Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. |
| 3 | * |
| 4 | * Copyright (c) 2003 Intracom S.A. |
| 5 | * by Pantelis Antoniou <panto@intracom.gr> |
| 6 | * |
| 7 | * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> |
| 8 | * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> |
| 9 | * |
| 10 | * Released under the GPL |
| 11 | */ |
| 12 | |
| 13 | #include <linux/config.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/types.h> |
| 17 | #include <linux/sched.h> |
| 18 | #include <linux/string.h> |
| 19 | #include <linux/ptrace.h> |
| 20 | #include <linux/errno.h> |
| 21 | #include <linux/ioport.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/pci.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/delay.h> |
| 27 | #include <linux/netdevice.h> |
| 28 | #include <linux/etherdevice.h> |
| 29 | #include <linux/skbuff.h> |
| 30 | #include <linux/spinlock.h> |
| 31 | #include <linux/mii.h> |
| 32 | #include <linux/ethtool.h> |
| 33 | #include <linux/bitops.h> |
| 34 | |
| 35 | #include <asm/8xx_immap.h> |
| 36 | #include <asm/pgtable.h> |
| 37 | #include <asm/mpc8xx.h> |
| 38 | #include <asm/irq.h> |
| 39 | #include <asm/uaccess.h> |
| 40 | #include <asm/commproc.h> |
| 41 | #include <asm/dma-mapping.h> |
| 42 | |
| 43 | #include "fec_8xx.h" |
| 44 | |
| 45 | /*************************************************/ |
| 46 | |
| 47 | #define FEC_MAX_MULTICAST_ADDRS 64 |
| 48 | |
| 49 | /*************************************************/ |
| 50 | |
| 51 | static char version[] __devinitdata = |
| 52 | DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n"; |
| 53 | |
| 54 | MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); |
| 55 | MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver"); |
| 56 | MODULE_LICENSE("GPL"); |
| 57 | |
| 58 | MODULE_PARM(fec_8xx_debug, "i"); |
| 59 | MODULE_PARM_DESC(fec_8xx_debug, |
| 60 | "FEC 8xx bitmapped debugging message enable value"); |
| 61 | |
| 62 | int fec_8xx_debug = -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */ |
| 63 | |
| 64 | /*************************************************/ |
| 65 | |
| 66 | /* |
| 67 | * Delay to wait for FEC reset command to complete (in us) |
| 68 | */ |
| 69 | #define FEC_RESET_DELAY 50 |
| 70 | |
| 71 | /*****************************************************************************************/ |
| 72 | |
| 73 | static void fec_whack_reset(fec_t * fecp) |
| 74 | { |
| 75 | int i; |
| 76 | |
| 77 | /* |
| 78 | * Whack a reset. We should wait for this. |
| 79 | */ |
| 80 | FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET); |
| 81 | for (i = 0; |
| 82 | (FR(fecp, ecntrl) & FEC_ECNTRL_RESET) != 0 && i < FEC_RESET_DELAY; |
| 83 | i++) |
| 84 | udelay(1); |
| 85 | |
| 86 | if (i == FEC_RESET_DELAY) |
| 87 | printk(KERN_WARNING "FEC Reset timeout!\n"); |
| 88 | |
| 89 | } |
| 90 | |
| 91 | /****************************************************************************/ |
| 92 | |
| 93 | /* |
| 94 | * Transmitter timeout. |
| 95 | */ |
| 96 | #define TX_TIMEOUT (2*HZ) |
| 97 | |
| 98 | /****************************************************************************/ |
| 99 | |
| 100 | /* |
| 101 | * Returns the CRC needed when filling in the hash table for |
| 102 | * multicast group filtering |
| 103 | * pAddr must point to a MAC address (6 bytes) |
| 104 | */ |
| 105 | static __u32 fec_mulicast_calc_crc(char *pAddr) |
| 106 | { |
| 107 | u8 byte; |
| 108 | int byte_count; |
| 109 | int bit_count; |
| 110 | __u32 crc = 0xffffffff; |
| 111 | u8 msb; |
| 112 | |
| 113 | for (byte_count = 0; byte_count < 6; byte_count++) { |
| 114 | byte = pAddr[byte_count]; |
| 115 | for (bit_count = 0; bit_count < 8; bit_count++) { |
| 116 | msb = crc >> 31; |
| 117 | crc <<= 1; |
| 118 | if (msb ^ (byte & 0x1)) { |
| 119 | crc ^= FEC_CRC_POLY; |
| 120 | } |
| 121 | byte >>= 1; |
| 122 | } |
| 123 | } |
| 124 | return (crc); |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * Set or clear the multicast filter for this adaptor. |
| 129 | * Skeleton taken from sunlance driver. |
| 130 | * The CPM Ethernet implementation allows Multicast as well as individual |
| 131 | * MAC address filtering. Some of the drivers check to make sure it is |
| 132 | * a group multicast address, and discard those that are not. I guess I |
| 133 | * will do the same for now, but just remove the test if you want |
| 134 | * individual filtering as well (do the upper net layers want or support |
| 135 | * this kind of feature?). |
| 136 | */ |
| 137 | static void fec_set_multicast_list(struct net_device *dev) |
| 138 | { |
| 139 | struct fec_enet_private *fep = netdev_priv(dev); |
| 140 | fec_t *fecp = fep->fecp; |
| 141 | struct dev_mc_list *pmc; |
| 142 | __u32 crc; |
| 143 | int temp; |
| 144 | __u32 csrVal; |
| 145 | int hash_index; |
| 146 | __u32 hthi, htlo; |
