Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | | |
| 2 | | stan.sa 3.3 7/29/91 |
| 3 | | |
| 4 | | The entry point stan computes the tangent of |
| 5 | | an input argument; |
| 6 | | stand does the same except for denormalized input. |
| 7 | | |
| 8 | | Input: Double-extended number X in location pointed to |
| 9 | | by address register a0. |
| 10 | | |
| 11 | | Output: The value tan(X) returned in floating-point register Fp0. |
| 12 | | |
| 13 | | Accuracy and Monotonicity: The returned result is within 3 ulp in |
| 14 | | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the |
| 15 | | result is subsequently rounded to double precision. The |
| 16 | | result is provably monotonic in double precision. |
| 17 | | |
| 18 | | Speed: The program sTAN takes approximately 170 cycles for |
| 19 | | input argument X such that |X| < 15Pi, which is the usual |
| 20 | | situation. |
| 21 | | |
| 22 | | Algorithm: |
| 23 | | |
| 24 | | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. |
| 25 | | |
| 26 | | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let |
| 27 | | k = N mod 2, so in particular, k = 0 or 1. |
| 28 | | |
| 29 | | 3. If k is odd, go to 5. |
| 30 | | |
| 31 | | 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a |
| 32 | | rational function U/V where |
| 33 | | U = r + r*s*(P1 + s*(P2 + s*P3)), and |
| 34 | | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. |
| 35 | | Exit. |
| 36 | | |
| 37 | | 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a |
| 38 | | rational function U/V where |
| 39 | | U = r + r*s*(P1 + s*(P2 + s*P3)), and |
| 40 | | V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, |
| 41 | | -Cot(r) = -V/U. Exit. |
| 42 | | |
| 43 | | 6. If |X| > 1, go to 8. |
| 44 | | |
| 45 | | 7. (|X|<2**(-40)) Tan(X) = X. Exit. |
| 46 | | |
| 47 | | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2. |
| 48 | | |
| 49 | |
| 50 | | Copyright (C) Motorola, Inc. 1990 |
| 51 | | All Rights Reserved |
| 52 | | |
| 53 | | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA |
| 54 | | The copyright notice above does not evidence any |
| 55 | | actual or intended publication of such source code. |
| 56 | |
| 57 | |STAN idnt 2,1 | Motorola 040 Floating Point Software Package |
| 58 | |
| 59 | |section 8 |
| 60 | |
| 61 | #include "fpsp.h" |
| 62 | |
| 63 | BOUNDS1: .long 0x3FD78000,0x4004BC7E |
| 64 | TWOBYPI: .long 0x3FE45F30,0x6DC9C883 |
| 65 | |
| 66 | TANQ4: .long 0x3EA0B759,0xF50F8688 |
| 67 | TANP3: .long 0xBEF2BAA5,0xA8924F04 |
| 68 | |
| 69 | TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 |
| 70 | |
| 71 | TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 |
| 72 | |
| 73 | TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 |
| 74 | |
| 75 | TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 |
| 76 | |
| 77 | TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 |
| 78 | |
| 79 | INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 |
| 80 | |
| 81 | TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 |
| 82 | TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 |
| 83 | |
| 84 | |--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING |
| 85 | |--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT |
| 86 | |--MOST 69 BITS LONG. |
| 87 | .global PITBL |
| 88 | PITBL: |
| 89 | .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 |
| 90 | .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 |
| 91 | .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 |
| 92 | .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 |
| 93 | .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 |
| 94 | .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 |
| 95 | .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 |
| 96 | .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 |
| 97 | .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 |
| 98 | .long 0xC0040000,0x90836524,0x88034B96,0x20B00000 |
| 99 | .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 |
| 100 | .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 |
| 101 | .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 |
| 102 | .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 |
| 103 | .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 |
| 104 | .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 |
| 105 | .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 |
