blob: b41037ed8083107a7d736a9a54ebacbd989f0d85 [file] [log] [blame]
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/tcp.h>
37#include <linux/ipv6.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/mii.h>
41#include <linux/ethtool.h>
42#include <linux/if_vlan.h>
43#include <linux/pm_qos_params.h>
44
45#include "igbvf.h"
46
47#define DRV_VERSION "1.0.0-k0"
48char igbvf_driver_name[] = "igbvf";
49const char igbvf_driver_version[] = DRV_VERSION;
50static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
52static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
53
54static int igbvf_poll(struct napi_struct *napi, int budget);
Alexander Duyck2d165772009-04-09 22:49:20 +000055static void igbvf_reset(struct igbvf_adapter *);
56static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
57static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +000058
59static struct igbvf_info igbvf_vf_info = {
60 .mac = e1000_vfadapt,
Alexander Duyck0364d6f2009-05-06 10:25:01 +000061 .flags = 0,
Alexander Duyckd4e0fe02009-04-07 14:37:34 +000062 .pba = 10,
63 .init_ops = e1000_init_function_pointers_vf,
64};
65
66static const struct igbvf_info *igbvf_info_tbl[] = {
67 [board_vf] = &igbvf_vf_info,
68};
69
70/**
71 * igbvf_desc_unused - calculate if we have unused descriptors
72 **/
73static int igbvf_desc_unused(struct igbvf_ring *ring)
74{
75 if (ring->next_to_clean > ring->next_to_use)
76 return ring->next_to_clean - ring->next_to_use - 1;
77
78 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
79}
80
81/**
82 * igbvf_receive_skb - helper function to handle Rx indications
83 * @adapter: board private structure
84 * @status: descriptor status field as written by hardware
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
86 * @skb: pointer to sk_buff to be indicated to stack
87 **/
88static void igbvf_receive_skb(struct igbvf_adapter *adapter,
89 struct net_device *netdev,
90 struct sk_buff *skb,
91 u32 status, u16 vlan)
92{
93 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
94 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
95 le16_to_cpu(vlan) &
96 E1000_RXD_SPC_VLAN_MASK);
97 else
98 netif_receive_skb(skb);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +000099}
100
101static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
102 u32 status_err, struct sk_buff *skb)
103{
104 skb->ip_summed = CHECKSUM_NONE;
105
106 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
Alexander Duyck0364d6f2009-05-06 10:25:01 +0000107 if ((status_err & E1000_RXD_STAT_IXSM) ||
108 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000109 return;
Alexander Duyck0364d6f2009-05-06 10:25:01 +0000110
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000111 /* TCP/UDP checksum error bit is set */
112 if (status_err &
113 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
114 /* let the stack verify checksum errors */
115 adapter->hw_csum_err++;
116 return;
117 }
Alexander Duyck0364d6f2009-05-06 10:25:01 +0000118
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000119 /* It must be a TCP or UDP packet with a valid checksum */
120 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
121 skb->ip_summed = CHECKSUM_UNNECESSARY;
122
123 adapter->hw_csum_good++;
124}
125
126/**
127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128 * @rx_ring: address of ring structure to repopulate
129 * @cleaned_count: number of buffers to repopulate
130 **/
131static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
132 int cleaned_count)
133{
134 struct igbvf_adapter *adapter = rx_ring->adapter;
135 struct net_device *netdev = adapter->netdev;
136 struct pci_dev *pdev = adapter->pdev;
137 union e1000_adv_rx_desc *rx_desc;
138 struct igbvf_buffer *buffer_info;
139 struct sk_buff *skb;
140 unsigned int i;
141 int bufsz;
142
143 i = rx_ring->next_to_use;
144 buffer_info = &rx_ring->buffer_info[i];
145
146 if (adapter->rx_ps_hdr_size)
147 bufsz = adapter->rx_ps_hdr_size;
148 else
149 bufsz = adapter->rx_buffer_len;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000150
151 while (cleaned_count--) {
152 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
153
154 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
155 if (!buffer_info->page) {
156 buffer_info->page = alloc_page(GFP_ATOMIC);
157 if (!buffer_info->page) {
158 adapter->alloc_rx_buff_failed++;
159 goto no_buffers;
160 }
161 buffer_info->page_offset = 0;
162 } else {
163 buffer_info->page_offset ^= PAGE_SIZE / 2;
164 }
165 buffer_info->page_dma =
166 pci_map_page(pdev, buffer_info->page,
167 buffer_info->page_offset,
168 PAGE_SIZE / 2,
169 PCI_DMA_FROMDEVICE);
170 }
171
172 if (!buffer_info->skb) {
Eric Dumazet89d71a62009-10-13 05:34:20 +0000173 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000174 if (!skb) {
175 adapter->alloc_rx_buff_failed++;
176 goto no_buffers;
177 }
178
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000179 buffer_info->skb = skb;
180 buffer_info->dma = pci_map_single(pdev, skb->data,
181 bufsz,
182 PCI_DMA_FROMDEVICE);
183 }
184 /* Refresh the desc even if buffer_addrs didn't change because
185 * each write-back erases this info. */
186 if (adapter->rx_ps_hdr_size) {
187 rx_desc->read.pkt_addr =
188 cpu_to_le64(buffer_info->page_dma);
189 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
190 } else {
191 rx_desc->read.pkt_addr =
192 cpu_to_le64(buffer_info->dma);
193 rx_desc->read.hdr_addr = 0;
194 }
195
196 i++;
197 if (i == rx_ring->count)
198 i = 0;
199 buffer_info = &rx_ring->buffer_info[i];
200 }
201
202no_buffers:
203 if (rx_ring->next_to_use != i) {
204 rx_ring->next_to_use = i;
205 if (i == 0)
206 i = (rx_ring->count - 1);
207 else
208 i--;
209
210 /* Force memory writes to complete before letting h/w
211 * know there are new descriptors to fetch. (Only
212 * applicable for weak-ordered memory model archs,
213 * such as IA-64). */
214 wmb();
215 writel(i, adapter->hw.hw_addr + rx_ring->tail);
216 }
217}
218
219/**
220 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
221 * @adapter: board private structure
222 *
223 * the return value indicates whether actual cleaning was done, there
224 * is no guarantee that everything was cleaned
225 **/
226static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
227 int *work_done, int work_to_do)
228{
229 struct igbvf_ring *rx_ring = adapter->rx_ring;
230 struct net_device *netdev = adapter->netdev;
231 struct pci_dev *pdev = adapter->pdev;
232 union e1000_adv_rx_desc *rx_desc, *next_rxd;
233 struct igbvf_buffer *buffer_info, *next_buffer;
234 struct sk_buff *skb;
235 bool cleaned = false;
236 int cleaned_count = 0;
237 unsigned int total_bytes = 0, total_packets = 0;
238 unsigned int i;
239 u32 length, hlen, staterr;
240
241 i = rx_ring->next_to_clean;
242 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
243 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
244
245 while (staterr & E1000_RXD_STAT_DD) {
246 if (*work_done >= work_to_do)
247 break;
248 (*work_done)++;
249
250 buffer_info = &rx_ring->buffer_info[i];
251
252 /* HW will not DMA in data larger than the given buffer, even
253 * if it parses the (NFS, of course) header to be larger. In
254 * that case, it fills the header buffer and spills the rest
255 * into the page.
256 */
257 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
258 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
259 if (hlen > adapter->rx_ps_hdr_size)
260 hlen = adapter->rx_ps_hdr_size;
261
262 length = le16_to_cpu(rx_desc->wb.upper.length);
263 cleaned = true;
264 cleaned_count++;
265
266 skb = buffer_info->skb;
267 prefetch(skb->data - NET_IP_ALIGN);
268 buffer_info->skb = NULL;
269 if (!adapter->rx_ps_hdr_size) {
270 pci_unmap_single(pdev, buffer_info->dma,
271 adapter->rx_buffer_len,
272 PCI_DMA_FROMDEVICE);
273 buffer_info->dma = 0;
274 skb_put(skb, length);
275 goto send_up;
276 }
277
278 if (!skb_shinfo(skb)->nr_frags) {
279 pci_unmap_single(pdev, buffer_info->dma,
Alexander Duyck92d947b2009-07-23 18:11:01 +0000280 adapter->rx_ps_hdr_size,
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000281 PCI_DMA_FROMDEVICE);
282 skb_put(skb, hlen);
283 }
284
285 if (length) {
286 pci_unmap_page(pdev, buffer_info->page_dma,
287 PAGE_SIZE / 2,
288 PCI_DMA_FROMDEVICE);
289 buffer_info->page_dma = 0;
290
291 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
292 buffer_info->page,
293 buffer_info->page_offset,
294 length);
295
296 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
297 (page_count(buffer_info->page) != 1))
298 buffer_info->page = NULL;
299 else
300 get_page(buffer_info->page);
301
302 skb->len += length;
303 skb->data_len += length;
304 skb->truesize += length;
305 }
306send_up:
307 i++;
308 if (i == rx_ring->count)
309 i = 0;
310 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
311 prefetch(next_rxd);
312 next_buffer = &rx_ring->buffer_info[i];
313
314 if (!(staterr & E1000_RXD_STAT_EOP)) {
315 buffer_info->skb = next_buffer->skb;
316 buffer_info->dma = next_buffer->dma;
317 next_buffer->skb = skb;
318 next_buffer->dma = 0;
319 goto next_desc;
320 }
321
322 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
323 dev_kfree_skb_irq(skb);
324 goto next_desc;
325 }
326
327 total_bytes += skb->len;
328 total_packets++;
329
330 igbvf_rx_checksum_adv(adapter, staterr, skb);
331
332 skb->protocol = eth_type_trans(skb, netdev);
333
334 igbvf_receive_skb(adapter, netdev, skb, staterr,
335 rx_desc->wb.upper.vlan);
336
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000337next_desc:
338 rx_desc->wb.upper.status_error = 0;
339
340 /* return some buffers to hardware, one at a time is too slow */
341 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
342 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
343 cleaned_count = 0;
344 }
345
346 /* use prefetched values */
347 rx_desc = next_rxd;
348 buffer_info = next_buffer;
349
350 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
351 }
352
353 rx_ring->next_to_clean = i;
354 cleaned_count = igbvf_desc_unused(rx_ring);
355
356 if (cleaned_count)
357 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
358
359 adapter->total_rx_packets += total_packets;
360 adapter->total_rx_bytes += total_bytes;
361 adapter->net_stats.rx_bytes += total_bytes;
362 adapter->net_stats.rx_packets += total_packets;
363 return cleaned;
364}
365
366static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
367 struct igbvf_buffer *buffer_info)
368{
Alexander Duycka7d5ca402009-12-02 16:47:37 +0000369 if (buffer_info->dma) {
370 if (buffer_info->mapped_as_page)
