blob: 4835dd4a9e5075e3c652ea78072c515fc5537fd1 [file] [log] [blame]
lionel.debieve@st.com8a1012d2017-07-13 15:32:27 +02001/*
2 * This file is part of STM32 Crypto driver for Linux.
3 *
4 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
5 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
6 *
7 * License terms: GPL V2.0.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License version 2 as published by
11 * the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 * details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 */
22
23#include <linux/clk.h>
24#include <linux/crypto.h>
25#include <linux/delay.h>
26#include <linux/dmaengine.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/iopoll.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/of_device.h>
33#include <linux/platform_device.h>
34#include <linux/reset.h>
35
36#include <crypto/engine.h>
37#include <crypto/hash.h>
38#include <crypto/md5.h>
39#include <crypto/scatterwalk.h>
40#include <crypto/sha.h>
41#include <crypto/internal/hash.h>
42
43#define HASH_CR 0x00
44#define HASH_DIN 0x04
45#define HASH_STR 0x08
46#define HASH_IMR 0x20
47#define HASH_SR 0x24
48#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
49#define HASH_HREG(x) (0x310 + ((x) * 0x04))
50#define HASH_HWCFGR 0x3F0
51#define HASH_VER 0x3F4
52#define HASH_ID 0x3F8
53
54/* Control Register */
55#define HASH_CR_INIT BIT(2)
56#define HASH_CR_DMAE BIT(3)
57#define HASH_CR_DATATYPE_POS 4
58#define HASH_CR_MODE BIT(6)
59#define HASH_CR_MDMAT BIT(13)
60#define HASH_CR_DMAA BIT(14)
61#define HASH_CR_LKEY BIT(16)
62
63#define HASH_CR_ALGO_SHA1 0x0
64#define HASH_CR_ALGO_MD5 0x80
65#define HASH_CR_ALGO_SHA224 0x40000
66#define HASH_CR_ALGO_SHA256 0x40080
67
68/* Interrupt */
69#define HASH_DINIE BIT(0)
70#define HASH_DCIE BIT(1)
71
72/* Interrupt Mask */
73#define HASH_MASK_CALC_COMPLETION BIT(0)
74#define HASH_MASK_DATA_INPUT BIT(1)
75
76/* Context swap register */
77#define HASH_CSR_REGISTER_NUMBER 53
78
79/* Status Flags */
80#define HASH_SR_DATA_INPUT_READY BIT(0)
81#define HASH_SR_OUTPUT_READY BIT(1)
82#define HASH_SR_DMA_ACTIVE BIT(2)
83#define HASH_SR_BUSY BIT(3)
84
85/* STR Register */
86#define HASH_STR_NBLW_MASK GENMASK(4, 0)
87#define HASH_STR_DCAL BIT(8)
88
89#define HASH_FLAGS_INIT BIT(0)
90#define HASH_FLAGS_OUTPUT_READY BIT(1)
91#define HASH_FLAGS_CPU BIT(2)
92#define HASH_FLAGS_DMA_READY BIT(3)
93#define HASH_FLAGS_DMA_ACTIVE BIT(4)
94#define HASH_FLAGS_HMAC_INIT BIT(5)
95#define HASH_FLAGS_HMAC_FINAL BIT(6)
96#define HASH_FLAGS_HMAC_KEY BIT(7)
97
98#define HASH_FLAGS_FINAL BIT(15)
99#define HASH_FLAGS_FINUP BIT(16)
100#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
101#define HASH_FLAGS_MD5 BIT(18)
102#define HASH_FLAGS_SHA1 BIT(19)
103#define HASH_FLAGS_SHA224 BIT(20)
104#define HASH_FLAGS_SHA256 BIT(21)
105#define HASH_FLAGS_ERRORS BIT(22)
106#define HASH_FLAGS_HMAC BIT(23)
107
108#define HASH_OP_UPDATE 1
109#define HASH_OP_FINAL 2
110
111enum stm32_hash_data_format {
112 HASH_DATA_32_BITS = 0x0,
113 HASH_DATA_16_BITS = 0x1,
114 HASH_DATA_8_BITS = 0x2,
115 HASH_DATA_1_BIT = 0x3
116};
117
118#define HASH_BUFLEN 256
119#define HASH_LONG_KEY 64
120#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
121#define HASH_QUEUE_LENGTH 16
122#define HASH_DMA_THRESHOLD 50
123
124struct stm32_hash_ctx {
125 struct stm32_hash_dev *hdev;
126 unsigned long flags;
127
128 u8 key[HASH_MAX_KEY_SIZE];
129 int keylen;
130};
131
132struct stm32_hash_request_ctx {
133 struct stm32_hash_dev *hdev;
134 unsigned long flags;
135 unsigned long op;
136
137 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
138 size_t digcnt;
139 size_t bufcnt;
140 size_t buflen;
141
142 /* DMA */
143 struct scatterlist *sg;
144 unsigned int offset;
145 unsigned int total;
146 struct scatterlist sg_key;
147
148 dma_addr_t dma_addr;
149 size_t dma_ct;
150 int nents;
151
152 u8 data_type;
153
154 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
155
156 /* Export Context */
157 u32 *hw_context;
158};
159
160struct stm32_hash_algs_info {
161 struct ahash_alg *algs_list;
162 size_t size;
163};
164
165struct stm32_hash_pdata {
166 struct stm32_hash_algs_info *algs_info;
167 size_t algs_info_size;
168};
169
170struct stm32_hash_dev {
171 struct list_head list;
172 struct device *dev;
173 struct clk *clk;
174 struct reset_control *rst;
175 void __iomem *io_base;
176 phys_addr_t phys_base;
177 u32 dma_mode;
178 u32 dma_maxburst;
179
180 spinlock_t lock; /* lock to protect queue */
181
182 struct ahash_request *req;
183 struct crypto_engine *engine;
184
185 int err;
186 unsigned long flags;
187
188 struct dma_chan *dma_lch;
189 struct completion dma_completion;
190
191 const struct stm32_hash_pdata *pdata;
192};
193
194struct stm32_hash_drv {
195 struct list_head dev_list;
196 spinlock_t lock; /* List protection access */
197};
198
199static struct stm32_hash_drv stm32_hash = {
200 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
201 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
202};
203
204static void stm32_hash_dma_callback(void *param);
205
206static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
207{
208 return readl_relaxed(hdev->io_base + offset);
209}
210
