blob: b5c2a196e617fec38e16e33eb10411a5ab9f2499 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001|
2| stan.sa 3.3 7/29/91
3|
4| The entry point stan computes the tangent of
5| an input argument;
6| stand does the same except for denormalized input.
7|
8| Input: Double-extended number X in location pointed to
9| by address register a0.
10|
11| Output: The value tan(X) returned in floating-point register Fp0.
12|
13| Accuracy and Monotonicity: The returned result is within 3 ulp in
14| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
15| result is subsequently rounded to double precision. The
16| result is provably monotonic in double precision.
17|
18| Speed: The program sTAN takes approximately 170 cycles for
19| input argument X such that |X| < 15Pi, which is the usual
20| situation.
21|
22| Algorithm:
23|
24| 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
25|
26| 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
27| k = N mod 2, so in particular, k = 0 or 1.
28|
29| 3. If k is odd, go to 5.
30|
31| 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
32| rational function U/V where
33| U = r + r*s*(P1 + s*(P2 + s*P3)), and
34| V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r.
35| Exit.
36|
37| 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
38| rational function U/V where
39| U = r + r*s*(P1 + s*(P2 + s*P3)), and
40| V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
41| -Cot(r) = -V/U. Exit.
42|
43| 6. If |X| > 1, go to 8.
44|
45| 7. (|X|<2**(-40)) Tan(X) = X. Exit.
46|
47| 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
48|
49
50| Copyright (C) Motorola, Inc. 1990
51| All Rights Reserved
52|
53| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
54| The copyright notice above does not evidence any
55| actual or intended publication of such source code.
56
57|STAN idnt 2,1 | Motorola 040 Floating Point Software Package
58
59 |section 8
60
61#include "fpsp.h"
62
63BOUNDS1: .long 0x3FD78000,0x4004BC7E
64TWOBYPI: .long 0x3FE45F30,0x6DC9C883
65
66TANQ4: .long 0x3EA0B759,0xF50F8688
67TANP3: .long 0xBEF2BAA5,0xA8924F04
68
69TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
70
71TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
72
73TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
74
75TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
76
77TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
78
79INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
80
81TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
82TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
83
84|--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
85|--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
86|--MOST 69 BITS LONG.
87 .global PITBL
88PITBL:
89 .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
90 .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
91 .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
92 .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
93 .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
94 .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
95 .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
96 .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
97 .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
98 .long 0xC0040000,0x90836524,0x88034B96,0x20B00000
99 .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
100 .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
101 .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
102 .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
103 .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
104 .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
105 .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
106 .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
107 .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
108 .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
109 .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
110 .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
111 .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
112 .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
113 .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
114 .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
115 .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
116 .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
117 .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
118 .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
119 .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
120 .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
121 .long 0x00000000,0x00000000,0x00000000,0x00000000
122 .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
123 .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
124 .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
125 .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
126 .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
127 .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
128 .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
129 .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
130 .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
131 .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
132 .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
133 .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
134 .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
135 .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
136 .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
137 .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
138 .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
139 .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
140 .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
141 .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
142 .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
143 .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
144 .long 0x40040000,0x90836524,0x88034B96,0xA0B00000
145 .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
146 .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
147 .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
148 .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
149 .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
150 .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
151 .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
152 .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
153 .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
154
155 .set INARG,FP_SCR4
156
157 .set TWOTO63,L_SCR1
158 .set ENDFLAG,L_SCR2
159 .set N,L_SCR3
160
161 | xref t_frcinx
162 |xref t_extdnrm
163
164 .global stand
165stand:
166|--TAN(X) = X FOR DENORMALIZED X
167
168 bra t_extdnrm
169
170 .global stan
171stan:
172 fmovex (%a0),%fp0 | ...LOAD INPUT
173
174 movel (%a0),%d0
175 movew 4(%a0),%d0
176 andil #0x7FFFFFFF,%d0
177
178 cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
179 bges TANOK1
180 bra TANSM
181TANOK1:
182 cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
183 blts TANMAIN
184 bra REDUCEX
185
186
187TANMAIN:
188|--THIS IS THE USUAL CASE, |X| <= 15 PI.
