blob: f295b4ac941de22b760651f5ac019361e00802d2 [file] [log] [blame]
Chris Metcalf867e3592010-05-28 23:09:12 -04001/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/smp.h>
27#include <linux/smp_lock.h>
28#include <linux/interrupt.h>
29#include <linux/init.h>
30#include <linux/tty.h>
31#include <linux/vt_kern.h> /* For unblank_screen() */
32#include <linux/highmem.h>
33#include <linux/module.h>
34#include <linux/kprobes.h>
35#include <linux/hugetlb.h>
36#include <linux/syscalls.h>
37#include <linux/uaccess.h>
38
39#include <asm/system.h>
40#include <asm/pgalloc.h>
41#include <asm/sections.h>
Chris Metcalf0707ad32010-06-25 17:04:17 -040042#include <asm/traps.h>
43#include <asm/syscalls.h>
Chris Metcalf867e3592010-05-28 23:09:12 -040044
45#include <arch/interrupts.h>
46
Chris Metcalf867e3592010-05-28 23:09:12 -040047static noinline void force_sig_info_fault(int si_signo, int si_code,
48 unsigned long address, int fault_num, struct task_struct *tsk)
49{
50 siginfo_t info;
51
52 if (unlikely(tsk->pid < 2)) {
53 panic("Signal %d (code %d) at %#lx sent to %s!",
54 si_signo, si_code & 0xffff, address,
55 tsk->pid ? "init" : "the idle task");
56 }
57
58 info.si_signo = si_signo;
59 info.si_errno = 0;
60 info.si_code = si_code;
61 info.si_addr = (void __user *)address;
62 info.si_trapno = fault_num;
63 force_sig_info(si_signo, &info, tsk);
64}
65
66#ifndef __tilegx__
67/*
68 * Synthesize the fault a PL0 process would get by doing a word-load of
Chris Metcalfd929b6a2010-10-14 14:34:33 -040069 * an unaligned address or a high kernel address.
Chris Metcalf867e3592010-05-28 23:09:12 -040070 */
Chris Metcalfd929b6a2010-10-14 14:34:33 -040071SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
72 struct pt_regs *, regs)
Chris Metcalf867e3592010-05-28 23:09:12 -040073{
74 if (address >= PAGE_OFFSET)
75 force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address,
76 INT_DTLB_MISS, current);
77 else
78 force_sig_info_fault(SIGBUS, BUS_ADRALN, address,
79 INT_UNALIGN_DATA, current);
80
81 /*
82 * Adjust pc to point at the actual instruction, which is unusual
83 * for syscalls normally, but is appropriate when we are claiming
84 * that a syscall swint1 caused a page fault or bus error.
85 */
86 regs->pc -= 8;
87
88 /*
89 * Mark this as a caller-save interrupt, like a normal page fault,
90 * so that when we go through the signal handler path we will
91 * properly restore r0, r1, and r2 for the signal handler arguments.
92 */
93 regs->flags |= PT_FLAGS_CALLER_SAVES;
94
95 return 0;
96}
97#endif
98
99static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
100{
101 unsigned index = pgd_index(address);
102 pgd_t *pgd_k;
103 pud_t *pud, *pud_k;
104 pmd_t *pmd, *pmd_k;
105
106 pgd += index;
107 pgd_k = init_mm.pgd + index;
108
109 if (!pgd_present(*pgd_k))
110 return NULL;
111
112 pud = pud_offset(pgd, address);
113 pud_k = pud_offset(pgd_k, address);
114 if (!pud_present(*pud_k))
115 return NULL;
116
117 pmd = pmd_offset(pud, address);
118 pmd_k = pmd_offset(pud_k, address);
119 if (!pmd_present(*pmd_k))
120 return NULL;
121 if (!pmd_present(*pmd)) {
122 set_pmd(pmd, *pmd_k);
123 arch_flush_lazy_mmu_mode();
124 } else
125 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
126 return pmd_k;
127}
128
129/*
130 * Handle a fault on the vmalloc or module mapping area
131 */
132static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
133{
134 pmd_t *pmd_k;
135 pte_t *pte_k;
136
137 /* Make sure we are in vmalloc area */
138 if (!(address >= VMALLOC_START && address < VMALLOC_END))
139 return -1;
140
141 /*
142 * Synchronize this task's top level page-table
143 * with the 'reference' page table.