| 147 | unsigned long flags; |
| 148 | |
| 149 | |
| 150 | if ((dev->flags & IFF_PROMISC) != 0) { |
| 151 | |
| 152 | spin_lock_irqsave(&fep->lock, flags); |
| 153 | FS(fecp, r_cntrl, FEC_RCNTRL_PROM); |
| 154 | spin_unlock_irqrestore(&fep->lock, flags); |
| 155 | |
| 156 | /* |
| 157 | * Log any net taps. |
| 158 | */ |
| 159 | printk(KERN_WARNING DRV_MODULE_NAME |
| 160 | ": %s: Promiscuous mode enabled.\n", dev->name); |
| 161 | return; |
| 162 | |
| 163 | } |
| 164 | |
| 165 | if ((dev->flags & IFF_ALLMULTI) != 0 || |
| 166 | dev->mc_count > FEC_MAX_MULTICAST_ADDRS) { |
| 167 | /* |
| 168 | * Catch all multicast addresses, set the filter to all 1's. |
| 169 | */ |
| 170 | hthi = 0xffffffffU; |
| 171 | htlo = 0xffffffffU; |
| 172 | } else { |
| 173 | hthi = 0; |
| 174 | htlo = 0; |
| 175 | |
| 176 | /* |
| 177 | * Now populate the hash table |
| 178 | */ |
| 179 | for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next) { |
| 180 | crc = fec_mulicast_calc_crc(pmc->dmi_addr); |
| 181 | temp = (crc & 0x3f) >> 1; |
| 182 | hash_index = ((temp & 0x01) << 4) | |
| 183 | ((temp & 0x02) << 2) | |
| 184 | ((temp & 0x04)) | |
| 185 | ((temp & 0x08) >> 2) | |
| 186 | ((temp & 0x10) >> 4); |
| 187 | csrVal = (1 << hash_index); |
| 188 | if (crc & 1) |
| 189 | hthi |= csrVal; |
| 190 | else |
| 191 | htlo |= csrVal; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | spin_lock_irqsave(&fep->lock, flags); |
| 196 | FC(fecp, r_cntrl, FEC_RCNTRL_PROM); |
| 197 | FW(fecp, hash_table_high, hthi); |
| 198 | FW(fecp, hash_table_low, htlo); |
| 199 | spin_unlock_irqrestore(&fep->lock, flags); |
| 200 | } |
| 201 | |
| 202 | static int fec_set_mac_address(struct net_device *dev, void *addr) |
| 203 | { |
| 204 | struct sockaddr *mac = addr; |
| 205 | struct fec_enet_private *fep = netdev_priv(dev); |
| 206 | struct fec *fecp = fep->fecp; |
| 207 | int i; |
| 208 | __u32 addrhi, addrlo; |
| 209 | unsigned long flags; |
| 210 | |
| 211 | /* Get pointer to SCC area in parameter RAM. */ |
| 212 | for (i = 0; i < 6; i++) |
| 213 | dev->dev_addr[i] = mac->sa_data[i]; |
| 214 | |
| 215 | /* |
| 216 | * Set station address. |
| 217 | */ |
| 218 | addrhi = ((__u32) dev->dev_addr[0] << 24) | |
| 219 | ((__u32) dev->dev_addr[1] << 16) | |
| 220 | ((__u32) dev->dev_addr[2] << 8) | |
| 221 | (__u32) dev->dev_addr[3]; |
| 222 | addrlo = ((__u32) dev->dev_addr[4] << 24) | |
| 223 | ((__u32) dev->dev_addr[5] << 16); |
| 224 | |
| 225 | spin_lock_irqsave(&fep->lock, flags); |
| 226 | FW(fecp, addr_low, addrhi); |
| 227 | FW(fecp, addr_high, addrlo); |
| 228 | spin_unlock_irqrestore(&fep->lock, flags); |
| 229 | |
| 230 | return 0; |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * This function is called to start or restart the FEC during a link |
| 235 | * change. This only happens when switching between half and full |
| 236 | * duplex. |
| 237 | */ |
| 238 | void fec_restart(struct net_device *dev, int duplex, int speed) |
| 239 | { |
| 240 | #ifdef CONFIG_DUET |
| 241 | immap_t *immap = (immap_t *) IMAP_ADDR; |
| 242 | __u32 cptr; |
| 243 | #endif |
| 244 | struct fec_enet_private *fep = netdev_priv(dev); |
| 245 | struct fec *fecp = fep->fecp; |
| 246 | const struct fec_platform_info *fpi = fep->fpi; |
| 247 | cbd_t *bdp; |
| 248 | struct sk_buff *skb; |
| 249 | int i; |
| 250 | __u32 addrhi, addrlo; |
| 251 | |
| 252 | fec_whack_reset(fep->fecp); |
| 253 | |
| 254 | /* |
| 255 | * Set station address. |
| 256 | */ |
| 257 | addrhi = ((__u32) dev->dev_addr[0] << 24) | |
| 258 | ((__u32) dev->dev_addr[1] << 16) | |
| 259 | ((__u32) dev->dev_addr[2] << 8) | |
| 260 | (__u32) dev->dev_addr[3]; |
| 261 | addrlo = ((__u32) dev->dev_addr[4] << 24) | |
| 262 | ((__u32) dev->dev_addr[5] << 16); |
| 263 | FW(fecp, addr_low, addrhi); |
| 264 | FW(fecp, addr_high, addrlo); |
| 265 | |
| 266 | /* |
| 267 | * Reset all multicast. |
| 268 | */ |
| 269 | FW(fecp, hash_table_high, 0); |
| 270 | FW(fecp, hash_table_low, 0); |
| 271 | |
| 272 | /* |
| 273 | * Set maximum receive buffer size. |
| 274 | */ |
| 275 | FW(fecp, r_buff_size, PKT_MAXBLR_SIZE); |
| 276 | FW(fecp, r_hash, PKT_MAXBUF_SIZE); |
| 277 | |
| 278 | /* |
| 279 | * Set receive and transmit descriptor base. |
| 280 | */ |
| 281 | FW(fecp, r_des_start, iopa((__u32) (fep->rx_bd_base))); |
| 282 | FW(fecp, x_des_start, iopa((__u32) (fep->tx_bd_base))); |
| 283 | |
| 284 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| 285 | fep->tx_free = fep->tx_ring; |
| 286 | fep->cur_rx = fep->rx_bd_base; |
| 287 | |
| 288 | /* |
| 289 | * Reset SKB receive buffers |
| 290 | */ |
| 291 | for (i = 0; i < fep->rx_ring; i++) { |
| 292 | if ((skb = fep->rx_skbuff[i]) == NULL) |
| 293 | continue; |
| 294 | fep->rx_skbuff[i] = NULL; |
| 295 | dev_kfree_skb(skb); |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * Initialize the receive buffer descriptors. |
