blob: f61dcd1b8e3b3a2b465b2be9bdf628c7b40fdfbd [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110033#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110035#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110037#include "xfs_inum.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include "xfs_trans.h"
Nathan Scotta844f452005-11-02 14:38:42 +110039#include "xfs_sb.h"
40#include "xfs_ag.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070041#include "xfs_dir.h"
42#include "xfs_dir2.h"
43#include "xfs_dmapi.h"
44#include "xfs_mount.h"
45#include "xfs_error.h"
46#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110047#include "xfs_alloc_btree.h"
48#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070049#include "xfs_dir_sf.h"
50#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110051#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070052#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070053#include "xfs_inode.h"
Nathan Scotta844f452005-11-02 14:38:42 +110054#include "xfs_inode_item.h"
55#include "xfs_imap.h"
56#include "xfs_alloc.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070057#include "xfs_ialloc.h"
58#include "xfs_log_priv.h"
59#include "xfs_buf_item.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070060#include "xfs_log_recover.h"
61#include "xfs_extfree_item.h"
62#include "xfs_trans_priv.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070063#include "xfs_quota.h"
64#include "xfs_rw.h"
65
66STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
67STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
68STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
69 xlog_recover_item_t *item);
70#if defined(DEBUG)
71STATIC void xlog_recover_check_summary(xlog_t *);
72STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
73#else
74#define xlog_recover_check_summary(log)
75#define xlog_recover_check_ail(mp, lip, gen)
76#endif
77
78
79/*
80 * Sector aligned buffer routines for buffer create/read/write/access
81 */
82
83#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
84 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
85 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
86#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
87
88xfs_buf_t *
89xlog_get_bp(
90 xlog_t *log,
91 int num_bblks)
92{
93 ASSERT(num_bblks > 0);
94
95 if (log->l_sectbb_log) {
96 if (num_bblks > 1)
97 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
98 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
99 }
100 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
101}
102
103void
104xlog_put_bp(
105 xfs_buf_t *bp)
106{
107 xfs_buf_free(bp);
108}
109
110
111/*
112 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
113 */
114int
115xlog_bread(
116 xlog_t *log,
117 xfs_daddr_t blk_no,
118 int nbblks,
119 xfs_buf_t *bp)
120{
121 int error;
122
123 if (log->l_sectbb_log) {
124 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
125 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
126 }
127
128 ASSERT(nbblks > 0);
129 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
130 ASSERT(bp);
131
132 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
133 XFS_BUF_READ(bp);
134 XFS_BUF_BUSY(bp);
135 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
136 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
137
138 xfsbdstrat(log->l_mp, bp);
139 if ((error = xfs_iowait(bp)))
140 xfs_ioerror_alert("xlog_bread", log->l_mp,
141 bp, XFS_BUF_ADDR(bp));
142 return error;
143}
144
145/*
146 * Write out the buffer at the given block for the given number of blocks.
147 * The buffer is kept locked across the write and is returned locked.
148 * This can only be used for synchronous log writes.
149 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000150STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151xlog_bwrite(
152 xlog_t *log,
153 xfs_daddr_t blk_no,
154 int nbblks,
155 xfs_buf_t *bp)
156{
157 int error;
158
159 if (log->l_sectbb_log) {
160 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
161 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
162 }
163
164 ASSERT(nbblks > 0);
165 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
166
167 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
168 XFS_BUF_ZEROFLAGS(bp);
169 XFS_BUF_BUSY(bp);
170 XFS_BUF_HOLD(bp);
171 XFS_BUF_PSEMA(bp, PRIBIO);
172 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
173 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
174
175 if ((error = xfs_bwrite(log->l_mp, bp)))
176 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
177 bp, XFS_BUF_ADDR(bp));
178 return error;
179}
180
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000181STATIC xfs_caddr_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182xlog_align(
183 xlog_t *log,
184 xfs_daddr_t blk_no,
185 int nbblks,
186 xfs_buf_t *bp)
187{
188 xfs_caddr_t ptr;
189
190 if (!log->l_sectbb_log)
191 return XFS_BUF_PTR(bp);
192
193 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
194 ASSERT(XFS_BUF_SIZE(bp) >=
195 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
196 return ptr;
197}
198
199#ifdef DEBUG
200/*
201 * dump debug superblock and log record information
202 */
203STATIC void
204xlog_header_check_dump(
205 xfs_mount_t *mp,
206 xlog_rec_header_t *head)
207{
208 int b;
209
210 printk("%s: SB : uuid = ", __FUNCTION__);
211 for (b = 0; b < 16; b++)
212 printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
213 printk(", fmt = %d\n", XLOG_FMT);
214 printk(" log : uuid = ");
215 for (b = 0; b < 16; b++)
216 printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
217 printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
218}
219#else
220#define xlog_header_check_dump(mp, head)
221#endif
222
223/*
224 * check log record header for recovery
225 */
226STATIC int
227xlog_header_check_recover(
228 xfs_mount_t *mp,
229 xlog_rec_header_t *head)
230{
231 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
232
233 /*
234 * IRIX doesn't write the h_fmt field and leaves it zeroed
235 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
236 * a dirty log created in IRIX.
237 */
238 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
239 xlog_warn(
240 "XFS: dirty log written in incompatible format - can't recover");
241 xlog_header_check_dump(mp, head);
242 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
243 XFS_ERRLEVEL_HIGH, mp);
244 return XFS_ERROR(EFSCORRUPTED);
245 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
246 xlog_warn(
247 "XFS: dirty log entry has mismatched uuid - can't recover");
248 xlog_header_check_dump(mp, head);
249 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
250 XFS_ERRLEVEL_HIGH, mp);
251 return XFS_ERROR(EFSCORRUPTED);
252 }
253 return 0;
254}
255
256/*
257 * read the head block of the log and check the header
258 */
259STATIC int
260xlog_header_check_mount(
261 xfs_mount_t *mp,
262 xlog_rec_header_t *head)
263{
264 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
265
266 if (uuid_is_nil(&head->h_fs_uuid)) {
267 /*
268 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
269 * h_fs_uuid is nil, we assume this log was last mounted
270 * by IRIX and continue.
271 */
272 xlog_warn("XFS: nil uuid in log - IRIX style log");
273 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
274 xlog_warn("XFS: log has mismatched uuid - can't recover");
275 xlog_header_check_dump(mp, head);
276 XFS_ERROR_REPORT("xlog_header_check_mount",
277 XFS_ERRLEVEL_HIGH, mp);
278 return XFS_ERROR(EFSCORRUPTED);
279 }
280 return 0;
281}
282
283STATIC void
284xlog_recover_iodone(
285 struct xfs_buf *bp)
286{
287 xfs_mount_t *mp;
288
289 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
290
291 if (XFS_BUF_GETERROR(bp)) {
292 /*
293 * We're not going to bother about retrying
294 * this during recovery. One strike!
295 */
296 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
297 xfs_ioerror_alert("xlog_recover_iodone",
298 mp, bp, XFS_BUF_ADDR(bp));
299 xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
300 }
301 XFS_BUF_SET_FSPRIVATE(bp, NULL);
302 XFS_BUF_CLR_IODONE_FUNC(bp);
303 xfs_biodone(bp);
304}
305
306/*
307 * This routine finds (to an approximation) the first block in the physical
308 * log which contains the given cycle. It uses a binary search algorithm.
309 * Note that the algorithm can not be perfect because the disk will not
310 * necessarily be perfect.
311 */
312int
313xlog_find_cycle_start(
314 xlog_t *log,
315 xfs_buf_t *bp,
316 xfs_daddr_t first_blk,
317 xfs_daddr_t *last_blk,
318 uint cycle)
319{
320 xfs_caddr_t offset;
321 xfs_daddr_t mid_blk;
322 uint mid_cycle;
323 int error;
324
325 mid_blk = BLK_AVG(first_blk, *last_blk);
326 while (mid_blk != first_blk && mid_blk != *last_blk) {
327 if ((error = xlog_bread(log, mid_blk, 1, bp)))
328 return error;
329 offset = xlog_align(log, mid_blk, 1, bp);
330 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
331 if (mid_cycle == cycle) {
332 *last_blk = mid_blk;
333 /* last_half_cycle == mid_cycle */
334 } else {
335 first_blk = mid_blk;
336 /* first_half_cycle == mid_cycle */
337 }
338 mid_blk = BLK_AVG(first_blk, *last_blk);
339 }
340 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
341 (mid_blk == *last_blk && mid_blk-1 == first_blk));
342
343 return 0;
344}
345
346/*
347 * Check that the range of blocks does not contain the cycle number
348 * given. The scan needs to occur from front to back and the ptr into the
349 * region must be updated since a later routine will need to perform another
350 * test. If the region is completely good, we end up returning the same
351 * last block number.
352 *
353 * Set blkno to -1 if we encounter no errors. This is an invalid block number
354 * since we don't ever expect logs to get this large.
355 */
356STATIC int
357xlog_find_verify_cycle(
358 xlog_t *log,
359 xfs_daddr_t start_blk,
360 int nbblks,
361 uint stop_on_cycle_no,
362 xfs_daddr_t *new_blk)
363{
364 xfs_daddr_t i, j;
365 uint cycle;
366 xfs_buf_t *bp;
367 xfs_daddr_t bufblks;
368 xfs_caddr_t buf = NULL;
369 int error = 0;
370
371 bufblks = 1 << ffs(nbblks);
372
373 while (!(bp = xlog_get_bp(log, bufblks))) {
374 /* can't get enough memory to do everything in one big buffer */
375 bufblks >>= 1;
376 if (bufblks <= log->l_sectbb_log)
377 return ENOMEM;
378 }
379
380 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
381 int bcount;
382
383 bcount = min(bufblks, (start_blk + nbblks - i));
384
385 if ((error = xlog_bread(log, i, bcount, bp)))
386 goto out;
387
388 buf = xlog_align(log, i, bcount, bp);
389 for (j = 0; j < bcount; j++) {
390 cycle = GET_CYCLE(buf, ARCH_CONVERT);
391 if (cycle == stop_on_cycle_no) {
392 *new_blk = i+j;
393 goto out;
394 }
395
396 buf += BBSIZE;
397 }
398 }
399
400 *new_blk = -1;
401
402out:
403 xlog_put_bp(bp);
404 return error;
405}
406
407/*
408 * Potentially backup over partial log record write.
409 *
410 * In the typical case, last_blk is the number of the block directly after
411 * a good log record. Therefore, we subtract one to get the block number
412 * of the last block in the given buffer. extra_bblks contains the number
413 * of blocks we would have read on a previous read. This happens when the
414 * last log record is split over the end of the physical log.
415 *
416 * extra_bblks is the number of blocks potentially verified on a previous
417 * call to this routine.
418 */
419STATIC int
420xlog_find_verify_log_record(
421 xlog_t *log,
422 xfs_daddr_t start_blk,
423 xfs_daddr_t *last_blk,
424 int extra_bblks)
425{
426 xfs_daddr_t i;
427 xfs_buf_t *bp;
428 xfs_caddr_t offset = NULL;
429 xlog_rec_header_t *head = NULL;
430 int error = 0;
431 int smallmem = 0;
432 int num_blks = *last_blk - start_blk;
433 int xhdrs;
434
435 ASSERT(start_blk != 0 || *last_blk != start_blk);
436
437 if (!(bp = xlog_get_bp(log, num_blks))) {
438 if (!(bp = xlog_get_bp(log, 1)))
439 return ENOMEM;
440 smallmem = 1;
441 } else {
442 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
443 goto out;
444 offset = xlog_align(log, start_blk, num_blks, bp);
445 offset += ((num_blks - 1) << BBSHIFT);
446 }
447
448 for (i = (*last_blk) - 1; i >= 0; i--) {
449 if (i < start_blk) {
450 /* valid log record not found */
451 xlog_warn(
452 "XFS: Log inconsistent (didn't find previous header)");
453 ASSERT(0);
454 error = XFS_ERROR(EIO);
455 goto out;
456 }
457
458 if (smallmem) {
459 if ((error = xlog_bread(log, i, 1, bp)))
460 goto out;
461 offset = xlog_align(log, i, 1, bp);
462 }
463
464 head = (xlog_rec_header_t *)offset;
465
466 if (XLOG_HEADER_MAGIC_NUM ==
467 INT_GET(head->h_magicno, ARCH_CONVERT))
468 break;
469
470 if (!smallmem)
471 offset -= BBSIZE;
472 }
473
474 /*
475 * We hit the beginning of the physical log & still no header. Return
476 * to caller. If caller can handle a return of -1, then this routine
477 * will be called again for the end of the physical log.
478 */
479 if (i == -1) {
480 error = -1;
481 goto out;
482 }
483
484 /*
485 * We have the final block of the good log (the first block
486 * of the log record _before_ the head. So we check the uuid.
487 */
488 if ((error = xlog_header_check_mount(log->l_mp, head)))
489 goto out;
490
491 /*
492 * We may have found a log record header before we expected one.
493 * last_blk will be the 1st block # with a given cycle #. We may end
494 * up reading an entire log record. In this case, we don't want to
495 * reset last_blk. Only when last_blk points in the middle of a log
496 * record do we update last_blk.
497 */
498 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
499 uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
500
501 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
502 if (h_size % XLOG_HEADER_CYCLE_SIZE)
503 xhdrs++;
504 } else {
505 xhdrs = 1;
506 }
507
508 if (*last_blk - i + extra_bblks
509 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
510 *last_blk = i;
511
512out:
513 xlog_put_bp(bp);
514 return error;
515}
516
517/*
518 * Head is defined to be the point of the log where the next log write
519 * write could go. This means that incomplete LR writes at the end are
520 * eliminated when calculating the head. We aren't guaranteed that previous
521 * LR have complete transactions. We only know that a cycle number of
522 * current cycle number -1 won't be present in the log if we start writing
523 * from our current block number.
524 *
525 * last_blk contains the block number of the first block with a given
526 * cycle number.
527 *
528 * Return: zero if normal, non-zero if error.
529 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000530STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531xlog_find_head(
532 xlog_t *log,
533 xfs_daddr_t *return_head_blk)
534{
535 xfs_buf_t *bp;
536 xfs_caddr_t offset;
537 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
538 int num_scan_bblks;
539 uint first_half_cycle, last_half_cycle;
540 uint stop_on_cycle;
541 int error, log_bbnum = log->l_logBBsize;
542
543 /* Is the end of the log device zeroed? */
544 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
545 *return_head_blk = first_blk;
546
547 /* Is the whole lot zeroed? */
548 if (!first_blk) {
549 /* Linux XFS shouldn't generate totally zeroed logs -
550 * mkfs etc write a dummy unmount record to a fresh
551 * log so we can store the uuid in there
552 */
553 xlog_warn("XFS: totally zeroed log");
554 }
555
556 return 0;
557 } else if (error) {
558 xlog_warn("XFS: empty log check failed");
559 return error;
560 }
561
562 first_blk = 0; /* get cycle # of 1st block */
563 bp = xlog_get_bp(log, 1);
564 if (!bp)
565 return ENOMEM;
566 if ((error = xlog_bread(log, 0, 1, bp)))
567 goto bp_err;
568 offset = xlog_align(log, 0, 1, bp);
569 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
570
571 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
572 if ((error = xlog_bread(log, last_blk, 1, bp)))
573 goto bp_err;
574 offset = xlog_align(log, last_blk, 1, bp);
575 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
576 ASSERT(last_half_cycle != 0);
577
578 /*
579 * If the 1st half cycle number is equal to the last half cycle number,
580 * then the entire log is stamped with the same cycle number. In this
581 * case, head_blk can't be set to zero (which makes sense). The below
582 * math doesn't work out properly with head_blk equal to zero. Instead,
583 * we set it to log_bbnum which is an invalid block number, but this
584 * value makes the math correct. If head_blk doesn't changed through
585 * all the tests below, *head_blk is set to zero at the very end rather
586 * than log_bbnum. In a sense, log_bbnum and zero are the same block
587 * in a circular file.
