blob: 4057c07242c69fa89a701b575ab30ad62aaae184 [file] [log] [blame]
Jaegeuk Kim57e50552015-04-20 19:52:47 -07001/*
2 * linux/fs/f2fs/crypto.c
3 *
4 * Copied from linux/fs/ext4/crypto.c
5 *
6 * Copyright (C) 2015, Google, Inc.
7 * Copyright (C) 2015, Motorola Mobility
8 *
9 * This contains encryption functions for f2fs
10 *
11 * Written by Michael Halcrow, 2014.
12 *
13 * Filename encryption additions
14 * Uday Savagaonkar, 2014
15 * Encryption policy handling additions
16 * Ildar Muslukhov, 2014
17 * Remove ext4_encrypted_zeroout(),
18 * add f2fs_restore_and_release_control_page()
19 * Jaegeuk Kim, 2015.
20 *
21 * This has not yet undergone a rigorous security audit.
22 *
23 * The usage of AES-XTS should conform to recommendations in NIST
24 * Special Publication 800-38E and IEEE P1619/D16.
25 */
26#include <crypto/hash.h>
27#include <crypto/sha.h>
28#include <keys/user-type.h>
29#include <keys/encrypted-type.h>
30#include <linux/crypto.h>
31#include <linux/ecryptfs.h>
32#include <linux/gfp.h>
33#include <linux/kernel.h>
34#include <linux/key.h>
35#include <linux/list.h>
36#include <linux/mempool.h>
37#include <linux/module.h>
38#include <linux/mutex.h>
39#include <linux/random.h>
40#include <linux/scatterlist.h>
41#include <linux/spinlock_types.h>
42#include <linux/f2fs_fs.h>
43#include <linux/ratelimit.h>
44#include <linux/bio.h>
45
46#include "f2fs.h"
47#include "xattr.h"
48
49/* Encryption added and removed here! (L: */
50
51static unsigned int num_prealloc_crypto_pages = 32;
52static unsigned int num_prealloc_crypto_ctxs = 128;
53
54module_param(num_prealloc_crypto_pages, uint, 0444);
55MODULE_PARM_DESC(num_prealloc_crypto_pages,
56 "Number of crypto pages to preallocate");
57module_param(num_prealloc_crypto_ctxs, uint, 0444);
58MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
59 "Number of crypto contexts to preallocate");
60
61static mempool_t *f2fs_bounce_page_pool;
62
63static LIST_HEAD(f2fs_free_crypto_ctxs);
64static DEFINE_SPINLOCK(f2fs_crypto_ctx_lock);
65
66struct workqueue_struct *f2fs_read_workqueue;
67static DEFINE_MUTEX(crypto_init);
68
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -070069static struct kmem_cache *f2fs_crypto_ctx_cachep;
70struct kmem_cache *f2fs_crypt_info_cachep;
71
Jaegeuk Kim57e50552015-04-20 19:52:47 -070072/**
73 * f2fs_release_crypto_ctx() - Releases an encryption context
74 * @ctx: The encryption context to release.
75 *
76 * If the encryption context was allocated from the pre-allocated pool, returns
77 * it to that pool. Else, frees it.
78 *
79 * If there's a bounce page in the context, this frees that.
80 */
81void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx)
82{
83 unsigned long flags;
84
85 if (ctx->bounce_page) {
86 if (ctx->flags & F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
87 __free_page(ctx->bounce_page);
88 else
89 mempool_free(ctx->bounce_page, f2fs_bounce_page_pool);
90 ctx->bounce_page = NULL;
91 }
92 ctx->control_page = NULL;
93 if (ctx->flags & F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
94 if (ctx->tfm)
95 crypto_free_tfm(ctx->tfm);
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -070096 kmem_cache_free(f2fs_crypto_ctx_cachep, ctx);
Jaegeuk Kim57e50552015-04-20 19:52:47 -070097 } else {
98 spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
99 list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
100 spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
101 }
102}
103
104/**
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700105 * f2fs_get_crypto_ctx() - Gets an encryption context
106 * @inode: The inode for which we are doing the crypto
107 *
108 * Allocates and initializes an encryption context.