211static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
212 u32 offset, u32 value)
213{
214 writel_relaxed(value, hdev->io_base + offset);
215}
216
217static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
218{
219 u32 status;
220
221 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
222 !(status & HASH_SR_BUSY), 10, 10000);
223}
224
225static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
226{
227 u32 reg;
228
229 reg = stm32_hash_read(hdev, HASH_STR);
230 reg &= ~(HASH_STR_NBLW_MASK);
231 reg |= (8U * ((length) % 4U));
232 stm32_hash_write(hdev, HASH_STR, reg);
233}
234
235static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
236{
237 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
238 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
239 u32 reg;
240 int keylen = ctx->keylen;
241 void *key = ctx->key;
242
243 if (keylen) {
244 stm32_hash_set_nblw(hdev, keylen);
245
246 while (keylen > 0) {
247 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
248 keylen -= 4;
249 key += 4;
250 }
251
252 reg = stm32_hash_read(hdev, HASH_STR);
253 reg |= HASH_STR_DCAL;
254 stm32_hash_write(hdev, HASH_STR, reg);
255
256 return -EINPROGRESS;
257 }
258
259 return 0;
260}
261
262static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
263{
264 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
265 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
266 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
267
268 u32 reg = HASH_CR_INIT;
269
270 if (!(hdev->flags & HASH_FLAGS_INIT)) {
271 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
272 case HASH_FLAGS_MD5:
273 reg |= HASH_CR_ALGO_MD5;
274 break;
275 case HASH_FLAGS_SHA1:
276 reg |= HASH_CR_ALGO_SHA1;
277 break;
278 case HASH_FLAGS_SHA224:
279 reg |= HASH_CR_ALGO_SHA224;
280 break;
281 case HASH_FLAGS_SHA256:
282 reg |= HASH_CR_ALGO_SHA256;
283 break;
284 default:
285 reg |= HASH_CR_ALGO_MD5;
286 }
287
288 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
289
290 if (rctx->flags & HASH_FLAGS_HMAC) {
291 hdev->flags |= HASH_FLAGS_HMAC;
292 reg |= HASH_CR_MODE;
293 if (ctx->keylen > HASH_LONG_KEY)
294 reg |= HASH_CR_LKEY;
295 }
296
297 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
298
299 stm32_hash_write(hdev, HASH_CR, reg);
300
301 hdev->flags |= HASH_FLAGS_INIT;
302
303 dev_dbg(hdev->dev, "Write Control %x\n", reg);
304 }
305}
306
307static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
308{
309 size_t count;
310
311 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
312 count = min(rctx->sg->length - rctx->offset, rctx->total);
313 count = min(count, rctx->buflen - rctx->bufcnt);
314
315 if (count <= 0) {
316 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
317 rctx->sg = sg_next(rctx->sg);
318 continue;
319 } else {
320 break;
321 }
322 }
323
324 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
325 rctx->offset, count, 0);
326
327 rctx->bufcnt += count;
328 rctx->offset += count;
329 rctx->total -= count;
330
331 if (rctx->offset == rctx->sg->length) {
332 rctx->sg = sg_next(rctx->sg);
333 if (rctx->sg)
334 rctx->offset = 0;
335 else
336 rctx->total = 0;
337 }
338 }
339}
340
341static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
342 const u8 *buf, size_t length, int final)
343{
344 unsigned int count, len32;
345 const u32 *buffer = (const u32 *)buf;
346 u32 reg;
347
348 if (final)
349 hdev->flags |= HASH_FLAGS_FINAL;
350
351 len32 = DIV_ROUND_UP(length, sizeof(u32));
352
353 dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
354 __func__, length, final, len32);
355
356 hdev->flags |= HASH_FLAGS_CPU;
357
358 stm32_hash_write_ctrl(hdev);
359
360 if (stm32_hash_wait_busy(hdev))
361 return -ETIMEDOUT;
362
363 if ((hdev->flags & HASH_FLAGS_HMAC) &&
364 (hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
365 hdev->flags |= HASH_FLAGS_HMAC_KEY;
366 stm32_hash_write_key(hdev);
367 if (stm32_hash_wait_busy(hdev))
368 return -ETIMEDOUT;
369 }
370
371 for (count = 0; count < len32; count++)
372 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
373
374 if (final) {
375 stm32_hash_set_nblw(hdev, length);
376 reg = stm32_hash_read(hdev, HASH_STR);
377 reg |= HASH_STR_DCAL;
378 stm32_hash_write(hdev, HASH_STR, reg);
379 if (hdev->flags & HASH_FLAGS_HMAC) {
380 if (stm32_hash_wait_busy(hdev))
381 return -ETIMEDOUT;
382 stm32_hash_write_key(hdev);
383 }
384 return -EINPROGRESS;
385 }
386
387 return 0;
388}
389
390static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
391{
392 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
393 int bufcnt, err = 0, final;
394
395 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
396
397 final = (rctx->flags & HASH_FLAGS_FINUP);
398
399 while ((rctx->total >= rctx->buflen) ||
400 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
401 stm32_hash_append_sg(rctx);
402 bufcnt = rctx->bufcnt;
403 rctx->bufcnt = 0;
404 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
405 }
406
407 stm32_hash_append_sg(rctx);
408
409 if (final) {
410 bufcnt = rctx->bufcnt;
411 rctx->bufcnt = 0;
412 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
413 (rctx->flags & HASH_FLAGS_FINUP));
414 }
415
416 return err;
417}
418