371 pci_unmap_page(adapter->pdev,
372 buffer_info->dma,
373 buffer_info->length,
374 PCI_DMA_TODEVICE);
375 else
376 pci_unmap_single(adapter->pdev,
377 buffer_info->dma,
378 buffer_info->length,
379 PCI_DMA_TODEVICE);
380 buffer_info->dma = 0;
381 }
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000382 if (buffer_info->skb) {
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000383 dev_kfree_skb_any(buffer_info->skb);
384 buffer_info->skb = NULL;
385 }
386 buffer_info->time_stamp = 0;
387}
388
389static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
390{
391 struct igbvf_ring *tx_ring = adapter->tx_ring;
392 unsigned int i = tx_ring->next_to_clean;
393 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
394 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
395
396 /* detected Tx unit hang */
397 dev_err(&adapter->pdev->dev,
398 "Detected Tx Unit Hang:\n"
399 " TDH <%x>\n"
400 " TDT <%x>\n"
401 " next_to_use <%x>\n"
402 " next_to_clean <%x>\n"
403 "buffer_info[next_to_clean]:\n"
404 " time_stamp <%lx>\n"
405 " next_to_watch <%x>\n"
406 " jiffies <%lx>\n"
407 " next_to_watch.status <%x>\n",
408 readl(adapter->hw.hw_addr + tx_ring->head),
409 readl(adapter->hw.hw_addr + tx_ring->tail),
410 tx_ring->next_to_use,
411 tx_ring->next_to_clean,
412 tx_ring->buffer_info[eop].time_stamp,
413 eop,
414 jiffies,
415 eop_desc->wb.status);
416}
417
418/**
419 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
420 * @adapter: board private structure
421 *
422 * Return 0 on success, negative on failure
423 **/
424int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
425 struct igbvf_ring *tx_ring)
426{
427 struct pci_dev *pdev = adapter->pdev;
428 int size;
429
430 size = sizeof(struct igbvf_buffer) * tx_ring->count;
431 tx_ring->buffer_info = vmalloc(size);
432 if (!tx_ring->buffer_info)
433 goto err;
434 memset(tx_ring->buffer_info, 0, size);
435
436 /* round up to nearest 4K */
437 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
438 tx_ring->size = ALIGN(tx_ring->size, 4096);
439
440 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
441 &tx_ring->dma);
442
443 if (!tx_ring->desc)
444 goto err;
445
446 tx_ring->adapter = adapter;
447 tx_ring->next_to_use = 0;
448 tx_ring->next_to_clean = 0;
449
450 return 0;
451err:
452 vfree(tx_ring->buffer_info);
453 dev_err(&adapter->pdev->dev,
454 "Unable to allocate memory for the transmit descriptor ring\n");
455 return -ENOMEM;
456}
457
458/**
459 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
460 * @adapter: board private structure
461 *
462 * Returns 0 on success, negative on failure
463 **/
464int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
465 struct igbvf_ring *rx_ring)
466{
467 struct pci_dev *pdev = adapter->pdev;
468 int size, desc_len;
469
470 size = sizeof(struct igbvf_buffer) * rx_ring->count;
471 rx_ring->buffer_info = vmalloc(size);
472 if (!rx_ring->buffer_info)
473 goto err;
474 memset(rx_ring->buffer_info, 0, size);
475
476 desc_len = sizeof(union e1000_adv_rx_desc);
477
478 /* Round up to nearest 4K */
479 rx_ring->size = rx_ring->count * desc_len;
480 rx_ring->size = ALIGN(rx_ring->size, 4096);
481
482 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
483 &rx_ring->dma);
484
485 if (!rx_ring->desc)
486 goto err;
487
488 rx_ring->next_to_clean = 0;
489 rx_ring->next_to_use = 0;
490
491 rx_ring->adapter = adapter;
492
493 return 0;
494
495err:
496 vfree(rx_ring->buffer_info);
497 rx_ring->buffer_info = NULL;
498 dev_err(&adapter->pdev->dev,
499 "Unable to allocate memory for the receive descriptor ring\n");
500 return -ENOMEM;
501}
502
503/**
504 * igbvf_clean_tx_ring - Free Tx Buffers
505 * @tx_ring: ring to be cleaned
506 **/
507static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
508{
509 struct igbvf_adapter *adapter = tx_ring->adapter;
510 struct igbvf_buffer *buffer_info;
511 unsigned long size;
512 unsigned int i;
513
514 if (!tx_ring->buffer_info)
515 return;
516
517 /* Free all the Tx ring sk_buffs */
518 for (i = 0; i < tx_ring->count; i++) {
519 buffer_info = &tx_ring->buffer_info[i];
520 igbvf_put_txbuf(adapter, buffer_info);
521 }
522
523 size = sizeof(struct igbvf_buffer) * tx_ring->count;
524 memset(tx_ring->buffer_info, 0, size);
525
526 /* Zero out the descriptor ring */
527 memset(tx_ring->desc, 0, tx_ring->size);
528
529 tx_ring->next_to_use = 0;
530 tx_ring->next_to_clean = 0;
531
532 writel(0, adapter->hw.hw_addr + tx_ring->head);
533 writel(0, adapter->hw.hw_addr + tx_ring->tail);
534}
535
536/**
537 * igbvf_free_tx_resources - Free Tx Resources per Queue
538 * @tx_ring: ring to free resources from
539 *
540 * Free all transmit software resources
541 **/
542void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
543{
544 struct pci_dev *pdev = tx_ring->adapter->pdev;
545
546 igbvf_clean_tx_ring(tx_ring);
547
548 vfree(tx_ring->buffer_info);
549 tx_ring->buffer_info = NULL;
550
551 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
552
553 tx_ring->desc = NULL;
554}
555
556/**
557 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
558 * @adapter: board private structure
559 **/
560static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
561{
562 struct igbvf_adapter *adapter = rx_ring->adapter;
563 struct igbvf_buffer *buffer_info;
564 struct pci_dev *pdev = adapter->pdev;
565 unsigned long size;
566 unsigned int i;
567
568 if (!rx_ring->buffer_info)
569 return;
570
571 /* Free all the Rx ring sk_buffs */
572 for (i = 0; i < rx_ring->count; i++) {
573 buffer_info = &rx_ring->buffer_info[i];
574 if (buffer_info->dma) {
575 if (adapter->rx_ps_hdr_size){
576 pci_unmap_single(pdev, buffer_info->dma,
577 adapter->rx_ps_hdr_size,
578 PCI_DMA_FROMDEVICE);
579 } else {
580 pci_unmap_single(pdev, buffer_info->dma,
581 adapter->rx_buffer_len,
582 PCI_DMA_FROMDEVICE);
583 }
584 buffer_info->dma = 0;
585 }
586
587 if (buffer_info->skb) {
588 dev_kfree_skb(buffer_info->skb);
589 buffer_info->skb = NULL;
590 }
591
592 if (buffer_info->page) {
593 if (buffer_info->page_dma)
594 pci_unmap_page(pdev, buffer_info->page_dma,
595 PAGE_SIZE / 2,
596 PCI_DMA_FROMDEVICE);
597 put_page(buffer_info->page);
598 buffer_info->page = NULL;
599 buffer_info->page_dma = 0;
600 buffer_info->page_offset = 0;
601 }
602 }
603
604 size = sizeof(struct igbvf_buffer) * rx_ring->count;
605 memset(rx_ring->buffer_info, 0, size);
606
607 /* Zero out the descriptor ring */
608 memset(rx_ring->desc, 0, rx_ring->size);
609
610 rx_ring->next_to_clean = 0;
611 rx_ring->next_to_use = 0;
612
613 writel(0, adapter->hw.hw_addr + rx_ring->head);
614 writel(0, adapter->hw.hw_addr + rx_ring->tail);
615}
616
617/**
618 * igbvf_free_rx_resources - Free Rx Resources
619 * @rx_ring: ring to clean the resources from
620 *
621 * Free all receive software resources
622 **/
623
624void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
625{
626 struct pci_dev *pdev = rx_ring->adapter->pdev;
627
628 igbvf_clean_rx_ring(rx_ring);
629
630 vfree(rx_ring->buffer_info);
631 rx_ring->buffer_info = NULL;
632
633 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
634 rx_ring->dma);
635 rx_ring->desc = NULL;
636}
637
638/**
639 * igbvf_update_itr - update the dynamic ITR value based on statistics
640 * @adapter: pointer to adapter
641 * @itr_setting: current adapter->itr
642 * @packets: the number of packets during this measurement interval
643 * @bytes: the number of bytes during this measurement interval
644 *
645 * Stores a new ITR value based on packets and byte
646 * counts during the last interrupt. The advantage of per interrupt
647 * computation is faster updates and more accurate ITR for the current
648 * traffic pattern. Constants in this function were computed
649 * based on theoretical maximum wire speed and thresholds were set based
650 * on testing data as well as attempting to minimize response time
651 * while increasing bulk throughput. This functionality is controlled
652 * by the InterruptThrottleRate module parameter.
653 **/
654static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
655 u16 itr_setting, int packets,
656 int bytes)
657{
658 unsigned int retval = itr_setting;
659
660 if (packets == 0)
661 goto update_itr_done;
662
663 switch (itr_setting) {
664 case lowest_latency:
665 /* handle TSO and jumbo frames */
666 if (bytes/packets > 8000)
667 retval = bulk_latency;
668 else if ((packets < 5) && (bytes > 512))
669 retval = low_latency;
670 break;
671 case low_latency: /* 50 usec aka 20000 ints/s */
672 if (bytes > 10000) {
673 /* this if handles the TSO accounting */
674 if (bytes/packets > 8000)
675 retval = bulk_latency;
676 else if ((packets < 10) || ((bytes/packets) > 1200))
677 retval = bulk_latency;
678 else if ((packets > 35))
679 retval = lowest_latency;
680 } else if (bytes/packets > 2000) {
681 retval = bulk_latency;
682 } else if (packets <= 2 && bytes < 512) {
683 retval = lowest_latency;
684 }
685 break;
686 case bulk_latency: /* 250 usec aka 4000 ints/s */
687 if (bytes > 25000) {
688 if (packets > 35)
689 retval = low_latency;
690 } else if (bytes < 6000) {
691 retval = low_latency;
692 }
693 break;
694 }
695
696update_itr_done:
697 return retval;
698}
699
700static void igbvf_set_itr(struct igbvf_adapter *adapter)
701{
702 struct e1000_hw *hw = &adapter->hw;
703 u16 current_itr;
704 u32 new_itr = adapter->itr;
705
706 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
707 adapter->total_tx_packets,
708 adapter->total_tx_bytes);
709 /* conservative mode (itr 3) eliminates the lowest_latency setting */
710 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
711 adapter->tx_itr = low_latency;
712
713 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
714 adapter->total_rx_packets,
715 adapter->total_rx_bytes);
716 /* conservative mode (itr 3) eliminates the lowest_latency setting */
717 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
718 adapter->rx_itr = low_latency;
719
720 current_itr = max(adapter->rx_itr, adapter->tx_itr);
721
722 switch (current_itr) {
723 /* counts and packets in update_itr are dependent on these numbers */
724 case lowest_latency:
725 new_itr = 70000;
726 break;
727 case low_latency:
728 new_itr = 20000; /* aka hwitr = ~200 */
729 break;
730 case bulk_latency:
731 new_itr = 4000;
732 break;
733 default:
734 break;
735 }
736
737 if (new_itr != adapter->itr) {
738 /*
739 * this attempts to bias the interrupt rate towards Bulk
740 * by adding intermediate steps when interrupt rate is
741 * increasing
742 */
743 new_itr = new_itr > adapter->itr ?