144 */
145 pmd_k = vmalloc_sync_one(pgd, address);
146 if (!pmd_k)
147 return -1;
148 if (pmd_huge(*pmd_k))
149 return 0; /* support TILE huge_vmap() API */
150 pte_k = pte_offset_kernel(pmd_k, address);
151 if (!pte_present(*pte_k))
152 return -1;
153 return 0;
154}
155
156/* Wait until this PTE has completed migration. */
157static void wait_for_migration(pte_t *pte)
158{
159 if (pte_migrating(*pte)) {
160 /*
161 * Wait until the migrater fixes up this pte.
162 * We scale the loop count by the clock rate so we'll wait for
163 * a few seconds here.
164 */
165 int retries = 0;
166 int bound = get_clock_rate();
167 while (pte_migrating(*pte)) {
168 barrier();
169 if (++retries > bound)
170 panic("Hit migrating PTE (%#llx) and"
171 " page PFN %#lx still migrating",
172 pte->val, pte_pfn(*pte));
173 }
174 }
175}
176
177/*
178 * It's not generally safe to use "current" to get the page table pointer,
179 * since we might be running an oprofile interrupt in the middle of a
180 * task switch.
181 */
182static pgd_t *get_current_pgd(void)
183{
184 HV_Context ctx = hv_inquire_context();
185 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
186 struct page *pgd_page = pfn_to_page(pgd_pfn);
187 BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
188 return (pgd_t *) __va(ctx.page_table);
189}
190
191/*
192 * We can receive a page fault from a migrating PTE at any time.
193 * Handle it by just waiting until the fault resolves.
194 *
195 * It's also possible to get a migrating kernel PTE that resolves
196 * itself during the downcall from hypervisor to Linux. We just check
197 * here to see if the PTE seems valid, and if so we retry it.
198 *
199 * NOTE! We MUST NOT take any locks for this case. We may be in an
200 * interrupt or a critical region, and must do as little as possible.
201 * Similarly, we can't use atomic ops here, since we may be handling a
202 * fault caused by an atomic op access.
203 */
204static int handle_migrating_pte(pgd_t *pgd, int fault_num,
205 unsigned long address,
206 int is_kernel_mode, int write)
207{
208 pud_t *pud;
209 pmd_t *pmd;
210 pte_t *pte;
211 pte_t pteval;
212
213 if (pgd_addr_invalid(address))
214 return 0;
215
216 pgd += pgd_index(address);
217 pud = pud_offset(pgd, address);
218 if (!pud || !pud_present(*pud))
219 return 0;
220 pmd = pmd_offset(pud, address);
221 if (!pmd || !pmd_present(*pmd))
222 return 0;
223 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
224 pte_offset_kernel(pmd, address);
225 pteval = *pte;
226 if (pte_migrating(pteval)) {
227 wait_for_migration(pte);
228 return 1;
229 }
230
231 if (!is_kernel_mode || !pte_present(pteval))
232 return 0;
233 if (fault_num == INT_ITLB_MISS) {
234 if (pte_exec(pteval))
235 return 1;
236 } else if (write) {
237 if (pte_write(pteval))
238 return 1;
239 } else {
240 if (pte_read(pteval))
241 return 1;
242 }
243
244 return 0;
245}
246
247/*
248 * This routine is responsible for faulting in user pages.
249 * It passes the work off to one of the appropriate routines.
250 * It returns true if the fault was successfully handled.
251 */
252static int handle_page_fault(struct pt_regs *regs,
253 int fault_num,
254 int is_page_fault,
255 unsigned long address,
256 int write)
257{
258 struct task_struct *tsk;
259 struct mm_struct *mm;
260 struct vm_area_struct *vma;
261 unsigned long stack_offset;
262 int fault;
263 int si_code;
264 int is_kernel_mode;
265 pgd_t *pgd;
266
267 /* on TILE, protection faults are always writes */
268 if (!is_page_fault)
269 write = 1;
270
271 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
272
273 tsk = validate_current();
274
275 /*
276 * Check to see if we might be overwriting the stack, and bail
277 * out if so. The page fault code is a relatively likely
278 * place to get trapped in an infinite regress, and once we
279 * overwrite the whole stack, it becomes very hard to recover.