419static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
420 struct scatterlist *sg, int length, int mdma)
421{
422 struct dma_async_tx_descriptor *in_desc;
423 dma_cookie_t cookie;
424 u32 reg;
425 int err;
426
427 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
428 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
429 DMA_CTRL_ACK);
430 if (!in_desc) {
431 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
432 return -ENOMEM;
433 }
434
435 reinit_completion(&hdev->dma_completion);
436 in_desc->callback = stm32_hash_dma_callback;
437 in_desc->callback_param = hdev;
438
439 hdev->flags |= HASH_FLAGS_FINAL;
440 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
441
442 reg = stm32_hash_read(hdev, HASH_CR);
443
444 if (mdma)
445 reg |= HASH_CR_MDMAT;
446 else
447 reg &= ~HASH_CR_MDMAT;
448
449 reg |= HASH_CR_DMAE;
450
451 stm32_hash_write(hdev, HASH_CR, reg);
452
453 stm32_hash_set_nblw(hdev, length);
454
455 cookie = dmaengine_submit(in_desc);
456 err = dma_submit_error(cookie);
457 if (err)
458 return -ENOMEM;
459
460 dma_async_issue_pending(hdev->dma_lch);
461
462 if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
463 msecs_to_jiffies(100)))
464 err = -ETIMEDOUT;
465
466 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
467 NULL, NULL) != DMA_COMPLETE)
468 err = -ETIMEDOUT;
469
470 if (err) {
471 dev_err(hdev->dev, "DMA Error %i\n", err);
472 dmaengine_terminate_all(hdev->dma_lch);
473 return err;
474 }
475
476 return -EINPROGRESS;
477}
478
479static void stm32_hash_dma_callback(void *param)
480{
481 struct stm32_hash_dev *hdev = param;
482
483 complete(&hdev->dma_completion);
484
485 hdev->flags |= HASH_FLAGS_DMA_READY;
486}
487
488static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
489{
490 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
491 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
492 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
493 int err;
494
495 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
496 err = stm32_hash_write_key(hdev);
497 if (stm32_hash_wait_busy(hdev))
498 return -ETIMEDOUT;
499 } else {
500 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
501 sg_init_one(&rctx->sg_key, ctx->key,
502 ALIGN(ctx->keylen, sizeof(u32)));
503
504 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
505 DMA_TO_DEVICE);
506 if (rctx->dma_ct == 0) {
507 dev_err(hdev->dev, "dma_map_sg error\n");
508 return -ENOMEM;
509 }
510
511 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
512
513 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
514 }
515
516 return err;
517}
518
519static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
520{
521 struct dma_slave_config dma_conf;
522 int err;
523
524 memset(&dma_conf, 0, sizeof(dma_conf));
525
526 dma_conf.direction = DMA_MEM_TO_DEV;
527 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
528 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
529 dma_conf.src_maxburst = hdev->dma_maxburst;
530 dma_conf.dst_maxburst = hdev->dma_maxburst;
531 dma_conf.device_fc = false;
532
533 hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
534 if (!hdev->dma_lch) {
535 dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
536 return -EBUSY;
537 }
538
539 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
540 if (err) {
541 dma_release_channel(hdev->dma_lch);
542 hdev->dma_lch = NULL;
543 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
544 return err;
545 }
546
547 init_completion(&hdev->dma_completion);
548
549 return 0;
550}
551
552static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
553{
554 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
555 struct scatterlist sg[1], *tsg;
Arnd Bergmann532f4192017-09-12 11:35:39 +0200556 int err = 0, len = 0, reg, ncp = 0;
lionel.debieve@st.com8a1012d2017-07-13 15:32:27 +0200557 unsigned int i;
Arnd Bergmann532f4192017-09-12 11:35:39 +0200558 u32 *buffer = (void *)rctx->buffer;
lionel.debieve@st.com8a1012d2017-07-13 15:32:27 +0200559
560 rctx->sg = hdev->req->src;
561 rctx->total = hdev->req->nbytes;
562
563 rctx->nents = sg_nents(rctx->sg);
564
565 if (rctx->nents < 0)
566 return -EINVAL;
567
568 stm32_hash_write_ctrl(hdev);
569
570 if (hdev->flags & HASH_FLAGS_HMAC) {
571 err = stm32_hash_hmac_dma_send(hdev);
572 if (err != -EINPROGRESS)
573 return err;
574 }
575
576 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
577 len = sg->length;
578
579 sg[0] = *tsg;
580 if (sg_is_last(sg)) {
581 if (hdev->dma_mode == 1) {
582 len = (ALIGN(sg->length, 16) - 16);
583
584 ncp = sg_pcopy_to_buffer(
585 rctx->sg, rctx->nents,
586 rctx->buffer, sg->length - len,
587 rctx->total - sg->length + len);
588
589 sg->length = len;
590 } else {
591 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
592 len = sg->length;
593 sg->length = ALIGN(sg->length,
594 sizeof(u32));
595 }
596 }
597 }
598
599 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
600 DMA_TO_DEVICE);
601 if (rctx->dma_ct == 0) {
602 dev_err(hdev->dev, "dma_map_sg error\n");
603 return -ENOMEM;
604 }
605
606 err = stm32_hash_xmit_dma(hdev, sg, len,
607 !sg_is_last(sg));
608
609 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
610
611 if (err == -ENOMEM)
612 return err;
613 }
614