109 *
110 * Return: An allocated and initialized encryption context on success; error
111 * value or NULL otherwise.
112 */
113struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *inode)
114{
115 struct f2fs_crypto_ctx *ctx = NULL;
116 int res = 0;
117 unsigned long flags;
118 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
119
Jaegeuk Kimedf3fb82015-05-05 20:20:29 -0700120 if (ci == NULL)
121 return ERR_PTR(-EACCES);
122
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700123 /*
124 * We first try getting the ctx from a free list because in
125 * the common case the ctx will have an allocated and
126 * initialized crypto tfm, so it's probably a worthwhile
127 * optimization. For the bounce page, we first try getting it
128 * from the kernel allocator because that's just about as fast
129 * as getting it from a list and because a cache of free pages
130 * should generally be a "last resort" option for a filesystem
131 * to be able to do its job.
132 */
133 spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
134 ctx = list_first_entry_or_null(&f2fs_free_crypto_ctxs,
135 struct f2fs_crypto_ctx, free_list);
136 if (ctx)
137 list_del(&ctx->free_list);
138 spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
139 if (!ctx) {
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -0700140 ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_NOFS);
141 if (!ctx) {
142 res = -ENOMEM;
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700143 goto out;
144 }
145 ctx->flags |= F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
146 } else {
147 ctx->flags &= ~F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
148 }
149
150 /*
151 * Allocate a new Crypto API context if we don't already have
152 * one or if it isn't the right mode.
153 */
154 BUG_ON(ci->ci_mode == F2FS_ENCRYPTION_MODE_INVALID);
155 if (ctx->tfm && (ctx->mode != ci->ci_mode)) {
156 crypto_free_tfm(ctx->tfm);
157 ctx->tfm = NULL;
158 ctx->mode = F2FS_ENCRYPTION_MODE_INVALID;
159 }
160 if (!ctx->tfm) {
161 switch (ci->ci_mode) {
162 case F2FS_ENCRYPTION_MODE_AES_256_XTS:
163 ctx->tfm = crypto_ablkcipher_tfm(
164 crypto_alloc_ablkcipher("xts(aes)", 0, 0));
165 break;
166 case F2FS_ENCRYPTION_MODE_AES_256_GCM:
167 /*
168 * TODO(mhalcrow): AEAD w/ gcm(aes);
169 * crypto_aead_setauthsize()
170 */
171 ctx->tfm = ERR_PTR(-ENOTSUPP);
172 break;
173 default:
174 BUG();
175 }
176 if (IS_ERR_OR_NULL(ctx->tfm)) {
177 res = PTR_ERR(ctx->tfm);
178 ctx->tfm = NULL;
179 goto out;
180 }
181 ctx->mode = ci->ci_mode;
182 }
183 BUG_ON(ci->ci_size != f2fs_encryption_key_size(ci->ci_mode));
184
185 /*
186 * There shouldn't be a bounce page attached to the crypto
187 * context at this point.
188 */
189 BUG_ON(ctx->bounce_page);
190
191out:
192 if (res) {
193 if (!IS_ERR_OR_NULL(ctx))
194 f2fs_release_crypto_ctx(ctx);
195 ctx = ERR_PTR(res);
196 }
197 return ctx;
198}
199
200/*
201 * Call f2fs_decrypt on every single page, reusing the encryption
202 * context.
