Markus Stockhausen | c147028 | 2015-01-30 15:39:29 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Glue code for SHA-256 implementation for SPE instructions (PPC) |
| 3 | * |
| 4 | * Based on generic implementation. The assembler module takes care |
| 5 | * about the SPE registers so it can run from interrupt context. |
| 6 | * |
| 7 | * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de> |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify it |
| 10 | * under the terms of the GNU General Public License as published by the Free |
| 11 | * Software Foundation; either version 2 of the License, or (at your option) |
| 12 | * any later version. |
| 13 | * |
| 14 | */ |
| 15 | |
| 16 | #include <crypto/internal/hash.h> |
| 17 | #include <linux/init.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/mm.h> |
| 20 | #include <linux/cryptohash.h> |
| 21 | #include <linux/types.h> |
| 22 | #include <crypto/sha.h> |
| 23 | #include <asm/byteorder.h> |
| 24 | #include <asm/switch_to.h> |
| 25 | #include <linux/hardirq.h> |
| 26 | |
| 27 | /* |
| 28 | * MAX_BYTES defines the number of bytes that are allowed to be processed |
| 29 | * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000 |
| 30 | * operations per 64 bytes. e500 cores can issue two arithmetic instructions |
| 31 | * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2). |
| 32 | * Thus 1KB of input data will need an estimated maximum of 18,000 cycles. |
| 33 | * Headroom for cache misses included. Even with the low end model clocked |
| 34 | * at 667 MHz this equals to a critical time window of less than 27us. |
| 35 | * |
| 36 | */ |
| 37 | #define MAX_BYTES 1024 |
| 38 | |
| 39 | extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks); |
| 40 | |
| 41 | static void spe_begin(void) |
| 42 | { |
| 43 | /* We just start SPE operations and will save SPE registers later. */ |
| 44 | preempt_disable(); |
| 45 | enable_kernel_spe(); |
| 46 | } |
| 47 | |
| 48 | static void spe_end(void) |
| 49 | { |
| 50 | /* reenable preemption */ |
| 51 | preempt_enable(); |
| 52 | } |
| 53 | |
| 54 | static inline void ppc_sha256_clear_context(struct sha256_state *sctx) |
| 55 | { |
| 56 | int count = sizeof(struct sha256_state) >> 2; |
| 57 | u32 *ptr = (u32 *)sctx; |
| 58 | |
| 59 | /* make sure we can clear the fast way */ |
| 60 | BUILD_BUG_ON(sizeof(struct sha256_state) % 4); |
| 61 | do { *ptr++ = 0; } while (--count); |
| 62 | } |
| 63 | |
| 64 | static int ppc_spe_sha256_init(struct shash_desc *desc) |
| 65 | { |
| 66 | struct sha256_state *sctx = shash_desc_ctx(desc); |
| 67 | |
| 68 | sctx->state[0] = SHA256_H0; |
| 69 | sctx->state[1] = SHA256_H1; |
| 70 | sctx->state[2] = SHA256_H2; |
| 71 | sctx->state[3] = SHA256_H3; |
| 72 | sctx->state[4] = SHA256_H4; |
| 73 | sctx->state[5] = SHA256_H5; |
| 74 | sctx->state[6] = SHA256_H6; |
| 75 | sctx->state[7] = SHA256_H7; |
| 76 | sctx->count = 0; |
| 77 | |
| 78 | return 0; |
| 79 | } |
| 80 | |
| 81 | static int ppc_spe_sha224_init(struct shash_desc *desc) |
| 82 | { |
| 83 | struct sha256_state *sctx = shash_desc_ctx(desc); |
