Alan Cox | 6a227d5 | 2011-11-03 18:22:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright © 2006-2011 Intel Corporation |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms and conditions of the GNU General Public License, |
| 6 | * version 2, as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 11 | * more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public License along with |
| 14 | * this program; if not, write to the Free Software Foundation, Inc., |
| 15 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 16 | * |
| 17 | * Authors: |
| 18 | * Eric Anholt <eric@anholt.net> |
| 19 | */ |
| 20 | |
| 21 | #include <linux/i2c.h> |
| 22 | #include <linux/pm_runtime.h> |
| 23 | |
| 24 | #include <drm/drmP.h> |
| 25 | #include "framebuffer.h" |
| 26 | #include "psb_drv.h" |
| 27 | #include "psb_intel_drv.h" |
| 28 | #include "psb_intel_reg.h" |
| 29 | #include "psb_intel_display.h" |
| 30 | #include "power.h" |
| 31 | #include "cdv_device.h" |
| 32 | |
| 33 | |
| 34 | struct cdv_intel_range_t { |
| 35 | int min, max; |
| 36 | }; |
| 37 | |
| 38 | struct cdv_intel_p2_t { |
| 39 | int dot_limit; |
| 40 | int p2_slow, p2_fast; |
| 41 | }; |
| 42 | |
| 43 | struct cdv_intel_clock_t { |
| 44 | /* given values */ |
| 45 | int n; |
| 46 | int m1, m2; |
| 47 | int p1, p2; |
| 48 | /* derived values */ |
| 49 | int dot; |
| 50 | int vco; |
| 51 | int m; |
| 52 | int p; |
| 53 | }; |
| 54 | |
| 55 | #define INTEL_P2_NUM 2 |
| 56 | |
| 57 | struct cdv_intel_limit_t { |
| 58 | struct cdv_intel_range_t dot, vco, n, m, m1, m2, p, p1; |
| 59 | struct cdv_intel_p2_t p2; |
| 60 | }; |
| 61 | |
| 62 | #define CDV_LIMIT_SINGLE_LVDS_96 0 |
| 63 | #define CDV_LIMIT_SINGLE_LVDS_100 1 |
| 64 | #define CDV_LIMIT_DAC_HDMI_27 2 |
| 65 | #define CDV_LIMIT_DAC_HDMI_96 3 |
| 66 | |
| 67 | static const struct cdv_intel_limit_t cdv_intel_limits[] = { |
| 68 | { /* CDV_SIGNLE_LVDS_96MHz */ |
| 69 | .dot = {.min = 20000, .max = 115500}, |
| 70 | .vco = {.min = 1800000, .max = 3600000}, |
| 71 | .n = {.min = 2, .max = 6}, |
| 72 | .m = {.min = 60, .max = 160}, |
| 73 | .m1 = {.min = 0, .max = 0}, |
| 74 | .m2 = {.min = 58, .max = 158}, |
| 75 | .p = {.min = 28, .max = 140}, |
| 76 | .p1 = {.min = 2, .max = 10}, |
| 77 | .p2 = {.dot_limit = 200000, |
| 78 | .p2_slow = 14, .p2_fast = 14}, |
| 79 | }, |
| 80 | { /* CDV_SINGLE_LVDS_100MHz */ |
| 81 | .dot = {.min = 20000, .max = 115500}, |
| 82 | .vco = {.min = 1800000, .max = 3600000}, |
| 83 | .n = {.min = 2, .max = 6}, |
| 84 | .m = {.min = 60, .max = 160}, |
| 85 | .m1 = {.min = 0, .max = 0}, |
| 86 | .m2 = {.min = 58, .max = 158}, |
| 87 | .p = {.min = 28, .max = 140}, |
| 88 | .p1 = {.min = 2, .max = 10}, |
| 89 | /* The single-channel range is 25-112Mhz, and dual-channel |
| 90 | * is 80-224Mhz. Prefer single channel as much as possible. |
| 91 | */ |
| 92 | .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, |
| 93 | }, |
| 94 | { /* CDV_DAC_HDMI_27MHz */ |
| 95 | .dot = {.min = 20000, .max = 400000}, |
| 96 | .vco = {.min = 1809000, .max = 3564000}, |
| 97 | .n = {.min = 1, .max = 1}, |
| 98 | .m = {.min = 67, .max = 132}, |
| 99 | .m1 = {.min = 0, .max = 0}, |
| 100 | .m2 = {.min = 65, .max = 130}, |
| 101 | .p = {.min = 5, .max = 90}, |
| 102 | .p1 = {.min = 1, .max = 9}, |
| 103 | .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, |
| 104 | }, |
| 105 | { /* CDV_DAC_HDMI_96MHz */ |
| 106 | .dot = {.min = 20000, .max = 400000}, |
| 107 | .vco = {.min = 1800000, .max = 3600000}, |
| 108 | .n = {.min = 2, .max = 6}, |
| 109 | .m = {.min = 60, .max = 160}, |
| 110 | .m1 = {.min = 0, .max = 0}, |
| 111 | .m2 = {.min = 58, .max = 158}, |
| 112 | .p = {.min = 5, .max = 100}, |
| 113 | .p1 = {.min = 1, .max = 10}, |
| 114 | .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, |
| 115 | }, |
| 116 | }; |
| 117 | |
| 118 | #define _wait_for(COND, MS, W) ({ \ |
| 119 | unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ |
| 120 | int ret__ = 0; \ |
| 121 | while (!(COND)) { \ |
| 122 | if (time_after(jiffies, timeout__)) { \ |
| 123 | ret__ = -ETIMEDOUT; \ |
| 124 | break; \ |
| 125 | } \ |
| 126 | if (W && !in_dbg_master()) \ |
| 127 | msleep(W); \ |
| 128 | } \ |
| 129 | ret__; \ |
| 130 | }) |
| 131 | |
| 132 | #define wait_for(COND, MS) _wait_for(COND, MS, 1) |
| 133 | |
| 134 | |
| 135 | static int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val) |
| 136 | { |
| 137 | int ret; |
| 138 | |
| 139 | ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); |
| 140 | if (ret) { |
| 141 | DRM_ERROR("timeout waiting for SB to idle before read\n"); |
| 142 | return ret; |
| 143 | } |
| 144 | |
| 145 | REG_WRITE(SB_ADDR, reg); |
| 146 | REG_WRITE(SB_PCKT, |
| 147 | SET_FIELD(SB_OPCODE_READ, SB_OPCODE) | |
| 148 | SET_FIELD(SB_DEST_DPLL, SB_DEST) | |
| 149 | SET_FIELD(0xf, SB_BYTE_ENABLE)); |
| 150 | |
| 151 | ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); |
| 152 | if (ret) { |
| 153 | DRM_ERROR("timeout waiting for SB to idle after read\n"); |
| 154 | return ret; |
| 155 | } |
| 156 | |
| 157 | *val = REG_READ(SB_DATA); |
| 158 | |
| 159 | return 0; |
| 160 | } |
| 161 | |
| 162 | static int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val) |
| 163 | { |
| 164 | int ret; |
| 165 | static bool dpio_debug = true; |
| 166 | u32 temp; |
| 167 | |
| 168 | if (dpio_debug) { |
| 169 | if (cdv_sb_read(dev, reg, &temp) == 0) |
| 170 | DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp); |
| 171 | DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val); |
| 172 | } |
| 173 | |
| 174 | ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); |
| 175 | if (ret) { |
| 176 | DRM_ERROR("timeout waiting for SB to idle before write\n"); |
| 177 | return ret; |
| 178 | } |
| 179 | |
| 180 | REG_WRITE(SB_ADDR, reg); |
| 181 | REG_WRITE(SB_DATA, val); |
| 182 | REG_WRITE(SB_PCKT, |
| 183 | SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) | |
| 184 | SET_FIELD(SB_DEST_DPLL, SB_DEST) | |
| 185 | SET_FIELD(0xf, SB_BYTE_ENABLE)); |
| 186 | |
| 187 | ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); |
| 188 | if (ret) { |
| 189 | DRM_ERROR("timeout waiting for SB to idle after write\n"); |
| 190 | return ret; |
| 191 | } |
| 192 | |
| 193 | if (dpio_debug) { |
| 194 | if (cdv_sb_read(dev, reg, &temp) == 0) |
| 195 | DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp); |
| 196 | } |
| 197 | |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | /* Reset the DPIO configuration register. The BIOS does this at every |
| 202 | * mode set. |
| 203 | */ |
| 204 | static void cdv_sb_reset(struct drm_device *dev) |
| 205 | { |
| 206 | |
| 207 | REG_WRITE(DPIO_CFG, 0); |
| 208 | REG_READ(DPIO_CFG); |
| 209 | REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N); |
| 210 | } |
| 211 | |
| 212 | /* Unlike most Intel display engines, on Cedarview the DPLL registers |
| 213 | * are behind this sideband bus. They must be programmed while the |
