put the read value into rx_buf */
384 read_len = (n_rx > 4) ? 4 : n_rx;
385 memcpy(rxbuf, &reg, read_len);
386 rxbuf += read_len;
387
388 if (n_rx > 4) {
389 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
390
391 read_len = n_rx - read_len;
392 memcpy(rxbuf, &reg, read_len);
393 }
394
395 return 0;
396}
397
398static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
399 const u8 *txbuf, const unsigned n_tx)
400{
401 struct cqspi_flash_pdata *f_pdata = nor->priv;
402 struct cqspi_st *cqspi = f_pdata->cqspi;
403 void __iomem *reg_base = cqspi->iobase;
404 unsigned int reg;
405 unsigned int data;
406 int ret;
407
408 if (n_tx > 4 || (n_tx && !txbuf)) {
409 dev_err(nor->dev,
410 "Invalid input argument, cmdlen %d txbuf 0x%p\n",
411 n_tx, txbuf);
412 return -EINVAL;
413 }
414
415 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
416 if (n_tx) {
417 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
418 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
419 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
420 data = 0;
421 memcpy(&data, txbuf, n_tx);
422 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
423 }
424
425 ret = cqspi_exec_flash_cmd(cqspi, reg);
426 return ret;
427}
428
429static int cqspi_command_write_addr(struct spi_nor *nor,
430 const u8 opcode, const unsigned int addr)
431{
432 struct cqspi_flash_pdata *f_pdata = nor->priv;
433 struct cqspi_st *cqspi = f_pdata->cqspi;
434 void __iomem *reg_base = cqspi->iobase;
435 unsigned int reg;
436
437 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
438 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
439 reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
440 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
441
442 writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
443
444 return cqspi_exec_flash_cmd(cqspi, reg);
445}
446
447static int cqspi_indirect_read_setup(struct spi_nor *nor,
448 const unsigned int from_addr)
449{
450 struct cqspi_flash_pdata *f_pdata = nor->priv;
451 struct cqspi_st *cqspi = f_pdata->cqspi;
452 void __iomem *reg_base = cqspi->iobase;
453 unsigned int dummy_clk = 0;
454 unsigned int reg;
455
456 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
457
458 reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
459 reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
460
461 /* Setup dummy clock cycles */
462 dummy_clk = nor->read_dummy;
463 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
464 dummy_clk = CQSPI_DUMMY_CLKS_MAX;
465
466 if (dummy_clk / 8) {
467 reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
468 /* Set mode bits high to ensure chip doesn't enter XIP */
469 writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
470
471 /* Need to subtract the mode byte (8 clocks). */
472 if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
473 dummy_clk -= 8;
474
475 if (dummy_clk)
476 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
477 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
478 }
479
480 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
481
482 /* Set address width */
483 reg = readl(reg_base + CQSPI_REG_SIZE);
484 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
485 reg |= (nor->addr_width - 1);
486 writel(reg, reg_base + CQSPI_REG_SIZE);
487 return 0;
488}
489
490static int cqspi_indirect_read_execute(struct spi_nor *nor,
491 u8 *rxbuf, const unsigned n_rx)
492{
493 struct cqspi_flash_pdata *f_pdata = nor->priv;
494 struct cqspi_st *cqspi = f_pdata->cqspi;
495 void __iomem *reg_base = cqspi->iobase;
496 void __iomem *ahb_base = cqspi->ahb_base;
497 unsigned int remaining = n_rx;
498 unsigned int bytes_to_read = 0;
499 int ret = 0;
500
501 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
502
503 /* Clear all interrupts. */
504 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
505
506 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
507
508 reinit_completion(&cqspi->transfer_complete);
509 writel(CQSPI_REG_INDIRECTRD_START_MASK,
510 reg_base + CQSPI_REG_INDIRECTRD);
511
512 while (remaining > 0) {
513 ret = wait_for_completion_timeout(&cqspi->transfer_complete,
514 msecs_to_jiffies
515 (CQSPI_READ_TIMEOUT_MS));
516
517 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
518
519 if (!ret && bytes_to_read == 0) {
520 dev_err(nor->dev, "Indirect read timeout, no bytes\n");
521 ret = -ETIMEDOUT;
522 goto failrd;
523 }
524
525 while (bytes_to_read != 0) {
526 bytes_to_read *= cqspi->fifo_width;
527 bytes_to_read = bytes_to_read > remaining ?