615 if (hdev->dma_mode == 1) {
616 if (stm32_hash_wait_busy(hdev))
617 return -ETIMEDOUT;
618 reg = stm32_hash_read(hdev, HASH_CR);
619 reg &= ~HASH_CR_DMAE;
620 reg |= HASH_CR_DMAA;
621 stm32_hash_write(hdev, HASH_CR, reg);
622
Arnd Bergmann532f4192017-09-12 11:35:39 +0200623 if (ncp) {
624 memset(buffer + ncp, 0,
625 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
626 writesl(hdev->io_base + HASH_DIN, buffer,
627 DIV_ROUND_UP(ncp, sizeof(u32)));
628 }
629 stm32_hash_set_nblw(hdev, DIV_ROUND_UP(ncp, sizeof(u32)));
lionel.debieve@st.com8a1012d2017-07-13 15:32:27 +0200630 reg = stm32_hash_read(hdev, HASH_STR);
631 reg |= HASH_STR_DCAL;
632 stm32_hash_write(hdev, HASH_STR, reg);
633 err = -EINPROGRESS;
634 }
635
636 if (hdev->flags & HASH_FLAGS_HMAC) {
637 if (stm32_hash_wait_busy(hdev))
638 return -ETIMEDOUT;
639 err = stm32_hash_hmac_dma_send(hdev);
640 }
641
642 return err;
643}
644
645static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
646{
647 struct stm32_hash_dev *hdev = NULL, *tmp;
648
649 spin_lock_bh(&stm32_hash.lock);
650 if (!ctx->hdev) {
651 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
652 hdev = tmp;
653 break;
654 }
655 ctx->hdev = hdev;
656 } else {
657 hdev = ctx->hdev;
658 }
659
660 spin_unlock_bh(&stm32_hash.lock);
661
662 return hdev;
663}
664
665static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
666{
667 struct scatterlist *sg;
668 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
669 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
670 int i;
671
672 if (req->nbytes <= HASH_DMA_THRESHOLD)
673 return false;
674
675 if (sg_nents(req->src) > 1) {
676 if (hdev->dma_mode == 1)
677 return false;
678 for_each_sg(req->src, sg, sg_nents(req->src), i) {
679 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
680 (!sg_is_last(sg)))
681 return false;
682 }
683 }
684
685 if (req->src->offset % 4)
686 return false;
687
688 return true;
689}
690
691static int stm32_hash_init(struct ahash_request *req)
692{
693 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
694 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
695 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
696 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
697
698 rctx->hdev = hdev;
699
700 rctx->flags = HASH_FLAGS_CPU;
701
702 rctx->digcnt = crypto_ahash_digestsize(tfm);
703 switch (rctx->digcnt) {
704 case MD5_DIGEST_SIZE:
705 rctx->flags |= HASH_FLAGS_MD5;
706 break;
707 case SHA1_DIGEST_SIZE:
708 rctx->flags |= HASH_FLAGS_SHA1;
709 break;
710 case SHA224_DIGEST_SIZE:
711 rctx->flags |= HASH_FLAGS_SHA224;
712 break;
713 case SHA256_DIGEST_SIZE:
714 rctx->flags |= HASH_FLAGS_SHA256;
715 break;
716 default:
717 return -EINVAL;
718 }
719
720 rctx->bufcnt = 0;
721 rctx->buflen = HASH_BUFLEN;
722 rctx->total = 0;
723 rctx->offset = 0;
724 rctx->data_type = HASH_DATA_8_BITS;
725
726 memset(rctx->buffer, 0, HASH_BUFLEN);
727
728 if (ctx->flags & HASH_FLAGS_HMAC)
729 rctx->flags |= HASH_FLAGS_HMAC;
730
731 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
732
733 return 0;
734}
735
736static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
737{
738 return stm32_hash_update_cpu(hdev);
739}
740
741static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
742{
743 struct ahash_request *req = hdev->req;
744 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
745 int err;
746
747 if (!(rctx->flags & HASH_FLAGS_CPU))
748 err = stm32_hash_dma_send(hdev);
749 else
750 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, rctx->bufcnt, 1);
751
752 rctx->bufcnt = 0;
753
754 return err;
755}
756
757static void stm32_hash_copy_hash(struct ahash_request *req)
758{
759 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
760 u32 *hash = (u32 *)rctx->digest;
761 unsigned int i, hashsize;
762
763 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
764 case HASH_FLAGS_MD5:
765 hashsize = MD5_DIGEST_SIZE;
766 break;
767 case HASH_FLAGS_SHA1:
768 hashsize = SHA1_DIGEST_SIZE;
769 break;
770 case HASH_FLAGS_SHA224:
771 hashsize = SHA224_DIGEST_SIZE;
772 break;
773 case HASH_FLAGS_SHA256:
774 hashsize = SHA256_DIGEST_SIZE;
775 break;
776 default:
777 return;
778 }
779
780 for (i = 0; i < hashsize / sizeof(u32); i++)
781 hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
782 HASH_HREG(i)));
783}
784
785static int stm32_hash_finish(struct ahash_request *req)
786{
787 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
788
789 if (!req->result)
790 return -EINVAL;
791
792 memcpy(req->result, rctx->digest, rctx->digcnt);
793
794 return 0;
795}
796
797static void stm32_hash_finish_req(struct ahash_request *req, int err)
798{
799 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
800 struct stm32_hash_dev *hdev = rctx->hdev;
801
802 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
803 stm32_hash_copy_hash(req);
804 err = stm32_hash_finish(req);
805 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
806 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
807 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
808 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
809 HASH_FLAGS_HMAC_KEY);
810 } else {
811 rctx->flags |= HASH_FLAGS_ERRORS;
812 }
813
814 crypto_finalize_hash_request(hdev->engine, req, err);