| 84 | |
| 85 | sctx->state[0] = SHA224_H0; |
| 86 | sctx->state[1] = SHA224_H1; |
| 87 | sctx->state[2] = SHA224_H2; |
| 88 | sctx->state[3] = SHA224_H3; |
| 89 | sctx->state[4] = SHA224_H4; |
| 90 | sctx->state[5] = SHA224_H5; |
| 91 | sctx->state[6] = SHA224_H6; |
| 92 | sctx->state[7] = SHA224_H7; |
| 93 | sctx->count = 0; |
| 94 | |
| 95 | return 0; |
| 96 | } |
| 97 | |
| 98 | static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data, |
| 99 | unsigned int len) |
| 100 | { |
| 101 | struct sha256_state *sctx = shash_desc_ctx(desc); |
| 102 | const unsigned int offset = sctx->count & 0x3f; |
| 103 | const unsigned int avail = 64 - offset; |
| 104 | unsigned int bytes; |
| 105 | const u8 *src = data; |
| 106 | |
| 107 | if (avail > len) { |
| 108 | sctx->count += len; |
| 109 | memcpy((char *)sctx->buf + offset, src, len); |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | sctx->count += len; |
| 114 | |
| 115 | if (offset) { |
| 116 | memcpy((char *)sctx->buf + offset, src, avail); |
| 117 | |
| 118 | spe_begin(); |
| 119 | ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1); |
| 120 | spe_end(); |
| 121 | |
| 122 | len -= avail; |
| 123 | src += avail; |
| 124 | } |
| 125 | |
| 126 | while (len > 63) { |
| 127 | /* cut input data into smaller blocks */ |
| 128 | bytes = (len > MAX_BYTES) ? MAX_BYTES : len; |
| 129 | bytes = bytes & ~0x3f; |
| 130 | |
| 131 | spe_begin(); |
| 132 | ppc_spe_sha256_transform(sctx->state, src, bytes >> 6); |
| 133 | spe_end(); |
| 134 | |
| 135 | src += bytes; |
| 136 | len -= bytes; |
| 137 | }; |
| 138 | |
| 139 | memcpy((char *)sctx->buf, src, len); |
| 140 | return 0; |
| 141 | } |
| 142 | |
| 143 | static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out) |
| 144 | { |
| 145 | struct sha256_state *sctx = shash_desc_ctx(desc); |
| 146 | const unsigned int offset = sctx->count & 0x3f; |
| 147 | char *p = (char *)sctx->buf + offset; |
| 148 | int padlen; |
| 149 | __be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56); |
| 150 | __be32 *dst = (__be32 *)out; |
| 151 | |
| 152 | padlen = 55 - offset; |
| 153 | *p++ = 0x80; |
| 154 | |
| 155 | spe_begin(); |
| 156 | |
| 157 | if (padlen < 0) { |
| 158 | memset(p, 0x00, padlen + sizeof (u64)); |
| 159 | ppc_spe_sha256_transform(sctx->state, sctx->buf, 1); |
| 160 | p = (char *)sctx->buf; |
| 161 | padlen = 56; |
| 162 | } |
| 163 | |
| 164 | memset(p, 0, padlen); |
| 165 | *pbits = cpu_to_be64(sctx->count << 3); |
| 166 | ppc_spe_sha256_transform(sctx->state, sctx->buf, 1); |
| 167 | |
| 168 | spe_end(); |
| 169 | |
| 170 | dst[0] = cpu_to_be32(sctx->state[0]); |
| 171 | dst[1] = cpu_to_be32(sctx->state[1]); |
| 172 | dst[2] = cpu_to_be32(sctx->state[2]); |
| 173 | dst[3] = cpu_to_be32(sctx->state[3]); |
| 174 | dst[4] = cpu_to_be32(sctx->state[4]); |
| 175 | dst[5] = cpu_to_be32(sctx->state[5]); |
| 176 | dst[6] = cpu_to_be32(sctx->state[6]); |
| 177 | dst[7] = cpu_to_be32(sctx->state[7]); |
| 178 | |
| 179 | ppc_sha256_clear_context(sctx); |
| 180 | return 0; |
| 181 | } |
| 182 | |