528 remaining : bytes_to_read;
529 readsl(ahb_base, rxbuf, DIV_ROUND_UP(bytes_to_read, 4));
530 rxbuf += bytes_to_read;
531 remaining -= bytes_to_read;
532 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
533 }
534
535 if (remaining > 0)
536 reinit_completion(&cqspi->transfer_complete);
537 }
538
539 /* Check indirect done status */
540 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
541 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
542 if (ret) {
543 dev_err(nor->dev,
544 "Indirect read completion error (%i)\n", ret);
545 goto failrd;
546 }
547
548 /* Disable interrupt */
549 writel(0, reg_base + CQSPI_REG_IRQMASK);
550
551 /* Clear indirect completion status */
552 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
553
554 return 0;
555
556failrd:
557 /* Disable interrupt */
558 writel(0, reg_base + CQSPI_REG_IRQMASK);
559
560 /* Cancel the indirect read */
561 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
562 reg_base + CQSPI_REG_INDIRECTRD);
563 return ret;
564}
565
566static int cqspi_indirect_write_setup(struct spi_nor *nor,
567 const unsigned int to_addr)
568{
569 unsigned int reg;
570 struct cqspi_flash_pdata *f_pdata = nor->priv;
571 struct cqspi_st *cqspi = f_pdata->cqspi;
572 void __iomem *reg_base = cqspi->iobase;
573
574 /* Set opcode. */
575 reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
576 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
577 reg = cqspi_calc_rdreg(nor, nor->program_opcode);
578 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
579
580 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
581
582 reg = readl(reg_base + CQSPI_REG_SIZE);
583 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
584 reg |= (nor->addr_width - 1);
585 writel(reg, reg_base + CQSPI_REG_SIZE);
586 return 0;
587}
588
589static int cqspi_indirect_write_execute(struct spi_nor *nor,
590 const u8 *txbuf, const unsigned n_tx)
591{
592 const unsigned int page_size = nor->page_size;
593 struct cqspi_flash_pdata *f_pdata = nor->priv;
594 struct cqspi_st *cqspi = f_pdata->cqspi;
595 void __iomem *reg_base = cqspi->iobase;
596 unsigned int remaining = n_tx;
597 unsigned int write_bytes;
598 int ret;
599
600 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
601
602 /* Clear all interrupts. */
603 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
604
605 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
606
607 reinit_completion(&cqspi->transfer_complete);
608 writel(CQSPI_REG_INDIRECTWR_START_MASK,
609 reg_base + CQSPI_REG_INDIRECTWR);
610
611 while (remaining > 0) {
612 write_bytes = remaining > page_size ? page_size : remaining;
613 writesl(cqspi->ahb_base, txbuf, DIV_ROUND_UP(write_bytes, 4));
614
615 ret = wait_for_completion_timeout(&cqspi->transfer_complete,
616 msecs_to_jiffies
617 (CQSPI_TIMEOUT_MS));
618 if (!ret) {
619 dev_err(nor->dev, "Indirect write timeout\n");
620 ret = -ETIMEDOUT;
621 goto failwr;
622 }
623
624 txbuf += write_bytes;
625 remaining -= write_bytes;
626
627 if (remaining > 0)
628 reinit_completion(&cqspi->transfer_complete);
629 }
630
631 /* Check indirect done status */
632 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
633 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
634 if (ret) {
635 dev_err(nor->dev,
636 "Indirect write completion error (%i)\n", ret);
637 goto failwr;
638 }
639
640 /* Disable interrupt. */
641 writel(0, reg_base + CQSPI_REG_IRQMASK);
642
643 /* Clear indirect completion status */
644 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
645
646 cqspi_wait_idle(cqspi);
647
648 return 0;
649
650failwr:
651 /* Disable interrupt. */
652 writel(0, reg_base + CQSPI_REG_IRQMASK);
653
654 /* Cancel the indirect write */
655 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
656 reg_base + CQSPI_REG_INDIRECTWR);
657 return ret;
658}
659
660static void cqspi_chipselect(struct spi_nor *nor)
661{
662 struct cqspi_flash_pdata *f_pdata = nor->priv;
663 struct cqspi_st *cqspi = f_pdata->cqspi;
664 void __iomem *reg_base = cqspi->iobase;
665 unsigned int chip_select = f_pdata->cs;
666 unsigned int reg;
667
668 reg = readl(reg_base + CQSPI_REG_CONFIG);
669 if (cqspi->is_decoded_cs) {
670 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
671 } else {
672 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
673
674 /* Convert CS if without decoder.