| 300 | */ |
| 301 | for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { |
| 302 | skb = dev_alloc_skb(ENET_RX_FRSIZE); |
| 303 | if (skb == NULL) { |
| 304 | printk(KERN_WARNING DRV_MODULE_NAME |
| 305 | ": %s Memory squeeze, unable to allocate skb\n", |
| 306 | dev->name); |
| 307 | fep->stats.rx_dropped++; |
| 308 | break; |
| 309 | } |
| 310 | fep->rx_skbuff[i] = skb; |
| 311 | skb->dev = dev; |
| 312 | CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data, |
| 313 | L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), |
| 314 | DMA_FROM_DEVICE)); |
| 315 | CBDW_DATLEN(bdp, 0); /* zero */ |
| 316 | CBDW_SC(bdp, BD_ENET_RX_EMPTY | |
| 317 | ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); |
| 318 | } |
| 319 | /* |
| 320 | * if we failed, fillup remainder |
| 321 | */ |
| 322 | for (; i < fep->rx_ring; i++, bdp++) { |
| 323 | fep->rx_skbuff[i] = NULL; |
| 324 | CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | * Reset SKB transmit buffers. |
| 329 | */ |
| 330 | for (i = 0; i < fep->tx_ring; i++) { |
| 331 | if ((skb = fep->tx_skbuff[i]) == NULL) |
| 332 | continue; |
| 333 | fep->tx_skbuff[i] = NULL; |
| 334 | dev_kfree_skb(skb); |
| 335 | } |
| 336 | |
| 337 | /* |
| 338 | * ...and the same for transmit. |
| 339 | */ |
| 340 | for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { |
| 341 | fep->tx_skbuff[i] = NULL; |
| 342 | CBDW_BUFADDR(bdp, virt_to_bus(NULL)); |
| 343 | CBDW_DATLEN(bdp, 0); |
| 344 | CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Enable big endian and don't care about SDMA FC. |
| 349 | */ |
| 350 | FW(fecp, fun_code, 0x78000000); |
| 351 | |
| 352 | /* |
| 353 | * Set MII speed. |
| 354 | */ |
| 355 | FW(fecp, mii_speed, fep->fec_phy_speed); |
| 356 | |
| 357 | /* |
| 358 | * Clear any outstanding interrupt. |
| 359 | */ |
| 360 | FW(fecp, ievent, 0xffc0); |
| 361 | FW(fecp, ivec, (fpi->fec_irq / 2) << 29); |
| 362 | |
| 363 | /* |
| 364 | * adjust to speed (only for DUET & RMII) |
| 365 | */ |
| 366 | #ifdef CONFIG_DUET |
| 367 | cptr = in_be32(&immap->im_cpm.cp_cptr); |
| 368 | switch (fpi->fec_no) { |
| 369 | case 0: |
| 370 | /* |
| 371 | * check if in RMII mode |
| 372 | */ |
| 373 | if ((cptr & 0x100) == 0) |
| 374 | break; |
| 375 | |
| 376 | if (speed == 10) |
| 377 | cptr |= 0x0000010; |
| 378 | else if (speed == 100) |
| 379 | cptr &= ~0x0000010; |
| 380 | break; |
| 381 | case 1: |
| 382 | /* |
| 383 | * check if in RMII mode |
| 384 | */ |
| 385 | if ((cptr & 0x80) == 0) |
| 386 | break; |
| 387 | |
| 388 | if (speed == 10) |
| 389 | cptr |= 0x0000008; |
| 390 | else if (speed == 100) |
| 391 | cptr &= ~0x0000008; |
| 392 | break; |
| 393 | default: |
| 394 | break; |
| 395 | } |
| 396 | out_be32(&immap->im_cpm.cp_cptr, cptr); |
| 397 | #endif |
| 398 | |
| 399 | FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */ |
| 400 | /* |
| 401 | * adjust to duplex mode |
| 402 | */ |
| 403 | if (duplex) { |
| 404 | FC(fecp, r_cntrl, FEC_RCNTRL_DRT); |
| 405 | FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */ |
| 406 | } else { |
| 407 | FS(fecp, r_cntrl, FEC_RCNTRL_DRT); |
| 408 | FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */ |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * Enable interrupts we wish to service. |
| 413 | */ |
| 414 | FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB | |
| 415 | FEC_ENET_RXF | FEC_ENET_RXB); |
| 416 | |
| 417 | /* |
| 418 | * And last, enable the transmit and receive processing. |
| 419 | */ |
| 420 | FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN); |
| 421 | FW(fecp, r_des_active, 0x01000000); |
| 422 | } |
| 423 | |
| 424 | void fec_stop(struct net_device *dev) |
| 425 | { |
| 426 | struct fec_enet_private *fep = netdev_priv(dev); |
| 427 | fec_t *fecp = fep->fecp; |
| 428 | struct sk_buff *skb; |
| 429 | int i; |
| 430 | |
| 431 | if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0) |
| 432 | return; /* already down */ |
| 433 | |
| 434 | FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */ |
| 435 | for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) && |
| 436 | i < FEC_RESET_DELAY; i++) |
| 437 | udelay(1); |
| 438 | |
| 439 | if (i == FEC_RESET_DELAY) |
| 440 | printk(KERN_WARNING DRV_MODULE_NAME |
| 441 | ": %s FEC timeout on graceful transmit stop\n", |
| 442 | dev->name); |
| 443 | /* |
| 444 | * Disable FEC. Let only MII interrupts. |
| 445 | */ |
| 446 | FW(fecp, imask, 0); |
| 447 | FW(fecp, ecntrl, ~FEC_ECNTRL_ETHER_EN); |
| 448 | |
| 449 | /* |
| 450 | * Reset SKB transmit buffers. |
| 451 | */ |
| 452 | for (i = 0; i < fep->tx_ring; i++) { |
| 453 | if ((skb = fep->tx_skbuff[i]) == NULL) |
| 454 | continue; |
| 455 | fep->tx_skbuff[i] = NULL; |
| 456 | dev_kfree_skb(skb); |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * Reset SKB receive buffers |