| 106 | .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 |
| 107 | .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 |
| 108 | .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 |
| 109 | .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 |
| 110 | .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 |
| 111 | .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 |
| 112 | .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 |
| 113 | .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 |
| 114 | .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 |
| 115 | .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 |
| 116 | .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 |
| 117 | .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 |
| 118 | .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 |
| 119 | .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 |
| 120 | .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 |
| 121 | .long 0x00000000,0x00000000,0x00000000,0x00000000 |
| 122 | .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 |
| 123 | .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 |
| 124 | .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 |
| 125 | .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 |
| 126 | .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 |
| 127 | .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 |
| 128 | .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 |
| 129 | .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 |
| 130 | .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 |
| 131 | .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 |
| 132 | .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 |
| 133 | .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 |
| 134 | .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 |
| 135 | .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 |
| 136 | .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 |
| 137 | .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 |
| 138 | .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 |
| 139 | .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 |
| 140 | .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 |
| 141 | .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 |
| 142 | .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 |
| 143 | .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 |
| 144 | .long 0x40040000,0x90836524,0x88034B96,0xA0B00000 |
| 145 | .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 |
| 146 | .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 |
| 147 | .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 |
| 148 | .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 |
| 149 | .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 |
| 150 | .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 |
| 151 | .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 |
| 152 | .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 |
| 153 | .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 |
| 154 | |
| 155 | .set INARG,FP_SCR4 |
| 156 | |
| 157 | .set TWOTO63,L_SCR1 |
| 158 | .set ENDFLAG,L_SCR2 |
| 159 | .set N,L_SCR3 |
| 160 | |
| 161 | | xref t_frcinx |
| 162 | |xref t_extdnrm |
| 163 | |
| 164 | .global stand |
| 165 | stand: |
| 166 | |--TAN(X) = X FOR DENORMALIZED X |
| 167 | |
| 168 | bra t_extdnrm |
| 169 | |
| 170 | .global stan |
| 171 | stan: |
| 172 | fmovex (%a0),%fp0 | ...LOAD INPUT |
| 173 | |
| 174 | movel (%a0),%d0 |
| 175 | movew 4(%a0),%d0 |
| 176 | andil #0x7FFFFFFF,%d0 |
| 177 | |
| 178 | cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)? |
| 179 | bges TANOK1 |
| 180 | bra TANSM |
| 181 | TANOK1: |
| 182 | cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI? |
| 183 | blts TANMAIN |
| 184 | bra REDUCEX |
| 185 | |
| 186 | |
| 187 | TANMAIN: |
| 188 | |--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| 189 | |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| 190 | fmovex %fp0,%fp1 |
| 191 | fmuld TWOBYPI,%fp1 | ...X*2/PI |
| 192 | |
| 193 | |--HIDE THE NEXT TWO INSTRUCTIONS |
| 194 | leal PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32 |
| 195 | |
| 196 | |--FP1 IS NOW READY |
| 197 | fmovel %fp1,%d0 | ...CONVERT TO INTEGER |
| 198 | |
| 199 | asll #4,%d0 |