203 */
204static void completion_pages(struct work_struct *work)
205{
206 struct f2fs_crypto_ctx *ctx =
207 container_of(work, struct f2fs_crypto_ctx, work);
208 struct bio *bio = ctx->bio;
209 struct bio_vec *bv;
210 int i;
211
212 bio_for_each_segment_all(bv, bio, i) {
213 struct page *page = bv->bv_page;
214 int ret = f2fs_decrypt(ctx, page);
215
216 if (ret) {
217 WARN_ON_ONCE(1);
218 SetPageError(page);
219 } else
220 SetPageUptodate(page);
221 unlock_page(page);
222 }
223 f2fs_release_crypto_ctx(ctx);
224 bio_put(bio);
225}
226
227void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *ctx, struct bio *bio)
228{
229 INIT_WORK(&ctx->work, completion_pages);
230 ctx->bio = bio;
231 queue_work(f2fs_read_workqueue, &ctx->work);
232}
233
234/**
235 * f2fs_exit_crypto() - Shutdown the f2fs encryption system
236 */
237void f2fs_exit_crypto(void)
238{
239 struct f2fs_crypto_ctx *pos, *n;
240
241 list_for_each_entry_safe(pos, n, &f2fs_free_crypto_ctxs, free_list) {
242 if (pos->bounce_page) {
243 if (pos->flags &
244 F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
245 __free_page(pos->bounce_page);
246 else
247 mempool_free(pos->bounce_page,
248 f2fs_bounce_page_pool);
249 }
250 if (pos->tfm)
251 crypto_free_tfm(pos->tfm);
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -0700252 kmem_cache_free(f2fs_crypto_ctx_cachep, pos);
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700253 }
254 INIT_LIST_HEAD(&f2fs_free_crypto_ctxs);
255 if (f2fs_bounce_page_pool)
256 mempool_destroy(f2fs_bounce_page_pool);
257 f2fs_bounce_page_pool = NULL;
258 if (f2fs_read_workqueue)
259 destroy_workqueue(f2fs_read_workqueue);
260 f2fs_read_workqueue = NULL;
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -0700261 if (f2fs_crypto_ctx_cachep)
262 kmem_cache_destroy(f2fs_crypto_ctx_cachep);
263 f2fs_crypto_ctx_cachep = NULL;
264 if (f2fs_crypt_info_cachep)
265 kmem_cache_destroy(f2fs_crypt_info_cachep);
266 f2fs_crypt_info_cachep = NULL;
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700267}
268
269/**
270 * f2fs_init_crypto() - Set up for f2fs encryption.
271 *
272 * We only call this when we start accessing encrypted files, since it
273 * results in memory getting allocated that wouldn't otherwise be used.
274 *
275 * Return: Zero on success, non-zero otherwise.
276 */
277int f2fs_init_crypto(void)
278{
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -0700279 int i, res = -ENOMEM;
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700280
281 mutex_lock(&crypto_init);
282 if (f2fs_read_workqueue)
283 goto already_initialized;
284
285 f2fs_read_workqueue = alloc_workqueue("f2fs_crypto", WQ_HIGHPRI, 0);
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -0700286 if (!f2fs_read_workqueue)
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700287 goto fail;
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -0700288
289 f2fs_crypto_ctx_cachep = KMEM_CACHE(f2fs_crypto_ctx,
290 SLAB_RECLAIM_ACCOUNT);
291 if (!f2fs_crypto_ctx_cachep)
292 goto fail;
293
294 f2fs_crypt_info_cachep = KMEM_CACHE(f2fs_crypt_info,
295 SLAB_RECLAIM_ACCOUNT);
296 if (!f2fs_crypt_info_cachep)
297 goto fail;
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700298
299 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
300 struct f2fs_crypto_ctx *ctx;
301
Jaegeuk Kim8bacf6de2015-05-12 13:26:54 -0700302 ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_KERNEL);
303 if (!ctx) {
304 res = -ENOMEM;
Jaegeuk Kim57e50552015-04-20 19:52:47 -0700305 goto fail;
306 }
307 list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
308 }
309
310 f2fs_bounce_page_pool =
311 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
312 if (!f2fs_bounce_page_pool) {
313 res = -ENOMEM;
314 goto fail;
315 }
316already_initialized:
317 mutex_unlock(&crypto_init);
318 return 0;
319fail:
320 f2fs_exit_crypto();