| 461 | */ |
| 462 | for (i = 0; i < fep->rx_ring; i++) { |
| 463 | if ((skb = fep->rx_skbuff[i]) == NULL) |
| 464 | continue; |
| 465 | fep->rx_skbuff[i] = NULL; |
| 466 | dev_kfree_skb(skb); |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | /* common receive function */ |
| 471 | static int fec_enet_rx_common(struct net_device *dev, int *budget) |
| 472 | { |
| 473 | struct fec_enet_private *fep = netdev_priv(dev); |
| 474 | fec_t *fecp = fep->fecp; |
| 475 | const struct fec_platform_info *fpi = fep->fpi; |
| 476 | cbd_t *bdp; |
| 477 | struct sk_buff *skb, *skbn, *skbt; |
| 478 | int received = 0; |
| 479 | __u16 pkt_len, sc; |
| 480 | int curidx; |
| 481 | int rx_work_limit; |
| 482 | |
| 483 | if (fpi->use_napi) { |
| 484 | rx_work_limit = min(dev->quota, *budget); |
| 485 | |
| 486 | if (!netif_running(dev)) |
| 487 | return 0; |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * First, grab all of the stats for the incoming packet. |
| 492 | * These get messed up if we get called due to a busy condition. |
| 493 | */ |
| 494 | bdp = fep->cur_rx; |
| 495 | |
| 496 | /* clear RX status bits for napi*/ |
| 497 | if (fpi->use_napi) |
| 498 | FW(fecp, ievent, FEC_ENET_RXF | FEC_ENET_RXB); |
| 499 | |
| 500 | while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) { |
| 501 | |
| 502 | curidx = bdp - fep->rx_bd_base; |
| 503 | |
| 504 | /* |
| 505 | * Since we have allocated space to hold a complete frame, |
| 506 | * the last indicator should be set. |
| 507 | */ |
| 508 | if ((sc & BD_ENET_RX_LAST) == 0) |
| 509 | printk(KERN_WARNING DRV_MODULE_NAME |
| 510 | ": %s rcv is not +last\n", |
| 511 | dev->name); |
| 512 | |
| 513 | /* |
| 514 | * Check for errors. |
| 515 | */ |
| 516 | if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | |
| 517 | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { |
| 518 | fep->stats.rx_errors++; |
| 519 | /* Frame too long or too short. */ |
| 520 | if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) |
| 521 | fep->stats.rx_length_errors++; |
| 522 | /* Frame alignment */ |
| 523 | if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) |
| 524 | fep->stats.rx_frame_errors++; |
| 525 | /* CRC Error */ |
| 526 | if (sc & BD_ENET_RX_CR) |
| 527 | fep->stats.rx_crc_errors++; |
| 528 | /* FIFO overrun */ |
| 529 | if (sc & BD_ENET_RX_OV) |
| 530 | fep->stats.rx_crc_errors++; |
| 531 | |
| 532 | skbn = fep->rx_skbuff[curidx]; |
| 533 | BUG_ON(skbn == NULL); |
| 534 | |
| 535 | } else { |
| 536 | |
| 537 | /* napi, got packet but no quota */ |
| 538 | if (fpi->use_napi && --rx_work_limit < 0) |
| 539 | break; |
| 540 | |
| 541 | skb = fep->rx_skbuff[curidx]; |
| 542 | BUG_ON(skb == NULL); |
| 543 | |
| 544 | /* |
| 545 | * Process the incoming frame. |
| 546 | */ |
| 547 | fep->stats.rx_packets++; |
| 548 | pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ |
| 549 | fep->stats.rx_bytes += pkt_len + 4; |
| 550 | |
| 551 | if (pkt_len <= fpi->rx_copybreak) { |
| 552 | /* +2 to make IP header L1 cache aligned */ |
| 553 | skbn = dev_alloc_skb(pkt_len + 2); |
| 554 | if (skbn != NULL) { |
| 555 | skb_reserve(skbn, 2); /* align IP header */ |
| 556 | memcpy(skbn->data, skb->data, pkt_len); |
| 557 | /* swap */ |
| 558 | skbt = skb; |
| 559 | skb = skbn; |
| 560 | skbn = skbt; |
| 561 | } |
| 562 | } else |
| 563 | skbn = dev_alloc_skb(ENET_RX_FRSIZE); |
| 564 | |
| 565 | if (skbn != NULL) { |
| 566 | skb->dev = dev; |
| 567 | skb_put(skb, pkt_len); /* Make room */ |
| 568 | skb->protocol = eth_type_trans(skb, dev); |
| 569 | received++; |
| 570 | if (!fpi->use_napi) |
| 571 | netif_rx(skb); |
| 572 | else |
| 573 | netif_receive_skb(skb); |
| 574 | } else { |
| 575 | printk(KERN_WARNING DRV_MODULE_NAME |
| 576 | ": %s Memory squeeze, dropping packet.\n", |
| 577 | dev->name); |
| 578 | fep->stats.rx_dropped++; |
| 579 | skbn = skb; |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | fep->rx_skbuff[curidx] = skbn; |
| 584 | CBDW_BUFADDR(bdp, dma_map_single(NULL, skbn->data, |
| 585 | L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), |
| 586 | DMA_FROM_DEVICE)); |
| 587 | CBDW_DATLEN(bdp, 0); |
| 588 | CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); |
| 589 | |
| 590 | /* |
| 591 | * Update BD pointer to next entry. |
| 592 | */ |
| 593 | if ((sc & BD_ENET_RX_WRAP) == 0) |
| 594 | bdp++; |
| 595 | else |
| 596 | bdp = fep->rx_bd_base; |
| 597 | |
| 598 | /* |
| 599 | * Doing this here will keep the FEC running while we process |
| 600 | * incoming frames. On a heavily loaded network, we should be |
| 601 | * able to keep up at the expense of system resources. |
| 602 | */ |
| 603 | FW(fecp, r_des_active, 0x01000000); |
| 604 | } |
| 605 | |
| 606 | fep->cur_rx = bdp; |
| 607 | |
| 608 | if (fpi->use_napi) { |
| 609 | dev->quota -= received; |