815}
816
817static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
818 struct stm32_hash_request_ctx *rctx)
819{
820 if (!(HASH_FLAGS_INIT & hdev->flags)) {
821 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
822 stm32_hash_write(hdev, HASH_STR, 0);
823 stm32_hash_write(hdev, HASH_DIN, 0);
824 stm32_hash_write(hdev, HASH_IMR, 0);
825 hdev->err = 0;
826 }
827
828 return 0;
829}
830
831static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
832 struct ahash_request *req)
833{
834 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
835}
836
837static int stm32_hash_prepare_req(struct crypto_engine *engine,
838 struct ahash_request *req)
839{
840 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
841 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
842 struct stm32_hash_request_ctx *rctx;
843
844 if (!hdev)
845 return -ENODEV;
846
847 hdev->req = req;
848
849 rctx = ahash_request_ctx(req);
850
851 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
852 rctx->op, req->nbytes);
853
854 return stm32_hash_hw_init(hdev, rctx);
855}
856
857static int stm32_hash_one_request(struct crypto_engine *engine,
858 struct ahash_request *req)
859{
860 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
861 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
862 struct stm32_hash_request_ctx *rctx;
863 int err = 0;
864
865 if (!hdev)
866 return -ENODEV;
867
868 hdev->req = req;
869
870 rctx = ahash_request_ctx(req);
871
872 if (rctx->op == HASH_OP_UPDATE)
873 err = stm32_hash_update_req(hdev);
874 else if (rctx->op == HASH_OP_FINAL)
875 err = stm32_hash_final_req(hdev);
876
877 if (err != -EINPROGRESS)
878 /* done task will not finish it, so do it here */
879 stm32_hash_finish_req(req, err);
880
881 return 0;
882}
883
884static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
885{
886 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
887 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
888 struct stm32_hash_dev *hdev = ctx->hdev;
889
890 rctx->op = op;
891
892 return stm32_hash_handle_queue(hdev, req);
893}
894
895static int stm32_hash_update(struct ahash_request *req)
896{
897 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
898 int ret;
899
900 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
901 return 0;
902
903 rctx->total = req->nbytes;
904 rctx->sg = req->src;
905 rctx->offset = 0;
906
907 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
908 stm32_hash_append_sg(rctx);
909 return 0;
910 }
911
912 ret = stm32_hash_enqueue(req, HASH_OP_UPDATE);
913
914 if (rctx->flags & HASH_FLAGS_FINUP)
915 return ret;
916
917 return 0;
918}
919
920static int stm32_hash_final(struct ahash_request *req)
921{
922 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
923
924 rctx->flags |= HASH_FLAGS_FINUP;
925
926 return stm32_hash_enqueue(req, HASH_OP_FINAL);
927}
928
929static int stm32_hash_finup(struct ahash_request *req)
930{
931 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
932 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
933 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
934 int err1, err2;
935
936 rctx->flags |= HASH_FLAGS_FINUP;
937
938 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
939 rctx->flags &= ~HASH_FLAGS_CPU;
940
941 err1 = stm32_hash_update(req);
942
943 if (err1 == -EINPROGRESS || err1 == -EBUSY)
944 return err1;
945
946 /*
947 * final() has to be always called to cleanup resources
948 * even if update() failed, except EINPROGRESS
949 */
950 err2 = stm32_hash_final(req);
951
952 return err1 ?: err2;
953}
954
955static int stm32_hash_digest(struct ahash_request *req)
956{
957 return stm32_hash_init(req) ?: stm32_hash_finup(req);
958}
959
960static int stm32_hash_export(struct ahash_request *req, void *out)
961{
962 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
963 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
964 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
965 u32 *preg;
966 unsigned int i;
967
968 while (!(stm32_hash_read(hdev, HASH_SR) & HASH_SR_DATA_INPUT_READY))
969 cpu_relax();
970
971 rctx->hw_context = kmalloc(sizeof(u32) * (3 + HASH_CSR_REGISTER_NUMBER),
972 GFP_KERNEL);
973
974 preg = rctx->hw_context;
975
976 *preg++ = stm32_hash_read(hdev, HASH_IMR);
977 *preg++ = stm32_hash_read(hdev, HASH_STR);
978 *preg++ = stm32_hash_read(hdev, HASH_CR);
979 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
980 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
981
982 memcpy(out, rctx, sizeof(*rctx));
983
984 return 0;
985}
986
987static int stm32_hash_import(struct ahash_request *req, const void *in)
988{
989 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
990 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
991 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
992 const u32 *preg = in;
993 u32 reg;
994 unsigned int i;
995
996 memcpy(rctx, in, sizeof(*rctx));
997
998 preg = rctx->hw_context;
999
1000 stm32_hash_write(hdev, HASH_IMR, *preg++);
1001 stm32_hash_write(hdev, HASH_STR, *preg++);
1002 stm32_hash_write(hdev, HASH_CR, *preg);
1003 reg = *preg++ | HASH_CR_INIT;
1004 stm32_hash_write(hdev, HASH_CR, reg);
1005