321 mutex_unlock(&crypto_init);
322 return res;
323}
324
325void f2fs_restore_and_release_control_page(struct page **page)
326{
327 struct f2fs_crypto_ctx *ctx;
328 struct page *bounce_page;
329
330 /* The bounce data pages are unmapped. */
331 if ((*page)->mapping)
332 return;
333
334 /* The bounce data page is unmapped. */
335 bounce_page = *page;
336 ctx = (struct f2fs_crypto_ctx *)page_private(bounce_page);
337
338 /* restore control page */
339 *page = ctx->control_page;
340
341 f2fs_restore_control_page(bounce_page);
342}
343
344void f2fs_restore_control_page(struct page *data_page)
345{
346 struct f2fs_crypto_ctx *ctx =
347 (struct f2fs_crypto_ctx *)page_private(data_page);
348
349 set_page_private(data_page, (unsigned long)NULL);
350 ClearPagePrivate(data_page);
351 unlock_page(data_page);
352 f2fs_release_crypto_ctx(ctx);
353}
354
355/**
356 * f2fs_crypt_complete() - The completion callback for page encryption
357 * @req: The asynchronous encryption request context
358 * @res: The result of the encryption operation
359 */
360static void f2fs_crypt_complete(struct crypto_async_request *req, int res)
361{
362 struct f2fs_completion_result *ecr = req->data;
363
364 if (res == -EINPROGRESS)
365 return;
366 ecr->res = res;
367 complete(&ecr->completion);
368}
369
370typedef enum {
371 F2FS_DECRYPT = 0,
372 F2FS_ENCRYPT,
373} f2fs_direction_t;
374
375static int f2fs_page_crypto(struct f2fs_crypto_ctx *ctx,
376 struct inode *inode,
377 f2fs_direction_t rw,
378 pgoff_t index,
379 struct page *src_page,
380 struct page *dest_page)
381{
382 u8 xts_tweak[F2FS_XTS_TWEAK_SIZE];
383 struct ablkcipher_request *req = NULL;
384 DECLARE_F2FS_COMPLETION_RESULT(ecr);
385 struct scatterlist dst, src;
386 struct f2fs_inode_info *fi = F2FS_I(inode);
387 struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
388 int res = 0;
389
390 BUG_ON(!ctx->tfm);
391 BUG_ON(ctx->mode != fi->i_crypt_info->ci_mode);
392
393 if (ctx->mode != F2FS_ENCRYPTION_MODE_AES_256_XTS) {
394 printk_ratelimited(KERN_ERR
395 "%s: unsupported crypto algorithm: %d\n",
396 __func__, ctx->mode);
397 return -ENOTSUPP;
398 }
399
400 crypto_ablkcipher_clear_flags(atfm, ~0);
401 crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
402
403 res = crypto_ablkcipher_setkey(atfm, fi->i_crypt_info->ci_raw,
404 fi->i_crypt_info->ci_size);
405 if (res) {
406 printk_ratelimited(KERN_ERR
407 "%s: crypto_ablkcipher_setkey() failed\n",
408 __func__);
409 return res;
410 }
411 req = ablkcipher_request_alloc(atfm, GFP_NOFS);
412 if (!req) {
413 printk_ratelimited(KERN_ERR
414 "%s: crypto_request_alloc() failed\n",
415 __func__);
416 return -ENOMEM;
417 }
418 ablkcipher_request_set_callback(
419 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
420 f2fs_crypt_complete, &ecr);
421
422 BUILD_BUG_ON(F2FS_XTS_TWEAK_SIZE < sizeof(index));
423 memcpy(xts_tweak, &index, sizeof(index));
424 memset(&xts_tweak[sizeof(index)], 0,
425 F2FS_XTS_TWEAK_SIZE - sizeof(index));
426
427 sg_init_table(&dst, 1);
428 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
429 sg_init_table(&src, 1);
430 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
431 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
432 xts_tweak);
433 if (rw == F2FS_DECRYPT)
434 res = crypto_ablkcipher_decrypt(req);
435 else
436 res = crypto_ablkcipher_encrypt(req);
437 if (res == -EINPROGRESS || res == -EBUSY) {
438 BUG_ON(req->base.data != &ecr);
439 wait_for_completion(&ecr.completion);
440 res = ecr.res;
441 }
442 ablkcipher_request_free(req);
443 if (res) {
444 printk_ratelimited(KERN_ERR
445 "%s: crypto_ablkcipher_encrypt() returned %d\n",
446 __func__, res);
447 return res;
448 }
449 return 0;
450}
451
452/**
453 * f2fs_encrypt() - Encrypts a page
454 * @inode: The inode for which the encryption should take place
455 * @plaintext_page: The page to encrypt. Must be locked.