189|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
190 fmovex %fp0,%fp1
191 fmuld TWOBYPI,%fp1 | ...X*2/PI
192
193|--HIDE THE NEXT TWO INSTRUCTIONS
194 leal PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
195
196|--FP1 IS NOW READY
197 fmovel %fp1,%d0 | ...CONVERT TO INTEGER
198
199 asll #4,%d0
200 addal %d0,%a1 | ...ADDRESS N*PIBY2 IN Y1, Y2
201
202 fsubx (%a1)+,%fp0 | ...X-Y1
203|--HIDE THE NEXT ONE
204
205 fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
206
207 rorl #5,%d0
208 andil #0x80000000,%d0 | ...D0 WAS ODD IFF D0 < 0
209
210TANCONT:
211
212 cmpil #0,%d0
213 blt NODD
214
215 fmovex %fp0,%fp1
216 fmulx %fp1,%fp1 | ...S = R*R
217
218 fmoved TANQ4,%fp3
219 fmoved TANP3,%fp2
220
221 fmulx %fp1,%fp3 | ...SQ4
222 fmulx %fp1,%fp2 | ...SP3
223
224 faddd TANQ3,%fp3 | ...Q3+SQ4
225 faddx TANP2,%fp2 | ...P2+SP3
226
227 fmulx %fp1,%fp3 | ...S(Q3+SQ4)
228 fmulx %fp1,%fp2 | ...S(P2+SP3)
229
230 faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
231 faddx TANP1,%fp2 | ...P1+S(P2+SP3)
232
233 fmulx %fp1,%fp3 | ...S(Q2+S(Q3+SQ4))
234 fmulx %fp1,%fp2 | ...S(P1+S(P2+SP3))
235
236 faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
237 fmulx %fp0,%fp2 | ...RS(P1+S(P2+SP3))
238
239 fmulx %fp3,%fp1 | ...S(Q1+S(Q2+S(Q3+SQ4)))
240
241
242 faddx %fp2,%fp0 | ...R+RS(P1+S(P2+SP3))
243
244
245 fadds #0x3F800000,%fp1 | ...1+S(Q1+...)
246
247 fmovel %d1,%fpcr |restore users exceptions
248 fdivx %fp1,%fp0 |last inst - possible exception set
249
250 bra t_frcinx
251
252NODD:
253 fmovex %fp0,%fp1
254 fmulx %fp0,%fp0 | ...S = R*R
255
256 fmoved TANQ4,%fp3
257 fmoved TANP3,%fp2
258
259 fmulx %fp0,%fp3 | ...SQ4
260 fmulx %fp0,%fp2 | ...SP3
261
262 faddd TANQ3,%fp3 | ...Q3+SQ4
263 faddx TANP2,%fp2 | ...P2+SP3
264
265 fmulx %fp0,%fp3 | ...S(Q3+SQ4)
266 fmulx %fp0,%fp2 | ...S(P2+SP3)
267
268 faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
269 faddx TANP1,%fp2 | ...P1+S(P2+SP3)
270
271 fmulx %fp0,%fp3 | ...S(Q2+S(Q3+SQ4))
272 fmulx %fp0,%fp2 | ...S(P1+S(P2+SP3))
273
274 faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
275 fmulx %fp1,%fp2 | ...RS(P1+S(P2+SP3))
276
277 fmulx %fp3,%fp0 | ...S(Q1+S(Q2+S(Q3+SQ4)))
278
279
280 faddx %fp2,%fp1 | ...R+RS(P1+S(P2+SP3))
281 fadds #0x3F800000,%fp0 | ...1+S(Q1+...)
282
283
284 fmovex %fp1,-(%sp)
285 eoril #0x80000000,(%sp)
286
287 fmovel %d1,%fpcr |restore users exceptions
288 fdivx (%sp)+,%fp0 |last inst - possible exception set
289
290 bra t_frcinx
291
292TANBORS:
293|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
294|--IF |X| < 2**(-40), RETURN X OR 1.
295 cmpil #0x3FFF8000,%d0
296 bgts REDUCEX
297
298TANSM:
299
300 fmovex %fp0,-(%sp)
301 fmovel %d1,%fpcr |restore users exceptions
302 fmovex (%sp)+,%fp0 |last inst - possible exception set
303
304 bra t_frcinx
305
306
307REDUCEX:
308|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
309|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
310|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
311
312 fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
313 movel %d2,-(%a7)
314 fmoves #0x00000000,%fp1
315
316|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
317|--there is a danger of unwanted overflow in first LOOP iteration. In this
318|--case, reduce argument by one remainder step to make subsequent reduction
319|--safe.