| 183 | static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out) |
| 184 | { |
| 185 | u32 D[SHA256_DIGEST_SIZE >> 2]; |
| 186 | __be32 *dst = (__be32 *)out; |
| 187 | |
| 188 | ppc_spe_sha256_final(desc, (u8 *)D); |
| 189 | |
| 190 | /* avoid bytewise memcpy */ |
| 191 | dst[0] = D[0]; |
| 192 | dst[1] = D[1]; |
| 193 | dst[2] = D[2]; |
| 194 | dst[3] = D[3]; |
| 195 | dst[4] = D[4]; |
| 196 | dst[5] = D[5]; |
| 197 | dst[6] = D[6]; |
| 198 | |
| 199 | /* clear sensitive data */ |
| 200 | memzero_explicit(D, SHA256_DIGEST_SIZE); |
| 201 | return 0; |
| 202 | } |
| 203 | |
| 204 | static int ppc_spe_sha256_export(struct shash_desc *desc, void *out) |
| 205 | { |
| 206 | struct sha256_state *sctx = shash_desc_ctx(desc); |
| 207 | |
| 208 | memcpy(out, sctx, sizeof(*sctx)); |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in) |
| 213 | { |
| 214 | struct sha256_state *sctx = shash_desc_ctx(desc); |
| 215 | |
| 216 | memcpy(sctx, in, sizeof(*sctx)); |
| 217 | return 0; |
| 218 | } |
| 219 | |
| 220 | static struct shash_alg algs[2] = { { |
| 221 | .digestsize = SHA256_DIGEST_SIZE, |
| 222 | .init = ppc_spe_sha256_init, |
| 223 | .update = ppc_spe_sha256_update, |
| 224 | .final = ppc_spe_sha256_final, |
| 225 | .export = ppc_spe_sha256_export, |
| 226 | .import = ppc_spe_sha256_import, |
| 227 | .descsize = sizeof(struct sha256_state), |
| 228 | .statesize = sizeof(struct sha256_state), |
| 229 | .base = { |
| 230 | .cra_name = "sha256", |
| 231 | .cra_driver_name= "sha256-ppc-spe", |
| 232 | .cra_priority = 300, |
| 233 | .cra_flags = CRYPTO_ALG_TYPE_SHASH, |
| 234 | .cra_blocksize = SHA256_BLOCK_SIZE, |
| 235 | .cra_module = THIS_MODULE, |
| 236 | } |
| 237 | }, { |
| 238 | .digestsize = SHA224_DIGEST_SIZE, |
| 239 | .init = ppc_spe_sha224_init, |
| 240 | .update = ppc_spe_sha256_update, |
| 241 | .final = ppc_spe_sha224_final, |
| 242 | .export = ppc_spe_sha256_export, |
| 243 | .import = ppc_spe_sha256_import, |
| 244 | .descsize = sizeof(struct sha256_state), |
| 245 | .statesize = sizeof(struct sha256_state), |
| 246 | .base = { |
| 247 | .cra_name = "sha224", |
| 248 | .cra_driver_name= "sha224-ppc-spe", |
| 249 | .cra_priority = 300, |
| 250 | .cra_flags = CRYPTO_ALG_TYPE_SHASH, |
| 251 | .cra_blocksize = SHA224_BLOCK_SIZE, |
| 252 | .cra_module = THIS_MODULE, |
| 253 | } |
| 254 | } }; |
| 255 | |
| 256 | static int __init ppc_spe_sha256_mod_init(void) |
| 257 | { |
| 258 | return crypto_register_shashes(algs, ARRAY_SIZE(algs)); |
| 259 | } |
| 260 | |
| 261 | static void __exit ppc_spe_sha256_mod_fini(void) |
| 262 | { |
| 263 | crypto_unregister_shashes(algs, ARRAY_SIZE(algs)); |
| 264 | } |
| 265 | |
| 266 | module_init(ppc_spe_sha256_mod_init); |
| 267 | module_exit(ppc_spe_sha256_mod_fini); |
| 268 | |
| 269 | MODULE_LICENSE("GPL"); |
| 270 | MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized"); |
| 271 | |
| 272 | MODULE_ALIAS_CRYPTO("sha224"); |
| 273 | MODULE_ALIAS_CRYPTO("sha224-ppc-spe"); |
| 274 | MODULE_ALIAS_CRYPTO("sha256"); |
| 275 | MODULE_ALIAS_CRYPTO("sha256-ppc-spe"); |