| 610 | *budget -= received; |
| 611 | |
| 612 | if (rx_work_limit < 0) |
| 613 | return 1; /* not done */ |
| 614 | |
| 615 | /* done */ |
| 616 | netif_rx_complete(dev); |
| 617 | |
| 618 | /* enable RX interrupt bits */ |
| 619 | FS(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB); |
| 620 | } |
| 621 | |
| 622 | return 0; |
| 623 | } |
| 624 | |
| 625 | static void fec_enet_tx(struct net_device *dev) |
| 626 | { |
| 627 | struct fec_enet_private *fep = netdev_priv(dev); |
| 628 | cbd_t *bdp; |
| 629 | struct sk_buff *skb; |
| 630 | int dirtyidx, do_wake; |
| 631 | __u16 sc; |
| 632 | |
| 633 | spin_lock(&fep->lock); |
| 634 | bdp = fep->dirty_tx; |
| 635 | |
| 636 | do_wake = 0; |
| 637 | while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) { |
| 638 | |
| 639 | dirtyidx = bdp - fep->tx_bd_base; |
| 640 | |
| 641 | if (fep->tx_free == fep->tx_ring) |
| 642 | break; |
| 643 | |
| 644 | skb = fep->tx_skbuff[dirtyidx]; |
| 645 | |
| 646 | /* |
| 647 | * Check for errors. |
| 648 | */ |
| 649 | if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | |
| 650 | BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { |
| 651 | fep->stats.tx_errors++; |
| 652 | if (sc & BD_ENET_TX_HB) /* No heartbeat */ |
| 653 | fep->stats.tx_heartbeat_errors++; |
| 654 | if (sc & BD_ENET_TX_LC) /* Late collision */ |
| 655 | fep->stats.tx_window_errors++; |
| 656 | if (sc & BD_ENET_TX_RL) /* Retrans limit */ |
| 657 | fep->stats.tx_aborted_errors++; |
| 658 | if (sc & BD_ENET_TX_UN) /* Underrun */ |
| 659 | fep->stats.tx_fifo_errors++; |
| 660 | if (sc & BD_ENET_TX_CSL) /* Carrier lost */ |
| 661 | fep->stats.tx_carrier_errors++; |
| 662 | } else |
| 663 | fep->stats.tx_packets++; |
| 664 | |
| 665 | if (sc & BD_ENET_TX_READY) |
| 666 | printk(KERN_WARNING DRV_MODULE_NAME |
| 667 | ": %s HEY! Enet xmit interrupt and TX_READY.\n", |
| 668 | dev->name); |
| 669 | |
| 670 | /* |
| 671 | * Deferred means some collisions occurred during transmit, |
| 672 | * but we eventually sent the packet OK. |
| 673 | */ |
| 674 | if (sc & BD_ENET_TX_DEF) |
| 675 | fep->stats.collisions++; |
| 676 | |
| 677 | /* |
| 678 | * Free the sk buffer associated with this last transmit. |
| 679 | */ |
| 680 | dev_kfree_skb_irq(skb); |
| 681 | fep->tx_skbuff[dirtyidx] = NULL; |
| 682 | |
| 683 | /* |
| 684 | * Update pointer to next buffer descriptor to be transmitted. |
| 685 | */ |
| 686 | if ((sc & BD_ENET_TX_WRAP) == 0) |
| 687 | bdp++; |
| 688 | else |
| 689 | bdp = fep->tx_bd_base; |
| 690 | |
| 691 | /* |
| 692 | * Since we have freed up a buffer, the ring is no longer |
| 693 | * full. |
| 694 | */ |
| 695 | if (!fep->tx_free++) |
| 696 | do_wake = 1; |
| 697 | } |
| 698 | |
| 699 | fep->dirty_tx = bdp; |
| 700 | |
| 701 | spin_unlock(&fep->lock); |
| 702 | |
| 703 | if (do_wake && netif_queue_stopped(dev)) |
| 704 | netif_wake_queue(dev); |
| 705 | } |
| 706 | |
| 707 | /* |
| 708 | * The interrupt handler. |
| 709 | * This is called from the MPC core interrupt. |
| 710 | */ |
| 711 | static irqreturn_t |
| 712 | fec_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 713 | { |
| 714 | struct net_device *dev = dev_id; |
| 715 | struct fec_enet_private *fep; |
| 716 | const struct fec_platform_info *fpi; |
| 717 | fec_t *fecp; |
| 718 | __u32 int_events; |
| 719 | __u32 int_events_napi; |
| 720 | |
| 721 | if (unlikely(dev == NULL)) |
| 722 | return IRQ_NONE; |
| 723 | |
| 724 | fep = netdev_priv(dev); |
| 725 | fecp = fep->fecp; |
| 726 | fpi = fep->fpi; |
| 727 | |
| 728 | /* |
| 729 | * Get the interrupt events that caused us to be here. |
| 730 | */ |
| 731 | while ((int_events = FR(fecp, ievent) & FR(fecp, imask)) != 0) { |
| 732 | |
| 733 | if (!fpi->use_napi) |
| 734 | FW(fecp, ievent, int_events); |
| 735 | else { |
| 736 | int_events_napi = int_events & ~(FEC_ENET_RXF | FEC_ENET_RXB); |
| 737 | FW(fecp, ievent, int_events_napi); |
| 738 | } |
| 739 | |
| 740 | if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR | |
| 741 | FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) |
| 742 | printk(KERN_WARNING DRV_MODULE_NAME |
| 743 | ": %s FEC ERROR(s) 0x%x\n", |
| 744 | dev->name, int_events); |
| 745 | |
| 746 | if ((int_events & FEC_ENET_RXF) != 0) { |
| 747 | if (!fpi->use_napi) |
| 748 | fec_enet_rx_common(dev, NULL); |
| 749 | else { |
| 750 | if (netif_rx_schedule_prep(dev)) { |
| 751 | /* disable rx interrupts */ |
| 752 | FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB); |
| 753 | __netif_rx_schedule(dev); |
| 754 | } else { |
| 755 | printk(KERN_ERR DRV_MODULE_NAME |
| 756 | ": %s driver bug! interrupt while in poll!\n", |
| 757 | dev->name); |
| 758 | FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB); |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | if ((int_events & FEC_ENET_TXF) != 0) |
| 764 | fec_enet_tx(dev); |
| 765 | } |