280 */
281 stack_offset = stack_pointer & (THREAD_SIZE-1);
282 if (stack_offset < THREAD_SIZE / 8) {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400283 pr_alert("Potential stack overrun: sp %#lx\n",
Chris Metcalf867e3592010-05-28 23:09:12 -0400284 stack_pointer);
285 show_regs(regs);
Chris Metcalf0707ad32010-06-25 17:04:17 -0400286 pr_alert("Killing current process %d/%s\n",
Chris Metcalf867e3592010-05-28 23:09:12 -0400287 tsk->pid, tsk->comm);
288 do_group_exit(SIGKILL);
289 }
290
291 /*
292 * Early on, we need to check for migrating PTE entries;
293 * see homecache.c. If we find a migrating PTE, we wait until
294 * the backing page claims to be done migrating, then we procede.
295 * For kernel PTEs, we rewrite the PTE and return and retry.
296 * Otherwise, we treat the fault like a normal "no PTE" fault,
297 * rather than trying to patch up the existing PTE.
298 */
299 pgd = get_current_pgd();
300 if (handle_migrating_pte(pgd, fault_num, address,
301 is_kernel_mode, write))
302 return 1;
303
304 si_code = SEGV_MAPERR;
305
306 /*
307 * We fault-in kernel-space virtual memory on-demand. The
308 * 'reference' page table is init_mm.pgd.
309 *
310 * NOTE! We MUST NOT take any locks for this case. We may
311 * be in an interrupt or a critical region, and should
312 * only copy the information from the master page table,
313 * nothing more.
314 *
315 * This verifies that the fault happens in kernel space
316 * and that the fault was not a protection fault.
317 */
318 if (unlikely(address >= TASK_SIZE &&
319 !is_arch_mappable_range(address, 0))) {
320 if (is_kernel_mode && is_page_fault &&
321 vmalloc_fault(pgd, address) >= 0)
322 return 1;
323 /*
324 * Don't take the mm semaphore here. If we fixup a prefetch
325 * fault we could otherwise deadlock.
326 */
327 mm = NULL; /* happy compiler */
328 vma = NULL;
329 goto bad_area_nosemaphore;
330 }
331
332 /*
333 * If we're trying to touch user-space addresses, we must
334 * be either at PL0, or else with interrupts enabled in the
335 * kernel, so either way we can re-enable interrupts here.
336 */
337 local_irq_enable();
338
339 mm = tsk->mm;
340
341 /*
342 * If we're in an interrupt, have no user context or are running in an
343 * atomic region then we must not take the fault.
344 */
345 if (in_atomic() || !mm) {
346 vma = NULL; /* happy compiler */
347 goto bad_area_nosemaphore;
348 }
349
350 /*
351 * When running in the kernel we expect faults to occur only to
352 * addresses in user space. All other faults represent errors in the
353 * kernel and should generate an OOPS. Unfortunately, in the case of an
354 * erroneous fault occurring in a code path which already holds mmap_sem
355 * we will deadlock attempting to validate the fault against the
356 * address space. Luckily the kernel only validly references user
357 * space from well defined areas of code, which are listed in the
358 * exceptions table.
359 *
360 * As the vast majority of faults will be valid we will only perform
361 * the source reference check when there is a possibility of a deadlock.
362 * Attempt to lock the address space, if we cannot we then validate the
363 * source. If this is invalid we can skip the address space check,
364 * thus avoiding the deadlock.
365 */
366 if (!down_read_trylock(&mm->mmap_sem)) {
367 if (is_kernel_mode &&
368 !search_exception_tables(regs->pc)) {
369 vma = NULL; /* happy compiler */
370 goto bad_area_nosemaphore;
371 }
372 down_read(&mm->mmap_sem);
373 }
374
375 vma = find_vma(mm, address);
376 if (!vma)
377 goto bad_area;
378 if (vma->vm_start <= address)
379 goto good_area;
380 if (!(vma->vm_flags & VM_GROWSDOWN))
381 goto bad_area;
382 if (regs->sp < PAGE_OFFSET) {
383 /*
384 * accessing the stack below sp is always a bug.
385 */
386 if (address < regs->sp)
387 goto bad_area;
388 }
389 if (expand_stack(vma, address))
390 goto bad_area;
391
392/*
393 * Ok, we have a good vm_area for this memory access, so
394 * we can handle it..