1006 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1007 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1008
1009 kfree(rctx->hw_context);
1010
1011 return 0;
1012}
1013
1014static int stm32_hash_setkey(struct crypto_ahash *tfm,
1015 const u8 *key, unsigned int keylen)
1016{
1017 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1018
1019 if (keylen <= HASH_MAX_KEY_SIZE) {
1020 memcpy(ctx->key, key, keylen);
1021 ctx->keylen = keylen;
1022 } else {
1023 return -ENOMEM;
1024 }
1025
1026 return 0;
1027}
1028
1029static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1030 const char *algs_hmac_name)
1031{
1032 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1033
1034 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1035 sizeof(struct stm32_hash_request_ctx));
1036
1037 ctx->keylen = 0;
1038
1039 if (algs_hmac_name)
1040 ctx->flags |= HASH_FLAGS_HMAC;
1041
1042 return 0;
1043}
1044
1045static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1046{
1047 return stm32_hash_cra_init_algs(tfm, NULL);
1048}
1049
1050static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1051{
1052 return stm32_hash_cra_init_algs(tfm, "md5");
1053}
1054
1055static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1056{
1057 return stm32_hash_cra_init_algs(tfm, "sha1");
1058}
1059
1060static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1061{
1062 return stm32_hash_cra_init_algs(tfm, "sha224");
1063}
1064
1065static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1066{
1067 return stm32_hash_cra_init_algs(tfm, "sha256");
1068}
1069
1070static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1071{
1072 struct stm32_hash_dev *hdev = dev_id;
1073 int err;
1074
1075 if (HASH_FLAGS_CPU & hdev->flags) {
1076 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1077 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1078 goto finish;
1079 }
1080 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1081 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1082 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1083 goto finish;
1084 }
1085 }
1086
1087 return IRQ_HANDLED;
1088
1089finish:
1090 /*Finish current request */
1091 stm32_hash_finish_req(hdev->req, err);
1092
1093 return IRQ_HANDLED;
1094}
1095
1096static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1097{
1098 struct stm32_hash_dev *hdev = dev_id;
1099 u32 reg;
1100
1101 reg = stm32_hash_read(hdev, HASH_SR);
1102 if (reg & HASH_SR_OUTPUT_READY) {
1103 reg &= ~HASH_SR_OUTPUT_READY;
1104 stm32_hash_write(hdev, HASH_SR, reg);
1105 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1106 return IRQ_WAKE_THREAD;
1107 }
1108
1109 return IRQ_NONE;
1110}
1111
1112static struct ahash_alg algs_md5_sha1[] = {
1113 {
1114 .init = stm32_hash_init,
1115 .update = stm32_hash_update,
1116 .final = stm32_hash_final,
1117 .finup = stm32_hash_finup,
1118 .digest = stm32_hash_digest,
1119 .export = stm32_hash_export,
1120 .import = stm32_hash_import,
1121 .halg = {
1122 .digestsize = MD5_DIGEST_SIZE,
1123 .statesize = sizeof(struct stm32_hash_request_ctx),
1124 .base = {
1125 .cra_name = "md5",
1126 .cra_driver_name = "stm32-md5",
1127 .cra_priority = 200,
1128 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1129 CRYPTO_ALG_ASYNC |
1130 CRYPTO_ALG_KERN_DRIVER_ONLY,
1131 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1132 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1133 .cra_alignmask = 3,
1134 .cra_init = stm32_hash_cra_init,
1135 .cra_module = THIS_MODULE,
1136 }
1137 }
1138 },
1139 {
1140 .init = stm32_hash_init,
1141 .update = stm32_hash_update,
1142 .final = stm32_hash_final,
1143 .finup = stm32_hash_finup,
1144 .digest = stm32_hash_digest,
1145 .export = stm32_hash_export,
1146 .import = stm32_hash_import,
1147 .setkey = stm32_hash_setkey,
1148 .halg = {
1149 .digestsize = MD5_DIGEST_SIZE,
1150 .statesize = sizeof(struct stm32_hash_request_ctx),
1151 .base = {
1152 .cra_name = "hmac(md5)",
1153 .cra_driver_name = "stm32-hmac-md5",
1154 .cra_priority = 200,
1155 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1156 CRYPTO_ALG_ASYNC |
1157 CRYPTO_ALG_KERN_DRIVER_ONLY,
1158 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1159 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1160 .cra_alignmask = 3,
1161 .cra_init = stm32_hash_cra_md5_init,
1162 .cra_module = THIS_MODULE,
1163 }
1164 }
1165 },
1166 {
1167 .init = stm32_hash_init,
1168 .update = stm32_hash_update,
1169 .final = stm32_hash_final,
1170 .finup = stm32_hash_finup,
1171 .digest = stm32_hash_digest,
1172 .export = stm32_hash_export,
1173 .import = stm32_hash_import,
1174 .halg = {
1175 .digestsize = SHA1_DIGEST_SIZE,
1176 .statesize = sizeof(struct stm32_hash_request_ctx),
1177 .base = {
1178 .cra_name = "sha1",
1179 .cra_driver_name = "stm32-sha1",
1180 .cra_priority = 200,
1181 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1182 CRYPTO_ALG_ASYNC |
1183 CRYPTO_ALG_KERN_DRIVER_ONLY,
1184 .cra_blocksize = SHA1_BLOCK_SIZE,
1185 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1186 .cra_alignmask = 3,
1187 .cra_init = stm32_hash_cra_init,
1188 .cra_module = THIS_MODULE,
1189 }
1190 }
1191 },
1192 {
1193 .init = stm32_hash_init,
1194 .update = stm32_hash_update,
1195 .final = stm32_hash_final,