| 766 | |
| 767 | return IRQ_HANDLED; |
| 768 | } |
| 769 | |
| 770 | /* This interrupt occurs when the PHY detects a link change. */ |
| 771 | static irqreturn_t |
| 772 | fec_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 773 | { |
| 774 | struct net_device *dev = dev_id; |
| 775 | struct fec_enet_private *fep; |
| 776 | const struct fec_platform_info *fpi; |
| 777 | |
| 778 | if (unlikely(dev == NULL)) |
| 779 | return IRQ_NONE; |
| 780 | |
| 781 | fep = netdev_priv(dev); |
| 782 | fpi = fep->fpi; |
| 783 | |
| 784 | if (!fpi->use_mdio) |
| 785 | return IRQ_NONE; |
| 786 | |
| 787 | /* |
| 788 | * Acknowledge the interrupt if possible. If we have not |
| 789 | * found the PHY yet we can't process or acknowledge the |
| 790 | * interrupt now. Instead we ignore this interrupt for now, |
| 791 | * which we can do since it is edge triggered. It will be |
| 792 | * acknowledged later by fec_enet_open(). |
| 793 | */ |
| 794 | if (!fep->phy) |
| 795 | return IRQ_NONE; |
| 796 | |
| 797 | fec_mii_ack_int(dev); |
| 798 | fec_mii_link_status_change_check(dev, 0); |
| 799 | |
| 800 | return IRQ_HANDLED; |
| 801 | } |
| 802 | |
| 803 | |
| 804 | /**********************************************************************************/ |
| 805 | |
| 806 | static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 807 | { |
| 808 | struct fec_enet_private *fep = netdev_priv(dev); |
| 809 | fec_t *fecp = fep->fecp; |
| 810 | cbd_t *bdp; |
| 811 | int curidx; |
| 812 | unsigned long flags; |
| 813 | |
| 814 | spin_lock_irqsave(&fep->tx_lock, flags); |
| 815 | |
| 816 | /* |
| 817 | * Fill in a Tx ring entry |
| 818 | */ |
| 819 | bdp = fep->cur_tx; |
| 820 | |
| 821 | if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { |
| 822 | netif_stop_queue(dev); |
| 823 | spin_unlock_irqrestore(&fep->tx_lock, flags); |
| 824 | |
| 825 | /* |
| 826 | * Ooops. All transmit buffers are full. Bail out. |
| 827 | * This should not happen, since the tx queue should be stopped. |
| 828 | */ |
| 829 | printk(KERN_WARNING DRV_MODULE_NAME |
| 830 | ": %s tx queue full!.\n", dev->name); |
| 831 | return 1; |
| 832 | } |
| 833 | |
| 834 | curidx = bdp - fep->tx_bd_base; |
| 835 | /* |
| 836 | * Clear all of the status flags. |
| 837 | */ |
| 838 | CBDC_SC(bdp, BD_ENET_TX_STATS); |
| 839 | |
| 840 | /* |
| 841 | * Save skb pointer. |
| 842 | */ |
| 843 | fep->tx_skbuff[curidx] = skb; |
| 844 | |
| 845 | fep->stats.tx_bytes += skb->len; |
| 846 | |
| 847 | /* |
| 848 | * Push the data cache so the CPM does not get stale memory data. |
| 849 | */ |
| 850 | CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data, |
| 851 | skb->len, DMA_TO_DEVICE)); |
| 852 | CBDW_DATLEN(bdp, skb->len); |
| 853 | |
| 854 | dev->trans_start = jiffies; |
| 855 | |
| 856 | /* |
| 857 | * If this was the last BD in the ring, start at the beginning again. |
| 858 | */ |
| 859 | if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) |
| 860 | fep->cur_tx++; |
| 861 | else |
| 862 | fep->cur_tx = fep->tx_bd_base; |
| 863 | |
| 864 | if (!--fep->tx_free) |
| 865 | netif_stop_queue(dev); |
| 866 | |
| 867 | /* |
| 868 | * Trigger transmission start |
| 869 | */ |
| 870 | CBDS_SC(bdp, BD_ENET_TX_READY | BD_ENET_TX_INTR | |
| 871 | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| 872 | FW(fecp, x_des_active, 0x01000000); |
| 873 | |
| 874 | spin_unlock_irqrestore(&fep->tx_lock, flags); |
| 875 | |
| 876 | return 0; |
| 877 | } |
| 878 | |
| 879 | static void fec_timeout(struct net_device *dev) |
| 880 | { |
| 881 | struct fec_enet_private *fep = netdev_priv(dev); |
| 882 | |
| 883 | fep->stats.tx_errors++; |
| 884 | |
| 885 | if (fep->tx_free) |
| 886 | netif_wake_queue(dev); |
| 887 | |
| 888 | /* check link status again */ |
| 889 | fec_mii_link_status_change_check(dev, 0); |
| 890 | } |
| 891 | |
| 892 | static int fec_enet_open(struct net_device *dev) |
| 893 | { |
| 894 | struct fec_enet_private *fep = netdev_priv(dev); |
| 895 | const struct fec_platform_info *fpi = fep->fpi; |
| 896 | unsigned long flags; |
| 897 | |
| 898 | /* Install our interrupt handler. */ |
| 899 | if (request_irq(fpi->fec_irq, fec_enet_interrupt, 0, "fec", dev) != 0) { |
| 900 | printk(KERN_ERR DRV_MODULE_NAME |
| 901 | ": %s Could not allocate FEC IRQ!", dev->name); |
| 902 | return -EINVAL; |
| 903 | } |
| 904 | |
| 905 | /* Install our phy interrupt handler */ |
| 906 | if (fpi->phy_irq != -1 && |
| 907 | request_irq(fpi->phy_irq, fec_mii_link_interrupt, 0, "fec-phy", |
| 908 | dev) != 0) { |
| 909 | printk(KERN_ERR DRV_MODULE_NAME |
| 910 | ": %s Could not allocate PHY IRQ!", dev->name); |
| 911 | free_irq(fpi->fec_irq, dev); |
| 912 | return -EINVAL; |
| 913 | } |
| 914 | |
| 915 | if (fpi->use_mdio) { |
| 916 | fec_mii_startup(dev); |
| 917 | netif_carrier_off(dev); |
| 918 | fec_mii_link_status_change_check(dev, 1); |