588 */
589 if (first_half_cycle == last_half_cycle) {
590 /*
591 * In this case we believe that the entire log should have
592 * cycle number last_half_cycle. We need to scan backwards
593 * from the end verifying that there are no holes still
594 * containing last_half_cycle - 1. If we find such a hole,
595 * then the start of that hole will be the new head. The
596 * simple case looks like
597 * x | x ... | x - 1 | x
598 * Another case that fits this picture would be
599 * x | x + 1 | x ... | x
600 * In this case the head really is somwhere at the end of the
601 * log, as one of the latest writes at the beginning was
602 * incomplete.
603 * One more case is
604 * x | x + 1 | x ... | x - 1 | x
605 * This is really the combination of the above two cases, and
606 * the head has to end up at the start of the x-1 hole at the
607 * end of the log.
608 *
609 * In the 256k log case, we will read from the beginning to the
610 * end of the log and search for cycle numbers equal to x-1.
611 * We don't worry about the x+1 blocks that we encounter,
612 * because we know that they cannot be the head since the log
613 * started with x.
614 */
615 head_blk = log_bbnum;
616 stop_on_cycle = last_half_cycle - 1;
617 } else {
618 /*
619 * In this case we want to find the first block with cycle
620 * number matching last_half_cycle. We expect the log to be
621 * some variation on
622 * x + 1 ... | x ...
623 * The first block with cycle number x (last_half_cycle) will
624 * be where the new head belongs. First we do a binary search
625 * for the first occurrence of last_half_cycle. The binary
626 * search may not be totally accurate, so then we scan back
627 * from there looking for occurrences of last_half_cycle before
628 * us. If that backwards scan wraps around the beginning of
629 * the log, then we look for occurrences of last_half_cycle - 1
630 * at the end of the log. The cases we're looking for look
631 * like
632 * x + 1 ... | x | x + 1 | x ...
633 * ^ binary search stopped here
634 * or
635 * x + 1 ... | x ... | x - 1 | x
636 * <---------> less than scan distance
637 */
638 stop_on_cycle = last_half_cycle;
639 if ((error = xlog_find_cycle_start(log, bp, first_blk,
640 &head_blk, last_half_cycle)))
641 goto bp_err;
642 }
643
644 /*
645 * Now validate the answer. Scan back some number of maximum possible
646 * blocks and make sure each one has the expected cycle number. The
647 * maximum is determined by the total possible amount of buffering
648 * in the in-core log. The following number can be made tighter if
649 * we actually look at the block size of the filesystem.
650 */
651 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
652 if (head_blk >= num_scan_bblks) {
653 /*
654 * We are guaranteed that the entire check can be performed
655 * in one buffer.
656 */
657 start_blk = head_blk - num_scan_bblks;
658 if ((error = xlog_find_verify_cycle(log,
659 start_blk, num_scan_bblks,
660 stop_on_cycle, &new_blk)))
661 goto bp_err;
662 if (new_blk != -1)
663 head_blk = new_blk;
664 } else { /* need to read 2 parts of log */
665 /*
666 * We are going to scan backwards in the log in two parts.
667 * First we scan the physical end of the log. In this part
668 * of the log, we are looking for blocks with cycle number
669 * last_half_cycle - 1.
670 * If we find one, then we know that the log starts there, as
671 * we've found a hole that didn't get written in going around
672 * the end of the physical log. The simple case for this is
673 * x + 1 ... | x ... | x - 1 | x
674 * <---------> less than scan distance
675 * If all of the blocks at the end of the log have cycle number
676 * last_half_cycle, then we check the blocks at the start of
677 * the log looking for occurrences of last_half_cycle. If we
678 * find one, then our current estimate for the location of the
679 * first occurrence of last_half_cycle is wrong and we move
680 * back to the hole we've found. This case looks like
681 * x + 1 ... | x | x + 1 | x ...
682 * ^ binary search stopped here
683 * Another case we need to handle that only occurs in 256k
684 * logs is
685 * x + 1 ... | x ... | x+1 | x ...
686 * ^ binary search stops here
687 * In a 256k log, the scan at the end of the log will see the
688 * x + 1 blocks. We need to skip past those since that is
689 * certainly not the head of the log. By searching for
690 * last_half_cycle-1 we accomplish that.
691 */
692 start_blk = log_bbnum - num_scan_bblks + head_blk;
693 ASSERT(head_blk <= INT_MAX &&
694 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
695 if ((error = xlog_find_verify_cycle(log, start_blk,
696 num_scan_bblks - (int)head_blk,
697 (stop_on_cycle - 1), &new_blk)))
698 goto bp_err;
699 if (new_blk != -1) {
700 head_blk = new_blk;
701 goto bad_blk;
702 }
703
704 /*
705 * Scan beginning of log now. The last part of the physical
706 * log is good. This scan needs to verify that it doesn't find
707 * the last_half_cycle.
708 */
709 start_blk = 0;
710 ASSERT(head_blk <= INT_MAX);
711 if ((error = xlog_find_verify_cycle(log,
712 start_blk, (int)head_blk,
713 stop_on_cycle, &new_blk)))
714 goto bp_err;
715 if (new_blk != -1)
716 head_blk = new_blk;
717 }
718
719 bad_blk:
720 /*
721 * Now we need to make sure head_blk is not pointing to a block in
722 * the middle of a log record.
723 */
724 num_scan_bblks = XLOG_REC_SHIFT(log);
725 if (head_blk >= num_scan_bblks) {
726 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
727
728 /* start ptr at last block ptr before head_blk */
729 if ((error = xlog_find_verify_log_record(log, start_blk,
730 &head_blk, 0)) == -1) {
731 error = XFS_ERROR(EIO);
732 goto bp_err;
733 } else if (error)
734 goto bp_err;
735 } else {
736 start_blk = 0;
737 ASSERT(head_blk <= INT_MAX);
738 if ((error = xlog_find_verify_log_record(log, start_blk,
739 &head_blk, 0)) == -1) {
740 /* We hit the beginning of the log during our search */
741 start_blk = log_bbnum - num_scan_bblks + head_blk;
742 new_blk = log_bbnum;
743 ASSERT(start_blk <= INT_MAX &&
744 (xfs_daddr_t) log_bbnum-start_blk >= 0);
745 ASSERT(head_blk <= INT_MAX);
746 if ((error = xlog_find_verify_log_record(log,
747 start_blk, &new_blk,
748 (int)head_blk)) == -1) {
749 error = XFS_ERROR(EIO);
750 goto bp_err;
751 } else if (error)
752 goto bp_err;
753 if (new_blk != log_bbnum)
754 head_blk = new_blk;
755 } else if (error)
756 goto bp_err;
757 }
758
759 xlog_put_bp(bp);
760 if (head_blk == log_bbnum)
761 *return_head_blk = 0;
762 else
763 *return_head_blk = head_blk;
764 /*
765 * When returning here, we have a good block number. Bad block
766 * means that during a previous crash, we didn't have a clean break
767 * from cycle number N to cycle number N-1. In this case, we need
768 * to find the first block with cycle number N-1.
769 */
770 return 0;
771
772 bp_err:
773 xlog_put_bp(bp);
774
775 if (error)
776 xlog_warn("XFS: failed to find log head");
777 return error;
778}
779
780/*
781 * Find the sync block number or the tail of the log.
782 *
783 * This will be the block number of the last record to have its
784 * associated buffers synced to disk. Every log record header has
785 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
786 * to get a sync block number. The only concern is to figure out which
787 * log record header to believe.
788 *
789 * The following algorithm uses the log record header with the largest
790 * lsn. The entire log record does not need to be valid. We only care
791 * that the header is valid.
792 *
793 * We could speed up search by using current head_blk buffer, but it is not
794 * available.
795 */
796int
797xlog_find_tail(
798 xlog_t *log,
799 xfs_daddr_t *head_blk,
800 xfs_daddr_t *tail_blk,
801 int readonly)
802{
803 xlog_rec_header_t *rhead;
804 xlog_op_header_t *op_head;
805 xfs_caddr_t offset = NULL;
806 xfs_buf_t *bp;
807 int error, i, found;
808 xfs_daddr_t umount_data_blk;
809 xfs_daddr_t after_umount_blk;
810 xfs_lsn_t tail_lsn;
811 int hblks;
812
813 found = 0;
814
815 /*
816 * Find previous log record
817 */
818 if ((error = xlog_find_head(log, head_blk)))
819 return error;
820
821 bp = xlog_get_bp(log, 1);
822 if (!bp)
823 return ENOMEM;
824 if (*head_blk == 0) { /* special case */
825 if ((error = xlog_bread(log, 0, 1, bp)))
826 goto bread_err;
827 offset = xlog_align(log, 0, 1, bp);
828 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
829 *tail_blk = 0;
830 /* leave all other log inited values alone */
831 goto exit;
832 }
833 }
834
835 /*
836 * Search backwards looking for log record header block
837 */
838 ASSERT(*head_blk < INT_MAX);
839 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
840 if ((error = xlog_bread(log, i, 1, bp)))
841 goto bread_err;
842 offset = xlog_align(log, i, 1, bp);
843 if (XLOG_HEADER_MAGIC_NUM ==
844 INT_GET(*(uint *)offset, ARCH_CONVERT)) {
845 found = 1;
846 break;
847 }
848 }
849 /*
850 * If we haven't found the log record header block, start looking
851 * again from the end of the physical log. XXXmiken: There should be
852 * a check here to make sure we didn't search more than N blocks in
853 * the previous code.
854 */
855 if (!found) {
856 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
857 if ((error = xlog_bread(log, i, 1, bp)))
858 goto bread_err;
859 offset = xlog_align(log, i, 1, bp);
860 if (XLOG_HEADER_MAGIC_NUM ==
861 INT_GET(*(uint*)offset, ARCH_CONVERT)) {
862 found = 2;
863 break;
864 }
865 }
866 }
867 if (!found) {
868 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
869 ASSERT(0);
870 return XFS_ERROR(EIO);
871 }
872
873 /* find blk_no of tail of log */
874 rhead = (xlog_rec_header_t *)offset;
875 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
876
877 /*
878 * Reset log values according to the state of the log when we
879 * crashed. In the case where head_blk == 0, we bump curr_cycle
880 * one because the next write starts a new cycle rather than
881 * continuing the cycle of the last good log record. At this
882 * point we have guaranteed that all partial log records have been
883 * accounted for. Therefore, we know that the last good log record
884 * written was complete and ended exactly on the end boundary
885 * of the physical log.
886 */
887 log->l_prev_block = i;
888 log->l_curr_block = (int)*head_blk;
889 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
890 if (found == 2)
891 log->l_curr_cycle++;
892 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
893 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
894 log->l_grant_reserve_cycle = log->l_curr_cycle;
895 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
896 log->l_grant_write_cycle = log->l_curr_cycle;
897 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
898
899 /*
900 * Look for unmount record. If we find it, then we know there
901 * was a clean unmount. Since 'i' could be the last block in
902 * the physical log, we convert to a log block before comparing
903 * to the head_blk.
904 *
905 * Save the current tail lsn to use to pass to
906 * xlog_clear_stale_blocks() below. We won't want to clear the
907 * unmount record if there is one, so we pass the lsn of the
908 * unmount record rather than the block after it.
909 */
910 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
911 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
912 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
913
914 if ((h_version & XLOG_VERSION_2) &&
915 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
916 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
917 if (h_size % XLOG_HEADER_CYCLE_SIZE)
918 hblks++;
919 } else {
920 hblks = 1;
921 }
922 } else {
923 hblks = 1;
924 }
925 after_umount_blk = (i + hblks + (int)
926 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
927 tail_lsn = log->l_tail_lsn;
928 if (*head_blk == after_umount_blk &&
929 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
930 umount_data_blk = (i + hblks) % log->l_logBBsize;
931 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
932 goto bread_err;
933 }
934 offset = xlog_align(log, umount_data_blk, 1, bp);
935 op_head = (xlog_op_header_t *)offset;
936 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
937 /*
938 * Set tail and last sync so that newly written
939 * log records will point recovery to after the
940 * current unmount record.
941 */
942 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
943 after_umount_blk);
944 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
945 after_umount_blk);
946 *tail_blk = after_umount_blk;
947 }
948 }
949
950 /*
951 * Make sure that there are no blocks in front of the head
952 * with the same cycle number as the head. This can happen
953 * because we allow multiple outstanding log writes concurrently,
954 * and the later writes might make it out before earlier ones.
955 *
956 * We use the lsn from before modifying it so that we'll never
957 * overwrite the unmount record after a clean unmount.
958 *
959 * Do this only if we are going to recover the filesystem
960 *
961 * NOTE: This used to say "if (!readonly)"
962 * However on Linux, we can & do recover a read-only filesystem.
963 * We only skip recovery if NORECOVERY is specified on mount,
964 * in which case we would not be here.
965 *
966 * But... if the -device- itself is readonly, just skip this.
967 * We can't recover this device anyway, so it won't matter.
968 */
969 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
970 error = xlog_clear_stale_blocks(log, tail_lsn);
971 }
972
973bread_err:
974exit:
975 xlog_put_bp(bp);
976
977 if (error)
978 xlog_warn("XFS: failed to locate log tail");
979 return error;
980}
981
982/*
983 * Is the log zeroed at all?
984 *
985 * The last binary search should be changed to perform an X block read
986 * once X becomes small enough. You can then search linearly through
987 * the X blocks. This will cut down on the number of reads we need to do.
988 *
989 * If the log is partially zeroed, this routine will pass back the blkno
990 * of the first block with cycle number 0. It won't have a complete LR
991 * preceding it.
992 *
993 * Return:
994 * 0 => the log is completely written to
995 * -1 => use *blk_no as the first block of the log
996 * >0 => error has occurred
997 */
998int
999xlog_find_zeroed(
1000 xlog_t *log,
1001 xfs_daddr_t *blk_no)
1002{
1003 xfs_buf_t *bp;
1004 xfs_caddr_t offset;
1005 uint first_cycle, last_cycle;
1006 xfs_daddr_t new_blk, last_blk, start_blk;
1007 xfs_daddr_t num_scan_bblks;
1008 int error, log_bbnum = log->l_logBBsize;
1009
1010 /* check totally zeroed log */
1011 bp = xlog_get_bp(log, 1);
1012 if (!bp)
1013 return ENOMEM;
1014 if ((error = xlog_bread(log, 0, 1, bp)))
1015 goto bp_err;
1016 offset = xlog_align(log, 0, 1, bp);
1017 first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1018 if (first_cycle == 0) { /* completely zeroed log */
1019 *blk_no = 0;
1020 xlog_put_bp(bp);
1021 return -1;
1022 }
1023
1024 /* check partially zeroed log */
1025 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1026 goto bp_err;
1027 offset = xlog_align(log, log_bbnum-1, 1, bp);
1028 last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1029 if (last_cycle != 0) { /* log completely written to */
1030 xlog_put_bp(bp);
1031 return 0;
1032 } else if (first_cycle != 1) {
1033 /*
1034 * If the cycle of the last block is zero, the cycle of
1035 * the first block must be 1. If it's not, maybe we're
1036 * not looking at a log... Bail out.
1037 */
1038 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1039 return XFS_ERROR(EINVAL);
1040 }
1041
1042 /* we have a partially zeroed log */
1043 last_blk = log_bbnum-1;
1044 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1045 goto bp_err;
1046
1047 /*
1048 * Validate the answer. Because there is no way to guarantee that
1049 * the entire log is made up of log records which are the same size,
1050 * we scan over the defined maximum blocks. At this point, the maximum
1051 * is not chosen to mean anything special. XXXmiken
1052 */
1053 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1054 ASSERT(num_scan_bblks <= INT_MAX);
1055
1056 if (last_blk < num_scan_bblks)
1057 num_scan_bblks = last_blk;
1058 start_blk = last_blk - num_scan_bblks;
1059
1060 /*
1061 * We search for any instances of cycle number 0 that occur before
1062 * our current estimate of the head. What we're trying to detect is
1063 * 1 ... | 0 | 1 | 0...