1196 .finup = stm32_hash_finup,
1197 .digest = stm32_hash_digest,
1198 .export = stm32_hash_export,
1199 .import = stm32_hash_import,
1200 .setkey = stm32_hash_setkey,
1201 .halg = {
1202 .digestsize = SHA1_DIGEST_SIZE,
1203 .statesize = sizeof(struct stm32_hash_request_ctx),
1204 .base = {
1205 .cra_name = "hmac(sha1)",
1206 .cra_driver_name = "stm32-hmac-sha1",
1207 .cra_priority = 200,
1208 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1209 CRYPTO_ALG_ASYNC |
1210 CRYPTO_ALG_KERN_DRIVER_ONLY,
1211 .cra_blocksize = SHA1_BLOCK_SIZE,
1212 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1213 .cra_alignmask = 3,
1214 .cra_init = stm32_hash_cra_sha1_init,
1215 .cra_module = THIS_MODULE,
1216 }
1217 }
1218 },
1219};
1220
1221static struct ahash_alg algs_sha224_sha256[] = {
1222 {
1223 .init = stm32_hash_init,
1224 .update = stm32_hash_update,
1225 .final = stm32_hash_final,
1226 .finup = stm32_hash_finup,
1227 .digest = stm32_hash_digest,
1228 .export = stm32_hash_export,
1229 .import = stm32_hash_import,
1230 .halg = {
1231 .digestsize = SHA224_DIGEST_SIZE,
1232 .statesize = sizeof(struct stm32_hash_request_ctx),
1233 .base = {
1234 .cra_name = "sha224",
1235 .cra_driver_name = "stm32-sha224",
1236 .cra_priority = 200,
1237 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1238 CRYPTO_ALG_ASYNC |
1239 CRYPTO_ALG_KERN_DRIVER_ONLY,
1240 .cra_blocksize = SHA224_BLOCK_SIZE,
1241 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1242 .cra_alignmask = 3,
1243 .cra_init = stm32_hash_cra_init,
1244 .cra_module = THIS_MODULE,
1245 }
1246 }
1247 },
1248 {
1249 .init = stm32_hash_init,
1250 .update = stm32_hash_update,
1251 .final = stm32_hash_final,
1252 .finup = stm32_hash_finup,
1253 .digest = stm32_hash_digest,
1254 .setkey = stm32_hash_setkey,
1255 .export = stm32_hash_export,
1256 .import = stm32_hash_import,
1257 .halg = {
1258 .digestsize = SHA224_DIGEST_SIZE,
1259 .statesize = sizeof(struct stm32_hash_request_ctx),
1260 .base = {
1261 .cra_name = "hmac(sha224)",
1262 .cra_driver_name = "stm32-hmac-sha224",
1263 .cra_priority = 200,
1264 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1265 CRYPTO_ALG_ASYNC |
1266 CRYPTO_ALG_KERN_DRIVER_ONLY,
1267 .cra_blocksize = SHA224_BLOCK_SIZE,
1268 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1269 .cra_alignmask = 3,
1270 .cra_init = stm32_hash_cra_sha224_init,
1271 .cra_module = THIS_MODULE,
1272 }
1273 }
1274 },
1275 {
1276 .init = stm32_hash_init,
1277 .update = stm32_hash_update,
1278 .final = stm32_hash_final,
1279 .finup = stm32_hash_finup,
1280 .digest = stm32_hash_digest,
1281 .export = stm32_hash_export,
1282 .import = stm32_hash_import,
1283 .halg = {
1284 .digestsize = SHA256_DIGEST_SIZE,
1285 .statesize = sizeof(struct stm32_hash_request_ctx),
1286 .base = {
1287 .cra_name = "sha256",
1288 .cra_driver_name = "stm32-sha256",
1289 .cra_priority = 200,
1290 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1291 CRYPTO_ALG_ASYNC |
1292 CRYPTO_ALG_KERN_DRIVER_ONLY,
1293 .cra_blocksize = SHA256_BLOCK_SIZE,
1294 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1295 .cra_alignmask = 3,
1296 .cra_init = stm32_hash_cra_init,
1297 .cra_module = THIS_MODULE,
1298 }
1299 }
1300 },
1301 {
1302 .init = stm32_hash_init,
1303 .update = stm32_hash_update,
1304 .final = stm32_hash_final,
1305 .finup = stm32_hash_finup,
1306 .digest = stm32_hash_digest,
1307 .export = stm32_hash_export,
1308 .import = stm32_hash_import,
1309 .setkey = stm32_hash_setkey,
1310 .halg = {
1311 .digestsize = SHA256_DIGEST_SIZE,
1312 .statesize = sizeof(struct stm32_hash_request_ctx),
1313 .base = {
1314 .cra_name = "hmac(sha256)",
1315 .cra_driver_name = "stm32-hmac-sha256",
1316 .cra_priority = 200,
1317 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1318 CRYPTO_ALG_ASYNC |
1319 CRYPTO_ALG_KERN_DRIVER_ONLY,
1320 .cra_blocksize = SHA256_BLOCK_SIZE,
1321 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1322 .cra_alignmask = 3,
1323 .cra_init = stm32_hash_cra_sha256_init,
1324 .cra_module = THIS_MODULE,
1325 }
1326 }
1327 },
1328};
1329
1330static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1331{
1332 unsigned int i, j;
1333 int err;
1334
1335 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1336 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1337 err = crypto_register_ahash(
1338 &hdev->pdata->algs_info[i].algs_list[j]);
1339 if (err)
1340 goto err_algs;
1341 }
1342 }
1343
1344 return 0;
1345err_algs:
1346 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1347 for (; i--; ) {
1348 for (; j--;)
1349 crypto_unregister_ahash(
1350 &hdev->pdata->algs_info[i].algs_list[j]);
1351 }
1352
1353 return err;
1354}
1355
1356static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1357{
1358 unsigned int i, j;
1359
1360 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1361 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1362 crypto_unregister_ahash(
1363 &hdev->pdata->algs_info[i].algs_list[j]);
1364 }
1365
1366 return 0;
1367}
1368
1369static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1370 {
1371 .algs_list = algs_md5_sha1,
1372 .size = ARRAY_SIZE(algs_md5_sha1),
1373 },
1374};
1375