| 200 | addal %d0,%a1 | ...ADDRESS N*PIBY2 IN Y1, Y2 |
| 201 | |
| 202 | fsubx (%a1)+,%fp0 | ...X-Y1 |
| 203 | |--HIDE THE NEXT ONE |
| 204 | |
| 205 | fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2 |
| 206 | |
| 207 | rorl #5,%d0 |
| 208 | andil #0x80000000,%d0 | ...D0 WAS ODD IFF D0 < 0 |
| 209 | |
| 210 | TANCONT: |
| 211 | |
| 212 | cmpil #0,%d0 |
| 213 | blt NODD |
| 214 | |
| 215 | fmovex %fp0,%fp1 |
| 216 | fmulx %fp1,%fp1 | ...S = R*R |
| 217 | |
| 218 | fmoved TANQ4,%fp3 |
| 219 | fmoved TANP3,%fp2 |
| 220 | |
| 221 | fmulx %fp1,%fp3 | ...SQ4 |
| 222 | fmulx %fp1,%fp2 | ...SP3 |
| 223 | |
| 224 | faddd TANQ3,%fp3 | ...Q3+SQ4 |
| 225 | faddx TANP2,%fp2 | ...P2+SP3 |
| 226 | |
| 227 | fmulx %fp1,%fp3 | ...S(Q3+SQ4) |
| 228 | fmulx %fp1,%fp2 | ...S(P2+SP3) |
| 229 | |
| 230 | faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4) |
| 231 | faddx TANP1,%fp2 | ...P1+S(P2+SP3) |
| 232 | |
| 233 | fmulx %fp1,%fp3 | ...S(Q2+S(Q3+SQ4)) |
| 234 | fmulx %fp1,%fp2 | ...S(P1+S(P2+SP3)) |
| 235 | |
| 236 | faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4)) |
| 237 | fmulx %fp0,%fp2 | ...RS(P1+S(P2+SP3)) |
| 238 | |
| 239 | fmulx %fp3,%fp1 | ...S(Q1+S(Q2+S(Q3+SQ4))) |
| 240 | |
| 241 | |
| 242 | faddx %fp2,%fp0 | ...R+RS(P1+S(P2+SP3)) |
| 243 | |
| 244 | |
| 245 | fadds #0x3F800000,%fp1 | ...1+S(Q1+...) |
| 246 | |
| 247 | fmovel %d1,%fpcr |restore users exceptions |
| 248 | fdivx %fp1,%fp0 |last inst - possible exception set |
| 249 | |
| 250 | bra t_frcinx |
| 251 | |
| 252 | NODD: |
| 253 | fmovex %fp0,%fp1 |
| 254 | fmulx %fp0,%fp0 | ...S = R*R |
| 255 | |
| 256 | fmoved TANQ4,%fp3 |
| 257 | fmoved TANP3,%fp2 |
| 258 | |
| 259 | fmulx %fp0,%fp3 | ...SQ4 |
| 260 | fmulx %fp0,%fp2 | ...SP3 |
| 261 | |
| 262 | faddd TANQ3,%fp3 | ...Q3+SQ4 |
| 263 | faddx TANP2,%fp2 | ...P2+SP3 |
| 264 | |
| 265 | fmulx %fp0,%fp3 | ...S(Q3+SQ4) |
| 266 | fmulx %fp0,%fp2 | ...S(P2+SP3) |
| 267 | |
| 268 | faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4) |
| 269 | faddx TANP1,%fp2 | ...P1+S(P2+SP3) |
| 270 | |
| 271 | fmulx %fp0,%fp3 | ...S(Q2+S(Q3+SQ4)) |
| 272 | fmulx %fp0,%fp2 | ...S(P1+S(P2+SP3)) |
| 273 | |
| 274 | faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4)) |
| 275 | fmulx %fp1,%fp2 | ...RS(P1+S(P2+SP3)) |
| 276 | |
| 277 | fmulx %fp3,%fp0 | ...S(Q1+S(Q2+S(Q3+SQ4))) |
| 278 | |
| 279 | |
| 280 | faddx %fp2,%fp1 | ...R+RS(P1+S(P2+SP3)) |
| 281 | fadds #0x3F800000,%fp0 | ...1+S(Q1+...) |
| 282 | |
| 283 | |
| 284 | fmovex %fp1,-(%sp) |
| 285 | eoril #0x80000000,(%sp) |
| 286 | |
| 287 | fmovel %d1,%fpcr |restore users exceptions |
| 288 | fdivx (%sp)+,%fp0 |last inst - possible exception set |
| 289 | |
| 290 | bra t_frcinx |
| 291 | |
| 292 | TANBORS: |
| 293 | |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. |
| 294 | |--IF |X| < 2**(-40), RETURN X OR 1. |
| 295 | cmpil #0x3FFF8000,%d0 |
| 296 | bgts REDUCEX |
| 297 | |
| 298 | TANSM: |
| 299 | |
| 300 | fmovex %fp0,-(%sp) |
| 301 | fmovel %d1,%fpcr |restore users exceptions |
| 302 | fmovex (%sp)+,%fp0 |last inst - possible exception set |
| 303 | |
| 304 | bra t_frcinx |
| 305 | |
| 306 | |
| 307 | REDUCEX: |
| 308 | |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. |
| 309 | |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING |
| 310 | |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. |
| 311 | |
| 312 | fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5 |
| 313 | movel %d2,-(%a7) |
| 314 | fmoves #0x00000000,%fp1 |
| 315 | |
| 316 | |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that |
| 317 | |--there is a danger of unwanted overflow in first LOOP iteration. In this |
| 318 | |--case, reduce argument by one remainder step to make subsequent reduction |
| 319 | |--safe. |
| 320 | cmpil #0x7ffeffff,%d0 |is argument dangerously large? |
| 321 | bnes LOOP |
| 322 | movel #0x7ffe0000,FP_SCR2(%a6) |yes |
| 323 | | ;create 2**16383*PI/2 |
| 324 | movel #0xc90fdaa2,FP_SCR2+4(%a6) |
| 325 | clrl FP_SCR2+8(%a6) |
| 326 | ftstx %fp0 |test sign of argument |
| 327 | movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383* |
| 328 | | ;PI/2 at FP_SCR3 |
| 329 | movel #0x85a308d3,FP_SCR3+4(%a6) |
| 330 | clrl FP_SCR3+8(%a6) |
| 331 | fblt red_neg |
| 332 | orw #0x8000,FP_SCR2(%a6) |positive arg |
| 333 | orw #0x8000,FP_SCR3(%a6) |
| 334 | red_neg: |
| 335 | faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact |
| 336 | fmovex %fp0,%fp1 |save high result in fp1 |
| 337 | faddx FP_SCR3(%a6),%fp0 |low part of reduction |
| 338 | fsubx %fp0,%fp1 |determine low component of result |
| 339 | faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument. |
| 340 | |
| 341 | |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. |
| 342 | |--integer quotient will be stored in N |
| 343 | |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1) |
| 344 | |
| 345 | LOOP: |
| 346 | fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2 |
| 347 | movew INARG(%a6),%d0 |
| 348 | movel %d0,%a1 | ...save a copy of D0 |
| 349 | andil #0x00007FFF,%d0 |
| 350 | subil #0x00003FFF,%d0 | ...D0 IS K |
| 351 | cmpil #28,%d0 |
| 352 | bles LASTLOOP |
| 353 | CONTLOOP: |
| 354 | subil #27,%d0 | ...D0 IS L := K-27 |
| 355 | movel #0,ENDFLAG(%a6) |
| 356 | bras WORK |
| 357 | LASTLOOP: |
| 358 | clrl %d0 | ...D0 IS L := 0 |
| 359 | movel #1,ENDFLAG(%a6) |
| 360 | |
| 361 | WORK: |
| 362 | |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN |
| 363 | |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. |
| 364 | |
| 365 | |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), |
| 366 | |--2**L * (PIby2_1), 2**L * (PIby2_2) |
| 367 | |
| 368 | movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI |
| 369 | subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI) |
| 370 | |
| 371 | movel #0xA2F9836E,FP_SCR1+4(%a6) |
| 372 | movel #0x4E44152A,FP_SCR1+8(%a6) |
| 373 | movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI) |
| 374 | |
| 375 | fmovex %fp0,%fp2 |
| 376 | fmulx FP_SCR1(%a6),%fp2 |
| 377 | |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN |
| 378 | |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N |
| 379 | |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT |
| 380 | |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE |
| 381 | |--US THE DESIRED VALUE IN FLOATING POINT. |
| 382 | |
| 383 | |--HIDE SIX CYCLES OF INSTRUCTION |
| 384 | movel %a1,%d2 |
| 385 | swap %d2 |
| 386 | andil #0x80000000,%d2 |
| 387 | oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL |
| 388 | movel %d2,TWOTO63(%a6) |
| 389 | |
| 390 | movel %d0,%d2 |
| 391 | addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2) |
| 392 | |
| 393 | |--FP2 IS READY |
| 394 | fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED |
| 395 | |
| 396 | |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2 |
| 397 | movew %d2,FP_SCR2(%a6) |
| 398 | clrw FP_SCR2+2(%a6) |
| 399 | movel #0xC90FDAA2,FP_SCR2+4(%a6) |
| 400 | clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1 |
| 401 | |
| 402 | |--FP2 IS READY |
| 403 | fsubs TWOTO63(%a6),%fp2 | ...FP2 is N |
| 404 | |
| 405 | addil #0x00003FDD,%d0 |
| 406 | movew %d0,FP_SCR3(%a6) |
| 407 | clrw FP_SCR3+2(%a6) |
| 408 | movel #0x85A308D3,FP_SCR3+4(%a6) |
| 409 | clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2 |
| 410 | |
| 411 | movel ENDFLAG(%a6),%d0 |
| 412 | |
| 413 | |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and |
| 414 | |--P2 = 2**(L) * Piby2_2 |
| 415 | fmovex %fp2,%fp4 |
| 416 | fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1 |
| 417 | fmovex %fp2,%fp5 |
| 418 | fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2 |
| 419 | fmovex %fp4,%fp3 |
| 420 | |--we want P+p = W+w but |p| <= half ulp of P |
| 421 | |--Then, we need to compute A := R-P and a := r-p |
| 422 | faddx %fp5,%fp3 | ...FP3 is P |
| 423 | fsubx %fp3,%fp4 | ...W-P |
| 424 | |
| 425 | fsubx %fp3,%fp0 | ...FP0 is A := R - P |
| 426 | faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w |
| 427 | |
| 428 | fmovex %fp0,%fp3 | ...FP3 A |
| 429 | fsubx %fp4,%fp1 | ...FP1 is a := r - p |
| 430 | |
| 431 | |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but |
| 432 | |--|r| <= half ulp of R. |
| 433 | faddx %fp1,%fp0 | ...FP0 is R := A+a |
| 434 | |--No need to calculate r if this is the last loop |
| 435 | cmpil #0,%d0 |
| 436 | bgt RESTORE |
| 437 | |
| 438 | |--Need to calculate r |
| 439 | fsubx %fp0,%fp3 | ...A-R |
| 440 | faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a |
| 441 | bra LOOP |
| 442 | |
| 443 | RESTORE: |
| 444 | fmovel %fp2,N(%a6) |
| 445 | movel (%a7)+,%d2 |
| 446 | fmovemx (%a7)+,%fp2-%fp5 |
| 447 | |
| 448 | |
| 449 | movel N(%a6),%d0 |
| 450 | rorl #1,%d0 |
| 451 | |
| 452 | |
| 453 | bra TANCONT |
| 454 | |
| 455 | |end |