744 min(adapter->itr + (new_itr >> 2), new_itr) :
745 new_itr;
746 adapter->itr = new_itr;
747 adapter->rx_ring->itr_val = 1952;
748
749 if (adapter->msix_entries)
750 adapter->rx_ring->set_itr = 1;
751 else
752 ew32(ITR, 1952);
753 }
754}
755
756/**
757 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
758 * @adapter: board private structure
759 * returns true if ring is completely cleaned
760 **/
761static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
762{
763 struct igbvf_adapter *adapter = tx_ring->adapter;
764 struct e1000_hw *hw = &adapter->hw;
765 struct net_device *netdev = adapter->netdev;
766 struct igbvf_buffer *buffer_info;
767 struct sk_buff *skb;
768 union e1000_adv_tx_desc *tx_desc, *eop_desc;
769 unsigned int total_bytes = 0, total_packets = 0;
770 unsigned int i, eop, count = 0;
771 bool cleaned = false;
772
773 i = tx_ring->next_to_clean;
774 eop = tx_ring->buffer_info[i].next_to_watch;
775 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
776
777 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
778 (count < tx_ring->count)) {
779 for (cleaned = false; !cleaned; count++) {
780 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
781 buffer_info = &tx_ring->buffer_info[i];
782 cleaned = (i == eop);
783 skb = buffer_info->skb;
784
785 if (skb) {
786 unsigned int segs, bytecount;
787
788 /* gso_segs is currently only valid for tcp */
789 segs = skb_shinfo(skb)->gso_segs ?: 1;
790 /* multiply data chunks by size of headers */
791 bytecount = ((segs - 1) * skb_headlen(skb)) +
792 skb->len;
793 total_packets += segs;
794 total_bytes += bytecount;
795 }
796
797 igbvf_put_txbuf(adapter, buffer_info);
798 tx_desc->wb.status = 0;
799
800 i++;
801 if (i == tx_ring->count)
802 i = 0;
803 }
804 eop = tx_ring->buffer_info[i].next_to_watch;
805 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
806 }
807
808 tx_ring->next_to_clean = i;
809
810 if (unlikely(count &&
811 netif_carrier_ok(netdev) &&
812 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
813 /* Make sure that anybody stopping the queue after this
814 * sees the new next_to_clean.
815 */
816 smp_mb();
817 if (netif_queue_stopped(netdev) &&
818 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
819 netif_wake_queue(netdev);
820 ++adapter->restart_queue;
821 }
822 }
823
824 if (adapter->detect_tx_hung) {
825 /* Detect a transmit hang in hardware, this serializes the
826 * check with the clearing of time_stamp and movement of i */
827 adapter->detect_tx_hung = false;
828 if (tx_ring->buffer_info[i].time_stamp &&
829 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
Joe Perches8e95a202009-12-03 07:58:21 +0000830 (adapter->tx_timeout_factor * HZ)) &&
831 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000832
833 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
834 /* detected Tx unit hang */
835 igbvf_print_tx_hang(adapter);
836
837 netif_stop_queue(netdev);
838 }
839 }
840 adapter->net_stats.tx_bytes += total_bytes;
841 adapter->net_stats.tx_packets += total_packets;
842 return (count < tx_ring->count);
843}
844
845static irqreturn_t igbvf_msix_other(int irq, void *data)
846{
847 struct net_device *netdev = data;
848 struct igbvf_adapter *adapter = netdev_priv(netdev);
849 struct e1000_hw *hw = &adapter->hw;
850
851 adapter->int_counter1++;
852
853 netif_carrier_off(netdev);
854 hw->mac.get_link_status = 1;
855 if (!test_bit(__IGBVF_DOWN, &adapter->state))
856 mod_timer(&adapter->watchdog_timer, jiffies + 1);
857
858 ew32(EIMS, adapter->eims_other);
859
860 return IRQ_HANDLED;
861}
862
863static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
864{
865 struct net_device *netdev = data;
866 struct igbvf_adapter *adapter = netdev_priv(netdev);
867 struct e1000_hw *hw = &adapter->hw;
868 struct igbvf_ring *tx_ring = adapter->tx_ring;
869
870
871 adapter->total_tx_bytes = 0;
872 adapter->total_tx_packets = 0;
873
874 /* auto mask will automatically reenable the interrupt when we write
875 * EICS */
876 if (!igbvf_clean_tx_irq(tx_ring))
877 /* Ring was not completely cleaned, so fire another interrupt */
878 ew32(EICS, tx_ring->eims_value);
879 else
880 ew32(EIMS, tx_ring->eims_value);
881
882 return IRQ_HANDLED;
883}
884
885static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
886{
887 struct net_device *netdev = data;
888 struct igbvf_adapter *adapter = netdev_priv(netdev);
889
890 adapter->int_counter0++;
891
892 /* Write the ITR value calculated at the end of the
893 * previous interrupt.
894 */
895 if (adapter->rx_ring->set_itr) {
896 writel(adapter->rx_ring->itr_val,
897 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
898 adapter->rx_ring->set_itr = 0;
899 }
900
901 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
902 adapter->total_rx_bytes = 0;
903 adapter->total_rx_packets = 0;
904 __napi_schedule(&adapter->rx_ring->napi);
905 }
906
907 return IRQ_HANDLED;
908}
909
910#define IGBVF_NO_QUEUE -1
911
912static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
913 int tx_queue, int msix_vector)
914{
915 struct e1000_hw *hw = &adapter->hw;
916 u32 ivar, index;
917
918 /* 82576 uses a table-based method for assigning vectors.
919 Each queue has a single entry in the table to which we write
920 a vector number along with a "valid" bit. Sadly, the layout
921 of the table is somewhat counterintuitive. */
922 if (rx_queue > IGBVF_NO_QUEUE) {
923 index = (rx_queue >> 1);
924 ivar = array_er32(IVAR0, index);
925 if (rx_queue & 0x1) {
926 /* vector goes into third byte of register */
927 ivar = ivar & 0xFF00FFFF;
928 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
929 } else {
930 /* vector goes into low byte of register */
931 ivar = ivar & 0xFFFFFF00;
932 ivar |= msix_vector | E1000_IVAR_VALID;
933 }
934 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
935 array_ew32(IVAR0, index, ivar);
936 }
937 if (tx_queue > IGBVF_NO_QUEUE) {
938 index = (tx_queue >> 1);
939 ivar = array_er32(IVAR0, index);
940 if (tx_queue & 0x1) {
941 /* vector goes into high byte of register */
942 ivar = ivar & 0x00FFFFFF;
943 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
944 } else {
945 /* vector goes into second byte of register */
946 ivar = ivar & 0xFFFF00FF;
947 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
948 }
949 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
950 array_ew32(IVAR0, index, ivar);
951 }
952}
953
954/**
955 * igbvf_configure_msix - Configure MSI-X hardware
956 *
957 * igbvf_configure_msix sets up the hardware to properly
958 * generate MSI-X interrupts.
959 **/
960static void igbvf_configure_msix(struct igbvf_adapter *adapter)
961{
962 u32 tmp;
963 struct e1000_hw *hw = &adapter->hw;
964 struct igbvf_ring *tx_ring = adapter->tx_ring;
965 struct igbvf_ring *rx_ring = adapter->rx_ring;
966 int vector = 0;
967
968 adapter->eims_enable_mask = 0;
969
970 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
971 adapter->eims_enable_mask |= tx_ring->eims_value;
972 if (tx_ring->itr_val)
973 writel(tx_ring->itr_val,
974 hw->hw_addr + tx_ring->itr_register);
975 else
976 writel(1952, hw->hw_addr + tx_ring->itr_register);
977
978 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
979 adapter->eims_enable_mask |= rx_ring->eims_value;
980 if (rx_ring->itr_val)
981 writel(rx_ring->itr_val,
982 hw->hw_addr + rx_ring->itr_register);
983 else
984 writel(1952, hw->hw_addr + rx_ring->itr_register);
985
986 /* set vector for other causes, i.e. link changes */
987
988 tmp = (vector++ | E1000_IVAR_VALID);
989
990 ew32(IVAR_MISC, tmp);
991
992 adapter->eims_enable_mask = (1 << (vector)) - 1;
993 adapter->eims_other = 1 << (vector - 1);
994 e1e_flush();
995}
996
Alexander Duyck2d165772009-04-09 22:49:20 +0000997static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
Alexander Duyckd4e0fe02009-04-07 14:37:34 +0000998{
999 if (adapter->msix_entries) {
1000 pci_disable_msix(adapter->pdev);
1001 kfree(adapter->msix_entries);
1002 adapter->msix_entries = NULL;
1003 }
1004}
1005
1006/**
1007 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1008 *
1009 * Attempt to configure interrupts using the best available
1010 * capabilities of the hardware and kernel.
1011 **/
Alexander Duyck2d165772009-04-09 22:49:20 +00001012static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001013{
1014 int err = -ENOMEM;
1015 int i;
1016
1017 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1018 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1019 GFP_KERNEL);
1020 if (adapter->msix_entries) {
1021 for (i = 0; i < 3; i++)
1022 adapter->msix_entries[i].entry = i;
1023
1024 err = pci_enable_msix(adapter->pdev,
1025 adapter->msix_entries, 3);
1026 }
1027
1028 if (err) {
1029 /* MSI-X failed */
1030 dev_err(&adapter->pdev->dev,
1031 "Failed to initialize MSI-X interrupts.\n");
1032 igbvf_reset_interrupt_capability(adapter);
1033 }
1034}
1035
1036/**
1037 * igbvf_request_msix - Initialize MSI-X interrupts
1038 *
1039 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1040 * kernel.
1041 **/
1042static int igbvf_request_msix(struct igbvf_adapter *adapter)
1043{
1044 struct net_device *netdev = adapter->netdev;
1045 int err = 0, vector = 0;
1046
1047 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1048 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1049 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1050 } else {
1051 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1052 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1053 }
1054
1055 err = request_irq(adapter->msix_entries[vector].vector,
Joe Perchesa0607fd2009-11-18 23:29:17 -08001056 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001057 netdev);
1058 if (err)
1059 goto out;
1060
1061 adapter->tx_ring->itr_register = E1000_EITR(vector);
1062 adapter->tx_ring->itr_val = 1952;
1063 vector++;
1064
1065 err = request_irq(adapter->msix_entries[vector].vector,
Joe Perchesa0607fd2009-11-18 23:29:17 -08001066 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001067 netdev);
1068 if (err)
1069 goto out;
1070
1071 adapter->rx_ring->itr_register = E1000_EITR(vector);
1072 adapter->rx_ring->itr_val = 1952;
1073 vector++;
1074
1075 err = request_irq(adapter->msix_entries[vector].vector,
Joe Perchesa0607fd2009-11-18 23:29:17 -08001076 igbvf_msix_other, 0, netdev->name, netdev);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001077 if (err)
1078 goto out;
1079
1080 igbvf_configure_msix(adapter);
1081 return 0;
1082out:
1083 return err;
1084}
1085
1086/**
1087 * igbvf_alloc_queues - Allocate memory for all rings
1088 * @adapter: board private structure to initialize
1089 **/
1090static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1091{
1092 struct net_device *netdev = adapter->netdev;
1093
1094 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1095 if (!adapter->tx_ring)
1096 return -ENOMEM;
1097
1098 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099 if (!adapter->rx_ring) {
1100 kfree(adapter->tx_ring);
1101 return -ENOMEM;
1102 }
1103
1104 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1105
1106 return 0;
1107}
1108
1109/**
1110 * igbvf_request_irq - initialize interrupts
1111 *
1112 * Attempts to configure interrupts using the best available
1113 * capabilities of the hardware and kernel.