| 919 | } else { |
| 920 | spin_lock_irqsave(&fep->lock, flags); |
| 921 | fec_restart(dev, 1, 100); /* XXX this sucks */ |
| 922 | spin_unlock_irqrestore(&fep->lock, flags); |
| 923 | |
| 924 | netif_carrier_on(dev); |
| 925 | netif_start_queue(dev); |
| 926 | } |
| 927 | return 0; |
| 928 | } |
| 929 | |
| 930 | static int fec_enet_close(struct net_device *dev) |
| 931 | { |
| 932 | struct fec_enet_private *fep = netdev_priv(dev); |
| 933 | const struct fec_platform_info *fpi = fep->fpi; |
| 934 | unsigned long flags; |
| 935 | |
| 936 | netif_stop_queue(dev); |
| 937 | netif_carrier_off(dev); |
| 938 | |
| 939 | if (fpi->use_mdio) |
| 940 | fec_mii_shutdown(dev); |
| 941 | |
| 942 | spin_lock_irqsave(&fep->lock, flags); |
| 943 | fec_stop(dev); |
| 944 | spin_unlock_irqrestore(&fep->lock, flags); |
| 945 | |
| 946 | /* release any irqs */ |
| 947 | if (fpi->phy_irq != -1) |
| 948 | free_irq(fpi->phy_irq, dev); |
| 949 | free_irq(fpi->fec_irq, dev); |
| 950 | |
| 951 | return 0; |
| 952 | } |
| 953 | |
| 954 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) |
| 955 | { |
| 956 | struct fec_enet_private *fep = netdev_priv(dev); |
| 957 | return &fep->stats; |
| 958 | } |
| 959 | |
| 960 | static int fec_enet_poll(struct net_device *dev, int *budget) |
| 961 | { |
| 962 | return fec_enet_rx_common(dev, budget); |
| 963 | } |
| 964 | |
| 965 | /*************************************************************************/ |
| 966 | |
| 967 | static void fec_get_drvinfo(struct net_device *dev, |
| 968 | struct ethtool_drvinfo *info) |
| 969 | { |
| 970 | strcpy(info->driver, DRV_MODULE_NAME); |
| 971 | strcpy(info->version, DRV_MODULE_VERSION); |
| 972 | } |
| 973 | |
| 974 | static int fec_get_regs_len(struct net_device *dev) |
| 975 | { |
| 976 | return sizeof(fec_t); |
| 977 | } |
| 978 | |
| 979 | static void fec_get_regs(struct net_device *dev, struct ethtool_regs *regs, |
| 980 | void *p) |
| 981 | { |
| 982 | struct fec_enet_private *fep = netdev_priv(dev); |
| 983 | unsigned long flags; |
| 984 | |
| 985 | if (regs->len < sizeof(fec_t)) |
| 986 | return; |
| 987 | |
| 988 | regs->version = 0; |
| 989 | spin_lock_irqsave(&fep->lock, flags); |
| 990 | memcpy_fromio(p, fep->fecp, sizeof(fec_t)); |
| 991 | spin_unlock_irqrestore(&fep->lock, flags); |
| 992 | } |
| 993 | |
| 994 | static int fec_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| 995 | { |
| 996 | struct fec_enet_private *fep = netdev_priv(dev); |
| 997 | unsigned long flags; |
| 998 | int rc; |
| 999 | |
| 1000 | spin_lock_irqsave(&fep->lock, flags); |
| 1001 | rc = mii_ethtool_gset(&fep->mii_if, cmd); |
| 1002 | spin_unlock_irqrestore(&fep->lock, flags); |
| 1003 | |
| 1004 | return rc; |
| 1005 | } |
| 1006 | |
| 1007 | static int fec_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| 1008 | { |
| 1009 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1010 | unsigned long flags; |
| 1011 | int rc; |
| 1012 | |
| 1013 | spin_lock_irqsave(&fep->lock, flags); |
| 1014 | rc = mii_ethtool_sset(&fep->mii_if, cmd); |
| 1015 | spin_unlock_irqrestore(&fep->lock, flags); |
| 1016 | |
| 1017 | return rc; |
| 1018 | } |
| 1019 | |
| 1020 | static int fec_nway_reset(struct net_device *dev) |
| 1021 | { |
| 1022 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1023 | return mii_nway_restart(&fep->mii_if); |
| 1024 | } |
| 1025 | |
| 1026 | static __u32 fec_get_msglevel(struct net_device *dev) |
| 1027 | { |
| 1028 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1029 | return fep->msg_enable; |
| 1030 | } |
| 1031 | |
| 1032 | static void fec_set_msglevel(struct net_device *dev, __u32 value) |
| 1033 | { |
| 1034 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1035 | fep->msg_enable = value; |
| 1036 | } |
| 1037 | |
| 1038 | static struct ethtool_ops fec_ethtool_ops = { |
| 1039 | .get_drvinfo = fec_get_drvinfo, |
| 1040 | .get_regs_len = fec_get_regs_len, |
| 1041 | .get_settings = fec_get_settings, |
| 1042 | .set_settings = fec_set_settings, |
| 1043 | .nway_reset = fec_nway_reset, |
| 1044 | .get_link = ethtool_op_get_link, |
| 1045 | .get_msglevel = fec_get_msglevel, |
| 1046 | .set_msglevel = fec_set_msglevel, |
| 1047 | .get_tx_csum = ethtool_op_get_tx_csum, |
| 1048 | .set_tx_csum = ethtool_op_set_tx_csum, /* local! */ |
| 1049 | .get_sg = ethtool_op_get_sg, |
| 1050 | .set_sg = ethtool_op_set_sg, |
| 1051 | .get_regs = fec_get_regs, |
| 1052 | }; |
| 1053 | |
| 1054 | static int fec_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 1055 | { |
| 1056 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1057 | struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data; |
| 1058 | unsigned long flags; |
| 1059 | int rc; |
| 1060 | |
| 1061 | if (!netif_running(dev)) |
| 1062 | return -EINVAL; |
| 1063 | |
| 1064 | spin_lock_irqsave(&fep->lock, flags); |