| 214 | * DPLL reference clock is on in the DPLL control register, but before |
| 215 | * the DPLL is enabled in the DPLL control register. |
| 216 | */ |
| 217 | static int |
| 218 | cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc, |
| 219 | struct cdv_intel_clock_t *clock) |
| 220 | { |
| 221 | struct psb_intel_crtc *psb_crtc = |
| 222 | to_psb_intel_crtc(crtc); |
| 223 | int pipe = psb_crtc->pipe; |
| 224 | u32 m, n_vco, p; |
| 225 | int ret = 0; |
| 226 | int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| 227 | u32 ref_value; |
| 228 | |
| 229 | cdv_sb_reset(dev); |
| 230 | |
| 231 | if ((REG_READ(dpll_reg) & DPLL_SYNCLOCK_ENABLE) == 0) { |
| 232 | DRM_ERROR("Attempting to set DPLL with refclk disabled\n"); |
| 233 | return -EBUSY; |
| 234 | } |
| 235 | |
| 236 | /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */ |
| 237 | ref_value = 0x68A701; |
| 238 | |
| 239 | cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value); |
| 240 | |
| 241 | /* We don't know what the other fields of these regs are, so |
| 242 | * leave them in place. |
| 243 | */ |
| 244 | ret = cdv_sb_read(dev, SB_M(pipe), &m); |
| 245 | if (ret) |
| 246 | return ret; |
| 247 | m &= ~SB_M_DIVIDER_MASK; |
| 248 | m |= ((clock->m2) << SB_M_DIVIDER_SHIFT); |
| 249 | ret = cdv_sb_write(dev, SB_M(pipe), m); |
| 250 | if (ret) |
| 251 | return ret; |
| 252 | |
| 253 | ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco); |
| 254 | if (ret) |
| 255 | return ret; |
| 256 | |
| 257 | /* Follow the BIOS to program the N_DIVIDER REG */ |
| 258 | n_vco &= 0xFFFF; |
| 259 | n_vco |= 0x107; |
| 260 | n_vco &= ~(SB_N_VCO_SEL_MASK | |
| 261 | SB_N_DIVIDER_MASK | |
| 262 | SB_N_CB_TUNE_MASK); |
| 263 | |
| 264 | n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT); |
| 265 | |
| 266 | if (clock->vco < 2250000) { |
| 267 | n_vco |= (2 << SB_N_CB_TUNE_SHIFT); |
| 268 | n_vco |= (0 << SB_N_VCO_SEL_SHIFT); |
| 269 | } else if (clock->vco < 2750000) { |
| 270 | n_vco |= (1 << SB_N_CB_TUNE_SHIFT); |
| 271 | n_vco |= (1 << SB_N_VCO_SEL_SHIFT); |
| 272 | } else if (clock->vco < 3300000) { |
| 273 | n_vco |= (0 << SB_N_CB_TUNE_SHIFT); |
| 274 | n_vco |= (2 << SB_N_VCO_SEL_SHIFT); |
| 275 | } else { |
| 276 | n_vco |= (0 << SB_N_CB_TUNE_SHIFT); |
| 277 | n_vco |= (3 << SB_N_VCO_SEL_SHIFT); |
| 278 | } |
| 279 | |
| 280 | ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco); |
| 281 | if (ret) |
| 282 | return ret; |
| 283 | |
| 284 | ret = cdv_sb_read(dev, SB_P(pipe), &p); |
| 285 | if (ret) |
| 286 | return ret; |
| 287 | p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK); |
| 288 | p |= SET_FIELD(clock->p1, SB_P1_DIVIDER); |
| 289 | switch (clock->p2) { |
| 290 | case 5: |
| 291 | p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER); |
| 292 | break; |
| 293 | case 10: |
| 294 | p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER); |
| 295 | break; |
| 296 | case 14: |
| 297 | p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER); |
| 298 | break; |
| 299 | case 7: |
| 300 | p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER); |
| 301 | break; |
| 302 | default: |
| 303 | DRM_ERROR("Bad P2 clock: %d\n", clock->p2); |
| 304 | return -EINVAL; |
| 305 | } |
| 306 | ret = cdv_sb_write(dev, SB_P(pipe), p); |
| 307 | if (ret) |
| 308 | return ret; |
| 309 | |
| 310 | /* always Program the Lane Register for the Pipe A*/ |
| 311 | if (pipe == 0) { |
| 312 | /* Program the Lane0/1 for HDMI B */ |
| 313 | u32 lane_reg, lane_value; |
| 314 | |
| 315 | lane_reg = PSB_LANE0; |
| 316 | cdv_sb_read(dev, lane_reg, &lane_value); |
| 317 | lane_value &= ~(LANE_PLL_MASK); |
| 318 | lane_value |= LANE_PLL_ENABLE; |
| 319 | cdv_sb_write(dev, lane_reg, lane_value); |
| 320 | |
| 321 | lane_reg = PSB_LANE1; |
| 322 | cdv_sb_read(dev, lane_reg, &lane_value); |
| 323 | lane_value &= ~(LANE_PLL_MASK); |
| 324 | lane_value |= LANE_PLL_ENABLE; |
| 325 | cdv_sb_write(dev, lane_reg, lane_value); |
| 326 | |
| 327 | /* Program the Lane2/3 for HDMI C */ |
| 328 | lane_reg = PSB_LANE2; |
| 329 | cdv_sb_read(dev, lane_reg, &lane_value); |
| 330 | lane_value &= ~(LANE_PLL_MASK); |
| 331 | lane_value |= LANE_PLL_ENABLE; |
| 332 | cdv_sb_write(dev, lane_reg, lane_value); |
| 333 | |
| 334 | lane_reg = PSB_LANE3; |
| 335 | cdv_sb_read(dev, lane_reg, &lane_value); |
| 336 | lane_value &= ~(LANE_PLL_MASK); |
| 337 | lane_value |= LANE_PLL_ENABLE; |
| 338 | cdv_sb_write(dev, lane_reg, lane_value); |
| 339 | } |
| 340 | |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | /* |
Patrik Jakobsson | a12d6a0 | 2011-12-19 21:41:22 +0000 | [diff] [blame^] | 345 | * Returns whether any encoder on the specified pipe is of the specified type |
Alan Cox | 6a227d5 | 2011-11-03 18:22:37 +0000 | [diff] [blame] | 346 | */ |
| 347 | bool cdv_intel_pipe_has_type(struct drm_crtc *crtc, int type) |
| 348 | { |
| 349 | struct drm_device *dev = crtc->dev; |
| 350 | struct drm_mode_config *mode_config = &dev->mode_config; |
| 351 | struct drm_connector *l_entry; |
| 352 | |
| 353 | list_for_each_entry(l_entry, &mode_config->connector_list, head) { |
| 354 | if (l_entry->encoder && l_entry->encoder->crtc == crtc) { |
Patrik Jakobsson | a12d6a0 | 2011-12-19 21:41:22 +0000 | [diff] [blame^] | 355 | struct psb_intel_encoder *psb_intel_encoder = |
| 356 | psb_intel_attached_encoder(l_entry); |
| 357 | if (psb_intel_encoder->type == type) |
Alan Cox | 6a227d5 | 2011-11-03 18:22:37 +0000 | [diff] [blame] | 358 | return true; |
| 359 | } |
| 360 | } |
| 361 | return false; |
| 362 | } |
| 363 | |
| 364 | static const struct cdv_intel_limit_t *cdv_intel_limit(struct drm_crtc *crtc, |
| 365 | int refclk) |
| 366 | { |
| 367 | const struct cdv_intel_limit_t *limit; |
| 368 | if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| 369 | /* |
| 370 | * Now only single-channel LVDS is supported on CDV. If it is |
| 371 | * incorrect, please add the dual-channel LVDS. |
| 372 | */ |
| 373 | if (refclk == 96000) |
| 374 | limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96]; |
| 375 | else |
| 376 | limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100]; |
| 377 | } else { |
| 378 | if (refclk == 27000) |
| 379 | limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27]; |
| 380 | else |
| 381 | limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96]; |
| 382 | } |
| 383 | return limit; |
| 384 | } |
| 385 | |
| 386 | /* m1 is reserved as 0 in CDV, n is a ring counter */ |
| 387 | static void cdv_intel_clock(struct drm_device *dev, |
| 388 | int refclk, struct cdv_intel_clock_t *clock) |
| 389 | { |
| 390 | clock->m = clock->m2 + 2; |
| 391 | clock->p = clock->p1 * clock->p2; |
| 392 | clock->vco = (refclk * clock->m) / clock->n; |
| 393 | clock->dot = clock->vco / clock->p; |
| 394 | } |
| 395 | |
| 396 | |
| 397 | #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; } |