675 * CS0 to 4b'1110
676 * CS1 to 4b'1101
677 * CS2 to 4b'1011
678 * CS3 to 4b'0111
679 */
680 chip_select = 0xF & ~(1 << chip_select);
681 }
682
683 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
684 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
685 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
686 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
687 writel(reg, reg_base + CQSPI_REG_CONFIG);
688}
689
690static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
691{
692 struct cqspi_flash_pdata *f_pdata = nor->priv;
693 struct cqspi_st *cqspi = f_pdata->cqspi;
694 void __iomem *iobase = cqspi->iobase;
695 unsigned int reg;
696
697 /* configure page size and block size. */
698 reg = readl(iobase + CQSPI_REG_SIZE);
699 reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
700 reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
701 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
702 reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
703 reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
704 reg |= (nor->addr_width - 1);
705 writel(reg, iobase + CQSPI_REG_SIZE);
706
707 /* configure the chip select */
708 cqspi_chipselect(nor);
709
710 /* Store the new configuration of the controller */
711 cqspi->current_page_size = nor->page_size;
712 cqspi->current_erase_size = nor->mtd.erasesize;
713 cqspi->current_addr_width = nor->addr_width;
714}
715
716static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
717 const unsigned int ns_val)
718{
719 unsigned int ticks;
720
721 ticks = ref_clk_hz / 1000; /* kHz */
722 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
723
724 return ticks;
725}
726
727static void cqspi_delay(struct spi_nor *nor)
728{
729 struct cqspi_flash_pdata *f_pdata = nor->priv;
730 struct cqspi_st *cqspi = f_pdata->cqspi;
731 void __iomem *iobase = cqspi->iobase;
732 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
733 unsigned int tshsl, tchsh, tslch, tsd2d;
734 unsigned int reg;
735 unsigned int tsclk;
736
737 /* calculate the number of ref ticks for one sclk tick */
738 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
739
740 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
741 /* this particular value must be at least one sclk */
742 if (tshsl < tsclk)
743 tshsl = tsclk;
744
745 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
746 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
747 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
748
749 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
750 << CQSPI_REG_DELAY_TSHSL_LSB;
751 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
752 << CQSPI_REG_DELAY_TCHSH_LSB;
753 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
754 << CQSPI_REG_DELAY_TSLCH_LSB;
755 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
756 << CQSPI_REG_DELAY_TSD2D_LSB;
757 writel(reg, iobase + CQSPI_REG_DELAY);
758}
759
760static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
761{
762 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
763 void __iomem *reg_base = cqspi->iobase;
764 u32 reg, div;
765
766 /* Recalculate the baudrate divisor based on QSPI specification. */
767 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
768
769 reg = readl(reg_base + CQSPI_REG_CONFIG);
770 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
771 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
772 writel(reg, reg_base + CQSPI_REG_CONFIG);
773}
774
775static void cqspi_readdata_capture(struct cqspi_st *cqspi,
776 const unsigned int bypass,
777 const unsigned int delay)
778{
779 void __iomem *reg_base = cqspi->iobase;
780 unsigned int reg;
781
782 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
783
784 if (bypass)
785 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
786 else
787 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
788
789 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
790 << CQSPI_REG_READCAPTURE_DELAY_LSB);
791
792 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
793 << CQSPI_REG_READCAPTURE_DELAY_LSB;
794
795 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
796}
797
798static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
799{
800 void __iomem *reg_base = cqspi->iobase;
801 unsigned int reg;
802
803 reg = readl(reg_base + CQSPI_REG_CONFIG);
804
805 if (enable)
806 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
807 else