1064 * ^ binary search ends here
1065 */
1066 if ((error = xlog_find_verify_cycle(log, start_blk,
1067 (int)num_scan_bblks, 0, &new_blk)))
1068 goto bp_err;
1069 if (new_blk != -1)
1070 last_blk = new_blk;
1071
1072 /*
1073 * Potentially backup over partial log record write. We don't need
1074 * to search the end of the log because we know it is zero.
1075 */
1076 if ((error = xlog_find_verify_log_record(log, start_blk,
1077 &last_blk, 0)) == -1) {
1078 error = XFS_ERROR(EIO);
1079 goto bp_err;
1080 } else if (error)
1081 goto bp_err;
1082
1083 *blk_no = last_blk;
1084bp_err:
1085 xlog_put_bp(bp);
1086 if (error)
1087 return error;
1088 return -1;
1089}
1090
1091/*
1092 * These are simple subroutines used by xlog_clear_stale_blocks() below
1093 * to initialize a buffer full of empty log record headers and write
1094 * them into the log.
1095 */
1096STATIC void
1097xlog_add_record(
1098 xlog_t *log,
1099 xfs_caddr_t buf,
1100 int cycle,
1101 int block,
1102 int tail_cycle,
1103 int tail_block)
1104{
1105 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1106
1107 memset(buf, 0, BBSIZE);
1108 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1109 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1110 INT_SET(recp->h_version, ARCH_CONVERT,
1111 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1112 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1113 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1114 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1115 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1116}
1117
1118STATIC int
1119xlog_write_log_records(
1120 xlog_t *log,
1121 int cycle,
1122 int start_block,
1123 int blocks,
1124 int tail_cycle,
1125 int tail_block)
1126{
1127 xfs_caddr_t offset;
1128 xfs_buf_t *bp;
1129 int balign, ealign;
1130 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1131 int end_block = start_block + blocks;
1132 int bufblks;
1133 int error = 0;
1134 int i, j = 0;
1135
1136 bufblks = 1 << ffs(blocks);
1137 while (!(bp = xlog_get_bp(log, bufblks))) {
1138 bufblks >>= 1;
1139 if (bufblks <= log->l_sectbb_log)
1140 return ENOMEM;
1141 }
1142
1143 /* We may need to do a read at the start to fill in part of
1144 * the buffer in the starting sector not covered by the first
1145 * write below.
1146 */
1147 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1148 if (balign != start_block) {
1149 if ((error = xlog_bread(log, start_block, 1, bp))) {
1150 xlog_put_bp(bp);
1151 return error;
1152 }
1153 j = start_block - balign;
1154 }
1155
1156 for (i = start_block; i < end_block; i += bufblks) {
1157 int bcount, endcount;
1158
1159 bcount = min(bufblks, end_block - start_block);
1160 endcount = bcount - j;
1161
1162 /* We may need to do a read at the end to fill in part of
1163 * the buffer in the final sector not covered by the write.
1164 * If this is the same sector as the above read, skip it.
1165 */
1166 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1167 if (j == 0 && (start_block + endcount > ealign)) {
1168 offset = XFS_BUF_PTR(bp);
1169 balign = BBTOB(ealign - start_block);
1170 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1171 if ((error = xlog_bread(log, ealign, sectbb, bp)))
1172 break;
1173 XFS_BUF_SET_PTR(bp, offset, bufblks);
1174 }
1175
1176 offset = xlog_align(log, start_block, endcount, bp);
1177 for (; j < endcount; j++) {
1178 xlog_add_record(log, offset, cycle, i+j,
1179 tail_cycle, tail_block);
1180 offset += BBSIZE;
1181 }
1182 error = xlog_bwrite(log, start_block, endcount, bp);
1183 if (error)
1184 break;
1185 start_block += endcount;
1186 j = 0;
1187 }
1188 xlog_put_bp(bp);
1189 return error;
1190}
1191
1192/*
1193 * This routine is called to blow away any incomplete log writes out
1194 * in front of the log head. We do this so that we won't become confused
1195 * if we come up, write only a little bit more, and then crash again.
1196 * If we leave the partial log records out there, this situation could
1197 * cause us to think those partial writes are valid blocks since they
1198 * have the current cycle number. We get rid of them by overwriting them
1199 * with empty log records with the old cycle number rather than the
1200 * current one.
1201 *
1202 * The tail lsn is passed in rather than taken from
1203 * the log so that we will not write over the unmount record after a
1204 * clean unmount in a 512 block log. Doing so would leave the log without
1205 * any valid log records in it until a new one was written. If we crashed
1206 * during that time we would not be able to recover.
1207 */
1208STATIC int
1209xlog_clear_stale_blocks(
1210 xlog_t *log,
1211 xfs_lsn_t tail_lsn)
1212{
1213 int tail_cycle, head_cycle;
1214 int tail_block, head_block;
1215 int tail_distance, max_distance;
1216 int distance;
1217 int error;
1218
1219 tail_cycle = CYCLE_LSN(tail_lsn);
1220 tail_block = BLOCK_LSN(tail_lsn);
1221 head_cycle = log->l_curr_cycle;
1222 head_block = log->l_curr_block;
1223
1224 /*
1225 * Figure out the distance between the new head of the log
1226 * and the tail. We want to write over any blocks beyond the
1227 * head that we may have written just before the crash, but
1228 * we don't want to overwrite the tail of the log.
1229 */
1230 if (head_cycle == tail_cycle) {
1231 /*
1232 * The tail is behind the head in the physical log,
1233 * so the distance from the head to the tail is the
1234 * distance from the head to the end of the log plus
1235 * the distance from the beginning of the log to the
1236 * tail.
1237 */
1238 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1239 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1240 XFS_ERRLEVEL_LOW, log->l_mp);
1241 return XFS_ERROR(EFSCORRUPTED);
1242 }
1243 tail_distance = tail_block + (log->l_logBBsize - head_block);
1244 } else {
1245 /*
1246 * The head is behind the tail in the physical log,
1247 * so the distance from the head to the tail is just
1248 * the tail block minus the head block.
1249 */
1250 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1251 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1252 XFS_ERRLEVEL_LOW, log->l_mp);
1253 return XFS_ERROR(EFSCORRUPTED);
1254 }
1255 tail_distance = tail_block - head_block;
1256 }
1257
1258 /*
1259 * If the head is right up against the tail, we can't clear
1260 * anything.
1261 */
1262 if (tail_distance <= 0) {
1263 ASSERT(tail_distance == 0);
1264 return 0;
1265 }
1266
1267 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1268 /*
1269 * Take the smaller of the maximum amount of outstanding I/O
1270 * we could have and the distance to the tail to clear out.
1271 * We take the smaller so that we don't overwrite the tail and
1272 * we don't waste all day writing from the head to the tail
1273 * for no reason.
1274 */
1275 max_distance = MIN(max_distance, tail_distance);
1276
1277 if ((head_block + max_distance) <= log->l_logBBsize) {
1278 /*
1279 * We can stomp all the blocks we need to without
1280 * wrapping around the end of the log. Just do it
1281 * in a single write. Use the cycle number of the
1282 * current cycle minus one so that the log will look like:
1283 * n ... | n - 1 ...
1284 */
1285 error = xlog_write_log_records(log, (head_cycle - 1),
1286 head_block, max_distance, tail_cycle,
1287 tail_block);
1288 if (error)
1289 return error;
1290 } else {
1291 /*
1292 * We need to wrap around the end of the physical log in
1293 * order to clear all the blocks. Do it in two separate
1294 * I/Os. The first write should be from the head to the
1295 * end of the physical log, and it should use the current
1296 * cycle number minus one just like above.
1297 */
1298 distance = log->l_logBBsize - head_block;
1299 error = xlog_write_log_records(log, (head_cycle - 1),
1300 head_block, distance, tail_cycle,
1301 tail_block);
1302
1303 if (error)
1304 return error;
1305
1306 /*
1307 * Now write the blocks at the start of the physical log.
1308 * This writes the remainder of the blocks we want to clear.
1309 * It uses the current cycle number since we're now on the
1310 * same cycle as the head so that we get:
1311 * n ... n ... | n - 1 ...
1312 * ^^^^^ blocks we're writing
1313 */
1314 distance = max_distance - (log->l_logBBsize - head_block);
1315 error = xlog_write_log_records(log, head_cycle, 0, distance,
1316 tail_cycle, tail_block);
1317 if (error)
1318 return error;
1319 }
1320
1321 return 0;
1322}
1323
1324/******************************************************************************
1325 *
1326 * Log recover routines
1327 *
1328 ******************************************************************************
1329 */
1330
1331STATIC xlog_recover_t *
1332xlog_recover_find_tid(
1333 xlog_recover_t *q,
1334 xlog_tid_t tid)
1335{
1336 xlog_recover_t *p = q;
1337
1338 while (p != NULL) {
1339 if (p->r_log_tid == tid)
1340 break;
1341 p = p->r_next;
1342 }
1343 return p;
1344}
1345
1346STATIC void
1347xlog_recover_put_hashq(
1348 xlog_recover_t **q,
1349 xlog_recover_t *trans)
1350{
1351 trans->r_next = *q;
1352 *q = trans;
1353}
1354
1355STATIC void
1356xlog_recover_add_item(
1357 xlog_recover_item_t **itemq)
1358{
1359 xlog_recover_item_t *item;
1360
1361 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1362 xlog_recover_insert_item_backq(itemq, item);
1363}
1364
1365STATIC int
1366xlog_recover_add_to_cont_trans(
1367 xlog_recover_t *trans,
1368 xfs_caddr_t dp,
1369 int len)
1370{
1371 xlog_recover_item_t *item;
1372 xfs_caddr_t ptr, old_ptr;
1373 int old_len;
1374
1375 item = trans->r_itemq;
1376 if (item == 0) {
1377 /* finish copying rest of trans header */
1378 xlog_recover_add_item(&trans->r_itemq);
1379 ptr = (xfs_caddr_t) &trans->r_theader +
1380 sizeof(xfs_trans_header_t) - len;
1381 memcpy(ptr, dp, len); /* d, s, l */
1382 return 0;
1383 }
1384 item = item->ri_prev;
1385
1386 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1387 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1388
Christoph Hellwig760dea62005-09-02 16:56:02 +10001389 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1391 item->ri_buf[item->ri_cnt-1].i_len += len;
1392 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1393 return 0;
1394}
1395
1396/*
1397 * The next region to add is the start of a new region. It could be
1398 * a whole region or it could be the first part of a new region. Because
1399 * of this, the assumption here is that the type and size fields of all
1400 * format structures fit into the first 32 bits of the structure.
1401 *
1402 * This works because all regions must be 32 bit aligned. Therefore, we
1403 * either have both fields or we have neither field. In the case we have
1404 * neither field, the data part of the region is zero length. We only have
1405 * a log_op_header and can throw away the header since a new one will appear
1406 * later. If we have at least 4 bytes, then we can determine how many regions
1407 * will appear in the current log item.
1408 */
1409STATIC int
1410xlog_recover_add_to_trans(
1411 xlog_recover_t *trans,
1412 xfs_caddr_t dp,
1413 int len)
1414{
1415 xfs_inode_log_format_t *in_f; /* any will do */
1416 xlog_recover_item_t *item;
1417 xfs_caddr_t ptr;
1418
1419 if (!len)
1420 return 0;
1421 item = trans->r_itemq;
1422 if (item == 0) {
1423 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1424 if (len == sizeof(xfs_trans_header_t))
1425 xlog_recover_add_item(&trans->r_itemq);
1426 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1427 return 0;
1428 }
1429
1430 ptr = kmem_alloc(len, KM_SLEEP);
1431 memcpy(ptr, dp, len);
1432 in_f = (xfs_inode_log_format_t *)ptr;
1433
1434 if (item->ri_prev->ri_total != 0 &&
1435 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1436 xlog_recover_add_item(&trans->r_itemq);
1437 }
1438 item = trans->r_itemq;
1439 item = item->ri_prev;
1440
1441 if (item->ri_total == 0) { /* first region to be added */
1442 item->ri_total = in_f->ilf_size;
1443 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1444 item->ri_buf = kmem_zalloc((item->ri_total *
1445 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1446 }
1447 ASSERT(item->ri_total > item->ri_cnt);
1448 /* Description region is ri_buf[0] */
1449 item->ri_buf[item->ri_cnt].i_addr = ptr;
1450 item->ri_buf[item->ri_cnt].i_len = len;
1451 item->ri_cnt++;
1452 return 0;
1453}
1454
1455STATIC void
1456xlog_recover_new_tid(
1457 xlog_recover_t **q,
1458 xlog_tid_t tid,
1459 xfs_lsn_t lsn)
1460{
1461 xlog_recover_t *trans;
1462
1463 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1464 trans->r_log_tid = tid;
1465 trans->r_lsn = lsn;
1466 xlog_recover_put_hashq(q, trans);
1467}
1468
1469STATIC int
1470xlog_recover_unlink_tid(
1471 xlog_recover_t **q,
1472 xlog_recover_t *trans)
1473{
1474 xlog_recover_t *tp;
1475 int found = 0;
1476
1477 ASSERT(trans != 0);
1478 if (trans == *q) {
1479 *q = (*q)->r_next;
1480 } else {
1481 tp = *q;
1482 while (tp != 0) {
1483 if (tp->r_next == trans) {
1484 found = 1;
1485 break;
1486 }
1487 tp = tp->r_next;
1488 }
1489 if (!found) {
1490 xlog_warn(
1491 "XFS: xlog_recover_unlink_tid: trans not found");
1492 ASSERT(0);
1493 return XFS_ERROR(EIO);
1494 }
1495 tp->r_next = tp->r_next->r_next;
1496 }
1497 return 0;
1498}
1499
1500STATIC void
1501xlog_recover_insert_item_backq(
1502 xlog_recover_item_t **q,
1503 xlog_recover_item_t *item)
1504{
1505 if (*q == 0) {
1506 item->ri_prev = item->ri_next = item;
1507 *q = item;
1508 } else {
1509 item->ri_next = *q;
1510 item->ri_prev = (*q)->ri_prev;
1511 (*q)->ri_prev = item;
1512 item->ri_prev->ri_next = item;
1513 }
1514}
1515
1516STATIC void
1517xlog_recover_insert_item_frontq(
1518 xlog_recover_item_t **q,
1519 xlog_recover_item_t *item)
1520{
1521 xlog_recover_insert_item_backq(q, item);
1522 *q = item;
1523}
1524
1525STATIC int
1526xlog_recover_reorder_trans(
1527 xlog_t *log,
1528 xlog_recover_t *trans)
1529{
1530 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1531 xfs_buf_log_format_t *buf_f;
1532 xfs_buf_log_format_v1_t *obuf_f;
1533 ushort flags = 0;
1534
1535 first_item = itemq = trans->r_itemq;
1536 trans->r_itemq = NULL;
1537 do {
1538 itemq_next = itemq->ri_next;
1539 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1540 switch (ITEM_TYPE(itemq)) {
1541 case XFS_LI_BUF:
1542 flags = buf_f->blf_flags;
1543 break;
1544 case XFS_LI_6_1_BUF:
1545 case XFS_LI_5_3_BUF:
1546 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1547 flags = obuf_f->blf_flags;
1548 break;
1549 }
1550
1551 switch (ITEM_TYPE(itemq)) {
1552 case XFS_LI_BUF:
1553 case XFS_LI_6_1_BUF:
1554 case XFS_LI_5_3_BUF:
1555 if (!(flags & XFS_BLI_CANCEL)) {
1556 xlog_recover_insert_item_frontq(&trans->r_itemq,
1557 itemq);
1558 break;
1559 }
1560 case XFS_LI_INODE:
1561 case XFS_LI_6_1_INODE:
1562 case XFS_LI_5_3_INODE:
1563 case XFS_LI_DQUOT:
1564 case XFS_LI_QUOTAOFF:
1565 case XFS_LI_EFD:
1566 case XFS_LI_EFI:
1567 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1568 break;
1569 default:
1570 xlog_warn(
1571 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1572 ASSERT(0);
1573 return XFS_ERROR(EIO);
1574 }
1575 itemq = itemq_next;
1576 } while (first_item != itemq);
1577 return 0;
1578}
1579
1580/*
1581 * Build up the table of buf cancel records so that we don't replay
1582 * cancelled data in the second pass. For buffer records that are
1583 * not cancel records, there is nothing to do here so we just return.