| 398 | static bool cdv_intel_PLL_is_valid(struct drm_crtc *crtc, |
| 399 | const struct cdv_intel_limit_t *limit, |
| 400 | struct cdv_intel_clock_t *clock) |
| 401 | { |
| 402 | if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) |
| 403 | INTELPllInvalid("p1 out of range\n"); |
| 404 | if (clock->p < limit->p.min || limit->p.max < clock->p) |
| 405 | INTELPllInvalid("p out of range\n"); |
| 406 | /* unnecessary to check the range of m(m1/M2)/n again */ |
| 407 | if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) |
| 408 | INTELPllInvalid("vco out of range\n"); |
| 409 | /* XXX: We may need to be checking "Dot clock" |
| 410 | * depending on the multiplier, connector, etc., |
| 411 | * rather than just a single range. |
| 412 | */ |
| 413 | if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) |
| 414 | INTELPllInvalid("dot out of range\n"); |
| 415 | |
| 416 | return true; |
| 417 | } |
| 418 | |
| 419 | static bool cdv_intel_find_best_PLL(struct drm_crtc *crtc, int target, |
| 420 | int refclk, |
| 421 | struct cdv_intel_clock_t *best_clock) |
| 422 | { |
| 423 | struct drm_device *dev = crtc->dev; |
| 424 | struct cdv_intel_clock_t clock; |
| 425 | const struct cdv_intel_limit_t *limit = cdv_intel_limit(crtc, refclk); |
| 426 | int err = target; |
| 427 | |
| 428 | |
| 429 | if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| 430 | (REG_READ(LVDS) & LVDS_PORT_EN) != 0) { |
| 431 | /* |
| 432 | * For LVDS, if the panel is on, just rely on its current |
| 433 | * settings for dual-channel. We haven't figured out how to |
| 434 | * reliably set up different single/dual channel state, if we |
| 435 | * even can. |
| 436 | */ |
| 437 | if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) == |
| 438 | LVDS_CLKB_POWER_UP) |
| 439 | clock.p2 = limit->p2.p2_fast; |
| 440 | else |
| 441 | clock.p2 = limit->p2.p2_slow; |
| 442 | } else { |
| 443 | if (target < limit->p2.dot_limit) |
| 444 | clock.p2 = limit->p2.p2_slow; |
| 445 | else |
| 446 | clock.p2 = limit->p2.p2_fast; |
| 447 | } |
| 448 | |
| 449 | memset(best_clock, 0, sizeof(*best_clock)); |
| 450 | clock.m1 = 0; |
| 451 | /* m1 is reserved as 0 in CDV, n is a ring counter. |
| 452 | So skip the m1 loop */ |
| 453 | for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { |
| 454 | for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; |
| 455 | clock.m2++) { |
| 456 | for (clock.p1 = limit->p1.min; |
| 457 | clock.p1 <= limit->p1.max; |
| 458 | clock.p1++) { |
| 459 | int this_err; |
| 460 | |
| 461 | cdv_intel_clock(dev, refclk, &clock); |
| 462 | |
| 463 | if (!cdv_intel_PLL_is_valid(crtc, |
| 464 | limit, &clock)) |
| 465 | continue; |
| 466 | |
| 467 | this_err = abs(clock.dot - target); |
| 468 | if (this_err < err) { |
| 469 | *best_clock = clock; |
| 470 | err = this_err; |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | return err != target; |
| 477 | } |
| 478 | |
| 479 | int cdv_intel_pipe_set_base(struct drm_crtc *crtc, |
| 480 | int x, int y, struct drm_framebuffer *old_fb) |
| 481 | { |
| 482 | struct drm_device *dev = crtc->dev; |
| 483 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 484 | struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb); |
| 485 | int pipe = psb_intel_crtc->pipe; |
| 486 | unsigned long start, offset; |
| 487 | int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE); |
| 488 | int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF); |
| 489 | int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE; |
| 490 | int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; |
| 491 | u32 dspcntr; |
| 492 | int ret = 0; |
| 493 | |
| 494 | if (!gma_power_begin(dev, true)) |
| 495 | return 0; |
| 496 | |
| 497 | /* no fb bound */ |
| 498 | if (!crtc->fb) { |
| 499 | dev_err(dev->dev, "No FB bound\n"); |
| 500 | goto psb_intel_pipe_cleaner; |
| 501 | } |
| 502 | |
| 503 | |
| 504 | /* We are displaying this buffer, make sure it is actually loaded |
| 505 | into the GTT */ |
| 506 | ret = psb_gtt_pin(psbfb->gtt); |
| 507 | if (ret < 0) |
| 508 | goto psb_intel_pipe_set_base_exit; |
| 509 | start = psbfb->gtt->offset; |
Ville Syrjälä | 01f2c77 | 2011-12-20 00:06:49 +0200 | [diff] [blame] | 510 | offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8); |
Alan Cox | 6a227d5 | 2011-11-03 18:22:37 +0000 | [diff] [blame] | 511 | |
Ville Syrjälä | 01f2c77 | 2011-12-20 00:06:49 +0200 | [diff] [blame] | 512 | REG_WRITE(dspstride, crtc->fb->pitches[0]); |
Alan Cox | 6a227d5 | 2011-11-03 18:22:37 +0000 | [diff] [blame] | 513 | |
| 514 | dspcntr = REG_READ(dspcntr_reg); |
| 515 | dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; |
| 516 | |
| 517 | switch (crtc->fb->bits_per_pixel) { |
| 518 | case 8: |
| 519 | dspcntr |= DISPPLANE_8BPP; |
| 520 | break; |
| 521 | case 16: |
| 522 | if (crtc->fb->depth == 15) |
| 523 | dspcntr |= DISPPLANE_15_16BPP; |
| 524 | else |
| 525 | dspcntr |= DISPPLANE_16BPP; |
| 526 | break; |
| 527 | case 24: |
| 528 | case 32: |
| 529 | dspcntr |= DISPPLANE_32BPP_NO_ALPHA; |
| 530 | break; |
| 531 | default: |
| 532 | dev_err(dev->dev, "Unknown color depth\n"); |
| 533 | ret = -EINVAL; |
| 534 | goto psb_intel_pipe_set_base_exit; |
| 535 | } |
| 536 | REG_WRITE(dspcntr_reg, dspcntr); |
| 537 | |
| 538 | dev_dbg(dev->dev, |
| 539 | "Writing base %08lX %08lX %d %d\n", start, offset, x, y); |
| 540 | |
| 541 | REG_WRITE(dspbase, offset); |
| 542 | REG_READ(dspbase); |
| 543 | REG_WRITE(dspsurf, start); |
| 544 | REG_READ(dspsurf); |
| 545 | |
| 546 | psb_intel_pipe_cleaner: |
| 547 | /* If there was a previous display we can now unpin it */ |
| 548 | if (old_fb) |
| 549 | psb_gtt_unpin(to_psb_fb(old_fb)->gtt); |
| 550 | |
| 551 | psb_intel_pipe_set_base_exit: |
| 552 | gma_power_end(dev); |
| 553 | return ret; |
| 554 | } |
| 555 | |
| 556 | /** |
| 557 | * Sets the power management mode of the pipe and plane. |
| 558 | * |
| 559 | * This code should probably grow support for turning the cursor off and back |
| 560 | * on appropriately at the same time as we're turning the pipe off/on. |
| 561 | */ |
| 562 | static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode) |
| 563 | { |
| 564 | struct drm_device *dev = crtc->dev; |
| 565 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 566 | int pipe = psb_intel_crtc->pipe; |
| 567 | int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| 568 | int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; |
| 569 | int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE; |
| 570 | int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; |
| 571 | u32 temp; |
| 572 | bool enabled; |
| 573 | |
| 574 | /* XXX: When our outputs are all unaware of DPMS modes other than off |
| 575 | * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. |
| 576 | */ |
| 577 | switch (mode) { |
| 578 | case DRM_MODE_DPMS_ON: |
| 579 | case DRM_MODE_DPMS_STANDBY: |
| 580 | case DRM_MODE_DPMS_SUSPEND: |