456 *
457 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
458 * encryption context.
459 *
460 * Called on the page write path. The caller must call
461 * f2fs_restore_control_page() on the returned ciphertext page to
462 * release the bounce buffer and the encryption context.
463 *
464 * Return: An allocated page with the encrypted content on success. Else, an
465 * error value or NULL.
466 */
467struct page *f2fs_encrypt(struct inode *inode,
468 struct page *plaintext_page)
469{
470 struct f2fs_crypto_ctx *ctx;
471 struct page *ciphertext_page = NULL;
472 int err;
473
474 BUG_ON(!PageLocked(plaintext_page));
475
476 ctx = f2fs_get_crypto_ctx(inode);
477 if (IS_ERR(ctx))
478 return (struct page *)ctx;
479
480 /* The encryption operation will require a bounce page. */
481 ciphertext_page = alloc_page(GFP_NOFS);
482 if (!ciphertext_page) {
483 /*
484 * This is a potential bottleneck, but at least we'll have
485 * forward progress.
486 */
487 ciphertext_page = mempool_alloc(f2fs_bounce_page_pool,
488 GFP_NOFS);
489 if (WARN_ON_ONCE(!ciphertext_page))
490 ciphertext_page = mempool_alloc(f2fs_bounce_page_pool,
491 GFP_NOFS | __GFP_WAIT);
492 ctx->flags &= ~F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
493 } else {
494 ctx->flags |= F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
495 }
496 ctx->bounce_page = ciphertext_page;
497 ctx->control_page = plaintext_page;
498 err = f2fs_page_crypto(ctx, inode, F2FS_ENCRYPT, plaintext_page->index,
499 plaintext_page, ciphertext_page);
500 if (err) {
501 f2fs_release_crypto_ctx(ctx);
502 return ERR_PTR(err);
503 }
504 SetPagePrivate(ciphertext_page);
505 set_page_private(ciphertext_page, (unsigned long)ctx);
506 lock_page(ciphertext_page);
507 return ciphertext_page;
508}
509
510/**
511 * f2fs_decrypt() - Decrypts a page in-place
512 * @ctx: The encryption context.
513 * @page: The page to decrypt. Must be locked.
514 *
515 * Decrypts page in-place using the ctx encryption context.
516 *
517 * Called from the read completion callback.
518 *
519 * Return: Zero on success, non-zero otherwise.
520 */
521int f2fs_decrypt(struct f2fs_crypto_ctx *ctx, struct page *page)
522{
523 BUG_ON(!PageLocked(page));
524
525 return f2fs_page_crypto(ctx, page->mapping->host,
526 F2FS_DECRYPT, page->index, page, page);
527}
528
529/*
530 * Convenience function which takes care of allocating and
531 * deallocating the encryption context
532 */
533int f2fs_decrypt_one(struct inode *inode, struct page *page)
534{
535 struct f2fs_crypto_ctx *ctx = f2fs_get_crypto_ctx(inode);
536 int ret;
537
538 if (!ctx)
539 return -ENOMEM;
540 ret = f2fs_decrypt(ctx, page);
541 f2fs_release_crypto_ctx(ctx);
542 return ret;
543}
544
545bool f2fs_valid_contents_enc_mode(uint32_t mode)
546{
547 return (mode == F2FS_ENCRYPTION_MODE_AES_256_XTS);
548}
549
550/**
551 * f2fs_validate_encryption_key_size() - Validate the encryption key size
552 * @mode: The key mode.
553 * @size: The key size to validate.
554 *
555 * Return: The validated key size for @mode. Zero if invalid.
556 */
557uint32_t f2fs_validate_encryption_key_size(uint32_t mode, uint32_t size)
558{
559 if (size == f2fs_encryption_key_size(mode))
560 return size;
561 return 0;
562}