1114 **/
1115static int igbvf_request_irq(struct igbvf_adapter *adapter)
1116{
1117 int err = -1;
1118
1119 /* igbvf supports msi-x only */
1120 if (adapter->msix_entries)
1121 err = igbvf_request_msix(adapter);
1122
1123 if (!err)
1124 return err;
1125
1126 dev_err(&adapter->pdev->dev,
1127 "Unable to allocate interrupt, Error: %d\n", err);
1128
1129 return err;
1130}
1131
1132static void igbvf_free_irq(struct igbvf_adapter *adapter)
1133{
1134 struct net_device *netdev = adapter->netdev;
1135 int vector;
1136
1137 if (adapter->msix_entries) {
1138 for (vector = 0; vector < 3; vector++)
1139 free_irq(adapter->msix_entries[vector].vector, netdev);
1140 }
1141}
1142
1143/**
1144 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1145 **/
1146static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1147{
1148 struct e1000_hw *hw = &adapter->hw;
1149
1150 ew32(EIMC, ~0);
1151
1152 if (adapter->msix_entries)
1153 ew32(EIAC, 0);
1154}
1155
1156/**
1157 * igbvf_irq_enable - Enable default interrupt generation settings
1158 **/
1159static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1160{
1161 struct e1000_hw *hw = &adapter->hw;
1162
1163 ew32(EIAC, adapter->eims_enable_mask);
1164 ew32(EIAM, adapter->eims_enable_mask);
1165 ew32(EIMS, adapter->eims_enable_mask);
1166}
1167
1168/**
1169 * igbvf_poll - NAPI Rx polling callback
1170 * @napi: struct associated with this polling callback
1171 * @budget: amount of packets driver is allowed to process this poll
1172 **/
1173static int igbvf_poll(struct napi_struct *napi, int budget)
1174{
1175 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1176 struct igbvf_adapter *adapter = rx_ring->adapter;
1177 struct e1000_hw *hw = &adapter->hw;
1178 int work_done = 0;
1179
1180 igbvf_clean_rx_irq(adapter, &work_done, budget);
1181
1182 /* If not enough Rx work done, exit the polling mode */
1183 if (work_done < budget) {
1184 napi_complete(napi);
1185
1186 if (adapter->itr_setting & 3)
1187 igbvf_set_itr(adapter);
1188
1189 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1190 ew32(EIMS, adapter->rx_ring->eims_value);
1191 }
1192
1193 return work_done;
1194}
1195
1196/**
1197 * igbvf_set_rlpml - set receive large packet maximum length
1198 * @adapter: board private structure
1199 *
1200 * Configure the maximum size of packets that will be received
1201 */
1202static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1203{
1204 int max_frame_size = adapter->max_frame_size;
1205 struct e1000_hw *hw = &adapter->hw;
1206
1207 if (adapter->vlgrp)
1208 max_frame_size += VLAN_TAG_SIZE;
1209
1210 e1000_rlpml_set_vf(hw, max_frame_size);
1211}
1212
1213static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1214{
1215 struct igbvf_adapter *adapter = netdev_priv(netdev);
1216 struct e1000_hw *hw = &adapter->hw;
1217
1218 if (hw->mac.ops.set_vfta(hw, vid, true))
1219 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1220}
1221
1222static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1223{
1224 struct igbvf_adapter *adapter = netdev_priv(netdev);
1225 struct e1000_hw *hw = &adapter->hw;
1226
1227 igbvf_irq_disable(adapter);
1228 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1229
1230 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1231 igbvf_irq_enable(adapter);
1232
1233 if (hw->mac.ops.set_vfta(hw, vid, false))
1234 dev_err(&adapter->pdev->dev,
1235 "Failed to remove vlan id %d\n", vid);
1236}
1237
1238static void igbvf_vlan_rx_register(struct net_device *netdev,
1239 struct vlan_group *grp)
1240{
1241 struct igbvf_adapter *adapter = netdev_priv(netdev);
1242
1243 adapter->vlgrp = grp;
1244}
1245
1246static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1247{
1248 u16 vid;
1249
1250 if (!adapter->vlgrp)
1251 return;
1252
1253 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1254 if (!vlan_group_get_device(adapter->vlgrp, vid))
1255 continue;
1256 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1257 }
1258
1259 igbvf_set_rlpml(adapter);
1260}
1261
1262/**
1263 * igbvf_configure_tx - Configure Transmit Unit after Reset
1264 * @adapter: board private structure
1265 *
1266 * Configure the Tx unit of the MAC after a reset.
1267 **/
1268static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1269{
1270 struct e1000_hw *hw = &adapter->hw;
1271 struct igbvf_ring *tx_ring = adapter->tx_ring;
1272 u64 tdba;
1273 u32 txdctl, dca_txctrl;
1274
1275 /* disable transmits */
1276 txdctl = er32(TXDCTL(0));
1277 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1278 msleep(10);
1279
1280 /* Setup the HW Tx Head and Tail descriptor pointers */
1281 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1282 tdba = tx_ring->dma;
Andrew Morton8e20ce92009-06-18 16:49:17 -07001283 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001284 ew32(TDBAH(0), (tdba >> 32));
1285 ew32(TDH(0), 0);
1286 ew32(TDT(0), 0);
1287 tx_ring->head = E1000_TDH(0);
1288 tx_ring->tail = E1000_TDT(0);
1289
1290 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1291 * MUST be delivered in order or it will completely screw up
1292 * our bookeeping.
1293 */
1294 dca_txctrl = er32(DCA_TXCTRL(0));
1295 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1296 ew32(DCA_TXCTRL(0), dca_txctrl);
1297
1298 /* enable transmits */
1299 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1300 ew32(TXDCTL(0), txdctl);
1301
1302 /* Setup Transmit Descriptor Settings for eop descriptor */
1303 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1304
1305 /* enable Report Status bit */
1306 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001307}
1308
1309/**
1310 * igbvf_setup_srrctl - configure the receive control registers
1311 * @adapter: Board private structure
1312 **/
1313static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1314{
1315 struct e1000_hw *hw = &adapter->hw;
1316 u32 srrctl = 0;
1317
1318 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1319 E1000_SRRCTL_BSIZEHDR_MASK |
1320 E1000_SRRCTL_BSIZEPKT_MASK);
1321
1322 /* Enable queue drop to avoid head of line blocking */
1323 srrctl |= E1000_SRRCTL_DROP_EN;
1324
1325 /* Setup buffer sizes */
1326 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1327 E1000_SRRCTL_BSIZEPKT_SHIFT;
1328
1329 if (adapter->rx_buffer_len < 2048) {
1330 adapter->rx_ps_hdr_size = 0;
1331 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1332 } else {
1333 adapter->rx_ps_hdr_size = 128;
1334 srrctl |= adapter->rx_ps_hdr_size <<
1335 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1336 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1337 }
1338
1339 ew32(SRRCTL(0), srrctl);
1340}
1341
1342/**
1343 * igbvf_configure_rx - Configure Receive Unit after Reset
1344 * @adapter: board private structure
1345 *
1346 * Configure the Rx unit of the MAC after a reset.
1347 **/
1348static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1349{
1350 struct e1000_hw *hw = &adapter->hw;
1351 struct igbvf_ring *rx_ring = adapter->rx_ring;
1352 u64 rdba;
1353 u32 rdlen, rxdctl;
1354
1355 /* disable receives */
1356 rxdctl = er32(RXDCTL(0));
1357 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1358 msleep(10);
1359
1360 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1361
1362 /*
1363 * Setup the HW Rx Head and Tail Descriptor Pointers and
1364 * the Base and Length of the Rx Descriptor Ring
1365 */
1366 rdba = rx_ring->dma;
Andrew Morton8e20ce92009-06-18 16:49:17 -07001367 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001368 ew32(RDBAH(0), (rdba >> 32));
1369 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1370 rx_ring->head = E1000_RDH(0);
1371 rx_ring->tail = E1000_RDT(0);
1372 ew32(RDH(0), 0);
1373 ew32(RDT(0), 0);
1374
1375 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1376 rxdctl &= 0xFFF00000;
1377 rxdctl |= IGBVF_RX_PTHRESH;
1378 rxdctl |= IGBVF_RX_HTHRESH << 8;
1379 rxdctl |= IGBVF_RX_WTHRESH << 16;
1380
1381 igbvf_set_rlpml(adapter);
1382
1383 /* enable receives */
1384 ew32(RXDCTL(0), rxdctl);
1385}
1386
1387/**
1388 * igbvf_set_multi - Multicast and Promiscuous mode set
1389 * @netdev: network interface device structure
1390 *
1391 * The set_multi entry point is called whenever the multicast address
1392 * list or the network interface flags are updated. This routine is
1393 * responsible for configuring the hardware for proper multicast,
1394 * promiscuous mode, and all-multi behavior.
1395 **/
1396static void igbvf_set_multi(struct net_device *netdev)
1397{
1398 struct igbvf_adapter *adapter = netdev_priv(netdev);
1399 struct e1000_hw *hw = &adapter->hw;
1400 struct dev_mc_list *mc_ptr;
1401 u8 *mta_list = NULL;
1402 int i;
1403
Jiri Pirko4cd24ea2010-02-08 04:30:35 +00001404 if (!netdev_mc_empty(netdev)) {
1405 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001406 if (!mta_list) {
1407 dev_err(&adapter->pdev->dev,
1408 "failed to allocate multicast filter list\n");
1409 return;
1410 }
1411 }
1412
1413 /* prepare a packed array of only addresses. */
Jiri Pirko48e2f182010-02-22 09:22:26 +00001414 i = 0;
1415 netdev_for_each_mc_addr(mc_ptr, netdev)
1416 memcpy(mta_list + (i++ * ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001417
1418 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1419 kfree(mta_list);
1420}
1421
1422/**
1423 * igbvf_configure - configure the hardware for Rx and Tx
1424 * @adapter: private board structure
1425 **/
1426static void igbvf_configure(struct igbvf_adapter *adapter)
1427{
1428 igbvf_set_multi(adapter->netdev);
1429
1430 igbvf_restore_vlan(adapter);
1431
1432 igbvf_configure_tx(adapter);
1433 igbvf_setup_srrctl(adapter);
1434 igbvf_configure_rx(adapter);
1435 igbvf_alloc_rx_buffers(adapter->rx_ring,
1436 igbvf_desc_unused(adapter->rx_ring));
1437}
1438
1439/* igbvf_reset - bring the hardware into a known good state
1440 *
1441 * This function boots the hardware and enables some settings that
1442 * require a configuration cycle of the hardware - those cannot be
1443 * set/changed during runtime. After reset the device needs to be
1444 * properly configured for Rx, Tx etc.