| 581 | /* Enable the DPLL */ |
| 582 | temp = REG_READ(dpll_reg); |
| 583 | if ((temp & DPLL_VCO_ENABLE) == 0) { |
| 584 | REG_WRITE(dpll_reg, temp); |
| 585 | REG_READ(dpll_reg); |
| 586 | /* Wait for the clocks to stabilize. */ |
| 587 | udelay(150); |
| 588 | REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); |
| 589 | REG_READ(dpll_reg); |
| 590 | /* Wait for the clocks to stabilize. */ |
| 591 | udelay(150); |
| 592 | REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); |
| 593 | REG_READ(dpll_reg); |
| 594 | /* Wait for the clocks to stabilize. */ |
| 595 | udelay(150); |
| 596 | } |
| 597 | |
| 598 | /* Jim Bish - switch plan and pipe per scott */ |
| 599 | /* Enable the plane */ |
| 600 | temp = REG_READ(dspcntr_reg); |
| 601 | if ((temp & DISPLAY_PLANE_ENABLE) == 0) { |
| 602 | REG_WRITE(dspcntr_reg, |
| 603 | temp | DISPLAY_PLANE_ENABLE); |
| 604 | /* Flush the plane changes */ |
| 605 | REG_WRITE(dspbase_reg, REG_READ(dspbase_reg)); |
| 606 | } |
| 607 | |
| 608 | udelay(150); |
| 609 | |
| 610 | /* Enable the pipe */ |
| 611 | temp = REG_READ(pipeconf_reg); |
| 612 | if ((temp & PIPEACONF_ENABLE) == 0) |
| 613 | REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE); |
| 614 | |
| 615 | psb_intel_crtc_load_lut(crtc); |
| 616 | |
| 617 | /* Give the overlay scaler a chance to enable |
| 618 | * if it's on this pipe */ |
| 619 | /* psb_intel_crtc_dpms_video(crtc, true); TODO */ |
| 620 | break; |
| 621 | case DRM_MODE_DPMS_OFF: |
| 622 | /* Give the overlay scaler a chance to disable |
| 623 | * if it's on this pipe */ |
| 624 | /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */ |
| 625 | |
| 626 | /* Disable the VGA plane that we never use */ |
| 627 | REG_WRITE(VGACNTRL, VGA_DISP_DISABLE); |
| 628 | |
| 629 | /* Jim Bish - changed pipe/plane here as well. */ |
| 630 | |
| 631 | /* Wait for vblank for the disable to take effect */ |
| 632 | cdv_intel_wait_for_vblank(dev); |
| 633 | |
| 634 | /* Next, disable display pipes */ |
| 635 | temp = REG_READ(pipeconf_reg); |
| 636 | if ((temp & PIPEACONF_ENABLE) != 0) { |
| 637 | REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE); |
| 638 | REG_READ(pipeconf_reg); |
| 639 | } |
| 640 | |
| 641 | /* Wait for vblank for the disable to take effect. */ |
| 642 | cdv_intel_wait_for_vblank(dev); |
| 643 | |
| 644 | udelay(150); |
| 645 | |
| 646 | /* Disable display plane */ |
| 647 | temp = REG_READ(dspcntr_reg); |
| 648 | if ((temp & DISPLAY_PLANE_ENABLE) != 0) { |
| 649 | REG_WRITE(dspcntr_reg, |
| 650 | temp & ~DISPLAY_PLANE_ENABLE); |
| 651 | /* Flush the plane changes */ |
| 652 | REG_WRITE(dspbase_reg, REG_READ(dspbase_reg)); |
| 653 | REG_READ(dspbase_reg); |
| 654 | } |
| 655 | |
| 656 | temp = REG_READ(dpll_reg); |
| 657 | if ((temp & DPLL_VCO_ENABLE) != 0) { |
| 658 | REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE); |
| 659 | REG_READ(dpll_reg); |
| 660 | } |
| 661 | |
| 662 | /* Wait for the clocks to turn off. */ |
| 663 | udelay(150); |
| 664 | break; |
| 665 | } |
| 666 | enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF; |
| 667 | /*Set FIFO Watermarks*/ |
| 668 | REG_WRITE(DSPARB, 0x3F3E); |
| 669 | } |
| 670 | |
| 671 | static void cdv_intel_crtc_prepare(struct drm_crtc *crtc) |
| 672 | { |
| 673 | struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| 674 | crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); |
| 675 | } |
| 676 | |
| 677 | static void cdv_intel_crtc_commit(struct drm_crtc *crtc) |
| 678 | { |
| 679 | struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| 680 | crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); |
| 681 | } |
| 682 | |
| 683 | void cdv_intel_encoder_prepare(struct drm_encoder *encoder) |
| 684 | { |
| 685 | struct drm_encoder_helper_funcs *encoder_funcs = |
| 686 | encoder->helper_private; |
| 687 | /* lvds has its own version of prepare see cdv_intel_lvds_prepare */ |
| 688 | encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF); |
| 689 | } |
| 690 | |
| 691 | void cdv_intel_encoder_commit(struct drm_encoder *encoder) |
| 692 | { |
| 693 | struct drm_encoder_helper_funcs *encoder_funcs = |
| 694 | encoder->helper_private; |
| 695 | /* lvds has its own version of commit see cdv_intel_lvds_commit */ |
| 696 | encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); |
| 697 | } |
| 698 | |
| 699 | static bool cdv_intel_crtc_mode_fixup(struct drm_crtc *crtc, |
| 700 | struct drm_display_mode *mode, |
| 701 | struct drm_display_mode *adjusted_mode) |
| 702 | { |
| 703 | return true; |
| 704 | } |
| 705 | |
| 706 | |
| 707 | /** |
| 708 | * Return the pipe currently connected to the panel fitter, |
| 709 | * or -1 if the panel fitter is not present or not in use |
| 710 | */ |
| 711 | static int cdv_intel_panel_fitter_pipe(struct drm_device *dev) |
| 712 | { |
| 713 | u32 pfit_control; |
| 714 | |
| 715 | pfit_control = REG_READ(PFIT_CONTROL); |
| 716 | |
| 717 | /* See if the panel fitter is in use */ |
| 718 | if ((pfit_control & PFIT_ENABLE) == 0) |
| 719 | return -1; |
| 720 | return (pfit_control >> 29) & 0x3; |
| 721 | } |
| 722 | |
| 723 | static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc, |
| 724 | struct drm_display_mode *mode, |
| 725 | struct drm_display_mode *adjusted_mode, |
| 726 | int x, int y, |
| 727 | struct drm_framebuffer *old_fb) |
| 728 | { |
| 729 | struct drm_device *dev = crtc->dev; |
| 730 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 731 | int pipe = psb_intel_crtc->pipe; |
| 732 | int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| 733 | int dpll_md_reg = (psb_intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD; |
| 734 | int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; |
| 735 | int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; |
| 736 | int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B; |
| 737 | int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B; |
| 738 | int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B; |
| 739 | int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B; |
| 740 | int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B; |
| 741 | int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B; |
| 742 | int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE; |
| 743 | int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS; |
| 744 | int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC; |
| 745 | int refclk; |
| 746 | struct cdv_intel_clock_t clock; |
| 747 | u32 dpll = 0, dspcntr, pipeconf; |
| 748 | bool ok, is_sdvo = false, is_dvo = false; |
| 749 | bool is_crt = false, is_lvds = false, is_tv = false; |
| 750 | bool is_hdmi = false; |
| 751 | struct drm_mode_config *mode_config = &dev->mode_config; |
| 752 | struct drm_connector *connector; |
| 753 | |
| 754 | list_for_each_entry(connector, &mode_config->connector_list, head) { |