395 */
396good_area:
397 si_code = SEGV_ACCERR;
398 if (fault_num == INT_ITLB_MISS) {
399 if (!(vma->vm_flags & VM_EXEC))
400 goto bad_area;
401 } else if (write) {
402#ifdef TEST_VERIFY_AREA
403 if (!is_page_fault && regs->cs == KERNEL_CS)
Chris Metcalf0707ad32010-06-25 17:04:17 -0400404 pr_err("WP fault at "REGFMT"\n", regs->eip);
Chris Metcalf867e3592010-05-28 23:09:12 -0400405#endif
406 if (!(vma->vm_flags & VM_WRITE))
407 goto bad_area;
408 } else {
409 if (!is_page_fault || !(vma->vm_flags & VM_READ))
410 goto bad_area;
411 }
412
413 survive:
414 /*
415 * If for any reason at all we couldn't handle the fault,
416 * make sure we exit gracefully rather than endlessly redo
417 * the fault.
418 */
419 fault = handle_mm_fault(mm, vma, address, write);
420 if (unlikely(fault & VM_FAULT_ERROR)) {
421 if (fault & VM_FAULT_OOM)
422 goto out_of_memory;
423 else if (fault & VM_FAULT_SIGBUS)
424 goto do_sigbus;
425 BUG();
426 }
427 if (fault & VM_FAULT_MAJOR)
428 tsk->maj_flt++;
429 else
430 tsk->min_flt++;
431
Chris Metcalf0707ad32010-06-25 17:04:17 -0400432#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
Chris Metcalf867e3592010-05-28 23:09:12 -0400433 /*
434 * If this was an asynchronous fault,
435 * restart the appropriate engine.
436 */
437 switch (fault_num) {
438#if CHIP_HAS_TILE_DMA()
439 case INT_DMATLB_MISS:
440 case INT_DMATLB_MISS_DWNCL:
441 case INT_DMATLB_ACCESS:
442 case INT_DMATLB_ACCESS_DWNCL:
443 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
444 break;
445#endif
446#if CHIP_HAS_SN_PROC()
447 case INT_SNITLB_MISS:
448 case INT_SNITLB_MISS_DWNCL:
449 __insn_mtspr(SPR_SNCTL,
450 __insn_mfspr(SPR_SNCTL) &
451 ~SPR_SNCTL__FRZPROC_MASK);
452 break;
453#endif
454 }
Chris Metcalf0707ad32010-06-25 17:04:17 -0400455#endif
Chris Metcalf867e3592010-05-28 23:09:12 -0400456
457 up_read(&mm->mmap_sem);
458 return 1;
459
460/*
461 * Something tried to access memory that isn't in our memory map..
462 * Fix it, but check if it's kernel or user first..
463 */
464bad_area:
465 up_read(&mm->mmap_sem);
466
467bad_area_nosemaphore:
468 /* User mode accesses just cause a SIGSEGV */
469 if (!is_kernel_mode) {
470 /*
471 * It's possible to have interrupts off here.
472 */
473 local_irq_enable();
474
475 force_sig_info_fault(SIGSEGV, si_code, address,
476 fault_num, tsk);
477 return 0;
478 }
479
480no_context:
481 /* Are we prepared to handle this kernel fault? */
482 if (fixup_exception(regs))
483 return 0;
484
485/*
486 * Oops. The kernel tried to access some bad page. We'll have to
487 * terminate things with extreme prejudice.
488 */
489
490 bust_spinlocks(1);
491
492 /* FIXME: no lookup_address() yet */
493#ifdef SUPPORT_LOOKUP_ADDRESS
494 if (fault_num == INT_ITLB_MISS) {
495 pte_t *pte = lookup_address(address);
496
497 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
Chris Metcalf0707ad32010-06-25 17:04:17 -0400498 pr_crit("kernel tried to execute"
Chris Metcalf867e3592010-05-28 23:09:12 -0400499 " non-executable page - exploit attempt?"
500 " (uid: %d)\n", current->uid);
501 }
502#endif
503 if (address < PAGE_SIZE)
Chris Metcalf0707ad32010-06-25 17:04:17 -0400504 pr_alert("Unable to handle kernel NULL pointer dereference\n");
Chris Metcalf867e3592010-05-28 23:09:12 -0400505 else
Chris Metcalf0707ad32010-06-25 17:04:17 -0400506 pr_alert("Unable to handle kernel paging request\n");
507 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
508 address, regs->pc);
Chris Metcalf867e3592010-05-28 23:09:12 -0400509
510 show_regs(regs);
511
512 if (unlikely(tsk->pid < 2)) {
513 panic("Kernel page fault running %s!",
514 tsk->pid ? "init" : "the idle task");
515 }
516
517 /*
518 * More FIXME: we should probably copy the i386 here and
519 * implement a generic die() routine. Not today.