1445 */
Alexander Duyck2d165772009-04-09 22:49:20 +00001446static void igbvf_reset(struct igbvf_adapter *adapter)
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001447{
1448 struct e1000_mac_info *mac = &adapter->hw.mac;
1449 struct net_device *netdev = adapter->netdev;
1450 struct e1000_hw *hw = &adapter->hw;
1451
1452 /* Allow time for pending master requests to run */
1453 if (mac->ops.reset_hw(hw))
1454 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1455
1456 mac->ops.init_hw(hw);
1457
1458 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1459 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1460 netdev->addr_len);
1461 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1462 netdev->addr_len);
1463 }
Alexander Duyck72279092009-12-11 22:58:14 -08001464
1465 adapter->last_reset = jiffies;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001466}
1467
1468int igbvf_up(struct igbvf_adapter *adapter)
1469{
1470 struct e1000_hw *hw = &adapter->hw;
1471
1472 /* hardware has been reset, we need to reload some things */
1473 igbvf_configure(adapter);
1474
1475 clear_bit(__IGBVF_DOWN, &adapter->state);
1476
1477 napi_enable(&adapter->rx_ring->napi);
1478 if (adapter->msix_entries)
1479 igbvf_configure_msix(adapter);
1480
1481 /* Clear any pending interrupts. */
1482 er32(EICR);
1483 igbvf_irq_enable(adapter);
1484
1485 /* start the watchdog */
1486 hw->mac.get_link_status = 1;
1487 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1488
1489
1490 return 0;
1491}
1492
1493void igbvf_down(struct igbvf_adapter *adapter)
1494{
1495 struct net_device *netdev = adapter->netdev;
1496 struct e1000_hw *hw = &adapter->hw;
1497 u32 rxdctl, txdctl;
1498
1499 /*
1500 * signal that we're down so the interrupt handler does not
1501 * reschedule our watchdog timer
1502 */
1503 set_bit(__IGBVF_DOWN, &adapter->state);
1504
1505 /* disable receives in the hardware */
1506 rxdctl = er32(RXDCTL(0));
1507 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1508
1509 netif_stop_queue(netdev);
1510
1511 /* disable transmits in the hardware */
1512 txdctl = er32(TXDCTL(0));
1513 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1514
1515 /* flush both disables and wait for them to finish */
1516 e1e_flush();
1517 msleep(10);
1518
1519 napi_disable(&adapter->rx_ring->napi);
1520
1521 igbvf_irq_disable(adapter);
1522
1523 del_timer_sync(&adapter->watchdog_timer);
1524
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001525 netif_carrier_off(netdev);
1526
1527 /* record the stats before reset*/
1528 igbvf_update_stats(adapter);
1529
1530 adapter->link_speed = 0;
1531 adapter->link_duplex = 0;
1532
1533 igbvf_reset(adapter);
1534 igbvf_clean_tx_ring(adapter->tx_ring);
1535 igbvf_clean_rx_ring(adapter->rx_ring);
1536}
1537
1538void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1539{
1540 might_sleep();
1541 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1542 msleep(1);
1543 igbvf_down(adapter);
1544 igbvf_up(adapter);
1545 clear_bit(__IGBVF_RESETTING, &adapter->state);
1546}
1547
1548/**
1549 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1550 * @adapter: board private structure to initialize
1551 *
1552 * igbvf_sw_init initializes the Adapter private data structure.
1553 * Fields are initialized based on PCI device information and
1554 * OS network device settings (MTU size).
1555 **/
1556static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1557{
1558 struct net_device *netdev = adapter->netdev;
1559 s32 rc;
1560
1561 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1562 adapter->rx_ps_hdr_size = 0;
1563 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1564 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1565
1566 adapter->tx_int_delay = 8;
1567 adapter->tx_abs_int_delay = 32;
1568 adapter->rx_int_delay = 0;
1569 adapter->rx_abs_int_delay = 8;
1570 adapter->itr_setting = 3;
1571 adapter->itr = 20000;
1572
1573 /* Set various function pointers */
1574 adapter->ei->init_ops(&adapter->hw);
1575
1576 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1577 if (rc)
1578 return rc;
1579
1580 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1581 if (rc)
1582 return rc;
1583
1584 igbvf_set_interrupt_capability(adapter);
1585
1586 if (igbvf_alloc_queues(adapter))
1587 return -ENOMEM;
1588
1589 spin_lock_init(&adapter->tx_queue_lock);
1590
1591 /* Explicitly disable IRQ since the NIC can be in any state. */
1592 igbvf_irq_disable(adapter);
1593
1594 spin_lock_init(&adapter->stats_lock);
1595
1596 set_bit(__IGBVF_DOWN, &adapter->state);
1597 return 0;
1598}
1599
1600static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1601{
1602 struct e1000_hw *hw = &adapter->hw;
1603
1604 adapter->stats.last_gprc = er32(VFGPRC);
1605 adapter->stats.last_gorc = er32(VFGORC);
1606 adapter->stats.last_gptc = er32(VFGPTC);
1607 adapter->stats.last_gotc = er32(VFGOTC);
1608 adapter->stats.last_mprc = er32(VFMPRC);
1609 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1610 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1611 adapter->stats.last_gorlbc = er32(VFGORLBC);
1612 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1613
1614 adapter->stats.base_gprc = er32(VFGPRC);
1615 adapter->stats.base_gorc = er32(VFGORC);
1616 adapter->stats.base_gptc = er32(VFGPTC);
1617 adapter->stats.base_gotc = er32(VFGOTC);
1618 adapter->stats.base_mprc = er32(VFMPRC);
1619 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1620 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1621 adapter->stats.base_gorlbc = er32(VFGORLBC);
1622 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1623}
1624
1625/**
1626 * igbvf_open - Called when a network interface is made active
1627 * @netdev: network interface device structure
1628 *
1629 * Returns 0 on success, negative value on failure
1630 *
1631 * The open entry point is called when a network interface is made
1632 * active by the system (IFF_UP). At this point all resources needed
1633 * for transmit and receive operations are allocated, the interrupt
1634 * handler is registered with the OS, the watchdog timer is started,
1635 * and the stack is notified that the interface is ready.
1636 **/
1637static int igbvf_open(struct net_device *netdev)
1638{
1639 struct igbvf_adapter *adapter = netdev_priv(netdev);
1640 struct e1000_hw *hw = &adapter->hw;
1641 int err;
1642
1643 /* disallow open during test */
1644 if (test_bit(__IGBVF_TESTING, &adapter->state))
1645 return -EBUSY;
1646
1647 /* allocate transmit descriptors */
1648 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1649 if (err)
1650 goto err_setup_tx;
1651
1652 /* allocate receive descriptors */
1653 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1654 if (err)
1655 goto err_setup_rx;
1656
1657 /*
1658 * before we allocate an interrupt, we must be ready to handle it.
1659 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1660 * as soon as we call pci_request_irq, so we have to setup our
1661 * clean_rx handler before we do so.
1662 */
1663 igbvf_configure(adapter);
1664
1665 err = igbvf_request_irq(adapter);
1666 if (err)
1667 goto err_req_irq;
1668
1669 /* From here on the code is the same as igbvf_up() */
1670 clear_bit(__IGBVF_DOWN, &adapter->state);
1671
1672 napi_enable(&adapter->rx_ring->napi);
1673
1674 /* clear any pending interrupts */
1675 er32(EICR);
1676
1677 igbvf_irq_enable(adapter);
1678
1679 /* start the watchdog */
1680 hw->mac.get_link_status = 1;
1681 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1682
1683 return 0;
1684
1685err_req_irq:
1686 igbvf_free_rx_resources(adapter->rx_ring);
1687err_setup_rx:
1688 igbvf_free_tx_resources(adapter->tx_ring);
1689err_setup_tx:
1690 igbvf_reset(adapter);
1691
1692 return err;
1693}
1694
1695/**
1696 * igbvf_close - Disables a network interface
1697 * @netdev: network interface device structure
1698 *
1699 * Returns 0, this is not allowed to fail
1700 *
1701 * The close entry point is called when an interface is de-activated
1702 * by the OS. The hardware is still under the drivers control, but
1703 * needs to be disabled. A global MAC reset is issued to stop the
1704 * hardware, and all transmit and receive resources are freed.
1705 **/
1706static int igbvf_close(struct net_device *netdev)
1707{
1708 struct igbvf_adapter *adapter = netdev_priv(netdev);
1709
1710 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1711 igbvf_down(adapter);
1712
1713 igbvf_free_irq(adapter);
1714
1715 igbvf_free_tx_resources(adapter->tx_ring);
1716 igbvf_free_rx_resources(adapter->rx_ring);
1717
1718 return 0;
1719}
1720/**
1721 * igbvf_set_mac - Change the Ethernet Address of the NIC
1722 * @netdev: network interface device structure
1723 * @p: pointer to an address structure
1724 *
1725 * Returns 0 on success, negative on failure
1726 **/
1727static int igbvf_set_mac(struct net_device *netdev, void *p)
1728{
1729 struct igbvf_adapter *adapter = netdev_priv(netdev);
1730 struct e1000_hw *hw = &adapter->hw;
1731 struct sockaddr *addr = p;
1732
1733 if (!is_valid_ether_addr(addr->sa_data))
1734 return -EADDRNOTAVAIL;
1735
1736 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1737
1738 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1739
1740 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1741 return -EADDRNOTAVAIL;
1742
1743 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1744
1745 return 0;
1746}
1747
1748#define UPDATE_VF_COUNTER(reg, name) \
1749 { \
1750 u32 current_counter = er32(reg); \
1751 if (current_counter < adapter->stats.last_##name) \
1752 adapter->stats.name += 0x100000000LL; \
1753 adapter->stats.last_##name = current_counter; \
1754 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1755 adapter->stats.name |= current_counter; \
1756 }
1757
1758/**
1759 * igbvf_update_stats - Update the board statistics counters
1760 * @adapter: board private structure
1761**/
1762void igbvf_update_stats(struct igbvf_adapter *adapter)
1763{
1764 struct e1000_hw *hw = &adapter->hw;
1765 struct pci_dev *pdev = adapter->pdev;
1766
1767 /*
1768 * Prevent stats update while adapter is being reset, link is down
1769 * or if the pci connection is down.
1770 */
1771 if (adapter->link_speed == 0)
1772 return;
1773
1774 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1775 return;
1776
1777 if (pci_channel_offline(pdev))
1778 return;
1779
1780 UPDATE_VF_COUNTER(VFGPRC, gprc);
1781 UPDATE_VF_COUNTER(VFGORC, gorc);
1782 UPDATE_VF_COUNTER(VFGPTC, gptc);
1783 UPDATE_VF_COUNTER(VFGOTC, gotc);
1784 UPDATE_VF_COUNTER(VFMPRC, mprc);
1785 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1786 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1787 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1788 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1789
1790 /* Fill out the OS statistics structure */
1791 adapter->net_stats.multicast = adapter->stats.mprc;
1792}
1793
1794static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1795{
1796 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1797 adapter->link_speed,
1798 ((adapter->link_duplex == FULL_DUPLEX) ?
1799 "Full Duplex" : "Half Duplex"));
1800}
1801
1802static bool igbvf_has_link(struct igbvf_adapter *adapter)
1803{
1804 struct e1000_hw *hw = &adapter->hw;
1805 s32 ret_val = E1000_SUCCESS;
1806 bool link_active;
1807
Alexander Duyck72279092009-12-11 22:58:14 -08001808 /* If interface is down, stay link down */
1809 if (test_bit(__IGBVF_DOWN, &adapter->state))
1810 return false;
1811
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001812 ret_val = hw->mac.ops.check_for_link(hw);
1813 link_active = !hw->mac.get_link_status;
1814
1815 /* if check for link returns error we will need to reset */
Alexander Duyck72279092009-12-11 22:58:14 -08001816 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001817 schedule_work(&adapter->reset_task);
1818
1819 return link_active;
1820}
1821
1822/**
1823 * igbvf_watchdog - Timer Call-back
1824 * @data: pointer to adapter cast into an unsigned long
1825 **/
1826static void igbvf_watchdog(unsigned long data)
1827{
1828 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1829
1830 /* Do the rest outside of interrupt context */
1831 schedule_work(&adapter->watchdog_task);
1832}
1833
1834static void igbvf_watchdog_task(struct work_struct *work)
1835{
1836 struct igbvf_adapter *adapter = container_of(work,
1837 struct igbvf_adapter,
1838 watchdog_task);
1839 struct net_device *netdev = adapter->netdev;
1840 struct e1000_mac_info *mac = &adapter->hw.mac;
1841 struct igbvf_ring *tx_ring = adapter->tx_ring;
1842 struct e1000_hw *hw = &adapter->hw;
1843 u32 link;
1844 int tx_pending = 0;
1845
1846 link = igbvf_has_link(adapter);
1847
1848 if (link) {
1849 if (!netif_carrier_ok(netdev)) {
1850 bool txb2b = 1;
1851
1852 mac->ops.get_link_up_info(&adapter->hw,
1853 &adapter->link_speed,
1854 &adapter->link_duplex);
1855 igbvf_print_link_info(adapter);
1856
Emil Tantilova08af742010-03-25 12:11:48 +00001857 /* adjust timeout factor according to speed/duplex */
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001858 adapter->tx_timeout_factor = 1;
1859 switch (adapter->link_speed) {
1860 case SPEED_10:
1861 txb2b = 0;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001862 adapter->tx_timeout_factor = 16;
1863 break;
1864 case SPEED_100:
1865 txb2b = 0;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001866 /* maybe add some timeout factor ? */
1867 break;
1868 }
1869
1870 netif_carrier_on(netdev);
1871 netif_wake_queue(netdev);
1872 }
1873 } else {
1874 if (netif_carrier_ok(netdev)) {
1875 adapter->link_speed = 0;
1876 adapter->link_duplex = 0;
1877 dev_info(&adapter->pdev->dev, "Link is Down\n");
1878 netif_carrier_off(netdev);
1879 netif_stop_queue(netdev);
1880 }
1881 }
1882
1883 if (netif_carrier_ok(netdev)) {
1884 igbvf_update_stats(adapter);
1885 } else {
1886 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1887 tx_ring->count);
1888 if (tx_pending) {
1889 /*
1890 * We've lost link, so the controller stops DMA,
1891 * but we've got queued Tx work that's never going
1892 * to get done, so reset controller to flush Tx.