1376static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1377 .algs_info = stm32_hash_algs_info_stm32f4,
1378 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1379};
1380
1381static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1382 {
1383 .algs_list = algs_md5_sha1,
1384 .size = ARRAY_SIZE(algs_md5_sha1),
1385 },
1386 {
1387 .algs_list = algs_sha224_sha256,
1388 .size = ARRAY_SIZE(algs_sha224_sha256),
1389 },
1390};
1391
1392static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1393 .algs_info = stm32_hash_algs_info_stm32f7,
1394 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1395};
1396
1397static const struct of_device_id stm32_hash_of_match[] = {
1398 {
1399 .compatible = "st,stm32f456-hash",
1400 .data = &stm32_hash_pdata_stm32f4,
1401 },
1402 {
1403 .compatible = "st,stm32f756-hash",
1404 .data = &stm32_hash_pdata_stm32f7,
1405 },
1406 {},
1407};
1408
1409MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1410
1411static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1412 struct device *dev)
1413{
1414 const struct of_device_id *match;
1415 int err;
1416
1417 match = of_match_device(stm32_hash_of_match, dev);
1418 if (!match) {
1419 dev_err(dev, "no compatible OF match\n");
1420 return -EINVAL;
1421 }
1422
1423 err = of_property_read_u32(dev->of_node, "dma-maxburst",
1424 &hdev->dma_maxburst);
1425
1426 hdev->pdata = match->data;
1427
1428 return err;
1429}
1430
1431static int stm32_hash_probe(struct platform_device *pdev)
1432{
1433 struct stm32_hash_dev *hdev;
1434 struct device *dev = &pdev->dev;
1435 struct resource *res;
1436 int ret, irq;
1437
1438 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1439 if (!hdev)
1440 return -ENOMEM;
1441
1442 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1443 hdev->io_base = devm_ioremap_resource(dev, res);
1444 if (IS_ERR(hdev->io_base))
1445 return PTR_ERR(hdev->io_base);
1446
1447 hdev->phys_base = res->start;
1448
1449 ret = stm32_hash_get_of_match(hdev, dev);
1450 if (ret)
1451 return ret;
1452
1453 irq = platform_get_irq(pdev, 0);
1454 if (irq < 0) {
1455 dev_err(dev, "Cannot get IRQ resource\n");
1456 return irq;
1457 }
1458
1459 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1460 stm32_hash_irq_thread, IRQF_ONESHOT,
1461 dev_name(dev), hdev);
1462 if (ret) {
1463 dev_err(dev, "Cannot grab IRQ\n");
1464 return ret;
1465 }
1466
1467 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1468 if (IS_ERR(hdev->clk)) {
1469 dev_err(dev, "failed to get clock for hash (%lu)\n",
1470 PTR_ERR(hdev->clk));
1471 return PTR_ERR(hdev->clk);
1472 }
1473
1474 ret = clk_prepare_enable(hdev->clk);
1475 if (ret) {
1476 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1477 return ret;
1478 }
1479
1480 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1481 if (!IS_ERR(hdev->rst)) {
1482 reset_control_assert(hdev->rst);
1483 udelay(2);
1484 reset_control_deassert(hdev->rst);
1485 }
1486
1487 hdev->dev = dev;
1488
1489 platform_set_drvdata(pdev, hdev);
1490
1491 ret = stm32_hash_dma_init(hdev);
1492 if (ret)
1493 dev_dbg(dev, "DMA mode not available\n");
1494
1495 spin_lock(&stm32_hash.lock);
1496 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1497 spin_unlock(&stm32_hash.lock);
1498
1499 /* Initialize crypto engine */
1500 hdev->engine = crypto_engine_alloc_init(dev, 1);
1501 if (!hdev->engine) {
1502 ret = -ENOMEM;
1503 goto err_engine;
1504 }
1505
1506 hdev->engine->prepare_hash_request = stm32_hash_prepare_req;
1507 hdev->engine->hash_one_request = stm32_hash_one_request;
1508
1509 ret = crypto_engine_start(hdev->engine);
1510 if (ret)
1511 goto err_engine_start;
1512
1513 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1514
1515 /* Register algos */
1516 ret = stm32_hash_register_algs(hdev);
1517 if (ret)
1518 goto err_algs;
1519
1520 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1521 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1522
1523 return 0;
1524
1525err_algs:
1526err_engine_start:
1527 crypto_engine_exit(hdev->engine);
1528err_engine:
1529 spin_lock(&stm32_hash.lock);
1530 list_del(&hdev->list);
1531 spin_unlock(&stm32_hash.lock);
1532
1533 if (hdev->dma_lch)
1534 dma_release_channel(hdev->dma_lch);
1535
1536 clk_disable_unprepare(hdev->clk);
1537
1538 return ret;
1539}
1540
1541static int stm32_hash_remove(struct platform_device *pdev)
1542{
1543 static struct stm32_hash_dev *hdev;
1544
1545 hdev = platform_get_drvdata(pdev);
1546 if (!hdev)
1547 return -ENODEV;
1548
1549 stm32_hash_unregister_algs(hdev);
1550
1551 crypto_engine_exit(hdev->engine);
1552
1553 spin_lock(&stm32_hash.lock);
1554 list_del(&hdev->list);
1555 spin_unlock(&stm32_hash.lock);
1556
1557 if (hdev->dma_lch)
1558 dma_release_channel(hdev->dma_lch);
1559
1560 clk_disable_unprepare(hdev->clk);
1561
1562 return 0;
1563}
1564
1565static struct platform_driver stm32_hash_driver = {
1566 .probe = stm32_hash_probe,
1567 .remove = stm32_hash_remove,
1568 .driver = {
1569 .name = "stm32-hash",
1570 .of_match_table = stm32_hash_of_match,
1571 }
1572};
1573
1574module_platform_driver(stm32_hash_driver);
1575
1576MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1577MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1578MODULE_LICENSE("GPL v2");