Patrik Jakobsson | a12d6a0 | 2011-12-19 21:41:22 +0000 | [diff] [blame^] | 755 | struct psb_intel_encoder *psb_intel_encoder = |
| 756 | psb_intel_attached_encoder(connector); |
Alan Cox | 6a227d5 | 2011-11-03 18:22:37 +0000 | [diff] [blame] | 757 | |
| 758 | if (!connector->encoder |
| 759 | || connector->encoder->crtc != crtc) |
| 760 | continue; |
| 761 | |
Patrik Jakobsson | a12d6a0 | 2011-12-19 21:41:22 +0000 | [diff] [blame^] | 762 | switch (psb_intel_encoder->type) { |
Alan Cox | 6a227d5 | 2011-11-03 18:22:37 +0000 | [diff] [blame] | 763 | case INTEL_OUTPUT_LVDS: |
| 764 | is_lvds = true; |
| 765 | break; |
| 766 | case INTEL_OUTPUT_SDVO: |
| 767 | is_sdvo = true; |
| 768 | break; |
| 769 | case INTEL_OUTPUT_DVO: |
| 770 | is_dvo = true; |
| 771 | break; |
| 772 | case INTEL_OUTPUT_TVOUT: |
| 773 | is_tv = true; |
| 774 | break; |
| 775 | case INTEL_OUTPUT_ANALOG: |
| 776 | is_crt = true; |
| 777 | break; |
| 778 | case INTEL_OUTPUT_HDMI: |
| 779 | is_hdmi = true; |
| 780 | break; |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | refclk = 96000; |
| 785 | |
| 786 | /* Hack selection about ref clk for CRT */ |
| 787 | /* Select 27MHz as the reference clk for HDMI */ |
| 788 | if (is_crt || is_hdmi) |
| 789 | refclk = 27000; |
| 790 | |
| 791 | drm_mode_debug_printmodeline(adjusted_mode); |
| 792 | |
| 793 | ok = cdv_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, |
| 794 | &clock); |
| 795 | if (!ok) { |
| 796 | dev_err(dev->dev, "Couldn't find PLL settings for mode!\n"); |
| 797 | return 0; |
| 798 | } |
| 799 | |
| 800 | dpll = DPLL_VGA_MODE_DIS; |
| 801 | if (is_tv) { |
| 802 | /* XXX: just matching BIOS for now */ |
| 803 | /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ |
| 804 | dpll |= 3; |
| 805 | } |
| 806 | dpll |= PLL_REF_INPUT_DREFCLK; |
| 807 | |
| 808 | dpll |= DPLL_SYNCLOCK_ENABLE; |
| 809 | dpll |= DPLL_VGA_MODE_DIS; |
| 810 | if (is_lvds) |
| 811 | dpll |= DPLLB_MODE_LVDS; |
| 812 | else |
| 813 | dpll |= DPLLB_MODE_DAC_SERIAL; |
| 814 | /* dpll |= (2 << 11); */ |
| 815 | |
| 816 | /* setup pipeconf */ |
| 817 | pipeconf = REG_READ(pipeconf_reg); |
| 818 | |
| 819 | /* Set up the display plane register */ |
| 820 | dspcntr = DISPPLANE_GAMMA_ENABLE; |
| 821 | |
| 822 | if (pipe == 0) |
| 823 | dspcntr |= DISPPLANE_SEL_PIPE_A; |
| 824 | else |
| 825 | dspcntr |= DISPPLANE_SEL_PIPE_B; |
| 826 | |
| 827 | dspcntr |= DISPLAY_PLANE_ENABLE; |
| 828 | pipeconf |= PIPEACONF_ENABLE; |
| 829 | |
| 830 | REG_WRITE(dpll_reg, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE); |
| 831 | REG_READ(dpll_reg); |
| 832 | |
| 833 | cdv_dpll_set_clock_cdv(dev, crtc, &clock); |
| 834 | |
| 835 | udelay(150); |
| 836 | |
| 837 | |
| 838 | /* The LVDS pin pair needs to be on before the DPLLs are enabled. |
| 839 | * This is an exception to the general rule that mode_set doesn't turn |
| 840 | * things on. |
| 841 | */ |
| 842 | if (is_lvds) { |
| 843 | u32 lvds = REG_READ(LVDS); |
| 844 | |
| 845 | lvds |= |
| 846 | LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | |
| 847 | LVDS_PIPEB_SELECT; |
| 848 | /* Set the B0-B3 data pairs corresponding to |
| 849 | * whether we're going to |
| 850 | * set the DPLLs for dual-channel mode or not. |
| 851 | */ |
| 852 | if (clock.p2 == 7) |
| 853 | lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; |
| 854 | else |
| 855 | lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); |
| 856 | |
| 857 | /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) |
| 858 | * appropriately here, but we need to look more |
| 859 | * thoroughly into how panels behave in the two modes. |
| 860 | */ |
| 861 | |
| 862 | REG_WRITE(LVDS, lvds); |
| 863 | REG_READ(LVDS); |
| 864 | } |
| 865 | |
| 866 | dpll |= DPLL_VCO_ENABLE; |
| 867 | |
| 868 | /* Disable the panel fitter if it was on our pipe */ |
| 869 | if (cdv_intel_panel_fitter_pipe(dev) == pipe) |
| 870 | REG_WRITE(PFIT_CONTROL, 0); |
| 871 | |
| 872 | DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); |
| 873 | drm_mode_debug_printmodeline(mode); |
| 874 | |
| 875 | REG_WRITE(dpll_reg, |
| 876 | (REG_READ(dpll_reg) & ~DPLL_LOCK) | DPLL_VCO_ENABLE); |
| 877 | REG_READ(dpll_reg); |
| 878 | /* Wait for the clocks to stabilize. */ |
| 879 | udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */ |
| 880 | |
| 881 | if (!(REG_READ(dpll_reg) & DPLL_LOCK)) { |
| 882 | dev_err(dev->dev, "Failed to get DPLL lock\n"); |
| 883 | return -EBUSY; |
| 884 | } |
| 885 | |
| 886 | { |
| 887 | int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; |
| 888 | REG_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT)); |
| 889 | } |
| 890 | |
| 891 | REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) | |
| 892 | ((adjusted_mode->crtc_htotal - 1) << 16)); |
| 893 | REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) | |
| 894 | ((adjusted_mode->crtc_hblank_end - 1) << 16)); |
| 895 | REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) | |
| 896 | ((adjusted_mode->crtc_hsync_end - 1) << 16)); |
| 897 | REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) | |
| 898 | ((adjusted_mode->crtc_vtotal - 1) << 16)); |
| 899 | REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) | |
| 900 | ((adjusted_mode->crtc_vblank_end - 1) << 16)); |
| 901 | REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) | |
| 902 | ((adjusted_mode->crtc_vsync_end - 1) << 16)); |
| 903 | /* pipesrc and dspsize control the size that is scaled from, |
| 904 | * which should always be the user's requested size. |
| 905 | */ |
| 906 | REG_WRITE(dspsize_reg, |
| 907 | ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); |
| 908 | REG_WRITE(dsppos_reg, 0); |
| 909 | REG_WRITE(pipesrc_reg, |
| 910 | ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); |
| 911 | REG_WRITE(pipeconf_reg, pipeconf); |
| 912 | REG_READ(pipeconf_reg); |
| 913 | |
| 914 | cdv_intel_wait_for_vblank(dev); |
| 915 | |
| 916 | REG_WRITE(dspcntr_reg, dspcntr); |
| 917 | |
| 918 | /* Flush the plane changes */ |
| 919 | { |
| 920 | struct drm_crtc_helper_funcs *crtc_funcs = |
| 921 | crtc->helper_private; |
| 922 | crtc_funcs->mode_set_base(crtc, x, y, old_fb); |
| 923 | } |
| 924 | |
| 925 | cdv_intel_wait_for_vblank(dev); |
| 926 | |
| 927 | return 0; |
| 928 | } |
| 929 | |
| 930 | /** Loads the palette/gamma unit for the CRTC with the prepared values */ |
| 931 | void cdv_intel_crtc_load_lut(struct drm_crtc *crtc) |
| 932 | { |
| 933 | struct drm_device *dev = crtc->dev; |
| 934 | struct drm_psb_private *dev_priv = |
| 935 | (struct drm_psb_private *)dev->dev_private; |
| 936 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 937 | int palreg = PALETTE_A; |
| 938 | int i; |
| 939 | |
| 940 | /* The clocks have to be on to load the palette. */ |
| 941 | if (!crtc->enabled) |
| 942 | return; |
| 943 | |
| 944 | switch (psb_intel_crtc->pipe) { |
| 945 | case 0: |
| 946 | break; |
| 947 | case 1: |
| 948 | palreg = PALETTE_B; |
| 949 | break; |
| 950 | case 2: |