1584 *
1585 * If we get a cancel record which is already in the table, this indicates
1586 * that the buffer was cancelled multiple times. In order to ensure
1587 * that during pass 2 we keep the record in the table until we reach its
1588 * last occurrence in the log, we keep a reference count in the cancel
1589 * record in the table to tell us how many times we expect to see this
1590 * record during the second pass.
1591 */
1592STATIC void
1593xlog_recover_do_buffer_pass1(
1594 xlog_t *log,
1595 xfs_buf_log_format_t *buf_f)
1596{
1597 xfs_buf_cancel_t *bcp;
1598 xfs_buf_cancel_t *nextp;
1599 xfs_buf_cancel_t *prevp;
1600 xfs_buf_cancel_t **bucket;
1601 xfs_buf_log_format_v1_t *obuf_f;
1602 xfs_daddr_t blkno = 0;
1603 uint len = 0;
1604 ushort flags = 0;
1605
1606 switch (buf_f->blf_type) {
1607 case XFS_LI_BUF:
1608 blkno = buf_f->blf_blkno;
1609 len = buf_f->blf_len;
1610 flags = buf_f->blf_flags;
1611 break;
1612 case XFS_LI_6_1_BUF:
1613 case XFS_LI_5_3_BUF:
1614 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1615 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1616 len = obuf_f->blf_len;
1617 flags = obuf_f->blf_flags;
1618 break;
1619 }
1620
1621 /*
1622 * If this isn't a cancel buffer item, then just return.
1623 */
1624 if (!(flags & XFS_BLI_CANCEL))
1625 return;
1626
1627 /*
1628 * Insert an xfs_buf_cancel record into the hash table of
1629 * them. If there is already an identical record, bump
1630 * its reference count.
1631 */
1632 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1633 XLOG_BC_TABLE_SIZE];
1634 /*
1635 * If the hash bucket is empty then just insert a new record into
1636 * the bucket.
1637 */
1638 if (*bucket == NULL) {
1639 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1640 KM_SLEEP);
1641 bcp->bc_blkno = blkno;
1642 bcp->bc_len = len;
1643 bcp->bc_refcount = 1;
1644 bcp->bc_next = NULL;
1645 *bucket = bcp;
1646 return;
1647 }
1648
1649 /*
1650 * The hash bucket is not empty, so search for duplicates of our
1651 * record. If we find one them just bump its refcount. If not
1652 * then add us at the end of the list.
1653 */
1654 prevp = NULL;
1655 nextp = *bucket;
1656 while (nextp != NULL) {
1657 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1658 nextp->bc_refcount++;
1659 return;
1660 }
1661 prevp = nextp;
1662 nextp = nextp->bc_next;
1663 }
1664 ASSERT(prevp != NULL);
1665 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1666 KM_SLEEP);
1667 bcp->bc_blkno = blkno;
1668 bcp->bc_len = len;
1669 bcp->bc_refcount = 1;
1670 bcp->bc_next = NULL;
1671 prevp->bc_next = bcp;
1672}
1673
1674/*
1675 * Check to see whether the buffer being recovered has a corresponding
1676 * entry in the buffer cancel record table. If it does then return 1
1677 * so that it will be cancelled, otherwise return 0. If the buffer is
1678 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1679 * the refcount on the entry in the table and remove it from the table
1680 * if this is the last reference.
1681 *
1682 * We remove the cancel record from the table when we encounter its
1683 * last occurrence in the log so that if the same buffer is re-used
1684 * again after its last cancellation we actually replay the changes
1685 * made at that point.
1686 */
1687STATIC int
1688xlog_check_buffer_cancelled(
1689 xlog_t *log,
1690 xfs_daddr_t blkno,
1691 uint len,
1692 ushort flags)
1693{
1694 xfs_buf_cancel_t *bcp;
1695 xfs_buf_cancel_t *prevp;
1696 xfs_buf_cancel_t **bucket;
1697
1698 if (log->l_buf_cancel_table == NULL) {
1699 /*
1700 * There is nothing in the table built in pass one,
1701 * so this buffer must not be cancelled.
1702 */
1703 ASSERT(!(flags & XFS_BLI_CANCEL));
1704 return 0;
1705 }
1706
1707 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1708 XLOG_BC_TABLE_SIZE];
1709 bcp = *bucket;
1710 if (bcp == NULL) {
1711 /*
1712 * There is no corresponding entry in the table built
1713 * in pass one, so this buffer has not been cancelled.
1714 */
1715 ASSERT(!(flags & XFS_BLI_CANCEL));
1716 return 0;
1717 }
1718
1719 /*
1720 * Search for an entry in the buffer cancel table that
1721 * matches our buffer.
1722 */
1723 prevp = NULL;
1724 while (bcp != NULL) {
1725 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1726 /*
1727 * We've go a match, so return 1 so that the
1728 * recovery of this buffer is cancelled.
1729 * If this buffer is actually a buffer cancel
1730 * log item, then decrement the refcount on the
1731 * one in the table and remove it if this is the
1732 * last reference.
1733 */
1734 if (flags & XFS_BLI_CANCEL) {
1735 bcp->bc_refcount--;
1736 if (bcp->bc_refcount == 0) {
1737 if (prevp == NULL) {
1738 *bucket = bcp->bc_next;
1739 } else {
1740 prevp->bc_next = bcp->bc_next;
1741 }
1742 kmem_free(bcp,
1743 sizeof(xfs_buf_cancel_t));
1744 }
1745 }
1746 return 1;
1747 }
1748 prevp = bcp;
1749 bcp = bcp->bc_next;
1750 }
1751 /*
1752 * We didn't find a corresponding entry in the table, so
1753 * return 0 so that the buffer is NOT cancelled.
1754 */
1755 ASSERT(!(flags & XFS_BLI_CANCEL));
1756 return 0;
1757}
1758
1759STATIC int
1760xlog_recover_do_buffer_pass2(
1761 xlog_t *log,
1762 xfs_buf_log_format_t *buf_f)
1763{
1764 xfs_buf_log_format_v1_t *obuf_f;
1765 xfs_daddr_t blkno = 0;
1766 ushort flags = 0;
1767 uint len = 0;
1768
1769 switch (buf_f->blf_type) {
1770 case XFS_LI_BUF:
1771 blkno = buf_f->blf_blkno;
1772 flags = buf_f->blf_flags;
1773 len = buf_f->blf_len;
1774 break;
1775 case XFS_LI_6_1_BUF:
1776 case XFS_LI_5_3_BUF:
1777 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1778 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1779 flags = obuf_f->blf_flags;
1780 len = (xfs_daddr_t) obuf_f->blf_len;
1781 break;
1782 }
1783
1784 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1785}
1786
1787/*
1788 * Perform recovery for a buffer full of inodes. In these buffers,
1789 * the only data which should be recovered is that which corresponds
1790 * to the di_next_unlinked pointers in the on disk inode structures.
1791 * The rest of the data for the inodes is always logged through the
1792 * inodes themselves rather than the inode buffer and is recovered
1793 * in xlog_recover_do_inode_trans().
1794 *
1795 * The only time when buffers full of inodes are fully recovered is
1796 * when the buffer is full of newly allocated inodes. In this case
1797 * the buffer will not be marked as an inode buffer and so will be
1798 * sent to xlog_recover_do_reg_buffer() below during recovery.
1799 */
1800STATIC int
1801xlog_recover_do_inode_buffer(
1802 xfs_mount_t *mp,
1803 xlog_recover_item_t *item,
1804 xfs_buf_t *bp,
1805 xfs_buf_log_format_t *buf_f)
1806{
1807 int i;
1808 int item_index;
1809 int bit;
1810 int nbits;
1811 int reg_buf_offset;
1812 int reg_buf_bytes;
1813 int next_unlinked_offset;
1814 int inodes_per_buf;
1815 xfs_agino_t *logged_nextp;
1816 xfs_agino_t *buffer_nextp;
1817 xfs_buf_log_format_v1_t *obuf_f;
1818 unsigned int *data_map = NULL;
1819 unsigned int map_size = 0;
1820
1821 switch (buf_f->blf_type) {
1822 case XFS_LI_BUF:
1823 data_map = buf_f->blf_data_map;
1824 map_size = buf_f->blf_map_size;
1825 break;
1826 case XFS_LI_6_1_BUF:
1827 case XFS_LI_5_3_BUF:
1828 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1829 data_map = obuf_f->blf_data_map;
1830 map_size = obuf_f->blf_map_size;
1831 break;
1832 }
1833 /*
1834 * Set the variables corresponding to the current region to
1835 * 0 so that we'll initialize them on the first pass through
1836 * the loop.
1837 */
1838 reg_buf_offset = 0;
1839 reg_buf_bytes = 0;
1840 bit = 0;
1841 nbits = 0;
1842 item_index = 0;
1843 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1844 for (i = 0; i < inodes_per_buf; i++) {
1845 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1846 offsetof(xfs_dinode_t, di_next_unlinked);
1847
1848 while (next_unlinked_offset >=
1849 (reg_buf_offset + reg_buf_bytes)) {
1850 /*
1851 * The next di_next_unlinked field is beyond
1852 * the current logged region. Find the next
1853 * logged region that contains or is beyond
1854 * the current di_next_unlinked field.
1855 */
1856 bit += nbits;
1857 bit = xfs_next_bit(data_map, map_size, bit);
1858
1859 /*
1860 * If there are no more logged regions in the
1861 * buffer, then we're done.
1862 */
1863 if (bit == -1) {
1864 return 0;
1865 }
1866
1867 nbits = xfs_contig_bits(data_map, map_size,
1868 bit);
1869 ASSERT(nbits > 0);
1870 reg_buf_offset = bit << XFS_BLI_SHIFT;
1871 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1872 item_index++;
1873 }
1874
1875 /*
1876 * If the current logged region starts after the current
1877 * di_next_unlinked field, then move on to the next
1878 * di_next_unlinked field.
1879 */
1880 if (next_unlinked_offset < reg_buf_offset) {
1881 continue;
1882 }
1883
1884 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1885 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1886 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1887
1888 /*
1889 * The current logged region contains a copy of the
1890 * current di_next_unlinked field. Extract its value
1891 * and copy it to the buffer copy.
1892 */
1893 logged_nextp = (xfs_agino_t *)
1894 ((char *)(item->ri_buf[item_index].i_addr) +
1895 (next_unlinked_offset - reg_buf_offset));
1896 if (unlikely(*logged_nextp == 0)) {
1897 xfs_fs_cmn_err(CE_ALERT, mp,
1898 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1899 item, bp);
1900 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1901 XFS_ERRLEVEL_LOW, mp);
1902 return XFS_ERROR(EFSCORRUPTED);
1903 }
1904
1905 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1906 next_unlinked_offset);
1907 INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
1908 }
1909
1910 return 0;
1911}
1912
1913/*
1914 * Perform a 'normal' buffer recovery. Each logged region of the
1915 * buffer should be copied over the corresponding region in the
1916 * given buffer. The bitmap in the buf log format structure indicates
1917 * where to place the logged data.
1918 */
1919/*ARGSUSED*/
1920STATIC void
1921xlog_recover_do_reg_buffer(
1922 xfs_mount_t *mp,
1923 xlog_recover_item_t *item,
1924 xfs_buf_t *bp,
1925 xfs_buf_log_format_t *buf_f)
1926{
1927 int i;
1928 int bit;
1929 int nbits;
1930 xfs_buf_log_format_v1_t *obuf_f;
1931 unsigned int *data_map = NULL;
1932 unsigned int map_size = 0;
1933 int error;
1934
1935 switch (buf_f->blf_type) {
1936 case XFS_LI_BUF:
1937 data_map = buf_f->blf_data_map;
1938 map_size = buf_f->blf_map_size;
1939 break;
1940 case XFS_LI_6_1_BUF:
1941 case XFS_LI_5_3_BUF:
1942 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1943 data_map = obuf_f->blf_data_map;
1944 map_size = obuf_f->blf_map_size;
1945 break;
1946 }
1947 bit = 0;
1948 i = 1; /* 0 is the buf format structure */
1949 while (1) {
1950 bit = xfs_next_bit(data_map, map_size, bit);
1951 if (bit == -1)
1952 break;
1953 nbits = xfs_contig_bits(data_map, map_size, bit);
1954 ASSERT(nbits > 0);
1955 ASSERT(item->ri_buf[i].i_addr != 0);
1956 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1957 ASSERT(XFS_BUF_COUNT(bp) >=
1958 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1959
1960 /*
1961 * Do a sanity check if this is a dquot buffer. Just checking
1962 * the first dquot in the buffer should do. XXXThis is
1963 * probably a good thing to do for other buf types also.
1964 */
1965 error = 0;
Nathan Scottc8ad20f2005-06-21 15:38:48 +10001966 if (buf_f->blf_flags &
1967 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001968 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1969 item->ri_buf[i].i_addr,
1970 -1, 0, XFS_QMOPT_DOWARN,
1971 "dquot_buf_recover");
1972 }
1973 if (!error)
1974 memcpy(xfs_buf_offset(bp,
1975 (uint)bit << XFS_BLI_SHIFT), /* dest */
1976 item->ri_buf[i].i_addr, /* source */
1977 nbits<<XFS_BLI_SHIFT); /* length */
1978 i++;
1979 bit += nbits;
1980 }
1981
1982 /* Shouldn't be any more regions */
1983 ASSERT(i == item->ri_total);
1984}
1985
1986/*
1987 * Do some primitive error checking on ondisk dquot data structures.
1988 */
1989int
1990xfs_qm_dqcheck(
1991 xfs_disk_dquot_t *ddq,
1992 xfs_dqid_t id,
1993 uint type, /* used only when IO_dorepair is true */
1994 uint flags,
1995 char *str)
1996{
1997 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1998 int errs = 0;
1999
2000 /*
2001 * We can encounter an uninitialized dquot buffer for 2 reasons:
2002 * 1. If we crash while deleting the quotainode(s), and those blks got
2003 * used for user data. This is because we take the path of regular
2004 * file deletion; however, the size field of quotainodes is never
2005 * updated, so all the tricks that we play in itruncate_finish
2006 * don't quite matter.
2007 *
2008 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2009 * But the allocation will be replayed so we'll end up with an
2010 * uninitialized quota block.
2011 *
2012 * This is all fine; things are still consistent, and we haven't lost
2013 * any quota information. Just don't complain about bad dquot blks.