808 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
809
810 writel(reg, reg_base + CQSPI_REG_CONFIG);
811}
812
813static void cqspi_configure(struct spi_nor *nor)
814{
815 struct cqspi_flash_pdata *f_pdata = nor->priv;
816 struct cqspi_st *cqspi = f_pdata->cqspi;
817 const unsigned int sclk = f_pdata->clk_rate;
818 int switch_cs = (cqspi->current_cs != f_pdata->cs);
819 int switch_ck = (cqspi->sclk != sclk);
820
821 if ((cqspi->current_page_size != nor->page_size) ||
822 (cqspi->current_erase_size != nor->mtd.erasesize) ||
823 (cqspi->current_addr_width != nor->addr_width))
824 switch_cs = 1;
825
826 if (switch_cs || switch_ck)
827 cqspi_controller_enable(cqspi, 0);
828
829 /* Switch chip select. */
830 if (switch_cs) {
831 cqspi->current_cs = f_pdata->cs;
832 cqspi_configure_cs_and_sizes(nor);
833 }
834
835 /* Setup baudrate divisor and delays */
836 if (switch_ck) {
837 cqspi->sclk = sclk;
838 cqspi_config_baudrate_div(cqspi);
839 cqspi_delay(nor);
840 cqspi_readdata_capture(cqspi, 1, f_pdata->read_delay);
841 }
842
843 if (switch_cs || switch_ck)
844 cqspi_controller_enable(cqspi, 1);
845}
846
847static int cqspi_set_protocol(struct spi_nor *nor, const int read)
848{
849 struct cqspi_flash_pdata *f_pdata = nor->priv;
850
851 f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
852 f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
853 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
854
855 if (read) {
856 switch (nor->flash_read) {
857 case SPI_NOR_NORMAL:
858 case SPI_NOR_FAST:
859 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
860 break;
861 case SPI_NOR_DUAL:
862 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
863 break;
864 case SPI_NOR_QUAD:
865 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
866 break;
867 default:
868 return -EINVAL;
869 }
870 }
871
872 cqspi_configure(nor);
873
874 return 0;
875}
876
877static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
878 size_t len, const u_char *buf)
879{
880 int ret;
881
882 ret = cqspi_set_protocol(nor, 0);
883 if (ret)
884 return ret;
885
886 ret = cqspi_indirect_write_setup(nor, to);
887 if (ret)
888 return ret;
889
890 ret = cqspi_indirect_write_execute(nor, buf, len);
891 if (ret)
892 return ret;
893
894 return (ret < 0) ? ret : len;
895}
896
897static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
898 size_t len, u_char *buf)
899{
900 int ret;
901
902 ret = cqspi_set_protocol(nor, 1);
903 if (ret)
904 return ret;
905
906 ret = cqspi_indirect_read_setup(nor, from);
907 if (ret)
908 return ret;
909
910 ret = cqspi_indirect_read_execute(nor, buf, len);
911 if (ret)
912 return ret;
913
914 return (ret < 0) ? ret : len;
915}
916
917static int cqspi_erase(struct spi_nor *nor, loff_t offs)
918{
919 int ret;
920
921 ret = cqspi_set_protocol(nor, 0);
922 if (ret)
923 return ret;
924
925 /* Send write enable, then erase commands. */
926 ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
927 if (ret)
928 return ret;
929
930 /* Set up command buffer. */
931 ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
932 if (ret)
933 return ret;
934
935 return 0;
936}
937
938static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
939{
940 struct cqspi_flash_pdata *f_pdata = nor->priv;
941 struct cqspi_st *cqspi = f_pdata->cqspi;
942
943 mutex_lock(&cqspi->bus_mutex);
944
945 return 0;
946}
947
948static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
949{
950 struct cqspi_flash_pdata *f_pdata = nor->priv;
951 struct cqspi_st *cqspi = f_pdata->cqspi;
952
953 mutex_unlock(&cqspi->bus_mutex);
954}
955
956static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
957{
958 int ret;
959
960 ret = cqspi_set_protocol(nor, 0);
961 if (!ret)
962 ret = cqspi_command_read(nor, &opcode, 1, buf, len);
963
964 return ret;
965}
966
967static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
968{
969 int ret;
970
971 ret = cqspi_set_protocol(nor, 0);
972 if (!ret)
973 ret = cqspi_command_write(nor, opcode, buf, len);
974
975 return ret;
976}
977
978static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
979 struct cqspi_flash_pdata *f_pdata,
980 struct device_node *np)
981{
982 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
983 dev_err(&pdev->dev, "couldn't determine read-delay\n");
984 return -ENXIO;
985 }
986
987 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
988 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