| 951 | palreg = PALETTE_C; |
| 952 | break; |
| 953 | default: |
| 954 | dev_err(dev->dev, "Illegal Pipe Number.\n"); |
| 955 | return; |
| 956 | } |
| 957 | |
| 958 | if (gma_power_begin(dev, false)) { |
| 959 | for (i = 0; i < 256; i++) { |
| 960 | REG_WRITE(palreg + 4 * i, |
| 961 | ((psb_intel_crtc->lut_r[i] + |
| 962 | psb_intel_crtc->lut_adj[i]) << 16) | |
| 963 | ((psb_intel_crtc->lut_g[i] + |
| 964 | psb_intel_crtc->lut_adj[i]) << 8) | |
| 965 | (psb_intel_crtc->lut_b[i] + |
| 966 | psb_intel_crtc->lut_adj[i])); |
| 967 | } |
| 968 | gma_power_end(dev); |
| 969 | } else { |
| 970 | for (i = 0; i < 256; i++) { |
| 971 | dev_priv->save_palette_a[i] = |
| 972 | ((psb_intel_crtc->lut_r[i] + |
| 973 | psb_intel_crtc->lut_adj[i]) << 16) | |
| 974 | ((psb_intel_crtc->lut_g[i] + |
| 975 | psb_intel_crtc->lut_adj[i]) << 8) | |
| 976 | (psb_intel_crtc->lut_b[i] + |
| 977 | psb_intel_crtc->lut_adj[i]); |
| 978 | } |
| 979 | |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | /** |
| 984 | * Save HW states of giving crtc |
| 985 | */ |
| 986 | static void cdv_intel_crtc_save(struct drm_crtc *crtc) |
| 987 | { |
| 988 | struct drm_device *dev = crtc->dev; |
| 989 | /* struct drm_psb_private *dev_priv = |
| 990 | (struct drm_psb_private *)dev->dev_private; */ |
| 991 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 992 | struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state; |
| 993 | int pipeA = (psb_intel_crtc->pipe == 0); |
| 994 | uint32_t paletteReg; |
| 995 | int i; |
| 996 | |
| 997 | if (!crtc_state) { |
| 998 | dev_dbg(dev->dev, "No CRTC state found\n"); |
| 999 | return; |
| 1000 | } |
| 1001 | |
| 1002 | crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR); |
| 1003 | crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF); |
| 1004 | crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC); |
| 1005 | crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0); |
| 1006 | crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1); |
| 1007 | crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B); |
| 1008 | crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B); |
| 1009 | crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B); |
| 1010 | crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B); |
| 1011 | crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B); |
| 1012 | crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B); |
| 1013 | crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B); |
| 1014 | crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE); |
| 1015 | |
| 1016 | /*NOTE: DSPSIZE DSPPOS only for psb*/ |
| 1017 | crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE); |
| 1018 | crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS); |
| 1019 | |
| 1020 | crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE); |
| 1021 | |
| 1022 | DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n", |
| 1023 | crtc_state->saveDSPCNTR, |
| 1024 | crtc_state->savePIPECONF, |
| 1025 | crtc_state->savePIPESRC, |
| 1026 | crtc_state->saveFP0, |
| 1027 | crtc_state->saveFP1, |
| 1028 | crtc_state->saveDPLL, |
| 1029 | crtc_state->saveHTOTAL, |
| 1030 | crtc_state->saveHBLANK, |
| 1031 | crtc_state->saveHSYNC, |
| 1032 | crtc_state->saveVTOTAL, |
| 1033 | crtc_state->saveVBLANK, |
| 1034 | crtc_state->saveVSYNC, |
| 1035 | crtc_state->saveDSPSTRIDE, |
| 1036 | crtc_state->saveDSPSIZE, |
| 1037 | crtc_state->saveDSPPOS, |
| 1038 | crtc_state->saveDSPBASE |
| 1039 | ); |
| 1040 | |
| 1041 | paletteReg = pipeA ? PALETTE_A : PALETTE_B; |
| 1042 | for (i = 0; i < 256; ++i) |
| 1043 | crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2)); |
| 1044 | } |
| 1045 | |
| 1046 | /** |
| 1047 | * Restore HW states of giving crtc |
| 1048 | */ |
| 1049 | static void cdv_intel_crtc_restore(struct drm_crtc *crtc) |
| 1050 | { |
| 1051 | struct drm_device *dev = crtc->dev; |
| 1052 | /* struct drm_psb_private * dev_priv = |
| 1053 | (struct drm_psb_private *)dev->dev_private; */ |
| 1054 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 1055 | struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state; |
| 1056 | /* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */ |
| 1057 | int pipeA = (psb_intel_crtc->pipe == 0); |
| 1058 | uint32_t paletteReg; |
| 1059 | int i; |
| 1060 | |
| 1061 | if (!crtc_state) { |
| 1062 | dev_dbg(dev->dev, "No crtc state\n"); |
| 1063 | return; |
| 1064 | } |
| 1065 | |
| 1066 | DRM_DEBUG( |
| 1067 | "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n", |
| 1068 | REG_READ(pipeA ? DSPACNTR : DSPBCNTR), |
| 1069 | REG_READ(pipeA ? PIPEACONF : PIPEBCONF), |
| 1070 | REG_READ(pipeA ? PIPEASRC : PIPEBSRC), |
| 1071 | REG_READ(pipeA ? FPA0 : FPB0), |
| 1072 | REG_READ(pipeA ? FPA1 : FPB1), |
| 1073 | REG_READ(pipeA ? DPLL_A : DPLL_B), |
| 1074 | REG_READ(pipeA ? HTOTAL_A : HTOTAL_B), |
| 1075 | REG_READ(pipeA ? HBLANK_A : HBLANK_B), |
| 1076 | REG_READ(pipeA ? HSYNC_A : HSYNC_B), |
| 1077 | REG_READ(pipeA ? VTOTAL_A : VTOTAL_B), |
| 1078 | REG_READ(pipeA ? VBLANK_A : VBLANK_B), |
| 1079 | REG_READ(pipeA ? VSYNC_A : VSYNC_B), |
| 1080 | REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE), |
| 1081 | REG_READ(pipeA ? DSPASIZE : DSPBSIZE), |
| 1082 | REG_READ(pipeA ? DSPAPOS : DSPBPOS), |
| 1083 | REG_READ(pipeA ? DSPABASE : DSPBBASE) |
| 1084 | ); |
| 1085 | |
| 1086 | DRM_DEBUG( |
| 1087 | "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n", |
| 1088 | crtc_state->saveDSPCNTR, |
| 1089 | crtc_state->savePIPECONF, |
| 1090 | crtc_state->savePIPESRC, |
| 1091 | crtc_state->saveFP0, |
| 1092 | crtc_state->saveFP1, |
| 1093 | crtc_state->saveDPLL, |
| 1094 | crtc_state->saveHTOTAL, |
| 1095 | crtc_state->saveHBLANK, |
| 1096 | crtc_state->saveHSYNC, |
| 1097 | crtc_state->saveVTOTAL, |
| 1098 | crtc_state->saveVBLANK, |
| 1099 | crtc_state->saveVSYNC, |
| 1100 | crtc_state->saveDSPSTRIDE, |
| 1101 | crtc_state->saveDSPSIZE, |
| 1102 | crtc_state->saveDSPPOS, |
| 1103 | crtc_state->saveDSPBASE |
| 1104 | ); |
| 1105 | |
| 1106 | |
| 1107 | if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) { |
| 1108 | REG_WRITE(pipeA ? DPLL_A : DPLL_B, |
| 1109 | crtc_state->saveDPLL & ~DPLL_VCO_ENABLE); |
| 1110 | REG_READ(pipeA ? DPLL_A : DPLL_B); |
| 1111 | DRM_DEBUG("write dpll: %x\n", |
| 1112 | REG_READ(pipeA ? DPLL_A : DPLL_B)); |
| 1113 | udelay(150); |
| 1114 | } |
| 1115 | |
| 1116 | REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0); |
| 1117 | REG_READ(pipeA ? FPA0 : FPB0); |
| 1118 | |
| 1119 | REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1); |
| 1120 | REG_READ(pipeA ? FPA1 : FPB1); |
| 1121 | |
| 1122 | REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL); |
| 1123 | REG_READ(pipeA ? DPLL_A : DPLL_B); |
| 1124 | udelay(150); |
| 1125 | |
| 1126 | REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL); |
| 1127 | REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK); |