2014 */
2015 if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) {
2016 if (flags & XFS_QMOPT_DOWARN)
2017 cmn_err(CE_ALERT,
2018 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2019 str, id,
2020 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC);
2021 errs++;
2022 }
2023 if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) {
2024 if (flags & XFS_QMOPT_DOWARN)
2025 cmn_err(CE_ALERT,
2026 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2027 str, id,
2028 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION);
2029 errs++;
2030 }
2031
2032 if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER &&
Nathan Scottc8ad20f2005-06-21 15:38:48 +10002033 INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_PROJ &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07002034 INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) {
2035 if (flags & XFS_QMOPT_DOWARN)
2036 cmn_err(CE_ALERT,
2037 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2038 str, id, INT_GET(ddq->d_flags, ARCH_CONVERT));
2039 errs++;
2040 }
2041
2042 if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) {
2043 if (flags & XFS_QMOPT_DOWARN)
2044 cmn_err(CE_ALERT,
2045 "%s : ondisk-dquot 0x%p, ID mismatch: "
2046 "0x%x expected, found id 0x%x",
2047 str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT));
2048 errs++;
2049 }
2050
2051 if (!errs && ddq->d_id) {
2052 if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) &&
2053 INT_GET(ddq->d_bcount, ARCH_CONVERT) >=
2054 INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) {
2055 if (!ddq->d_btimer) {
2056 if (flags & XFS_QMOPT_DOWARN)
2057 cmn_err(CE_ALERT,
2058 "%s : Dquot ID 0x%x (0x%p) "
2059 "BLK TIMER NOT STARTED",
2060 str, (int)
2061 INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2062 errs++;
2063 }
2064 }
2065 if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) &&
2066 INT_GET(ddq->d_icount, ARCH_CONVERT) >=
2067 INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) {
2068 if (!ddq->d_itimer) {
2069 if (flags & XFS_QMOPT_DOWARN)
2070 cmn_err(CE_ALERT,
2071 "%s : Dquot ID 0x%x (0x%p) "
2072 "INODE TIMER NOT STARTED",
2073 str, (int)
2074 INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2075 errs++;
2076 }
2077 }
2078 if (INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT) &&
2079 INT_GET(ddq->d_rtbcount, ARCH_CONVERT) >=
2080 INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT)) {
2081 if (!ddq->d_rtbtimer) {
2082 if (flags & XFS_QMOPT_DOWARN)
2083 cmn_err(CE_ALERT,
2084 "%s : Dquot ID 0x%x (0x%p) "
2085 "RTBLK TIMER NOT STARTED",
2086 str, (int)
2087 INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2088 errs++;
2089 }
2090 }
2091 }
2092
2093 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2094 return errs;
2095
2096 if (flags & XFS_QMOPT_DOWARN)
2097 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2098
2099 /*
2100 * Typically, a repair is only requested by quotacheck.
2101 */
2102 ASSERT(id != -1);
2103 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2104 memset(d, 0, sizeof(xfs_dqblk_t));
2105 INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC);
2106 INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION);
2107 INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id);
2108 INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type);
2109
2110 return errs;
2111}
2112
2113/*
2114 * Perform a dquot buffer recovery.
2115 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2116 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2117 * Else, treat it as a regular buffer and do recovery.
2118 */
2119STATIC void
2120xlog_recover_do_dquot_buffer(
2121 xfs_mount_t *mp,
2122 xlog_t *log,
2123 xlog_recover_item_t *item,
2124 xfs_buf_t *bp,
2125 xfs_buf_log_format_t *buf_f)
2126{
2127 uint type;
2128
2129 /*
2130 * Filesystems are required to send in quota flags at mount time.
2131 */
2132 if (mp->m_qflags == 0) {
2133 return;
2134 }
2135
2136 type = 0;
2137 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2138 type |= XFS_DQ_USER;
Nathan Scottc8ad20f2005-06-21 15:38:48 +10002139 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2140 type |= XFS_DQ_PROJ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2142 type |= XFS_DQ_GROUP;
2143 /*
2144 * This type of quotas was turned off, so ignore this buffer
2145 */
2146 if (log->l_quotaoffs_flag & type)
2147 return;
2148
2149 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2150}
2151
2152/*
2153 * This routine replays a modification made to a buffer at runtime.
2154 * There are actually two types of buffer, regular and inode, which
2155 * are handled differently. Inode buffers are handled differently
2156 * in that we only recover a specific set of data from them, namely
2157 * the inode di_next_unlinked fields. This is because all other inode
2158 * data is actually logged via inode records and any data we replay
2159 * here which overlaps that may be stale.
2160 *
2161 * When meta-data buffers are freed at run time we log a buffer item
2162 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2163 * of the buffer in the log should not be replayed at recovery time.
2164 * This is so that if the blocks covered by the buffer are reused for
2165 * file data before we crash we don't end up replaying old, freed
2166 * meta-data into a user's file.
2167 *
2168 * To handle the cancellation of buffer log items, we make two passes
2169 * over the log during recovery. During the first we build a table of
2170 * those buffers which have been cancelled, and during the second we
2171 * only replay those buffers which do not have corresponding cancel
2172 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2173 * for more details on the implementation of the table of cancel records.
2174 */
2175STATIC int
2176xlog_recover_do_buffer_trans(
2177 xlog_t *log,
2178 xlog_recover_item_t *item,
2179 int pass)
2180{
2181 xfs_buf_log_format_t *buf_f;
2182 xfs_buf_log_format_v1_t *obuf_f;
2183 xfs_mount_t *mp;
2184 xfs_buf_t *bp;
2185 int error;
2186 int cancel;
2187 xfs_daddr_t blkno;
2188 int len;
2189 ushort flags;
2190
2191 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2192
2193 if (pass == XLOG_RECOVER_PASS1) {
2194 /*
2195 * In this pass we're only looking for buf items
2196 * with the XFS_BLI_CANCEL bit set.
2197 */
2198 xlog_recover_do_buffer_pass1(log, buf_f);
2199 return 0;
2200 } else {
2201 /*
2202 * In this pass we want to recover all the buffers
2203 * which have not been cancelled and are not
2204 * cancellation buffers themselves. The routine
2205 * we call here will tell us whether or not to
2206 * continue with the replay of this buffer.
2207 */
2208 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2209 if (cancel) {
2210 return 0;
2211 }
2212 }
2213 switch (buf_f->blf_type) {
2214 case XFS_LI_BUF:
2215 blkno = buf_f->blf_blkno;
2216 len = buf_f->blf_len;
2217 flags = buf_f->blf_flags;
2218 break;
2219 case XFS_LI_6_1_BUF:
2220 case XFS_LI_5_3_BUF:
2221 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2222 blkno = obuf_f->blf_blkno;
2223 len = obuf_f->blf_len;
2224 flags = obuf_f->blf_flags;
2225 break;
2226 default:
2227 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
Nathan Scottfc1f8c12005-11-02 11:44:33 +11002228 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2229 buf_f->blf_type, log->l_mp->m_logname ?
2230 log->l_mp->m_logname : "internal");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002231 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2232 XFS_ERRLEVEL_LOW, log->l_mp);
2233 return XFS_ERROR(EFSCORRUPTED);
2234 }
2235
2236 mp = log->l_mp;
2237 if (flags & XFS_BLI_INODE_BUF) {
2238 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2239 XFS_BUF_LOCK);
2240 } else {
2241 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2242 }
2243 if (XFS_BUF_ISERROR(bp)) {
2244 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2245 bp, blkno);
2246 error = XFS_BUF_GETERROR(bp);
2247 xfs_buf_relse(bp);
2248 return error;
2249 }
2250
2251 error = 0;
2252 if (flags & XFS_BLI_INODE_BUF) {
2253 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
Nathan Scottc8ad20f2005-06-21 15:38:48 +10002254 } else if (flags &
2255 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002256 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2257 } else {
2258 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2259 }
2260 if (error)
2261 return XFS_ERROR(error);
2262
2263 /*
2264 * Perform delayed write on the buffer. Asynchronous writes will be
2265 * slower when taking into account all the buffers to be flushed.
2266 *
2267 * Also make sure that only inode buffers with good sizes stay in
2268 * the buffer cache. The kernel moves inodes in buffers of 1 block
2269 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2270 * buffers in the log can be a different size if the log was generated
2271 * by an older kernel using unclustered inode buffers or a newer kernel
2272 * running with a different inode cluster size. Regardless, if the
2273 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2274 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2275 * the buffer out of the buffer cache so that the buffer won't
2276 * overlap with future reads of those inodes.
2277 */
2278 if (XFS_DINODE_MAGIC ==
2279 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2280 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2281 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2282 XFS_BUF_STALE(bp);
2283 error = xfs_bwrite(mp, bp);
2284 } else {
2285 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2286 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2287 XFS_BUF_SET_FSPRIVATE(bp, mp);
2288 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2289 xfs_bdwrite(mp, bp);
2290 }
2291
2292 return (error);
2293}
2294
2295STATIC int
2296xlog_recover_do_inode_trans(
2297 xlog_t *log,
2298 xlog_recover_item_t *item,
2299 int pass)
2300{
2301 xfs_inode_log_format_t *in_f;
2302 xfs_mount_t *mp;
2303 xfs_buf_t *bp;
2304 xfs_imap_t imap;
2305 xfs_dinode_t *dip;
2306 xfs_ino_t ino;
2307 int len;
2308 xfs_caddr_t src;
2309 xfs_caddr_t dest;
2310 int error;
2311 int attr_index;
2312 uint fields;
2313 xfs_dinode_core_t *dicp;
2314
2315 if (pass == XLOG_RECOVER_PASS1) {
2316 return 0;
2317 }
2318
2319 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2320 ino = in_f->ilf_ino;
2321 mp = log->l_mp;
2322 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2323 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2324 imap.im_len = in_f->ilf_len;
2325 imap.im_boffset = in_f->ilf_boffset;
2326 } else {
2327 /*
2328 * It's an old inode format record. We don't know where
2329 * its cluster is located on disk, and we can't allow
2330 * xfs_imap() to figure it out because the inode btrees
2331 * are not ready to be used. Therefore do not pass the
2332 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2333 * us only the single block in which the inode lives
2334 * rather than its cluster, so we must make sure to
2335 * invalidate the buffer when we write it out below.
2336 */
2337 imap.im_blkno = 0;
2338 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2339 }
2340
2341 /*
2342 * Inode buffers can be freed, look out for it,
2343 * and do not replay the inode.
2344 */
2345 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0))
2346 return 0;
2347
2348 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2349 XFS_BUF_LOCK);
2350 if (XFS_BUF_ISERROR(bp)) {
2351 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2352 bp, imap.im_blkno);
2353 error = XFS_BUF_GETERROR(bp);
2354 xfs_buf_relse(bp);
2355 return error;
2356 }
2357 error = 0;
2358 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2359 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2360
2361 /*
2362 * Make sure the place we're flushing out to really looks
2363 * like an inode!
2364 */
2365 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2366 xfs_buf_relse(bp);
2367 xfs_fs_cmn_err(CE_ALERT, mp,
2368 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2369 dip, bp, ino);
2370 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2371 XFS_ERRLEVEL_LOW, mp);
2372 return XFS_ERROR(EFSCORRUPTED);
2373 }
2374 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2375 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2376 xfs_buf_relse(bp);
2377 xfs_fs_cmn_err(CE_ALERT, mp,
2378 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2379 item, ino);
2380 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2381 XFS_ERRLEVEL_LOW, mp);
2382 return XFS_ERROR(EFSCORRUPTED);
2383 }
2384
2385 /* Skip replay when the on disk inode is newer than the log one */
2386 if (dicp->di_flushiter <
2387 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2388 /*
2389 * Deal with the wrap case, DI_MAX_FLUSH is less
2390 * than smaller numbers
2391 */
2392 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2393 == DI_MAX_FLUSH) &&
2394 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2395 /* do nothing */
2396 } else {
2397 xfs_buf_relse(bp);
2398 return 0;
2399 }
2400 }
2401 /* Take the opportunity to reset the flush iteration count */
2402 dicp->di_flushiter = 0;
2403
2404 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2405 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2406 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2407 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2408 XFS_ERRLEVEL_LOW, mp, dicp);
2409 xfs_buf_relse(bp);
2410 xfs_fs_cmn_err(CE_ALERT, mp,
2411 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2412 item, dip, bp, ino);
2413 return XFS_ERROR(EFSCORRUPTED);
2414 }
2415 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2416 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2417 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2418 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2419 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2420 XFS_ERRLEVEL_LOW, mp, dicp);
2421 xfs_buf_relse(bp);
2422 xfs_fs_cmn_err(CE_ALERT, mp,
2423 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2424 item, dip, bp, ino);
2425 return XFS_ERROR(EFSCORRUPTED);
2426 }
2427 }
2428 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2429 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2430 XFS_ERRLEVEL_LOW, mp, dicp);
2431 xfs_buf_relse(bp);
2432 xfs_fs_cmn_err(CE_ALERT, mp,
2433 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2434 item, dip, bp, ino,
2435 dicp->di_nextents + dicp->di_anextents,
2436 dicp->di_nblocks);
2437 return XFS_ERROR(EFSCORRUPTED);
2438 }
2439 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2440 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2441 XFS_ERRLEVEL_LOW, mp, dicp);
2442 xfs_buf_relse(bp);
2443 xfs_fs_cmn_err(CE_ALERT, mp,
2444 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2445 item, dip, bp, ino, dicp->di_forkoff);
2446 return XFS_ERROR(EFSCORRUPTED);
2447 }
2448 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2449 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2450 XFS_ERRLEVEL_LOW, mp, dicp);
2451 xfs_buf_relse(bp);
2452 xfs_fs_cmn_err(CE_ALERT, mp,
2453 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2454 item->ri_buf[1].i_len, item);
2455 return XFS_ERROR(EFSCORRUPTED);
2456 }
2457
2458 /* The core is in in-core format */
2459 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2460 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2461
2462 /* the rest is in on-disk format */
2463 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2464 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2465 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2466 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2467 }
2468
2469 fields = in_f->ilf_fields;
2470 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2471 case XFS_ILOG_DEV:
2472 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2473
2474 break;
2475 case XFS_ILOG_UUID:
2476 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2477 break;
2478 }
2479
2480 if (in_f->ilf_size == 2)
2481 goto write_inode_buffer;
2482 len = item->ri_buf[2].i_len;
2483 src = item->ri_buf[2].i_addr;
2484 ASSERT(in_f->ilf_size <= 4);
2485 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2486 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2487 (len == in_f->ilf_dsize));
2488
2489 switch (fields & XFS_ILOG_DFORK) {
2490 case XFS_ILOG_DDATA:
2491 case XFS_ILOG_DEXT:
2492 memcpy(&dip->di_u, src, len);
2493 break;
2494
2495 case XFS_ILOG_DBROOT:
2496 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2497 &(dip->di_u.di_bmbt),
2498 XFS_DFORK_DSIZE(dip, mp));
2499 break;
2500
2501 default:
2502 /*
2503 * There are no data fork flags set.
2504 */
2505 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2506 break;
2507 }
2508
2509 /*
2510 * If we logged any attribute data, recover it. There may or
2511 * may not have been any other non-core data logged in this
2512 * transaction.
2513 */
2514 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2515 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2516 attr_index = 3;
2517 } else {
2518 attr_index = 2;
2519 }
2520 len = item->ri_buf[attr_index].i_len;
2521 src = item->ri_buf[attr_index].i_addr;
2522 ASSERT(len == in_f->ilf_asize);
2523
2524 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2525 case XFS_ILOG_ADATA:
2526 case XFS_ILOG_AEXT:
2527 dest = XFS_DFORK_APTR(dip);
2528 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2529 memcpy(dest, src, len);
2530 break;
2531
2532 case XFS_ILOG_ABROOT:
2533 dest = XFS_DFORK_APTR(dip);
2534 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2535 (xfs_bmdr_block_t*)dest,
2536 XFS_DFORK_ASIZE(dip, mp));
2537 break;
2538
2539 default:
2540 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2541 ASSERT(0);
2542 xfs_buf_relse(bp);
2543 return XFS_ERROR(EIO);
2544 }
2545 }
2546
2547write_inode_buffer:
2548 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2549 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2550 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2551 XFS_BUF_SET_FSPRIVATE(bp, mp);
2552 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2553 xfs_bdwrite(mp, bp);
2554 } else {
2555 XFS_BUF_STALE(bp);
2556 error = xfs_bwrite(mp, bp);
2557 }
2558
2559 return (error);
2560}
2561
2562/*
2563 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2564 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2565 * of that type.
2566 */
2567STATIC int
2568xlog_recover_do_quotaoff_trans(
2569 xlog_t *log,
2570 xlog_recover_item_t *item,
2571 int pass)
2572{
2573 xfs_qoff_logformat_t *qoff_f;
2574
2575 if (pass == XLOG_RECOVER_PASS2) {
2576 return (0);
2577 }
2578
2579 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2580 ASSERT(qoff_f);
2581
2582 /*
2583 * The logitem format's flag tells us if this was user quotaoff,
2584 * group quotaoff or both.