1893 * (Do the reset outside of interrupt context).
1894 */
1895 adapter->tx_timeout_count++;
1896 schedule_work(&adapter->reset_task);
1897 }
1898 }
1899
1900 /* Cause software interrupt to ensure Rx ring is cleaned */
1901 ew32(EICS, adapter->rx_ring->eims_value);
1902
1903 /* Force detection of hung controller every watchdog period */
1904 adapter->detect_tx_hung = 1;
1905
1906 /* Reset the timer */
1907 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1908 mod_timer(&adapter->watchdog_timer,
1909 round_jiffies(jiffies + (2 * HZ)));
1910}
1911
1912#define IGBVF_TX_FLAGS_CSUM 0x00000001
1913#define IGBVF_TX_FLAGS_VLAN 0x00000002
1914#define IGBVF_TX_FLAGS_TSO 0x00000004
1915#define IGBVF_TX_FLAGS_IPV4 0x00000008
1916#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1917#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1918
1919static int igbvf_tso(struct igbvf_adapter *adapter,
1920 struct igbvf_ring *tx_ring,
1921 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1922{
1923 struct e1000_adv_tx_context_desc *context_desc;
1924 unsigned int i;
1925 int err;
1926 struct igbvf_buffer *buffer_info;
1927 u32 info = 0, tu_cmd = 0;
1928 u32 mss_l4len_idx, l4len;
1929 *hdr_len = 0;
1930
1931 if (skb_header_cloned(skb)) {
1932 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1933 if (err) {
1934 dev_err(&adapter->pdev->dev,
1935 "igbvf_tso returning an error\n");
1936 return err;
1937 }
1938 }
1939
1940 l4len = tcp_hdrlen(skb);
1941 *hdr_len += l4len;
1942
1943 if (skb->protocol == htons(ETH_P_IP)) {
1944 struct iphdr *iph = ip_hdr(skb);
1945 iph->tot_len = 0;
1946 iph->check = 0;
1947 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1948 iph->daddr, 0,
1949 IPPROTO_TCP,
1950 0);
Sridhar Samudrala8e1e8a42010-01-23 02:02:21 -08001951 } else if (skb_is_gso_v6(skb)) {
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00001952 ipv6_hdr(skb)->payload_len = 0;
1953 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1954 &ipv6_hdr(skb)->daddr,
1955 0, IPPROTO_TCP, 0);
1956 }
1957
1958 i = tx_ring->next_to_use;
1959
1960 buffer_info = &tx_ring->buffer_info[i];
1961 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1962 /* VLAN MACLEN IPLEN */
1963 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1964 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1965 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1966 *hdr_len += skb_network_offset(skb);
1967 info |= (skb_transport_header(skb) - skb_network_header(skb));
1968 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1969 context_desc->vlan_macip_lens = cpu_to_le32(info);
1970
1971 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1972 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1973
1974 if (skb->protocol == htons(ETH_P_IP))
1975 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1976 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1977
1978 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1979
1980 /* MSS L4LEN IDX */
1981 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1982 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1983
1984 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1985 context_desc->seqnum_seed = 0;
1986
1987 buffer_info->time_stamp = jiffies;
1988 buffer_info->next_to_watch = i;
1989 buffer_info->dma = 0;
1990 i++;
1991 if (i == tx_ring->count)
1992 i = 0;
1993
1994 tx_ring->next_to_use = i;
1995
1996 return true;
1997}
1998
1999static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2000 struct igbvf_ring *tx_ring,
2001 struct sk_buff *skb, u32 tx_flags)
2002{
2003 struct e1000_adv_tx_context_desc *context_desc;
2004 unsigned int i;
2005 struct igbvf_buffer *buffer_info;
2006 u32 info = 0, tu_cmd = 0;
2007
2008 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2009 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2010 i = tx_ring->next_to_use;
2011 buffer_info = &tx_ring->buffer_info[i];
2012 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2013
2014 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2015 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2016
2017 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2018 if (skb->ip_summed == CHECKSUM_PARTIAL)
2019 info |= (skb_transport_header(skb) -
2020 skb_network_header(skb));
2021
2022
2023 context_desc->vlan_macip_lens = cpu_to_le32(info);
2024
2025 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2026
2027 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2028 switch (skb->protocol) {
2029 case __constant_htons(ETH_P_IP):
2030 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2031 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2032 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2033 break;
2034 case __constant_htons(ETH_P_IPV6):
2035 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2036 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2037 break;
2038 default:
2039 break;
2040 }
2041 }
2042
2043 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2044 context_desc->seqnum_seed = 0;
2045 context_desc->mss_l4len_idx = 0;
2046
2047 buffer_info->time_stamp = jiffies;
2048 buffer_info->next_to_watch = i;
2049 buffer_info->dma = 0;
2050 i++;
2051 if (i == tx_ring->count)
2052 i = 0;
2053 tx_ring->next_to_use = i;
2054
2055 return true;
2056 }
2057
2058 return false;
2059}
2060
2061static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2062{
2063 struct igbvf_adapter *adapter = netdev_priv(netdev);
2064
2065 /* there is enough descriptors then we don't need to worry */
2066 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2067 return 0;
2068
2069 netif_stop_queue(netdev);
2070
2071 smp_mb();
2072
2073 /* We need to check again just in case room has been made available */
2074 if (igbvf_desc_unused(adapter->tx_ring) < size)
2075 return -EBUSY;
2076
2077 netif_wake_queue(netdev);
2078
2079 ++adapter->restart_queue;
2080 return 0;
2081}
2082
2083#define IGBVF_MAX_TXD_PWR 16
2084#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2085
2086static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2087 struct igbvf_ring *tx_ring,
2088 struct sk_buff *skb,
2089 unsigned int first)
2090{
2091 struct igbvf_buffer *buffer_info;
Alexander Duycka7d5ca402009-12-02 16:47:37 +00002092 struct pci_dev *pdev = adapter->pdev;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002093 unsigned int len = skb_headlen(skb);
2094 unsigned int count = 0, i;
2095 unsigned int f;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002096
2097 i = tx_ring->next_to_use;
2098
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002099 buffer_info = &tx_ring->buffer_info[i];
2100 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2101 buffer_info->length = len;
2102 /* set time_stamp *before* dma to help avoid a possible race */
2103 buffer_info->time_stamp = jiffies;
2104 buffer_info->next_to_watch = i;
Alexander Duyckac26d7d2010-01-27 15:30:39 +00002105 buffer_info->mapped_as_page = false;
Alexander Duycka7d5ca402009-12-02 16:47:37 +00002106 buffer_info->dma = pci_map_single(pdev, skb->data, len,
2107 PCI_DMA_TODEVICE);
2108 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2109 goto dma_error;
2110
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002111
2112 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2113 struct skb_frag_struct *frag;
2114
Alexander Duyck85811452010-01-23 01:35:00 -08002115 count++;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002116 i++;
2117 if (i == tx_ring->count)
2118 i = 0;
2119
2120 frag = &skb_shinfo(skb)->frags[f];
2121 len = frag->size;
2122
2123 buffer_info = &tx_ring->buffer_info[i];
2124 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2125 buffer_info->length = len;
2126 buffer_info->time_stamp = jiffies;
2127 buffer_info->next_to_watch = i;
Alexander Duycka7d5ca402009-12-02 16:47:37 +00002128 buffer_info->mapped_as_page = true;
2129 buffer_info->dma = pci_map_page(pdev,
2130 frag->page,
2131 frag->page_offset,
2132 len,
2133 PCI_DMA_TODEVICE);
2134 if (pci_dma_mapping_error(pdev, buffer_info->dma))
2135 goto dma_error;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002136 }
2137
2138 tx_ring->buffer_info[i].skb = skb;
2139 tx_ring->buffer_info[first].next_to_watch = i;
2140
Alexander Duycka7d5ca402009-12-02 16:47:37 +00002141 return ++count;
2142
2143dma_error:
2144 dev_err(&pdev->dev, "TX DMA map failed\n");
2145
2146 /* clear timestamp and dma mappings for failed buffer_info mapping */
2147 buffer_info->dma = 0;
2148 buffer_info->time_stamp = 0;
2149 buffer_info->length = 0;
2150 buffer_info->next_to_watch = 0;
2151 buffer_info->mapped_as_page = false;
Roel Kluinc1fa3472010-01-19 14:21:45 +00002152 if (count)
2153 count--;
Alexander Duycka7d5ca402009-12-02 16:47:37 +00002154
2155 /* clear timestamp and dma mappings for remaining portion of packet */
Roel Kluinc1fa3472010-01-19 14:21:45 +00002156 while (count--) {
2157 if (i==0)
Alexander Duycka7d5ca402009-12-02 16:47:37 +00002158 i += tx_ring->count;
Roel Kluinc1fa3472010-01-19 14:21:45 +00002159 i--;
Alexander Duycka7d5ca402009-12-02 16:47:37 +00002160 buffer_info = &tx_ring->buffer_info[i];
2161 igbvf_put_txbuf(adapter, buffer_info);
2162 }
2163
2164 return 0;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002165}
2166
2167static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2168 struct igbvf_ring *tx_ring,
2169 int tx_flags, int count, u32 paylen,
2170 u8 hdr_len)
2171{
2172 union e1000_adv_tx_desc *tx_desc = NULL;
2173 struct igbvf_buffer *buffer_info;
2174 u32 olinfo_status = 0, cmd_type_len;
2175 unsigned int i;
2176
2177 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2178 E1000_ADVTXD_DCMD_DEXT);
2179
2180 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2181 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2182
2183 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2184 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2185
2186 /* insert tcp checksum */
2187 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2188
2189 /* insert ip checksum */
2190 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2191 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2192
2193 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2194 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2195 }
2196
2197 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2198
2199 i = tx_ring->next_to_use;
2200 while (count--) {
2201 buffer_info = &tx_ring->buffer_info[i];
2202 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2203 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2204 tx_desc->read.cmd_type_len =
2205 cpu_to_le32(cmd_type_len | buffer_info->length);
2206 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2207 i++;
2208 if (i == tx_ring->count)
2209 i = 0;
2210 }
2211
2212 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2213 /* Force memory writes to complete before letting h/w
2214 * know there are new descriptors to fetch. (Only
2215 * applicable for weak-ordered memory model archs,
2216 * such as IA-64). */
2217 wmb();
2218
2219 tx_ring->next_to_use = i;
2220 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2221 /* we need this if more than one processor can write to our tail
2222 * at a time, it syncronizes IO on IA64/Altix systems */
2223 mmiowb();
2224}
2225
Stephen Hemminger3b29a562009-08-31 19:50:55 +00002226static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2227 struct net_device *netdev,
2228 struct igbvf_ring *tx_ring)
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002229{
2230 struct igbvf_adapter *adapter = netdev_priv(netdev);
2231 unsigned int first, tx_flags = 0;
2232 u8 hdr_len = 0;
2233 int count = 0;
2234 int tso = 0;
2235
2236 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2237 dev_kfree_skb_any(skb);
2238 return NETDEV_TX_OK;
2239 }
2240
2241 if (skb->len <= 0) {
2242 dev_kfree_skb_any(skb);
2243 return NETDEV_TX_OK;
2244 }
2245
2246 /*
2247 * need: count + 4 desc gap to keep tail from touching
2248 * + 2 desc gap to keep tail from touching head,
2249 * + 1 desc for skb->data,
2250 * + 1 desc for context descriptor,
2251 * head, otherwise try next time
2252 */
2253 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2254 /* this is a hard error */
2255 return NETDEV_TX_BUSY;
2256 }
2257
2258 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2259 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2260 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2261 }
2262
2263 if (skb->protocol == htons(ETH_P_IP))
2264 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2265
2266 first = tx_ring->next_to_use;
2267
2268 tso = skb_is_gso(skb) ?