520 */
521#ifdef SUPPORT_DIE
522 die("Oops", regs);
523#endif
524 bust_spinlocks(1);
525
526 do_group_exit(SIGKILL);
527
528/*
529 * We ran out of memory, or some other thing happened to us that made
530 * us unable to handle the page fault gracefully.
531 */
532out_of_memory:
533 up_read(&mm->mmap_sem);
534 if (is_global_init(tsk)) {
535 yield();
536 down_read(&mm->mmap_sem);
537 goto survive;
538 }
Chris Metcalf0707ad32010-06-25 17:04:17 -0400539 pr_alert("VM: killing process %s\n", tsk->comm);
Chris Metcalf867e3592010-05-28 23:09:12 -0400540 if (!is_kernel_mode)
541 do_group_exit(SIGKILL);
542 goto no_context;
543
544do_sigbus:
545 up_read(&mm->mmap_sem);
546
547 /* Kernel mode? Handle exceptions or die */
548 if (is_kernel_mode)
549 goto no_context;
550
551 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk);
552 return 0;
553}
554
555#ifndef __tilegx__
556
Chris Metcalf867e3592010-05-28 23:09:12 -0400557/* We must release ICS before panicking or we won't get anywhere. */
558#define ics_panic(fmt, ...) do { \
559 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
560 panic(fmt, __VA_ARGS__); \
561} while (0)
562
Chris Metcalf867e3592010-05-28 23:09:12 -0400563/*
564 * When we take an ITLB or DTLB fault or access violation in the
565 * supervisor while the critical section bit is set, the hypervisor is
Chris Metcalfa78c9422010-10-14 16:23:03 -0400566 * reluctant to write new values into the EX_CONTEXT_K_x registers,
Chris Metcalf867e3592010-05-28 23:09:12 -0400567 * since that might indicate we have not yet squirreled the SPR
568 * contents away and can thus safely take a recursive interrupt.
Chris Metcalfa78c9422010-10-14 16:23:03 -0400569 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
Chris Metcalfc745a8a2010-08-13 08:52:19 -0400570 *
571 * Note that this routine is called before homecache_tlb_defer_enter(),
572 * which means that we can properly unlock any atomics that might
573 * be used there (good), but also means we must be very sensitive
574 * to not touch any data structures that might be located in memory
575 * that could migrate, as we could be entering the kernel on a dataplane
576 * cpu that has been deferring kernel TLB updates. This means, for
577 * example, that we can't migrate init_mm or its pgd.
Chris Metcalf867e3592010-05-28 23:09:12 -0400578 */
579struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
580 unsigned long address,
581 unsigned long info)
582{
583 unsigned long pc = info & ~1;
584 int write = info & 1;
585 pgd_t *pgd = get_current_pgd();
586
587 /* Retval is 1 at first since we will handle the fault fully. */
588 struct intvec_state state = {
589 do_page_fault, fault_num, address, write, 1
590 };
591
592 /* Validate that we are plausibly in the right routine. */
593 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
594 (fault_num != INT_DTLB_MISS &&
595 fault_num != INT_DTLB_ACCESS)) {
596 unsigned long old_pc = regs->pc;
597 regs->pc = pc;
598 ics_panic("Bad ICS page fault args:"
599 " old PC %#lx, fault %d/%d at %#lx\n",
600 old_pc, fault_num, write, address);
601 }
602
603 /* We might be faulting on a vmalloc page, so check that first. */
604 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
605 return state;
606
607 /*
608 * If we faulted with ICS set in sys_cmpxchg, we are providing
609 * a user syscall service that should generate a signal on
610 * fault. We didn't set up a kernel stack on initial entry to
611 * sys_cmpxchg, but instead had one set up by the fault, which
612 * (because sys_cmpxchg never releases ICS) came to us via the
Chris Metcalfa78c9422010-10-14 16:23:03 -0400613 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
Chris Metcalf867e3592010-05-28 23:09:12 -0400614 * still referencing the original user code. We release the
615 * atomic lock and rewrite pt_regs so that it appears that we
616 * came from user-space directly, and after we finish the
617 * fault we'll go back to user space and re-issue the swint.