2585 */
2586 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2587 log->l_quotaoffs_flag |= XFS_DQ_USER;
2588 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2589 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2590
2591 return (0);
2592}
2593
2594/*
2595 * Recover a dquot record
2596 */
2597STATIC int
2598xlog_recover_do_dquot_trans(
2599 xlog_t *log,
2600 xlog_recover_item_t *item,
2601 int pass)
2602{
2603 xfs_mount_t *mp;
2604 xfs_buf_t *bp;
2605 struct xfs_disk_dquot *ddq, *recddq;
2606 int error;
2607 xfs_dq_logformat_t *dq_f;
2608 uint type;
2609
2610 if (pass == XLOG_RECOVER_PASS1) {
2611 return 0;
2612 }
2613 mp = log->l_mp;
2614
2615 /*
2616 * Filesystems are required to send in quota flags at mount time.
2617 */
2618 if (mp->m_qflags == 0)
2619 return (0);
2620
2621 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2622 ASSERT(recddq);
2623 /*
2624 * This type of quotas was turned off, so ignore this record.
2625 */
2626 type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
Nathan Scottc8ad20f2005-06-21 15:38:48 +10002627 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002628 ASSERT(type);
2629 if (log->l_quotaoffs_flag & type)
2630 return (0);
2631
2632 /*
2633 * At this point we know that quota was _not_ turned off.
2634 * Since the mount flags are not indicating to us otherwise, this
2635 * must mean that quota is on, and the dquot needs to be replayed.
2636 * Remember that we may not have fully recovered the superblock yet,
2637 * so we can't do the usual trick of looking at the SB quota bits.
2638 *
2639 * The other possibility, of course, is that the quota subsystem was
2640 * removed since the last mount - ENOSYS.
2641 */
2642 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2643 ASSERT(dq_f);
2644 if ((error = xfs_qm_dqcheck(recddq,
2645 dq_f->qlf_id,
2646 0, XFS_QMOPT_DOWARN,
2647 "xlog_recover_do_dquot_trans (log copy)"))) {
2648 return XFS_ERROR(EIO);
2649 }
2650 ASSERT(dq_f->qlf_len == 1);
2651
2652 error = xfs_read_buf(mp, mp->m_ddev_targp,
2653 dq_f->qlf_blkno,
2654 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2655 0, &bp);
2656 if (error) {
2657 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2658 bp, dq_f->qlf_blkno);
2659 return error;
2660 }
2661 ASSERT(bp);
2662 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2663
2664 /*
2665 * At least the magic num portion should be on disk because this
2666 * was among a chunk of dquots created earlier, and we did some
2667 * minimal initialization then.
2668 */
2669 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2670 "xlog_recover_do_dquot_trans")) {
2671 xfs_buf_relse(bp);
2672 return XFS_ERROR(EIO);
2673 }
2674
2675 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2676
2677 ASSERT(dq_f->qlf_size == 2);
2678 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2679 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2680 XFS_BUF_SET_FSPRIVATE(bp, mp);
2681 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2682 xfs_bdwrite(mp, bp);
2683
2684 return (0);
2685}
2686
2687/*
2688 * This routine is called to create an in-core extent free intent
2689 * item from the efi format structure which was logged on disk.
2690 * It allocates an in-core efi, copies the extents from the format
2691 * structure into it, and adds the efi to the AIL with the given
2692 * LSN.
2693 */
2694STATIC void
2695xlog_recover_do_efi_trans(
2696 xlog_t *log,
2697 xlog_recover_item_t *item,
2698 xfs_lsn_t lsn,
2699 int pass)
2700{
2701 xfs_mount_t *mp;
2702 xfs_efi_log_item_t *efip;
2703 xfs_efi_log_format_t *efi_formatp;
2704 SPLDECL(s);
2705
2706 if (pass == XLOG_RECOVER_PASS1) {
2707 return;
2708 }
2709
2710 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2711 ASSERT(item->ri_buf[0].i_len ==
2712 (sizeof(xfs_efi_log_format_t) +
2713 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
2714
2715 mp = log->l_mp;
2716 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2717 memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
2718 sizeof(xfs_efi_log_format_t) +
2719 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
2720 efip->efi_next_extent = efi_formatp->efi_nextents;
2721 efip->efi_flags |= XFS_EFI_COMMITTED;
2722
2723 AIL_LOCK(mp,s);
2724 /*
2725 * xfs_trans_update_ail() drops the AIL lock.
2726 */
2727 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2728}
2729
2730
2731/*
2732 * This routine is called when an efd format structure is found in
2733 * a committed transaction in the log. It's purpose is to cancel
2734 * the corresponding efi if it was still in the log. To do this
2735 * it searches the AIL for the efi with an id equal to that in the
2736 * efd format structure. If we find it, we remove the efi from the
2737 * AIL and free it.
2738 */
2739STATIC void
2740xlog_recover_do_efd_trans(
2741 xlog_t *log,
2742 xlog_recover_item_t *item,
2743 int pass)
2744{
2745 xfs_mount_t *mp;
2746 xfs_efd_log_format_t *efd_formatp;
2747 xfs_efi_log_item_t *efip = NULL;
2748 xfs_log_item_t *lip;
2749 int gen;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 __uint64_t efi_id;
2751 SPLDECL(s);
2752
2753 if (pass == XLOG_RECOVER_PASS1) {
2754 return;
2755 }
2756
2757 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2758 ASSERT(item->ri_buf[0].i_len ==
2759 (sizeof(xfs_efd_log_format_t) +
2760 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
2761 efi_id = efd_formatp->efd_efi_id;
2762
2763 /*
2764 * Search for the efi with the id in the efd format structure
2765 * in the AIL.
2766 */
2767 mp = log->l_mp;
2768 AIL_LOCK(mp,s);
2769 lip = xfs_trans_first_ail(mp, &gen);
2770 while (lip != NULL) {
2771 if (lip->li_type == XFS_LI_EFI) {
2772 efip = (xfs_efi_log_item_t *)lip;
2773 if (efip->efi_format.efi_id == efi_id) {
2774 /*
2775 * xfs_trans_delete_ail() drops the
2776 * AIL lock.
2777 */
2778 xfs_trans_delete_ail(mp, lip, s);
2779 break;
2780 }
2781 }
2782 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2783 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002784
2785 /*
2786 * If we found it, then free it up. If it wasn't there, it
2787 * must have been overwritten in the log. Oh well.
2788 */
2789 if (lip != NULL) {
Christoph Hellwig7d795ca2005-06-21 15:41:19 +10002790 xfs_efi_item_free(efip);
2791 } else {
2792 AIL_UNLOCK(mp, s);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 }
2794}
2795
2796/*
2797 * Perform the transaction
2798 *
2799 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2800 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2801 */
2802STATIC int
2803xlog_recover_do_trans(
2804 xlog_t *log,
2805 xlog_recover_t *trans,
2806 int pass)
2807{
2808 int error = 0;
2809 xlog_recover_item_t *item, *first_item;
2810
2811 if ((error = xlog_recover_reorder_trans(log, trans)))
2812 return error;
2813 first_item = item = trans->r_itemq;
2814 do {
2815 /*
2816 * we don't need to worry about the block number being
2817 * truncated in > 1 TB buffers because in user-land,
2818 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2819 * the blkno's will get through the user-mode buffer
2820 * cache properly. The only bad case is o32 kernels
2821 * where xfs_daddr_t is 32-bits but mount will warn us
2822 * off a > 1 TB filesystem before we get here.
2823 */
2824 if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2825 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2826 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2827 if ((error = xlog_recover_do_buffer_trans(log, item,
2828 pass)))
2829 break;
2830 } else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
2831 (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
2832 (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
2833 if ((error = xlog_recover_do_inode_trans(log, item,
2834 pass)))
2835 break;
2836 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2837 xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2838 pass);
2839 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2840 xlog_recover_do_efd_trans(log, item, pass);
2841 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2842 if ((error = xlog_recover_do_dquot_trans(log, item,
2843 pass)))
2844 break;
2845 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2846 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2847 pass)))
2848 break;
2849 } else {
2850 xlog_warn("XFS: xlog_recover_do_trans");
2851 ASSERT(0);
2852 error = XFS_ERROR(EIO);
2853 break;
2854 }
2855 item = item->ri_next;
2856 } while (first_item != item);
2857
2858 return error;
2859}
2860
2861/*
2862 * Free up any resources allocated by the transaction
2863 *
2864 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2865 */
2866STATIC void
2867xlog_recover_free_trans(
2868 xlog_recover_t *trans)
2869{
2870 xlog_recover_item_t *first_item, *item, *free_item;
2871 int i;
2872
2873 item = first_item = trans->r_itemq;
2874 do {
2875 free_item = item;
2876 item = item->ri_next;
2877 /* Free the regions in the item. */
2878 for (i = 0; i < free_item->ri_cnt; i++) {
2879 kmem_free(free_item->ri_buf[i].i_addr,
2880 free_item->ri_buf[i].i_len);
2881 }
2882 /* Free the item itself */
2883 kmem_free(free_item->ri_buf,
2884 (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2885 kmem_free(free_item, sizeof(xlog_recover_item_t));
2886 } while (first_item != item);
2887 /* Free the transaction recover structure */
2888 kmem_free(trans, sizeof(xlog_recover_t));
2889}
2890
2891STATIC int
2892xlog_recover_commit_trans(
2893 xlog_t *log,
2894 xlog_recover_t **q,
2895 xlog_recover_t *trans,
2896 int pass)
2897{
2898 int error;
2899
2900 if ((error = xlog_recover_unlink_tid(q, trans)))
2901 return error;
2902 if ((error = xlog_recover_do_trans(log, trans, pass)))
2903 return error;
2904 xlog_recover_free_trans(trans); /* no error */
2905 return 0;
2906}
2907
2908STATIC int
2909xlog_recover_unmount_trans(
2910 xlog_recover_t *trans)
2911{
2912 /* Do nothing now */
2913 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2914 return 0;
2915}
2916
2917/*
2918 * There are two valid states of the r_state field. 0 indicates that the
2919 * transaction structure is in a normal state. We have either seen the
2920 * start of the transaction or the last operation we added was not a partial
2921 * operation. If the last operation we added to the transaction was a
2922 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2923 *
2924 * NOTE: skip LRs with 0 data length.
2925 */
2926STATIC int
2927xlog_recover_process_data(
2928 xlog_t *log,
2929 xlog_recover_t *rhash[],
2930 xlog_rec_header_t *rhead,
2931 xfs_caddr_t dp,
2932 int pass)
2933{
2934 xfs_caddr_t lp;
2935 int num_logops;
2936 xlog_op_header_t *ohead;
2937 xlog_recover_t *trans;
2938 xlog_tid_t tid;
2939 int error;
2940 unsigned long hash;
2941 uint flags;
2942
2943 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2944 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2945
2946 /* check the log format matches our own - else we can't recover */
2947 if (xlog_header_check_recover(log->l_mp, rhead))
2948 return (XFS_ERROR(EIO));
2949
2950 while ((dp < lp) && num_logops) {
2951 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2952 ohead = (xlog_op_header_t *)dp;
2953 dp += sizeof(xlog_op_header_t);
2954 if (ohead->oh_clientid != XFS_TRANSACTION &&
2955 ohead->oh_clientid != XFS_LOG) {
2956 xlog_warn(
2957 "XFS: xlog_recover_process_data: bad clientid");
2958 ASSERT(0);
2959 return (XFS_ERROR(EIO));
2960 }
2961 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2962 hash = XLOG_RHASH(tid);
2963 trans = xlog_recover_find_tid(rhash[hash], tid);
2964 if (trans == NULL) { /* not found; add new tid */
2965 if (ohead->oh_flags & XLOG_START_TRANS)
2966 xlog_recover_new_tid(&rhash[hash], tid,
2967 INT_GET(rhead->h_lsn, ARCH_CONVERT));
2968 } else {
2969 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2970 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2971 if (flags & XLOG_WAS_CONT_TRANS)
2972 flags &= ~XLOG_CONTINUE_TRANS;
2973 switch (flags) {
2974 case XLOG_COMMIT_TRANS:
2975 error = xlog_recover_commit_trans(log,
2976 &rhash[hash], trans, pass);
2977 break;
2978 case XLOG_UNMOUNT_TRANS:
2979 error = xlog_recover_unmount_trans(trans);
2980 break;
2981 case XLOG_WAS_CONT_TRANS:
2982 error = xlog_recover_add_to_cont_trans(trans,
2983 dp, INT_GET(ohead->oh_len,
2984 ARCH_CONVERT));
2985 break;
2986 case XLOG_START_TRANS:
2987 xlog_warn(
2988 "XFS: xlog_recover_process_data: bad transaction");
2989 ASSERT(0);
2990 error = XFS_ERROR(EIO);
2991 break;
2992 case 0:
2993 case XLOG_CONTINUE_TRANS:
2994 error = xlog_recover_add_to_trans(trans,
2995 dp, INT_GET(ohead->oh_len,
2996 ARCH_CONVERT));
2997 break;
2998 default:
2999 xlog_warn(
3000 "XFS: xlog_recover_process_data: bad flag");
3001 ASSERT(0);
3002 error = XFS_ERROR(EIO);
3003 break;
3004 }
3005 if (error)
3006 return error;
3007 }
3008 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3009 num_logops--;
3010 }
3011 return 0;
3012}
3013
3014/*
3015 * Process an extent free intent item that was recovered from
3016 * the log. We need to free the extents that it describes.
3017 */
3018STATIC void
3019xlog_recover_process_efi(
3020 xfs_mount_t *mp,
3021 xfs_efi_log_item_t *efip)
3022{
3023 xfs_efd_log_item_t *efdp;
3024 xfs_trans_t *tp;
3025 int i;
3026 xfs_extent_t *extp;
3027 xfs_fsblock_t startblock_fsb;
3028
3029 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3030
3031 /*
3032 * First check the validity of the extents described by the
3033 * EFI. If any are bad, then assume that all are bad and
3034 * just toss the EFI.
3035 */
3036 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3037 extp = &(efip->efi_format.efi_extents[i]);
3038 startblock_fsb = XFS_BB_TO_FSB(mp,
3039 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3040 if ((startblock_fsb == 0) ||
3041 (extp->ext_len == 0) ||
3042 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3043 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3044 /*
3045 * This will pull the EFI from the AIL and
3046 * free the memory associated with it.
3047 */
3048 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3049 return;
3050 }
3051 }
3052
3053 tp = xfs_trans_alloc(mp, 0);
3054 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3055 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3056
3057 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3058 extp = &(efip->efi_format.efi_extents[i]);
3059 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3060 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3061 extp->ext_len);
3062 }
3063
3064 efip->efi_flags |= XFS_EFI_RECOVERED;
3065 xfs_trans_commit(tp, 0, NULL);
3066}
3067
3068/*
3069 * Verify that once we've encountered something other than an EFI
3070 * in the AIL that there are no more EFIs in the AIL.
3071 */
3072#if defined(DEBUG)
3073STATIC void
3074xlog_recover_check_ail(
3075 xfs_mount_t *mp,
3076 xfs_log_item_t *lip,
3077 int gen)
3078{
3079 int orig_gen = gen;
3080
3081 do {
3082 ASSERT(lip->li_type != XFS_LI_EFI);
3083 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3084 /*
3085 * The check will be bogus if we restart from the
3086 * beginning of the AIL, so ASSERT that we don't.
3087 * We never should since we're holding the AIL lock
3088 * the entire time.
3089 */
3090 ASSERT(gen == orig_gen);
3091 } while (lip != NULL);
3092}
3093#endif /* DEBUG */
3094
3095/*
3096 * When this is called, all of the EFIs which did not have
3097 * corresponding EFDs should be in the AIL. What we do now
3098 * is free the extents associated with each one.