2269 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2270 if (unlikely(tso < 0)) {
2271 dev_kfree_skb_any(skb);
2272 return NETDEV_TX_OK;
2273 }
2274
2275 if (tso)
2276 tx_flags |= IGBVF_TX_FLAGS_TSO;
2277 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2278 (skb->ip_summed == CHECKSUM_PARTIAL))
2279 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2280
2281 /*
2282 * count reflects descriptors mapped, if 0 then mapping error
2283 * has occured and we need to rewind the descriptor queue
2284 */
2285 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2286
2287 if (count) {
2288 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2289 skb->len, hdr_len);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002290 /* Make sure there is space in the ring for the next send. */
2291 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2292 } else {
2293 dev_kfree_skb_any(skb);
2294 tx_ring->buffer_info[first].time_stamp = 0;
2295 tx_ring->next_to_use = first;
2296 }
2297
2298 return NETDEV_TX_OK;
2299}
2300
Stephen Hemminger3b29a562009-08-31 19:50:55 +00002301static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2302 struct net_device *netdev)
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002303{
2304 struct igbvf_adapter *adapter = netdev_priv(netdev);
2305 struct igbvf_ring *tx_ring;
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002306
2307 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2308 dev_kfree_skb_any(skb);
2309 return NETDEV_TX_OK;
2310 }
2311
2312 tx_ring = &adapter->tx_ring[0];
2313
Stephen Hemminger3b29a562009-08-31 19:50:55 +00002314 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002315}
2316
2317/**
2318 * igbvf_tx_timeout - Respond to a Tx Hang
2319 * @netdev: network interface device structure
2320 **/
2321static void igbvf_tx_timeout(struct net_device *netdev)
2322{
2323 struct igbvf_adapter *adapter = netdev_priv(netdev);
2324
2325 /* Do the reset outside of interrupt context */
2326 adapter->tx_timeout_count++;
2327 schedule_work(&adapter->reset_task);
2328}
2329
2330static void igbvf_reset_task(struct work_struct *work)
2331{
2332 struct igbvf_adapter *adapter;
2333 adapter = container_of(work, struct igbvf_adapter, reset_task);
2334
2335 igbvf_reinit_locked(adapter);
2336}
2337
2338/**
2339 * igbvf_get_stats - Get System Network Statistics
2340 * @netdev: network interface device structure
2341 *
2342 * Returns the address of the device statistics structure.
2343 * The statistics are actually updated from the timer callback.
2344 **/
2345static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2346{
2347 struct igbvf_adapter *adapter = netdev_priv(netdev);
2348
2349 /* only return the current stats */
2350 return &adapter->net_stats;
2351}
2352
2353/**
2354 * igbvf_change_mtu - Change the Maximum Transfer Unit
2355 * @netdev: network interface device structure
2356 * @new_mtu: new value for maximum frame size
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2361{
2362 struct igbvf_adapter *adapter = netdev_priv(netdev);
2363 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2364
2365 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2366 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2367 return -EINVAL;
2368 }
2369
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002370#define MAX_STD_JUMBO_FRAME_SIZE 9234
2371 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2372 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2373 return -EINVAL;
2374 }
2375
2376 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2377 msleep(1);
2378 /* igbvf_down has a dependency on max_frame_size */
2379 adapter->max_frame_size = max_frame;
2380 if (netif_running(netdev))
2381 igbvf_down(adapter);
2382
2383 /*
2384 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2385 * means we reserve 2 more, this pushes us to allocate from the next
2386 * larger slab size.
2387 * i.e. RXBUFFER_2048 --> size-4096 slab
2388 * However with the new *_jumbo_rx* routines, jumbo receives will use
2389 * fragmented skbs
2390 */
2391
2392 if (max_frame <= 1024)
2393 adapter->rx_buffer_len = 1024;
2394 else if (max_frame <= 2048)
2395 adapter->rx_buffer_len = 2048;
2396 else
2397#if (PAGE_SIZE / 2) > 16384
2398 adapter->rx_buffer_len = 16384;
2399#else
2400 adapter->rx_buffer_len = PAGE_SIZE / 2;
2401#endif
2402
2403
2404 /* adjust allocation if LPE protects us, and we aren't using SBP */
2405 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2406 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2407 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2408 ETH_FCS_LEN;
2409
2410 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2411 netdev->mtu, new_mtu);
2412 netdev->mtu = new_mtu;
2413
2414 if (netif_running(netdev))
2415 igbvf_up(adapter);
2416 else
2417 igbvf_reset(adapter);
2418
2419 clear_bit(__IGBVF_RESETTING, &adapter->state);
2420
2421 return 0;
2422}
2423
2424static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2425{
2426 switch (cmd) {
2427 default:
2428 return -EOPNOTSUPP;
2429 }
2430}
2431
2432static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2433{
2434 struct net_device *netdev = pci_get_drvdata(pdev);
2435 struct igbvf_adapter *adapter = netdev_priv(netdev);
2436#ifdef CONFIG_PM
2437 int retval = 0;
2438#endif
2439
2440 netif_device_detach(netdev);
2441
2442 if (netif_running(netdev)) {
2443 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2444 igbvf_down(adapter);
2445 igbvf_free_irq(adapter);
2446 }
2447
2448#ifdef CONFIG_PM
2449 retval = pci_save_state(pdev);
2450 if (retval)
2451 return retval;
2452#endif
2453
2454 pci_disable_device(pdev);
2455
2456 return 0;
2457}
2458
2459#ifdef CONFIG_PM
2460static int igbvf_resume(struct pci_dev *pdev)
2461{
2462 struct net_device *netdev = pci_get_drvdata(pdev);
2463 struct igbvf_adapter *adapter = netdev_priv(netdev);
2464 u32 err;
2465
2466 pci_restore_state(pdev);
2467 err = pci_enable_device_mem(pdev);
2468 if (err) {
2469 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2470 return err;
2471 }
2472
2473 pci_set_master(pdev);
2474
2475 if (netif_running(netdev)) {
2476 err = igbvf_request_irq(adapter);
2477 if (err)
2478 return err;
2479 }
2480
2481 igbvf_reset(adapter);
2482
2483 if (netif_running(netdev))
2484 igbvf_up(adapter);
2485
2486 netif_device_attach(netdev);
2487
2488 return 0;
2489}
2490#endif
2491
2492static void igbvf_shutdown(struct pci_dev *pdev)
2493{
2494 igbvf_suspend(pdev, PMSG_SUSPEND);
2495}
2496
2497#ifdef CONFIG_NET_POLL_CONTROLLER
2498/*
2499 * Polling 'interrupt' - used by things like netconsole to send skbs
2500 * without having to re-enable interrupts. It's not called while
2501 * the interrupt routine is executing.
2502 */
2503static void igbvf_netpoll(struct net_device *netdev)
2504{
2505 struct igbvf_adapter *adapter = netdev_priv(netdev);
2506
2507 disable_irq(adapter->pdev->irq);
2508
2509 igbvf_clean_tx_irq(adapter->tx_ring);
2510
2511 enable_irq(adapter->pdev->irq);
2512}
2513#endif
2514
2515/**
2516 * igbvf_io_error_detected - called when PCI error is detected
2517 * @pdev: Pointer to PCI device
2518 * @state: The current pci connection state
2519 *
2520 * This function is called after a PCI bus error affecting
2521 * this device has been detected.
2522 */
2523static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2524 pci_channel_state_t state)
2525{
2526 struct net_device *netdev = pci_get_drvdata(pdev);
2527 struct igbvf_adapter *adapter = netdev_priv(netdev);
2528
2529 netif_device_detach(netdev);
2530
Dean Nelsonc06c4302009-07-31 09:13:33 +00002531 if (state == pci_channel_io_perm_failure)
2532 return PCI_ERS_RESULT_DISCONNECT;
2533
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002534 if (netif_running(netdev))
2535 igbvf_down(adapter);
2536 pci_disable_device(pdev);
2537
2538 /* Request a slot slot reset. */
2539 return PCI_ERS_RESULT_NEED_RESET;
2540}
2541
2542/**
2543 * igbvf_io_slot_reset - called after the pci bus has been reset.
2544 * @pdev: Pointer to PCI device
2545 *
2546 * Restart the card from scratch, as if from a cold-boot. Implementation
2547 * resembles the first-half of the igbvf_resume routine.
2548 */
2549static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2550{
2551 struct net_device *netdev = pci_get_drvdata(pdev);
2552 struct igbvf_adapter *adapter = netdev_priv(netdev);
2553
2554 if (pci_enable_device_mem(pdev)) {
2555 dev_err(&pdev->dev,
2556 "Cannot re-enable PCI device after reset.\n");
2557 return PCI_ERS_RESULT_DISCONNECT;
2558 }
2559 pci_set_master(pdev);
2560
2561 igbvf_reset(adapter);
2562
2563 return PCI_ERS_RESULT_RECOVERED;
2564}
2565
2566/**
2567 * igbvf_io_resume - called when traffic can start flowing again.
2568 * @pdev: Pointer to PCI device
2569 *
2570 * This callback is called when the error recovery driver tells us that
2571 * its OK to resume normal operation. Implementation resembles the
2572 * second-half of the igbvf_resume routine.