| 1128 | REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC); |
| 1129 | REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL); |
| 1130 | REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK); |
| 1131 | REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC); |
| 1132 | REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE); |
| 1133 | |
| 1134 | REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE); |
| 1135 | REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS); |
| 1136 | |
| 1137 | REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC); |
| 1138 | REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE); |
| 1139 | REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF); |
| 1140 | |
| 1141 | cdv_intel_wait_for_vblank(dev); |
| 1142 | |
| 1143 | REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR); |
| 1144 | REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE); |
| 1145 | |
| 1146 | cdv_intel_wait_for_vblank(dev); |
| 1147 | |
| 1148 | paletteReg = pipeA ? PALETTE_A : PALETTE_B; |
| 1149 | for (i = 0; i < 256; ++i) |
| 1150 | REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]); |
| 1151 | } |
| 1152 | |
| 1153 | static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc, |
| 1154 | struct drm_file *file_priv, |
| 1155 | uint32_t handle, |
| 1156 | uint32_t width, uint32_t height) |
| 1157 | { |
| 1158 | struct drm_device *dev = crtc->dev; |
| 1159 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 1160 | int pipe = psb_intel_crtc->pipe; |
| 1161 | uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR; |
| 1162 | uint32_t base = (pipe == 0) ? CURABASE : CURBBASE; |
| 1163 | uint32_t temp; |
| 1164 | size_t addr = 0; |
| 1165 | struct gtt_range *gt; |
| 1166 | struct drm_gem_object *obj; |
| 1167 | int ret; |
| 1168 | |
| 1169 | /* if we want to turn of the cursor ignore width and height */ |
| 1170 | if (!handle) { |
| 1171 | /* turn off the cursor */ |
| 1172 | temp = CURSOR_MODE_DISABLE; |
| 1173 | |
| 1174 | if (gma_power_begin(dev, false)) { |
| 1175 | REG_WRITE(control, temp); |
| 1176 | REG_WRITE(base, 0); |
| 1177 | gma_power_end(dev); |
| 1178 | } |
| 1179 | |
| 1180 | /* unpin the old GEM object */ |
| 1181 | if (psb_intel_crtc->cursor_obj) { |
| 1182 | gt = container_of(psb_intel_crtc->cursor_obj, |
| 1183 | struct gtt_range, gem); |
| 1184 | psb_gtt_unpin(gt); |
| 1185 | drm_gem_object_unreference(psb_intel_crtc->cursor_obj); |
| 1186 | psb_intel_crtc->cursor_obj = NULL; |
| 1187 | } |
| 1188 | |
| 1189 | return 0; |
| 1190 | } |
| 1191 | |
| 1192 | /* Currently we only support 64x64 cursors */ |
| 1193 | if (width != 64 || height != 64) { |
| 1194 | dev_dbg(dev->dev, "we currently only support 64x64 cursors\n"); |
| 1195 | return -EINVAL; |
| 1196 | } |
| 1197 | |
| 1198 | obj = drm_gem_object_lookup(dev, file_priv, handle); |
| 1199 | if (!obj) |
| 1200 | return -ENOENT; |
| 1201 | |
| 1202 | if (obj->size < width * height * 4) { |
| 1203 | dev_dbg(dev->dev, "buffer is to small\n"); |
| 1204 | return -ENOMEM; |
| 1205 | } |
| 1206 | |
| 1207 | gt = container_of(obj, struct gtt_range, gem); |
| 1208 | |
| 1209 | /* Pin the memory into the GTT */ |
| 1210 | ret = psb_gtt_pin(gt); |
| 1211 | if (ret) { |
| 1212 | dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle); |
| 1213 | return ret; |
| 1214 | } |
| 1215 | |
| 1216 | addr = gt->offset; /* Or resource.start ??? */ |
| 1217 | |
| 1218 | psb_intel_crtc->cursor_addr = addr; |
| 1219 | |
| 1220 | temp = 0; |
| 1221 | /* set the pipe for the cursor */ |
| 1222 | temp |= (pipe << 28); |
| 1223 | temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; |
| 1224 | |
| 1225 | if (gma_power_begin(dev, false)) { |
| 1226 | REG_WRITE(control, temp); |
| 1227 | REG_WRITE(base, addr); |
| 1228 | gma_power_end(dev); |
| 1229 | } |
| 1230 | |
| 1231 | /* unpin the old GEM object */ |
| 1232 | if (psb_intel_crtc->cursor_obj) { |
| 1233 | gt = container_of(psb_intel_crtc->cursor_obj, |
| 1234 | struct gtt_range, gem); |
| 1235 | psb_gtt_unpin(gt); |
| 1236 | drm_gem_object_unreference(psb_intel_crtc->cursor_obj); |
| 1237 | psb_intel_crtc->cursor_obj = obj; |
| 1238 | } |
| 1239 | return 0; |
| 1240 | } |
| 1241 | |
| 1242 | static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) |
| 1243 | { |
| 1244 | struct drm_device *dev = crtc->dev; |
| 1245 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 1246 | int pipe = psb_intel_crtc->pipe; |
| 1247 | uint32_t temp = 0; |
| 1248 | uint32_t adder; |
| 1249 | |
| 1250 | |
| 1251 | if (x < 0) { |
| 1252 | temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT); |
| 1253 | x = -x; |
| 1254 | } |
| 1255 | if (y < 0) { |
| 1256 | temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT); |
| 1257 | y = -y; |
| 1258 | } |
| 1259 | |
| 1260 | temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT); |
| 1261 | temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); |
| 1262 | |
| 1263 | adder = psb_intel_crtc->cursor_addr; |
| 1264 | |
| 1265 | if (gma_power_begin(dev, false)) { |
| 1266 | REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp); |
| 1267 | REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder); |
| 1268 | gma_power_end(dev); |
| 1269 | } |
| 1270 | return 0; |
| 1271 | } |
| 1272 | |
| 1273 | static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, |
| 1274 | u16 *green, u16 *blue, uint32_t start, uint32_t size) |
| 1275 | { |
| 1276 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 1277 | int i; |
| 1278 | int end = (start + size > 256) ? 256 : start + size; |
| 1279 | |
| 1280 | for (i = start; i < end; i++) { |
| 1281 | psb_intel_crtc->lut_r[i] = red[i] >> 8; |
| 1282 | psb_intel_crtc->lut_g[i] = green[i] >> 8; |
| 1283 | psb_intel_crtc->lut_b[i] = blue[i] >> 8; |
| 1284 | } |
| 1285 | |
| 1286 | cdv_intel_crtc_load_lut(crtc); |
| 1287 | } |
| 1288 | |
| 1289 | static int cdv_crtc_set_config(struct drm_mode_set *set) |
| 1290 | { |
| 1291 | int ret = 0; |
| 1292 | struct drm_device *dev = set->crtc->dev; |
| 1293 | struct drm_psb_private *dev_priv = dev->dev_private; |
| 1294 | |
| 1295 | if (!dev_priv->rpm_enabled) |
| 1296 | return drm_crtc_helper_set_config(set); |
| 1297 | |
| 1298 | pm_runtime_forbid(&dev->pdev->dev); |
| 1299 | |
| 1300 | ret = drm_crtc_helper_set_config(set); |
| 1301 | |
| 1302 | pm_runtime_allow(&dev->pdev->dev); |
| 1303 | |
| 1304 | return ret; |
| 1305 | } |
| 1306 | |
| 1307 | /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ |
| 1308 | |
| 1309 | /* FIXME: why are we using this, should it be cdv_ in this tree ? */ |
| 1310 | |
| 1311 | static void i8xx_clock(int refclk, struct cdv_intel_clock_t *clock) |
| 1312 | { |
| 1313 | clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); |
| 1314 | clock->p = clock->p1 * clock->p2; |
| 1315 | clock->vco = refclk * clock->m / (clock->n + 2); |
| 1316 | clock->dot = clock->vco / clock->p; |