3099 *
3100 * Since we process the EFIs in normal transactions, they
3101 * will be removed at some point after the commit. This prevents
3102 * us from just walking down the list processing each one.
3103 * We'll use a flag in the EFI to skip those that we've already
3104 * processed and use the AIL iteration mechanism's generation
3105 * count to try to speed this up at least a bit.
3106 *
3107 * When we start, we know that the EFIs are the only things in
3108 * the AIL. As we process them, however, other items are added
3109 * to the AIL. Since everything added to the AIL must come after
3110 * everything already in the AIL, we stop processing as soon as
3111 * we see something other than an EFI in the AIL.
3112 */
3113STATIC void
3114xlog_recover_process_efis(
3115 xlog_t *log)
3116{
3117 xfs_log_item_t *lip;
3118 xfs_efi_log_item_t *efip;
3119 int gen;
3120 xfs_mount_t *mp;
3121 SPLDECL(s);
3122
3123 mp = log->l_mp;
3124 AIL_LOCK(mp,s);
3125
3126 lip = xfs_trans_first_ail(mp, &gen);
3127 while (lip != NULL) {
3128 /*
3129 * We're done when we see something other than an EFI.
3130 */
3131 if (lip->li_type != XFS_LI_EFI) {
3132 xlog_recover_check_ail(mp, lip, gen);
3133 break;
3134 }
3135
3136 /*
3137 * Skip EFIs that we've already processed.
3138 */
3139 efip = (xfs_efi_log_item_t *)lip;
3140 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3141 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3142 continue;
3143 }
3144
3145 AIL_UNLOCK(mp, s);
3146 xlog_recover_process_efi(mp, efip);
3147 AIL_LOCK(mp,s);
3148 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3149 }
3150 AIL_UNLOCK(mp, s);
3151}
3152
3153/*
3154 * This routine performs a transaction to null out a bad inode pointer
3155 * in an agi unlinked inode hash bucket.
3156 */
3157STATIC void
3158xlog_recover_clear_agi_bucket(
3159 xfs_mount_t *mp,
3160 xfs_agnumber_t agno,
3161 int bucket)
3162{
3163 xfs_trans_t *tp;
3164 xfs_agi_t *agi;
3165 xfs_buf_t *agibp;
3166 int offset;
3167 int error;
3168
3169 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3170 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3171
3172 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3173 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3174 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3175 if (error) {
3176 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3177 return;
3178 }
3179
3180 agi = XFS_BUF_TO_AGI(agibp);
3181 if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) {
3182 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3183 return;
3184 }
3185 ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC);
3186
3187 INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO);
3188 offset = offsetof(xfs_agi_t, agi_unlinked) +
3189 (sizeof(xfs_agino_t) * bucket);
3190 xfs_trans_log_buf(tp, agibp, offset,
3191 (offset + sizeof(xfs_agino_t) - 1));
3192
3193 (void) xfs_trans_commit(tp, 0, NULL);
3194}
3195
3196/*
3197 * xlog_iunlink_recover
3198 *
3199 * This is called during recovery to process any inodes which
3200 * we unlinked but not freed when the system crashed. These
3201 * inodes will be on the lists in the AGI blocks. What we do
3202 * here is scan all the AGIs and fully truncate and free any
3203 * inodes found on the lists. Each inode is removed from the
3204 * lists when it has been fully truncated and is freed. The
3205 * freeing of the inode and its removal from the list must be
3206 * atomic.
3207 */
3208void
3209xlog_recover_process_iunlinks(
3210 xlog_t *log)
3211{
3212 xfs_mount_t *mp;
3213 xfs_agnumber_t agno;
3214 xfs_agi_t *agi;
3215 xfs_buf_t *agibp;
3216 xfs_buf_t *ibp;
3217 xfs_dinode_t *dip;
3218 xfs_inode_t *ip;
3219 xfs_agino_t agino;
3220 xfs_ino_t ino;
3221 int bucket;
3222 int error;
3223 uint mp_dmevmask;
3224
3225 mp = log->l_mp;
3226
3227 /*
3228 * Prevent any DMAPI event from being sent while in this function.
3229 */
3230 mp_dmevmask = mp->m_dmevmask;
3231 mp->m_dmevmask = 0;
3232
3233 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3234 /*
3235 * Find the agi for this ag.
3236 */
3237 agibp = xfs_buf_read(mp->m_ddev_targp,
3238 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3239 XFS_FSS_TO_BB(mp, 1), 0);
3240 if (XFS_BUF_ISERROR(agibp)) {
3241 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3242 log->l_mp, agibp,
3243 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3244 }
3245 agi = XFS_BUF_TO_AGI(agibp);
3246 ASSERT(XFS_AGI_MAGIC ==
3247 INT_GET(agi->agi_magicnum, ARCH_CONVERT));
3248
3249 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3250
3251 agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT);
3252 while (agino != NULLAGINO) {
3253
3254 /*
3255 * Release the agi buffer so that it can
3256 * be acquired in the normal course of the
3257 * transaction to truncate and free the inode.
3258 */
3259 xfs_buf_relse(agibp);
3260
3261 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3262 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3263 ASSERT(error || (ip != NULL));
3264
3265 if (!error) {
3266 /*
3267 * Get the on disk inode to find the
3268 * next inode in the bucket.
3269 */
3270 error = xfs_itobp(mp, NULL, ip, &dip,
3271 &ibp, 0);
3272 ASSERT(error || (dip != NULL));
3273 }
3274
3275 if (!error) {
3276 ASSERT(ip->i_d.di_nlink == 0);
3277
3278 /* setup for the next pass */
3279 agino = INT_GET(dip->di_next_unlinked,
3280 ARCH_CONVERT);
3281 xfs_buf_relse(ibp);
3282 /*
3283 * Prevent any DMAPI event from
3284 * being sent when the
3285 * reference on the inode is
3286 * dropped.
3287 */
3288 ip->i_d.di_dmevmask = 0;
3289
3290 /*
3291 * If this is a new inode, handle
3292 * it specially. Otherwise,
3293 * just drop our reference to the
3294 * inode. If there are no
3295 * other references, this will
3296 * send the inode to
3297 * xfs_inactive() which will
3298 * truncate the file and free
3299 * the inode.
3300 */
3301 if (ip->i_d.di_mode == 0)
3302 xfs_iput_new(ip, 0);
3303 else
3304 VN_RELE(XFS_ITOV(ip));
3305 } else {
3306 /*
3307 * We can't read in the inode
3308 * this bucket points to, or
3309 * this inode is messed up. Just
3310 * ditch this bucket of inodes. We
3311 * will lose some inodes and space,
3312 * but at least we won't hang. Call
3313 * xlog_recover_clear_agi_bucket()
3314 * to perform a transaction to clear
3315 * the inode pointer in the bucket.
3316 */
3317 xlog_recover_clear_agi_bucket(mp, agno,
3318 bucket);
3319
3320 agino = NULLAGINO;
3321 }
3322
3323 /*
3324 * Reacquire the agibuffer and continue around
3325 * the loop.
3326 */
3327 agibp = xfs_buf_read(mp->m_ddev_targp,
3328 XFS_AG_DADDR(mp, agno,
3329 XFS_AGI_DADDR(mp)),
3330 XFS_FSS_TO_BB(mp, 1), 0);
3331 if (XFS_BUF_ISERROR(agibp)) {
3332 xfs_ioerror_alert(
3333 "xlog_recover_process_iunlinks(#2)",
3334 log->l_mp, agibp,
3335 XFS_AG_DADDR(mp, agno,
3336 XFS_AGI_DADDR(mp)));
3337 }
3338 agi = XFS_BUF_TO_AGI(agibp);
3339 ASSERT(XFS_AGI_MAGIC == INT_GET(
3340 agi->agi_magicnum, ARCH_CONVERT));
3341 }
3342 }
3343
3344 /*
3345 * Release the buffer for the current agi so we can
3346 * go on to the next one.
3347 */
3348 xfs_buf_relse(agibp);
3349 }
3350
3351 mp->m_dmevmask = mp_dmevmask;
3352}
3353
3354
3355#ifdef DEBUG
3356STATIC void
3357xlog_pack_data_checksum(
3358 xlog_t *log,
3359 xlog_in_core_t *iclog,
3360 int size)
3361{
3362 int i;
3363 uint *up;
3364 uint chksum = 0;
3365
3366 up = (uint *)iclog->ic_datap;
3367 /* divide length by 4 to get # words */
3368 for (i = 0; i < (size >> 2); i++) {
3369 chksum ^= INT_GET(*up, ARCH_CONVERT);
3370 up++;
3371 }
3372 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3373}
3374#else
3375#define xlog_pack_data_checksum(log, iclog, size)
3376#endif
3377
3378/*
3379 * Stamp cycle number in every block
3380 */
3381void
3382xlog_pack_data(
3383 xlog_t *log,
3384 xlog_in_core_t *iclog,
3385 int roundoff)
3386{
3387 int i, j, k;
3388 int size = iclog->ic_offset + roundoff;
3389 uint cycle_lsn;
3390 xfs_caddr_t dp;
3391 xlog_in_core_2_t *xhdr;
3392
3393 xlog_pack_data_checksum(log, iclog, size);
3394
3395 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3396
3397 dp = iclog->ic_datap;
3398 for (i = 0; i < BTOBB(size) &&
3399 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3400 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3401 *(uint *)dp = cycle_lsn;
3402 dp += BBSIZE;
3403 }
3404
3405 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3406 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3407 for ( ; i < BTOBB(size); i++) {
3408 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3409 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3410 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3411 *(uint *)dp = cycle_lsn;
3412 dp += BBSIZE;
3413 }
3414
3415 for (i = 1; i < log->l_iclog_heads; i++) {
3416 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3417 }
3418 }
3419}
3420
3421#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3422STATIC void
3423xlog_unpack_data_checksum(
3424 xlog_rec_header_t *rhead,
3425 xfs_caddr_t dp,
3426 xlog_t *log)
3427{
3428 uint *up = (uint *)dp;
3429 uint chksum = 0;
3430 int i;
3431
3432 /* divide length by 4 to get # words */
3433 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3434 chksum ^= INT_GET(*up, ARCH_CONVERT);
3435 up++;
3436 }
3437 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3438 if (rhead->h_chksum ||
3439 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3440 cmn_err(CE_DEBUG,
3441 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
3442 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3443 cmn_err(CE_DEBUG,
3444"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3445 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3446 cmn_err(CE_DEBUG,
3447 "XFS: LogR this is a LogV2 filesystem");
3448 }
3449 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3450 }
3451 }
3452}
3453#else
3454#define xlog_unpack_data_checksum(rhead, dp, log)
3455#endif
3456
3457STATIC void
3458xlog_unpack_data(
3459 xlog_rec_header_t *rhead,
3460 xfs_caddr_t dp,
3461 xlog_t *log)
3462{
3463 int i, j, k;
3464 xlog_in_core_2_t *xhdr;
3465
3466 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3467 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3468 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3469 dp += BBSIZE;
3470 }
3471
3472 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3473 xhdr = (xlog_in_core_2_t *)rhead;
3474 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3475 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3476 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3477 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3478 dp += BBSIZE;
3479 }
3480 }
3481
3482 xlog_unpack_data_checksum(rhead, dp, log);
3483}
3484
3485STATIC int
3486xlog_valid_rec_header(
3487 xlog_t *log,
3488 xlog_rec_header_t *rhead,
3489 xfs_daddr_t blkno)
3490{
3491 int hlen;
3492
3493 if (unlikely(
3494 (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3495 XLOG_HEADER_MAGIC_NUM))) {
3496 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3497 XFS_ERRLEVEL_LOW, log->l_mp);
3498 return XFS_ERROR(EFSCORRUPTED);
3499 }
3500 if (unlikely(
3501 (!rhead->h_version ||
3502 (INT_GET(rhead->h_version, ARCH_CONVERT) &
3503 (~XLOG_VERSION_OKBITS)) != 0))) {
3504 xlog_warn("XFS: %s: unrecognised log version (%d).",
3505 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3506 return XFS_ERROR(EIO);
3507 }
3508
3509 /* LR body must have data or it wouldn't have been written */
3510 hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3511 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3512 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3513 XFS_ERRLEVEL_LOW, log->l_mp);
3514 return XFS_ERROR(EFSCORRUPTED);
3515 }
3516 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3517 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3518 XFS_ERRLEVEL_LOW, log->l_mp);
3519 return XFS_ERROR(EFSCORRUPTED);
3520 }
3521 return 0;
3522}
3523
3524/*
3525 * Read the log from tail to head and process the log records found.
3526 * Handle the two cases where the tail and head are in the same cycle
3527 * and where the active portion of the log wraps around the end of
3528 * the physical log separately. The pass parameter is passed through
3529 * to the routines called to process the data and is not looked at
3530 * here.
3531 */
3532STATIC int
3533xlog_do_recovery_pass(
3534 xlog_t *log,
3535 xfs_daddr_t head_blk,
3536 xfs_daddr_t tail_blk,
3537 int pass)
3538{
3539 xlog_rec_header_t *rhead;
3540 xfs_daddr_t blk_no;
3541 xfs_caddr_t bufaddr, offset;
3542 xfs_buf_t *hbp, *dbp;
3543 int error = 0, h_size;
3544 int bblks, split_bblks;
3545 int hblks, split_hblks, wrapped_hblks;
3546 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3547
3548 ASSERT(head_blk != tail_blk);
3549
3550 /*
3551 * Read the header of the tail block and get the iclog buffer size from
3552 * h_size. Use this to tell how many sectors make up the log header.
3553 */
3554 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3555 /*
3556 * When using variable length iclogs, read first sector of
3557 * iclog header and extract the header size from it. Get a
3558 * new hbp that is the correct size.
3559 */
3560 hbp = xlog_get_bp(log, 1);
3561 if (!hbp)
3562 return ENOMEM;
3563 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3564 goto bread_err1;
3565 offset = xlog_align(log, tail_blk, 1, hbp);
3566 rhead = (xlog_rec_header_t *)offset;
3567 error = xlog_valid_rec_header(log, rhead, tail_blk);
3568 if (error)
3569 goto bread_err1;
3570 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3571 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3572 & XLOG_VERSION_2) &&
3573 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3574 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3575 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3576 hblks++;
3577 xlog_put_bp(hbp);
3578 hbp = xlog_get_bp(log, hblks);
3579 } else {
3580 hblks = 1;
3581 }
3582 } else {
3583 ASSERT(log->l_sectbb_log == 0);
3584 hblks = 1;
3585 hbp = xlog_get_bp(log, 1);
3586 h_size = XLOG_BIG_RECORD_BSIZE;
3587 }
3588
3589 if (!hbp)
3590 return ENOMEM;
3591 dbp = xlog_get_bp(log, BTOBB(h_size));
3592 if (!dbp) {
3593 xlog_put_bp(hbp);
3594 return ENOMEM;
3595 }
3596
3597 memset(rhash, 0, sizeof(rhash));
3598 if (tail_blk <= head_blk) {
3599 for (blk_no = tail_blk; blk_no < head_blk; ) {
3600 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3601 goto bread_err2;
3602 offset = xlog_align(log, blk_no, hblks, hbp);
3603 rhead = (xlog_rec_header_t *)offset;
3604 error = xlog_valid_rec_header(log, rhead, blk_no);
3605 if (error)
3606 goto bread_err2;
3607
3608 /* blocks in data section */
3609 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3610 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3611 if (error)
3612 goto bread_err2;
3613 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3614 xlog_unpack_data(rhead, offset, log);
3615 if ((error = xlog_recover_process_data(log,
3616 rhash, rhead, offset, pass)))
3617 goto bread_err2;
3618 blk_no += bblks + hblks;
3619 }
3620 } else {
3621 /*
3622 * Perform recovery around the end of the physical log.
3623 * When the head is not on the same cycle number as the tail,
3624 * we can't do a sequential recovery as above.