320 cmpil #0x7ffeffff,%d0 |is argument dangerously large?
321 bnes LOOP
322 movel #0x7ffe0000,FP_SCR2(%a6) |yes
323| ;create 2**16383*PI/2
324 movel #0xc90fdaa2,FP_SCR2+4(%a6)
325 clrl FP_SCR2+8(%a6)
326 ftstx %fp0 |test sign of argument
327 movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
328| ;PI/2 at FP_SCR3
329 movel #0x85a308d3,FP_SCR3+4(%a6)
330 clrl FP_SCR3+8(%a6)
331 fblt red_neg
332 orw #0x8000,FP_SCR2(%a6) |positive arg
333 orw #0x8000,FP_SCR3(%a6)
334red_neg:
335 faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
336 fmovex %fp0,%fp1 |save high result in fp1
337 faddx FP_SCR3(%a6),%fp0 |low part of reduction
338 fsubx %fp0,%fp1 |determine low component of result
339 faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
340
341|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
342|--integer quotient will be stored in N
343|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
344
345LOOP:
346 fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
347 movew INARG(%a6),%d0
348 movel %d0,%a1 | ...save a copy of D0
349 andil #0x00007FFF,%d0
350 subil #0x00003FFF,%d0 | ...D0 IS K
351 cmpil #28,%d0
352 bles LASTLOOP
353CONTLOOP:
354 subil #27,%d0 | ...D0 IS L := K-27
355 movel #0,ENDFLAG(%a6)
356 bras WORK
357LASTLOOP:
358 clrl %d0 | ...D0 IS L := 0
359 movel #1,ENDFLAG(%a6)
360
361WORK:
362|--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
363|--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
364
365|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
366|--2**L * (PIby2_1), 2**L * (PIby2_2)
367
368 movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
369 subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
370
371 movel #0xA2F9836E,FP_SCR1+4(%a6)
372 movel #0x4E44152A,FP_SCR1+8(%a6)
373 movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
374
375 fmovex %fp0,%fp2
376 fmulx FP_SCR1(%a6),%fp2
377|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
378|--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
379|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
380|--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
381|--US THE DESIRED VALUE IN FLOATING POINT.
382
383|--HIDE SIX CYCLES OF INSTRUCTION
384 movel %a1,%d2
385 swap %d2
386 andil #0x80000000,%d2
387 oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
388 movel %d2,TWOTO63(%a6)
389
390 movel %d0,%d2
391 addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
392
393|--FP2 IS READY
394 fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
395
396|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
397 movew %d2,FP_SCR2(%a6)
398 clrw FP_SCR2+2(%a6)
399 movel #0xC90FDAA2,FP_SCR2+4(%a6)
400 clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
401
402|--FP2 IS READY
403 fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
404
405 addil #0x00003FDD,%d0
406 movew %d0,FP_SCR3(%a6)
407 clrw FP_SCR3+2(%a6)
408 movel #0x85A308D3,FP_SCR3+4(%a6)
409 clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
410
411 movel ENDFLAG(%a6),%d0
412
413|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
414|--P2 = 2**(L) * Piby2_2
415 fmovex %fp2,%fp4
416 fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
417 fmovex %fp2,%fp5
418 fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
419 fmovex %fp4,%fp3
420|--we want P+p = W+w but |p| <= half ulp of P
421|--Then, we need to compute A := R-P and a := r-p
422 faddx %fp5,%fp3 | ...FP3 is P
423 fsubx %fp3,%fp4 | ...W-P
424
425 fsubx %fp3,%fp0 | ...FP0 is A := R - P
426 faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
427
428 fmovex %fp0,%fp3 | ...FP3 A
429 fsubx %fp4,%fp1 | ...FP1 is a := r - p
430
431|--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
432|--|r| <= half ulp of R.
433 faddx %fp1,%fp0 | ...FP0 is R := A+a
434|--No need to calculate r if this is the last loop
435 cmpil #0,%d0
436 bgt RESTORE
437
438|--Need to calculate r
439 fsubx %fp0,%fp3 | ...A-R
440 faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
441 bra LOOP
442
443RESTORE:
444 fmovel %fp2,N(%a6)
445 movel (%a7)+,%d2
446 fmovemx (%a7)+,%fp2-%fp5
447
448
449 movel N(%a6),%d0
450 rorl #1,%d0
451
452
453 bra TANCONT
454
455 |end