| 1317 | } |
| 1318 | |
| 1319 | /* Returns the clock of the currently programmed mode of the given pipe. */ |
| 1320 | static int cdv_intel_crtc_clock_get(struct drm_device *dev, |
| 1321 | struct drm_crtc *crtc) |
| 1322 | { |
| 1323 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 1324 | int pipe = psb_intel_crtc->pipe; |
| 1325 | u32 dpll; |
| 1326 | u32 fp; |
| 1327 | struct cdv_intel_clock_t clock; |
| 1328 | bool is_lvds; |
| 1329 | struct drm_psb_private *dev_priv = dev->dev_private; |
| 1330 | |
| 1331 | if (gma_power_begin(dev, false)) { |
| 1332 | dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B); |
| 1333 | if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| 1334 | fp = REG_READ((pipe == 0) ? FPA0 : FPB0); |
| 1335 | else |
| 1336 | fp = REG_READ((pipe == 0) ? FPA1 : FPB1); |
| 1337 | is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); |
| 1338 | gma_power_end(dev); |
| 1339 | } else { |
| 1340 | dpll = (pipe == 0) ? |
| 1341 | dev_priv->saveDPLL_A : dev_priv->saveDPLL_B; |
| 1342 | |
| 1343 | if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| 1344 | fp = (pipe == 0) ? |
| 1345 | dev_priv->saveFPA0 : |
| 1346 | dev_priv->saveFPB0; |
| 1347 | else |
| 1348 | fp = (pipe == 0) ? |
| 1349 | dev_priv->saveFPA1 : |
| 1350 | dev_priv->saveFPB1; |
| 1351 | |
| 1352 | is_lvds = (pipe == 1) && (dev_priv->saveLVDS & LVDS_PORT_EN); |
| 1353 | } |
| 1354 | |
| 1355 | clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; |
| 1356 | clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| 1357 | clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; |
| 1358 | |
| 1359 | if (is_lvds) { |
| 1360 | clock.p1 = |
| 1361 | ffs((dpll & |
| 1362 | DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> |
| 1363 | DPLL_FPA01_P1_POST_DIV_SHIFT); |
| 1364 | if (clock.p1 == 0) { |
| 1365 | clock.p1 = 4; |
| 1366 | dev_err(dev->dev, "PLL %d\n", dpll); |
| 1367 | } |
| 1368 | clock.p2 = 14; |
| 1369 | |
| 1370 | if ((dpll & PLL_REF_INPUT_MASK) == |
| 1371 | PLLB_REF_INPUT_SPREADSPECTRUMIN) { |
| 1372 | /* XXX: might not be 66MHz */ |
| 1373 | i8xx_clock(66000, &clock); |
| 1374 | } else |
| 1375 | i8xx_clock(48000, &clock); |
| 1376 | } else { |
| 1377 | if (dpll & PLL_P1_DIVIDE_BY_TWO) |
| 1378 | clock.p1 = 2; |
| 1379 | else { |
| 1380 | clock.p1 = |
| 1381 | ((dpll & |
| 1382 | DPLL_FPA01_P1_POST_DIV_MASK_I830) >> |
| 1383 | DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; |
| 1384 | } |
| 1385 | if (dpll & PLL_P2_DIVIDE_BY_4) |
| 1386 | clock.p2 = 4; |
| 1387 | else |
| 1388 | clock.p2 = 2; |
| 1389 | |
| 1390 | i8xx_clock(48000, &clock); |
| 1391 | } |
| 1392 | |
| 1393 | /* XXX: It would be nice to validate the clocks, but we can't reuse |
| 1394 | * i830PllIsValid() because it relies on the xf86_config connector |
| 1395 | * configuration being accurate, which it isn't necessarily. |
| 1396 | */ |
| 1397 | |
| 1398 | return clock.dot; |
| 1399 | } |
| 1400 | |
| 1401 | /** Returns the currently programmed mode of the given pipe. */ |
| 1402 | struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev, |
| 1403 | struct drm_crtc *crtc) |
| 1404 | { |
| 1405 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 1406 | int pipe = psb_intel_crtc->pipe; |
| 1407 | struct drm_display_mode *mode; |
| 1408 | int htot; |
| 1409 | int hsync; |
| 1410 | int vtot; |
| 1411 | int vsync; |
| 1412 | struct drm_psb_private *dev_priv = dev->dev_private; |
| 1413 | |
| 1414 | if (gma_power_begin(dev, false)) { |
| 1415 | htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B); |
| 1416 | hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B); |
| 1417 | vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B); |
| 1418 | vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B); |
| 1419 | gma_power_end(dev); |
| 1420 | } else { |
| 1421 | htot = (pipe == 0) ? |
| 1422 | dev_priv->saveHTOTAL_A : dev_priv->saveHTOTAL_B; |
| 1423 | hsync = (pipe == 0) ? |
| 1424 | dev_priv->saveHSYNC_A : dev_priv->saveHSYNC_B; |
| 1425 | vtot = (pipe == 0) ? |
| 1426 | dev_priv->saveVTOTAL_A : dev_priv->saveVTOTAL_B; |
| 1427 | vsync = (pipe == 0) ? |
| 1428 | dev_priv->saveVSYNC_A : dev_priv->saveVSYNC_B; |
| 1429 | } |
| 1430 | |
| 1431 | mode = kzalloc(sizeof(*mode), GFP_KERNEL); |
| 1432 | if (!mode) |
| 1433 | return NULL; |
| 1434 | |
| 1435 | mode->clock = cdv_intel_crtc_clock_get(dev, crtc); |
| 1436 | mode->hdisplay = (htot & 0xffff) + 1; |
| 1437 | mode->htotal = ((htot & 0xffff0000) >> 16) + 1; |
| 1438 | mode->hsync_start = (hsync & 0xffff) + 1; |
| 1439 | mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; |
| 1440 | mode->vdisplay = (vtot & 0xffff) + 1; |
| 1441 | mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; |
| 1442 | mode->vsync_start = (vsync & 0xffff) + 1; |
| 1443 | mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; |
| 1444 | |
| 1445 | drm_mode_set_name(mode); |
| 1446 | drm_mode_set_crtcinfo(mode, 0); |
| 1447 | |
| 1448 | return mode; |
| 1449 | } |
| 1450 | |
| 1451 | static void cdv_intel_crtc_destroy(struct drm_crtc *crtc) |
| 1452 | { |
| 1453 | struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| 1454 | |
| 1455 | kfree(psb_intel_crtc->crtc_state); |
| 1456 | drm_crtc_cleanup(crtc); |
| 1457 | kfree(psb_intel_crtc); |
| 1458 | } |
| 1459 | |
| 1460 | const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = { |
| 1461 | .dpms = cdv_intel_crtc_dpms, |
| 1462 | .mode_fixup = cdv_intel_crtc_mode_fixup, |
| 1463 | .mode_set = cdv_intel_crtc_mode_set, |
| 1464 | .mode_set_base = cdv_intel_pipe_set_base, |
| 1465 | .prepare = cdv_intel_crtc_prepare, |
| 1466 | .commit = cdv_intel_crtc_commit, |
| 1467 | }; |
| 1468 | |
| 1469 | const struct drm_crtc_funcs cdv_intel_crtc_funcs = { |
| 1470 | .save = cdv_intel_crtc_save, |
| 1471 | .restore = cdv_intel_crtc_restore, |
| 1472 | .cursor_set = cdv_intel_crtc_cursor_set, |
| 1473 | .cursor_move = cdv_intel_crtc_cursor_move, |
| 1474 | .gamma_set = cdv_intel_crtc_gamma_set, |
| 1475 | .set_config = cdv_crtc_set_config, |
| 1476 | .destroy = cdv_intel_crtc_destroy, |
| 1477 | }; |
| 1478 | |
| 1479 | /* |
| 1480 | * Set the default value of cursor control and base register |
| 1481 | * to zero. This is a workaround for h/w defect on oaktrail |
| 1482 | */ |
| 1483 | void cdv_intel_cursor_init(struct drm_device *dev, int pipe) |
| 1484 | { |
| 1485 | uint32_t control; |
| 1486 | uint32_t base; |
| 1487 | |
| 1488 | switch (pipe) { |
| 1489 | case 0: |
| 1490 | control = CURACNTR; |
| 1491 | base = CURABASE; |
| 1492 | break; |
| 1493 | case 1: |
| 1494 | control = CURBCNTR; |
| 1495 | base = CURBBASE; |
| 1496 | break; |
| 1497 | case 2: |
| 1498 | control = CURCCNTR; |
| 1499 | base = CURCBASE; |
| 1500 | break; |
| 1501 | default: |
| 1502 | return; |
| 1503 | } |
| 1504 | |
| 1505 | REG_WRITE(control, 0); |
| 1506 | REG_WRITE(base, 0); |
| 1507 | } |
| 1508 | |