3625 */
3626 blk_no = tail_blk;
3627 while (blk_no < log->l_logBBsize) {
3628 /*
3629 * Check for header wrapping around physical end-of-log
3630 */
3631 offset = NULL;
3632 split_hblks = 0;
3633 wrapped_hblks = 0;
3634 if (blk_no + hblks <= log->l_logBBsize) {
3635 /* Read header in one read */
3636 error = xlog_bread(log, blk_no, hblks, hbp);
3637 if (error)
3638 goto bread_err2;
3639 offset = xlog_align(log, blk_no, hblks, hbp);
3640 } else {
3641 /* This LR is split across physical log end */
3642 if (blk_no != log->l_logBBsize) {
3643 /* some data before physical log end */
3644 ASSERT(blk_no <= INT_MAX);
3645 split_hblks = log->l_logBBsize - (int)blk_no;
3646 ASSERT(split_hblks > 0);
3647 if ((error = xlog_bread(log, blk_no,
3648 split_hblks, hbp)))
3649 goto bread_err2;
3650 offset = xlog_align(log, blk_no,
3651 split_hblks, hbp);
3652 }
3653 /*
3654 * Note: this black magic still works with
3655 * large sector sizes (non-512) only because:
3656 * - we increased the buffer size originally
3657 * by 1 sector giving us enough extra space
3658 * for the second read;
3659 * - the log start is guaranteed to be sector
3660 * aligned;
3661 * - we read the log end (LR header start)
3662 * _first_, then the log start (LR header end)
3663 * - order is important.
3664 */
3665 bufaddr = XFS_BUF_PTR(hbp);
3666 XFS_BUF_SET_PTR(hbp,
3667 bufaddr + BBTOB(split_hblks),
3668 BBTOB(hblks - split_hblks));
3669 wrapped_hblks = hblks - split_hblks;
3670 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3671 if (error)
3672 goto bread_err2;
3673 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3674 if (!offset)
3675 offset = xlog_align(log, 0,
3676 wrapped_hblks, hbp);
3677 }
3678 rhead = (xlog_rec_header_t *)offset;
3679 error = xlog_valid_rec_header(log, rhead,
3680 split_hblks ? blk_no : 0);
3681 if (error)
3682 goto bread_err2;
3683
3684 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3685 blk_no += hblks;
3686
3687 /* Read in data for log record */
3688 if (blk_no + bblks <= log->l_logBBsize) {
3689 error = xlog_bread(log, blk_no, bblks, dbp);
3690 if (error)
3691 goto bread_err2;
3692 offset = xlog_align(log, blk_no, bblks, dbp);
3693 } else {
3694 /* This log record is split across the
3695 * physical end of log */
3696 offset = NULL;
3697 split_bblks = 0;
3698 if (blk_no != log->l_logBBsize) {
3699 /* some data is before the physical
3700 * end of log */
3701 ASSERT(!wrapped_hblks);
3702 ASSERT(blk_no <= INT_MAX);
3703 split_bblks =
3704 log->l_logBBsize - (int)blk_no;
3705 ASSERT(split_bblks > 0);
3706 if ((error = xlog_bread(log, blk_no,
3707 split_bblks, dbp)))
3708 goto bread_err2;
3709 offset = xlog_align(log, blk_no,
3710 split_bblks, dbp);
3711 }
3712 /*
3713 * Note: this black magic still works with
3714 * large sector sizes (non-512) only because:
3715 * - we increased the buffer size originally
3716 * by 1 sector giving us enough extra space
3717 * for the second read;
3718 * - the log start is guaranteed to be sector
3719 * aligned;
3720 * - we read the log end (LR header start)
3721 * _first_, then the log start (LR header end)
3722 * - order is important.
3723 */
3724 bufaddr = XFS_BUF_PTR(dbp);
3725 XFS_BUF_SET_PTR(dbp,
3726 bufaddr + BBTOB(split_bblks),
3727 BBTOB(bblks - split_bblks));
3728 if ((error = xlog_bread(log, wrapped_hblks,
3729 bblks - split_bblks, dbp)))
3730 goto bread_err2;
3731 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3732 if (!offset)
3733 offset = xlog_align(log, wrapped_hblks,
3734 bblks - split_bblks, dbp);
3735 }
3736 xlog_unpack_data(rhead, offset, log);
3737 if ((error = xlog_recover_process_data(log, rhash,
3738 rhead, offset, pass)))
3739 goto bread_err2;
3740 blk_no += bblks;
3741 }
3742
3743 ASSERT(blk_no >= log->l_logBBsize);
3744 blk_no -= log->l_logBBsize;
3745
3746 /* read first part of physical log */
3747 while (blk_no < head_blk) {
3748 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3749 goto bread_err2;
3750 offset = xlog_align(log, blk_no, hblks, hbp);
3751 rhead = (xlog_rec_header_t *)offset;
3752 error = xlog_valid_rec_header(log, rhead, blk_no);
3753 if (error)
3754 goto bread_err2;
3755 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3756 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3757 goto bread_err2;
3758 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3759 xlog_unpack_data(rhead, offset, log);
3760 if ((error = xlog_recover_process_data(log, rhash,
3761 rhead, offset, pass)))
3762 goto bread_err2;
3763 blk_no += bblks + hblks;
3764 }
3765 }
3766
3767 bread_err2:
3768 xlog_put_bp(dbp);
3769 bread_err1:
3770 xlog_put_bp(hbp);
3771 return error;
3772}
3773
3774/*
3775 * Do the recovery of the log. We actually do this in two phases.
3776 * The two passes are necessary in order to implement the function
3777 * of cancelling a record written into the log. The first pass
3778 * determines those things which have been cancelled, and the
3779 * second pass replays log items normally except for those which
3780 * have been cancelled. The handling of the replay and cancellations
3781 * takes place in the log item type specific routines.
3782 *
3783 * The table of items which have cancel records in the log is allocated
3784 * and freed at this level, since only here do we know when all of
3785 * the log recovery has been completed.
3786 */
3787STATIC int
3788xlog_do_log_recovery(
3789 xlog_t *log,
3790 xfs_daddr_t head_blk,
3791 xfs_daddr_t tail_blk)
3792{
3793 int error;
3794
3795 ASSERT(head_blk != tail_blk);
3796
3797 /*
3798 * First do a pass to find all of the cancelled buf log items.
3799 * Store them in the buf_cancel_table for use in the second pass.
3800 */
3801 log->l_buf_cancel_table =
3802 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3803 sizeof(xfs_buf_cancel_t*),
3804 KM_SLEEP);
3805 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3806 XLOG_RECOVER_PASS1);
3807 if (error != 0) {
3808 kmem_free(log->l_buf_cancel_table,
3809 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3810 log->l_buf_cancel_table = NULL;
3811 return error;
3812 }
3813 /*
3814 * Then do a second pass to actually recover the items in the log.
3815 * When it is complete free the table of buf cancel items.
3816 */
3817 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3818 XLOG_RECOVER_PASS2);
3819#ifdef DEBUG
3820 {
3821 int i;
3822
3823 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3824 ASSERT(log->l_buf_cancel_table[i] == NULL);
3825 }
3826#endif /* DEBUG */
3827
3828 kmem_free(log->l_buf_cancel_table,
3829 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3830 log->l_buf_cancel_table = NULL;
3831
3832 return error;
3833}
3834
3835/*
3836 * Do the actual recovery
3837 */
3838STATIC int
3839xlog_do_recover(
3840 xlog_t *log,
3841 xfs_daddr_t head_blk,
3842 xfs_daddr_t tail_blk)
3843{
3844 int error;
3845 xfs_buf_t *bp;
3846 xfs_sb_t *sbp;
3847
3848 /*
3849 * First replay the images in the log.
3850 */
3851 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3852 if (error) {
3853 return error;
3854 }
3855
3856 XFS_bflush(log->l_mp->m_ddev_targp);
3857
3858 /*
3859 * If IO errors happened during recovery, bail out.
3860 */
3861 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3862 return (EIO);
3863 }
3864
3865 /*
3866 * We now update the tail_lsn since much of the recovery has completed
3867 * and there may be space available to use. If there were no extent
3868 * or iunlinks, we can free up the entire log and set the tail_lsn to
3869 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3870 * lsn of the last known good LR on disk. If there are extent frees
3871 * or iunlinks they will have some entries in the AIL; so we look at
3872 * the AIL to determine how to set the tail_lsn.
3873 */
3874 xlog_assign_tail_lsn(log->l_mp);
3875
3876 /*
3877 * Now that we've finished replaying all buffer and inode
3878 * updates, re-read in the superblock.
3879 */
3880 bp = xfs_getsb(log->l_mp, 0);
3881 XFS_BUF_UNDONE(bp);
3882 XFS_BUF_READ(bp);
3883 xfsbdstrat(log->l_mp, bp);
3884 if ((error = xfs_iowait(bp))) {
3885 xfs_ioerror_alert("xlog_do_recover",
3886 log->l_mp, bp, XFS_BUF_ADDR(bp));
3887 ASSERT(0);
3888 xfs_buf_relse(bp);
3889 return error;
3890 }
3891
3892 /* Convert superblock from on-disk format */
3893 sbp = &log->l_mp->m_sb;
3894 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3895 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3896 ASSERT(XFS_SB_GOOD_VERSION(sbp));
3897 xfs_buf_relse(bp);
3898
3899 xlog_recover_check_summary(log);
3900
3901 /* Normal transactions can now occur */
3902 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3903 return 0;
3904}
3905
3906/*
3907 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3908 *
3909 * Return error or zero.
3910 */
3911int
3912xlog_recover(
3913 xlog_t *log,
3914 int readonly)
3915{
3916 xfs_daddr_t head_blk, tail_blk;
3917 int error;
3918
3919 /* find the tail of the log */
3920 if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly)))
3921 return error;
3922
3923 if (tail_blk != head_blk) {
3924 /* There used to be a comment here:
3925 *
3926 * disallow recovery on read-only mounts. note -- mount
3927 * checks for ENOSPC and turns it into an intelligent
3928 * error message.
3929 * ...but this is no longer true. Now, unless you specify
3930 * NORECOVERY (in which case this function would never be
3931 * called), we just go ahead and recover. We do this all
3932 * under the vfs layer, so we can get away with it unless
3933 * the device itself is read-only, in which case we fail.
3934 */
3935 if ((error = xfs_dev_is_read_only(log->l_mp,
3936 "recovery required"))) {
3937 return error;
3938 }
3939
3940 cmn_err(CE_NOTE,
Nathan Scottfc1f8c12005-11-02 11:44:33 +11003941 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3942 log->l_mp->m_fsname, log->l_mp->m_logname ?
3943 log->l_mp->m_logname : "internal");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003944
3945 error = xlog_do_recover(log, head_blk, tail_blk);
3946 log->l_flags |= XLOG_RECOVERY_NEEDED;
3947 }
3948 return error;
3949}
3950
3951/*
3952 * In the first part of recovery we replay inodes and buffers and build
3953 * up the list of extent free items which need to be processed. Here
3954 * we process the extent free items and clean up the on disk unlinked
3955 * inode lists. This is separated from the first part of recovery so
3956 * that the root and real-time bitmap inodes can be read in from disk in
3957 * between the two stages. This is necessary so that we can free space
3958 * in the real-time portion of the file system.
3959 */
3960int
3961xlog_recover_finish(
3962 xlog_t *log,
3963 int mfsi_flags)
3964{
3965 /*
3966 * Now we're ready to do the transactions needed for the
3967 * rest of recovery. Start with completing all the extent
3968 * free intent records and then process the unlinked inode
3969 * lists. At this point, we essentially run in normal mode
3970 * except that we're still performing recovery actions
3971 * rather than accepting new requests.
3972 */
3973 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3974 xlog_recover_process_efis(log);
3975 /*
3976 * Sync the log to get all the EFIs out of the AIL.
3977 * This isn't absolutely necessary, but it helps in
3978 * case the unlink transactions would have problems
3979 * pushing the EFIs out of the way.
3980 */
3981 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3982 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3983
3984 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3985 xlog_recover_process_iunlinks(log);
3986 }
3987
3988 xlog_recover_check_summary(log);
3989
3990 cmn_err(CE_NOTE,
Nathan Scottfc1f8c12005-11-02 11:44:33 +11003991 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3992 log->l_mp->m_fsname, log->l_mp->m_logname ?
3993 log->l_mp->m_logname : "internal");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003994 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3995 } else {
3996 cmn_err(CE_DEBUG,
3997 "!Ending clean XFS mount for filesystem: %s",
3998 log->l_mp->m_fsname);
3999 }
4000 return 0;
4001}
4002
4003
4004#if defined(DEBUG)
4005/*
4006 * Read all of the agf and agi counters and check that they
4007 * are consistent with the superblock counters.
4008 */
4009void
4010xlog_recover_check_summary(
4011 xlog_t *log)
4012{
4013 xfs_mount_t *mp;
4014 xfs_agf_t *agfp;
4015 xfs_agi_t *agip;
4016 xfs_buf_t *agfbp;
4017 xfs_buf_t *agibp;
4018 xfs_daddr_t agfdaddr;
4019 xfs_daddr_t agidaddr;
4020 xfs_buf_t *sbbp;
4021#ifdef XFS_LOUD_RECOVERY
4022 xfs_sb_t *sbp;
4023#endif
4024 xfs_agnumber_t agno;
4025 __uint64_t freeblks;
4026 __uint64_t itotal;
4027 __uint64_t ifree;
4028
4029 mp = log->l_mp;
4030
4031 freeblks = 0LL;
4032 itotal = 0LL;
4033 ifree = 0LL;
4034 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4035 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4036 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4037 XFS_FSS_TO_BB(mp, 1), 0);
4038 if (XFS_BUF_ISERROR(agfbp)) {
4039 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4040 mp, agfbp, agfdaddr);
4041 }
4042 agfp = XFS_BUF_TO_AGF(agfbp);
4043 ASSERT(XFS_AGF_MAGIC ==
4044 INT_GET(agfp->agf_magicnum, ARCH_CONVERT));
4045 ASSERT(XFS_AGF_GOOD_VERSION(
4046 INT_GET(agfp->agf_versionnum, ARCH_CONVERT)));
4047 ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno);
4048
4049 freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) +
4050 INT_GET(agfp->agf_flcount, ARCH_CONVERT);
4051 xfs_buf_relse(agfbp);
4052
4053 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4054 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4055 XFS_FSS_TO_BB(mp, 1), 0);
4056 if (XFS_BUF_ISERROR(agibp)) {
4057 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4058 mp, agibp, agidaddr);
4059 }
4060 agip = XFS_BUF_TO_AGI(agibp);
4061 ASSERT(XFS_AGI_MAGIC ==
4062 INT_GET(agip->agi_magicnum, ARCH_CONVERT));
4063 ASSERT(XFS_AGI_GOOD_VERSION(
4064 INT_GET(agip->agi_versionnum, ARCH_CONVERT)));
4065 ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno);
4066
4067 itotal += INT_GET(agip->agi_count, ARCH_CONVERT);
4068 ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT);
4069 xfs_buf_relse(agibp);
4070 }
4071
4072 sbbp = xfs_getsb(mp, 0);
4073#ifdef XFS_LOUD_RECOVERY
4074 sbp = &mp->m_sb;
4075 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4076 cmn_err(CE_NOTE,
4077 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4078 sbp->sb_icount, itotal);
4079 cmn_err(CE_NOTE,
4080 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4081 sbp->sb_ifree, ifree);
4082 cmn_err(CE_NOTE,
4083 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4084 sbp->sb_fdblocks, freeblks);
4085#if 0
4086 /*
4087 * This is turned off until I account for the allocation
4088 * btree blocks which live in free space.
4089 */
4090 ASSERT(sbp->sb_icount == itotal);
4091 ASSERT(sbp->sb_ifree == ifree);
4092 ASSERT(sbp->sb_fdblocks == freeblks);
4093#endif
4094#endif
4095 xfs_buf_relse(sbbp);
4096}
4097#endif /* DEBUG */