989 return -ENXIO;
990 }
991
992 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
993 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
994 return -ENXIO;
995 }
996
997 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
998 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
999 return -ENXIO;
1000 }
1001
1002 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1003 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1004 return -ENXIO;
1005 }
1006
1007 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1008 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1009 return -ENXIO;
1010 }
1011
1012 return 0;
1013}
1014
1015static int cqspi_of_get_pdata(struct platform_device *pdev)
1016{
1017 struct device_node *np = pdev->dev.of_node;
1018 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1019
1020 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1021
1022 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1023 dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
1024 return -ENXIO;
1025 }
1026
1027 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1028 dev_err(&pdev->dev, "couldn't determine fifo-width\n");
1029 return -ENXIO;
1030 }
1031
1032 if (of_property_read_u32(np, "cdns,trigger-address",
1033 &cqspi->trigger_address)) {
1034 dev_err(&pdev->dev, "couldn't determine trigger-address\n");
1035 return -ENXIO;
1036 }
1037
1038 return 0;
1039}
1040
1041static void cqspi_controller_init(struct cqspi_st *cqspi)
1042{
1043 cqspi_controller_enable(cqspi, 0);
1044
1045 /* Configure the remap address register, no remap */
1046 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1047
1048 /* Disable all interrupts. */
1049 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1050
1051 /* Configure the SRAM split to 1:1 . */
1052 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1053
1054 /* Load indirect trigger address. */
1055 writel(cqspi->trigger_address,
1056 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1057
1058 /* Program read watermark -- 1/2 of the FIFO. */
1059 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1060 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1061 /* Program write watermark -- 1/8 of the FIFO. */
1062 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1063 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1064
1065 cqspi_controller_enable(cqspi, 1);
1066}
1067
1068static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
1069{
1070 struct platform_device *pdev = cqspi->pdev;
1071 struct device *dev = &pdev->dev;
1072 struct cqspi_flash_pdata *f_pdata;
1073 struct spi_nor *nor;
1074 struct mtd_info *mtd;
1075 unsigned int cs;
1076 int i, ret;
1077
1078 /* Get flash device data */
1079 for_each_available_child_of_node(dev->of_node, np) {
Dan Carpenter10ad1d72016-10-13 11:30:39 +03001080 ret = of_property_read_u32(np, "reg", &cs);
1081 if (ret) {
Graham Moore14062342016-06-04 02:39:34 +02001082 dev_err(dev, "Couldn't determine chip select.\n");
1083 goto err;
1084 }
1085
Dan Carpenter193e87142016-10-13 11:06:47 +03001086 if (cs >= CQSPI_MAX_CHIPSELECT) {
Dan Carpenter10ad1d72016-10-13 11:30:39 +03001087 ret = -EINVAL;
Graham Moore14062342016-06-04 02:39:34 +02001088 dev_err(dev, "Chip select %d out of range.\n", cs);
1089 goto err;
1090 }
1091
1092 f_pdata = &cqspi->f_pdata[cs];
1093 f_pdata->cqspi = cqspi;
1094 f_pdata->cs = cs;
1095
1096 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1097 if (ret)
1098 goto err;
1099
1100 nor = &f_pdata->nor;
1101 mtd = &nor->mtd;
1102
1103 mtd->priv = nor;
1104
1105 nor->dev = dev;
1106 spi_nor_set_flash_node(nor, np);
1107 nor->priv = f_pdata;
1108
1109 nor->read_reg = cqspi_read_reg;
1110 nor->write_reg = cqspi_write_reg;
1111 nor->read = cqspi_read;
1112 nor->write = cqspi_write;
1113 nor->erase = cqspi_erase;
1114 nor->prepare = cqspi_prep;
1115 nor->unprepare = cqspi_unprep;
1116
1117 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
1118 dev_name(dev), cs);
1119 if (!mtd->name) {
1120 ret = -ENOMEM;
1121 goto err;
1122 }
1123
1124 ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
1125 if (ret)
1126 goto err;
1127
1128 ret = mtd_device_register(mtd, NULL, 0);
1129 if (ret)
1130 goto err;
1131
1132 f_pdata->registered = true;
1133 }
1134
1135 return 0;
1136
1137err:
1138 for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1139 if (cqspi->f_pdata[i].registered)