618 * This way the backtrace information is correct if we need to
619 * emit a stack dump at any point while handling this.
620 *
621 * Must match register use in sys_cmpxchg().
622 */
623 if (pc >= (unsigned long) sys_cmpxchg &&
624 pc < (unsigned long) __sys_cmpxchg_end) {
625#ifdef CONFIG_SMP
626 /* Don't unlock before we could have locked. */
627 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
628 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
629 __atomic_fault_unlock(lock_ptr);
630 }
631#endif
632 regs->sp = regs->regs[27];
633 }
634
635 /*
636 * We can also fault in the atomic assembly, in which
637 * case we use the exception table to do the first-level fixup.
638 * We may re-fixup again in the real fault handler if it
639 * turns out the faulting address is just bad, and not,
640 * for example, migrating.
641 */
642 else if (pc >= (unsigned long) __start_atomic_asm_code &&
643 pc < (unsigned long) __end_atomic_asm_code) {
644 const struct exception_table_entry *fixup;
645#ifdef CONFIG_SMP
646 /* Unlock the atomic lock. */
647 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
648 __atomic_fault_unlock(lock_ptr);
649#endif
650 fixup = search_exception_tables(pc);
651 if (!fixup)
652 ics_panic("ICS atomic fault not in table:"
653 " PC %#lx, fault %d", pc, fault_num);
654 regs->pc = fixup->fixup;
655 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
656 }
657
658 /*
659 * NOTE: the one other type of access that might bring us here
660 * are the memory ops in __tns_atomic_acquire/__tns_atomic_release,
661 * but we don't have to check specially for them since we can
662 * always safely return to the address of the fault and retry,
663 * since no separate atomic locks are involved.
664 */
665
666 /*
667 * Now that we have released the atomic lock (if necessary),
668 * it's safe to spin if the PTE that caused the fault was migrating.
669 */
670 if (fault_num == INT_DTLB_ACCESS)
671 write = 1;
672 if (handle_migrating_pte(pgd, fault_num, address, 1, write))
673 return state;
674
675 /* Return zero so that we continue on with normal fault handling. */
676 state.retval = 0;
677 return state;
678}
679
680#endif /* !__tilegx__ */
681
682/*
683 * This routine handles page faults. It determines the address, and the
684 * problem, and then passes it handle_page_fault() for normal DTLB and
685 * ITLB issues, and for DMA or SN processor faults when we are in user
686 * space. For the latter, if we're in kernel mode, we just save the
687 * interrupt away appropriately and return immediately. We can't do
688 * page faults for user code while in kernel mode.
689 */
690void do_page_fault(struct pt_regs *regs, int fault_num,
691 unsigned long address, unsigned long write)
692{
693 int is_page_fault;
694
695 /* This case should have been handled by do_page_fault_ics(). */
696 BUG_ON(write & ~1);
697
698#if CHIP_HAS_TILE_DMA()
699 /*
700 * If it's a DMA fault, suspend the transfer while we're
701 * handling the miss; we'll restart after it's handled. If we
702 * don't suspend, it's possible that this process could swap
703 * out and back in, and restart the engine since the DMA is
704 * still 'running'.