2573 */
2574static void igbvf_io_resume(struct pci_dev *pdev)
2575{
2576 struct net_device *netdev = pci_get_drvdata(pdev);
2577 struct igbvf_adapter *adapter = netdev_priv(netdev);
2578
2579 if (netif_running(netdev)) {
2580 if (igbvf_up(adapter)) {
2581 dev_err(&pdev->dev,
2582 "can't bring device back up after reset\n");
2583 return;
2584 }
2585 }
2586
2587 netif_device_attach(netdev);
2588}
2589
2590static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2591{
2592 struct e1000_hw *hw = &adapter->hw;
2593 struct net_device *netdev = adapter->netdev;
2594 struct pci_dev *pdev = adapter->pdev;
2595
2596 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
H Hartley Sweeten753cdc32009-12-29 20:02:29 -08002597 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002598 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2599}
2600
2601static const struct net_device_ops igbvf_netdev_ops = {
2602 .ndo_open = igbvf_open,
2603 .ndo_stop = igbvf_close,
2604 .ndo_start_xmit = igbvf_xmit_frame,
2605 .ndo_get_stats = igbvf_get_stats,
2606 .ndo_set_multicast_list = igbvf_set_multi,
2607 .ndo_set_mac_address = igbvf_set_mac,
2608 .ndo_change_mtu = igbvf_change_mtu,
2609 .ndo_do_ioctl = igbvf_ioctl,
2610 .ndo_tx_timeout = igbvf_tx_timeout,
2611 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2612 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2613 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2614#ifdef CONFIG_NET_POLL_CONTROLLER
2615 .ndo_poll_controller = igbvf_netpoll,
2616#endif
2617};
2618
2619/**
2620 * igbvf_probe - Device Initialization Routine
2621 * @pdev: PCI device information struct
2622 * @ent: entry in igbvf_pci_tbl
2623 *
2624 * Returns 0 on success, negative on failure
2625 *
2626 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2627 * The OS initialization, configuring of the adapter private structure,
2628 * and a hardware reset occur.
2629 **/
2630static int __devinit igbvf_probe(struct pci_dev *pdev,
2631 const struct pci_device_id *ent)
2632{
2633 struct net_device *netdev;
2634 struct igbvf_adapter *adapter;
2635 struct e1000_hw *hw;
2636 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2637
2638 static int cards_found;
2639 int err, pci_using_dac;
2640
2641 err = pci_enable_device_mem(pdev);
2642 if (err)
2643 return err;
2644
2645 pci_using_dac = 0;
Andrew Morton8e20ce92009-06-18 16:49:17 -07002646 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002647 if (!err) {
Andrew Morton8e20ce92009-06-18 16:49:17 -07002648 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002649 if (!err)
2650 pci_using_dac = 1;
2651 } else {
Andrew Morton8e20ce92009-06-18 16:49:17 -07002652 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002653 if (err) {
Andrew Morton8e20ce92009-06-18 16:49:17 -07002654 err = pci_set_consistent_dma_mask(pdev,
2655 DMA_BIT_MASK(32));
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002656 if (err) {
2657 dev_err(&pdev->dev, "No usable DMA "
2658 "configuration, aborting\n");
2659 goto err_dma;
2660 }
2661 }
2662 }
2663
2664 err = pci_request_regions(pdev, igbvf_driver_name);
2665 if (err)
2666 goto err_pci_reg;
2667
2668 pci_set_master(pdev);
2669
2670 err = -ENOMEM;
2671 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2672 if (!netdev)
2673 goto err_alloc_etherdev;
2674
2675 SET_NETDEV_DEV(netdev, &pdev->dev);
2676
2677 pci_set_drvdata(pdev, netdev);
2678 adapter = netdev_priv(netdev);
2679 hw = &adapter->hw;
2680 adapter->netdev = netdev;
2681 adapter->pdev = pdev;
2682 adapter->ei = ei;
2683 adapter->pba = ei->pba;
2684 adapter->flags = ei->flags;
2685 adapter->hw.back = adapter;
2686 adapter->hw.mac.type = ei->mac;
2687 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2688
2689 /* PCI config space info */
2690
2691 hw->vendor_id = pdev->vendor;
2692 hw->device_id = pdev->device;
2693 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2694 hw->subsystem_device_id = pdev->subsystem_device;
2695
2696 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2697
2698 err = -EIO;
2699 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2700 pci_resource_len(pdev, 0));
2701
2702 if (!adapter->hw.hw_addr)
2703 goto err_ioremap;
2704
2705 if (ei->get_variants) {
2706 err = ei->get_variants(adapter);
2707 if (err)
2708 goto err_ioremap;
2709 }
2710
2711 /* setup adapter struct */
2712 err = igbvf_sw_init(adapter);
2713 if (err)
2714 goto err_sw_init;
2715
2716 /* construct the net_device struct */
2717 netdev->netdev_ops = &igbvf_netdev_ops;
2718
2719 igbvf_set_ethtool_ops(netdev);
2720 netdev->watchdog_timeo = 5 * HZ;
2721 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2722
2723 adapter->bd_number = cards_found++;
2724
2725 netdev->features = NETIF_F_SG |
2726 NETIF_F_IP_CSUM |
2727 NETIF_F_HW_VLAN_TX |
2728 NETIF_F_HW_VLAN_RX |
2729 NETIF_F_HW_VLAN_FILTER;
2730
2731 netdev->features |= NETIF_F_IPV6_CSUM;
2732 netdev->features |= NETIF_F_TSO;
2733 netdev->features |= NETIF_F_TSO6;
2734
2735 if (pci_using_dac)
2736 netdev->features |= NETIF_F_HIGHDMA;
2737
2738 netdev->vlan_features |= NETIF_F_TSO;
2739 netdev->vlan_features |= NETIF_F_TSO6;
2740 netdev->vlan_features |= NETIF_F_IP_CSUM;
2741 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2742 netdev->vlan_features |= NETIF_F_SG;
2743
2744 /*reset the controller to put the device in a known good state */
2745 err = hw->mac.ops.reset_hw(hw);
2746 if (err) {
2747 dev_info(&pdev->dev,
Williams, Mitch A1242b6f2009-12-23 13:22:43 +00002748 "PF still in reset state, assigning new address."
2749 " Is the PF interface up?\n");
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002750 random_ether_addr(hw->mac.addr);
2751 } else {
2752 err = hw->mac.ops.read_mac_addr(hw);
2753 if (err) {
2754 dev_err(&pdev->dev, "Error reading MAC address\n");
2755 goto err_hw_init;
2756 }
2757 }
2758
2759 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2760 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2761
2762 if (!is_valid_ether_addr(netdev->perm_addr)) {
H Hartley Sweeten753cdc32009-12-29 20:02:29 -08002763 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2764 netdev->dev_addr);
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002765 err = -EIO;
2766 goto err_hw_init;
2767 }
2768
2769 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2770 (unsigned long) adapter);
2771
2772 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2773 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2774
2775 /* ring size defaults */
2776 adapter->rx_ring->count = 1024;
2777 adapter->tx_ring->count = 1024;
2778
2779 /* reset the hardware with the new settings */
2780 igbvf_reset(adapter);
2781
2782 /* tell the stack to leave us alone until igbvf_open() is called */
2783 netif_carrier_off(netdev);
2784 netif_stop_queue(netdev);
2785
2786 strcpy(netdev->name, "eth%d");
2787 err = register_netdev(netdev);
2788 if (err)
2789 goto err_hw_init;
2790
2791 igbvf_print_device_info(adapter);
2792
2793 igbvf_initialize_last_counter_stats(adapter);
2794
2795 return 0;
2796
2797err_hw_init:
2798 kfree(adapter->tx_ring);
2799 kfree(adapter->rx_ring);
2800err_sw_init:
2801 igbvf_reset_interrupt_capability(adapter);
2802 iounmap(adapter->hw.hw_addr);
2803err_ioremap:
2804 free_netdev(netdev);
2805err_alloc_etherdev:
2806 pci_release_regions(pdev);
2807err_pci_reg:
2808err_dma:
2809 pci_disable_device(pdev);
2810 return err;
2811}
2812
2813/**
2814 * igbvf_remove - Device Removal Routine
2815 * @pdev: PCI device information struct
2816 *
2817 * igbvf_remove is called by the PCI subsystem to alert the driver
2818 * that it should release a PCI device. The could be caused by a
2819 * Hot-Plug event, or because the driver is going to be removed from
2820 * memory.
2821 **/
2822static void __devexit igbvf_remove(struct pci_dev *pdev)
2823{
2824 struct net_device *netdev = pci_get_drvdata(pdev);
2825 struct igbvf_adapter *adapter = netdev_priv(netdev);
2826 struct e1000_hw *hw = &adapter->hw;
2827
2828 /*
2829 * flush_scheduled work may reschedule our watchdog task, so
2830 * explicitly disable watchdog tasks from being rescheduled
2831 */
2832 set_bit(__IGBVF_DOWN, &adapter->state);
2833 del_timer_sync(&adapter->watchdog_timer);
2834
2835 flush_scheduled_work();
2836
2837 unregister_netdev(netdev);
2838
2839 igbvf_reset_interrupt_capability(adapter);
2840
2841 /*
2842 * it is important to delete the napi struct prior to freeing the
2843 * rx ring so that you do not end up with null pointer refs
2844 */
2845 netif_napi_del(&adapter->rx_ring->napi);
2846 kfree(adapter->tx_ring);
2847 kfree(adapter->rx_ring);
2848
2849 iounmap(hw->hw_addr);
2850 if (hw->flash_address)
2851 iounmap(hw->flash_address);
2852 pci_release_regions(pdev);
2853
2854 free_netdev(netdev);
2855
2856 pci_disable_device(pdev);
2857}
2858
2859/* PCI Error Recovery (ERS) */
2860static struct pci_error_handlers igbvf_err_handler = {
2861 .error_detected = igbvf_io_error_detected,
2862 .slot_reset = igbvf_io_slot_reset,
2863 .resume = igbvf_io_resume,
2864};
2865
Alexey Dobriyana3aa1882010-01-07 11:58:11 +00002866static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
Alexander Duyckd4e0fe02009-04-07 14:37:34 +00002867 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2868 { } /* terminate list */
2869};
2870MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2871
2872/* PCI Device API Driver */
2873static struct pci_driver igbvf_driver = {
2874 .name = igbvf_driver_name,
2875 .id_table = igbvf_pci_tbl,
2876 .probe = igbvf_probe,
2877 .remove = __devexit_p(igbvf_remove),
2878#ifdef CONFIG_PM
2879 /* Power Management Hooks */
2880 .suspend = igbvf_suspend,
2881 .resume = igbvf_resume,
2882#endif
2883 .shutdown = igbvf_shutdown,
2884 .err_handler = &igbvf_err_handler
2885};
2886
2887/**
2888 * igbvf_init_module - Driver Registration Routine
2889 *
2890 * igbvf_init_module is the first routine called when the driver is
2891 * loaded. All it does is register with the PCI subsystem.
2892 **/
2893static int __init igbvf_init_module(void)
2894{
2895 int ret;
2896 printk(KERN_INFO "%s - version %s\n",
2897 igbvf_driver_string, igbvf_driver_version);
2898 printk(KERN_INFO "%s\n", igbvf_copyright);
2899
2900 ret = pci_register_driver(&igbvf_driver);
2901 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2902 PM_QOS_DEFAULT_VALUE);
2903
2904 return ret;
2905}
2906module_init(igbvf_init_module);
2907
2908/**
2909 * igbvf_exit_module - Driver Exit Cleanup Routine
2910 *
2911 * igbvf_exit_module is called just before the driver is removed
2912 * from memory.
2913 **/
2914static void __exit igbvf_exit_module(void)
2915{
2916 pci_unregister_driver(&igbvf_driver);
2917 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2918}
2919module_exit(igbvf_exit_module);
2920
2921
2922MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2923MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2924MODULE_LICENSE("GPL");
2925MODULE_VERSION(DRV_VERSION);
2926
2927/* netdev.c */