1140 mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1141 return ret;
1142}
1143
1144static int cqspi_probe(struct platform_device *pdev)
1145{
1146 struct device_node *np = pdev->dev.of_node;
1147 struct device *dev = &pdev->dev;
1148 struct cqspi_st *cqspi;
1149 struct resource *res;
1150 struct resource *res_ahb;
1151 int ret;
1152 int irq;
1153
1154 cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
1155 if (!cqspi)
1156 return -ENOMEM;
1157
1158 mutex_init(&cqspi->bus_mutex);
1159 cqspi->pdev = pdev;
1160 platform_set_drvdata(pdev, cqspi);
1161
1162 /* Obtain configuration from OF. */
1163 ret = cqspi_of_get_pdata(pdev);
1164 if (ret) {
1165 dev_err(dev, "Cannot get mandatory OF data.\n");
1166 return -ENODEV;
1167 }
1168
1169 /* Obtain QSPI clock. */
1170 cqspi->clk = devm_clk_get(dev, NULL);
1171 if (IS_ERR(cqspi->clk)) {
1172 dev_err(dev, "Cannot claim QSPI clock.\n");
1173 return PTR_ERR(cqspi->clk);
1174 }
1175
1176 /* Obtain and remap controller address. */
1177 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1178 cqspi->iobase = devm_ioremap_resource(dev, res);
1179 if (IS_ERR(cqspi->iobase)) {
1180 dev_err(dev, "Cannot remap controller address.\n");
1181 return PTR_ERR(cqspi->iobase);
1182 }
1183
1184 /* Obtain and remap AHB address. */
1185 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1186 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1187 if (IS_ERR(cqspi->ahb_base)) {
1188 dev_err(dev, "Cannot remap AHB address.\n");
1189 return PTR_ERR(cqspi->ahb_base);
1190 }
1191
1192 init_completion(&cqspi->transfer_complete);
1193
1194 /* Obtain IRQ line. */
1195 irq = platform_get_irq(pdev, 0);
1196 if (irq < 0) {
1197 dev_err(dev, "Cannot obtain IRQ.\n");
1198 return -ENXIO;
1199 }
1200
1201 ret = clk_prepare_enable(cqspi->clk);
1202 if (ret) {
1203 dev_err(dev, "Cannot enable QSPI clock.\n");
1204 return ret;
1205 }
1206
1207 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1208
1209 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1210 pdev->name, cqspi);
1211 if (ret) {
1212 dev_err(dev, "Cannot request IRQ.\n");
1213 goto probe_irq_failed;
1214 }
1215
1216 cqspi_wait_idle(cqspi);
1217 cqspi_controller_init(cqspi);
1218 cqspi->current_cs = -1;
1219 cqspi->sclk = 0;
1220
1221 ret = cqspi_setup_flash(cqspi, np);
1222 if (ret) {
1223 dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
1224 goto probe_setup_failed;
1225 }
1226
1227 return ret;
1228probe_irq_failed:
1229 cqspi_controller_enable(cqspi, 0);
1230probe_setup_failed:
1231 clk_disable_unprepare(cqspi->clk);
1232 return ret;
1233}
1234
1235static int cqspi_remove(struct platform_device *pdev)
1236{
1237 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1238 int i;
1239
1240 for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1241 if (cqspi->f_pdata[i].registered)
1242 mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1243
1244 cqspi_controller_enable(cqspi, 0);
1245
1246 clk_disable_unprepare(cqspi->clk);
1247
1248 return 0;
1249}
1250
1251#ifdef CONFIG_PM_SLEEP
1252static int cqspi_suspend(struct device *dev)
1253{
1254 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1255
1256 cqspi_controller_enable(cqspi, 0);
1257 return 0;
1258}
1259
1260static int cqspi_resume(struct device *dev)
1261{
1262 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1263
1264 cqspi_controller_enable(cqspi, 1);
1265 return 0;
1266}
1267
1268static const struct dev_pm_ops cqspi__dev_pm_ops = {
1269 .suspend = cqspi_suspend,
1270 .resume = cqspi_resume,
1271};
1272
1273#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
1274#else
1275#define CQSPI_DEV_PM_OPS NULL
1276#endif
1277
1278static struct of_device_id const cqspi_dt_ids[] = {
1279 {.compatible = "cdns,qspi-nor",},
1280 { /* end of table */ }
1281};
1282
1283MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1284
1285static struct platform_driver cqspi_platform_driver = {
1286 .probe = cqspi_probe,
1287 .remove = cqspi_remove,
1288 .driver = {
1289 .name = CQSPI_NAME,
1290 .pm = CQSPI_DEV_PM_OPS,
1291 .of_match_table = cqspi_dt_ids,
1292 },
1293};
1294
1295module_platform_driver(cqspi_platform_driver);
1296
1297MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1298MODULE_LICENSE("GPL v2");
1299MODULE_ALIAS("platform:" CQSPI_NAME);
1300MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1301MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");