705 */
706 if (fault_num == INT_DMATLB_MISS ||
707 fault_num == INT_DMATLB_ACCESS ||
708 fault_num == INT_DMATLB_MISS_DWNCL ||
709 fault_num == INT_DMATLB_ACCESS_DWNCL) {
710 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
711 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
712 SPR_DMA_STATUS__BUSY_MASK)
713 ;
714 }
715#endif
716
717 /* Validate fault num and decide if this is a first-time page fault. */
718 switch (fault_num) {
719 case INT_ITLB_MISS:
720 case INT_DTLB_MISS:
721#if CHIP_HAS_TILE_DMA()
722 case INT_DMATLB_MISS:
723 case INT_DMATLB_MISS_DWNCL:
724#endif
725#if CHIP_HAS_SN_PROC()
726 case INT_SNITLB_MISS:
727 case INT_SNITLB_MISS_DWNCL:
728#endif
729 is_page_fault = 1;
730 break;
731
732 case INT_DTLB_ACCESS:
733#if CHIP_HAS_TILE_DMA()
734 case INT_DMATLB_ACCESS:
735 case INT_DMATLB_ACCESS_DWNCL:
736#endif
737 is_page_fault = 0;
738 break;
739
740 default:
741 panic("Bad fault number %d in do_page_fault", fault_num);
742 }
743
744 if (EX1_PL(regs->ex1) != USER_PL) {
745 struct async_tlb *async;
746 switch (fault_num) {
747#if CHIP_HAS_TILE_DMA()
748 case INT_DMATLB_MISS:
749 case INT_DMATLB_ACCESS:
750 case INT_DMATLB_MISS_DWNCL:
751 case INT_DMATLB_ACCESS_DWNCL:
752 async = &current->thread.dma_async_tlb;
753 break;
754#endif
755#if CHIP_HAS_SN_PROC()
756 case INT_SNITLB_MISS:
757 case INT_SNITLB_MISS_DWNCL:
758 async = &current->thread.sn_async_tlb;
759 break;
760#endif
761 default:
762 async = NULL;
763 }
764 if (async) {
765
766 /*
767 * No vmalloc check required, so we can allow
768 * interrupts immediately at this point.
769 */
770 local_irq_enable();
771
772 set_thread_flag(TIF_ASYNC_TLB);
773 if (async->fault_num != 0) {
774 panic("Second async fault %d;"
775 " old fault was %d (%#lx/%ld)",
776 fault_num, async->fault_num,
777 address, write);
778 }
779 BUG_ON(fault_num == 0);
780 async->fault_num = fault_num;
781 async->is_fault = is_page_fault;
782 async->is_write = write;
783 async->address = address;
784 return;
785 }
786 }
787
788 handle_page_fault(regs, fault_num, is_page_fault, address, write);
789}
790
791
792#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
793/*
794 * Check an async_tlb structure to see if a deferred fault is waiting,
795 * and if so pass it to the page-fault code.
796 */
797static void handle_async_page_fault(struct pt_regs *regs,
798 struct async_tlb *async)
799{
800 if (async->fault_num) {
801 /*
802 * Clear async->fault_num before calling the page-fault
803 * handler so that if we re-interrupt before returning
804 * from the function we have somewhere to put the
805 * information from the new interrupt.
806 */
807 int fault_num = async->fault_num;
808 async->fault_num = 0;
809 handle_page_fault(regs, fault_num, async->is_fault,
810 async->address, async->is_write);
811 }
812}
813#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
814
815
816/*
817 * This routine effectively re-issues asynchronous page faults
818 * when we are returning to user space.
819 */
820void do_async_page_fault(struct pt_regs *regs)
821{
822 /*
823 * Clear thread flag early. If we re-interrupt while processing
824 * code here, we will reset it and recall this routine before
825 * returning to user space.
826 */
827 clear_thread_flag(TIF_ASYNC_TLB);
828
829#if CHIP_HAS_TILE_DMA()
830 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
831#endif
832#if CHIP_HAS_SN_PROC()
833 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
834#endif
835}
836
837void vmalloc_sync_all(void)
838{
839#ifdef __tilegx__
840 /* Currently all L1 kernel pmd's are static and shared. */
841 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
842#else
843 /*
844 * Note that races in the updates of insync and start aren't
845 * problematic: insync can only get set bits added, and updates to
846 * start are only improving performance (without affecting correctness
847 * if undone).
848 */
849 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
850 static unsigned long start = PAGE_OFFSET;
851 unsigned long address;
852
853 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
854 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
855 if (!test_bit(pgd_index(address), insync)) {
856 unsigned long flags;
857 struct list_head *pos;
858
859 spin_lock_irqsave(&pgd_lock, flags);
860 list_for_each(pos, &pgd_list)
861 if (!vmalloc_sync_one(list_to_pgd(pos),
862 address)) {
863 /* Must be at first entry in list. */
864 BUG_ON(pos != pgd_list.next);
865 break;
866 }
867 spin_unlock_irqrestore(&pgd_lock, flags);
868 if (pos != pgd_list.next)
869 set_bit(pgd_index(address), insync);
870 }
871 if (address == start && test_bit(pgd_index(address), insync))
872 start = address + PGDIR_SIZE;
873 }
874#endif
875}