| 1065 | rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL); |
| 1066 | spin_unlock_irqrestore(&fep->lock, flags); |
| 1067 | return rc; |
| 1068 | } |
| 1069 | |
| 1070 | int fec_8xx_init_one(const struct fec_platform_info *fpi, |
| 1071 | struct net_device **devp) |
| 1072 | { |
| 1073 | immap_t *immap = (immap_t *) IMAP_ADDR; |
| 1074 | static int fec_8xx_version_printed = 0; |
| 1075 | struct net_device *dev = NULL; |
| 1076 | struct fec_enet_private *fep = NULL; |
| 1077 | fec_t *fecp = NULL; |
| 1078 | int i; |
| 1079 | int err = 0; |
| 1080 | int registered = 0; |
| 1081 | __u32 siel; |
| 1082 | |
| 1083 | *devp = NULL; |
| 1084 | |
| 1085 | switch (fpi->fec_no) { |
| 1086 | case 0: |
| 1087 | fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec; |
| 1088 | break; |
| 1089 | #ifdef CONFIG_DUET |
| 1090 | case 1: |
| 1091 | fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec2; |
| 1092 | break; |
| 1093 | #endif |
| 1094 | default: |
| 1095 | return -EINVAL; |
| 1096 | } |
| 1097 | |
| 1098 | if (fec_8xx_version_printed++ == 0) |
| 1099 | printk(KERN_INFO "%s", version); |
| 1100 | |
| 1101 | i = sizeof(*fep) + (sizeof(struct sk_buff **) * |
| 1102 | (fpi->rx_ring + fpi->tx_ring)); |
| 1103 | |
| 1104 | dev = alloc_etherdev(i); |
| 1105 | if (!dev) { |
| 1106 | err = -ENOMEM; |
| 1107 | goto err; |
| 1108 | } |
| 1109 | SET_MODULE_OWNER(dev); |
| 1110 | |
| 1111 | fep = netdev_priv(dev); |
| 1112 | |
| 1113 | /* partial reset of FEC */ |
| 1114 | fec_whack_reset(fecp); |
| 1115 | |
| 1116 | /* point rx_skbuff, tx_skbuff */ |
| 1117 | fep->rx_skbuff = (struct sk_buff **)&fep[1]; |
| 1118 | fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; |
| 1119 | |
| 1120 | fep->fecp = fecp; |
| 1121 | fep->fpi = fpi; |
| 1122 | |
| 1123 | /* init locks */ |
| 1124 | spin_lock_init(&fep->lock); |
| 1125 | spin_lock_init(&fep->tx_lock); |
| 1126 | |
| 1127 | /* |
| 1128 | * Set the Ethernet address. |
| 1129 | */ |
| 1130 | for (i = 0; i < 6; i++) |
| 1131 | dev->dev_addr[i] = fpi->macaddr[i]; |
| 1132 | |
| 1133 | fep->ring_base = dma_alloc_coherent(NULL, |
| 1134 | (fpi->tx_ring + fpi->rx_ring) * |
| 1135 | sizeof(cbd_t), &fep->ring_mem_addr, |
| 1136 | GFP_KERNEL); |
| 1137 | if (fep->ring_base == NULL) { |
| 1138 | printk(KERN_ERR DRV_MODULE_NAME |
| 1139 | ": %s dma alloc failed.\n", dev->name); |
| 1140 | err = -ENOMEM; |
| 1141 | goto err; |
| 1142 | } |
| 1143 | |
| 1144 | /* |
| 1145 | * Set receive and transmit descriptor base. |
| 1146 | */ |
| 1147 | fep->rx_bd_base = fep->ring_base; |
| 1148 | fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; |
| 1149 | |
| 1150 | /* initialize ring size variables */ |
| 1151 | fep->tx_ring = fpi->tx_ring; |
| 1152 | fep->rx_ring = fpi->rx_ring; |
| 1153 | |
| 1154 | /* SIU interrupt */ |
| 1155 | if (fpi->phy_irq != -1 && |
| 1156 | (fpi->phy_irq >= SIU_IRQ0 && fpi->phy_irq < SIU_LEVEL7)) { |
| 1157 | |
| 1158 | siel = in_be32(&immap->im_siu_conf.sc_siel); |
| 1159 | if ((fpi->phy_irq & 1) == 0) |
| 1160 | siel |= (0x80000000 >> fpi->phy_irq); |
| 1161 | else |
| 1162 | siel &= ~(0x80000000 >> (fpi->phy_irq & ~1)); |
| 1163 | out_be32(&immap->im_siu_conf.sc_siel, siel); |
| 1164 | } |
| 1165 | |
| 1166 | /* |
| 1167 | * The FEC Ethernet specific entries in the device structure. |
| 1168 | */ |
| 1169 | dev->open = fec_enet_open; |
| 1170 | dev->hard_start_xmit = fec_enet_start_xmit; |
| 1171 | dev->tx_timeout = fec_timeout; |
| 1172 | dev->watchdog_timeo = TX_TIMEOUT; |
| 1173 | dev->stop = fec_enet_close; |
| 1174 | dev->get_stats = fec_enet_get_stats; |
| 1175 | dev->set_multicast_list = fec_set_multicast_list; |
| 1176 | dev->set_mac_address = fec_set_mac_address; |
| 1177 | if (fpi->use_napi) { |
| 1178 | dev->poll = fec_enet_poll; |
| 1179 | dev->weight = fpi->napi_weight; |
| 1180 | } |
| 1181 | dev->ethtool_ops = &fec_ethtool_ops; |
| 1182 | dev->do_ioctl = fec_ioctl; |
| 1183 | |
| 1184 | fep->fec_phy_speed = |
| 1185 | ((((fpi->sys_clk + 4999999) / 2500000) / 2) & 0x3F) << 1; |
| 1186 | |
| 1187 | init_timer(&fep->phy_timer_list); |
| 1188 | |
| 1189 | /* partial reset of FEC so that only MII works */ |
| 1190 | FW(fecp, mii_speed, fep->fec_phy_speed); |
| 1191 | FW(fecp, ievent, 0xffc0); |
| 1192 | FW(fecp, ivec, (fpi->fec_irq / 2) << 29); |
| 1193 | FW(fecp, imask, 0); |
| 1194 | FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */ |
| 1195 | FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN); |
| 1196 | |
| 1197 | netif_carrier_off(dev); |
| 1198 | |
| 1199 | err = register_netdev(dev); |
| 1200 | if (err != 0) |
| 1201 | goto err; |
| 1202 | registered = 1; |
| 1203 | |
| 1204 | if (fpi->use_mdio) { |
| 1205 | fep->mii_if.dev = dev; |
| 1206 | fep->mii_if.mdio_read = fec_mii_read; |
| 1207 | fep->mii_if.mdio_write = fec_mii_write; |
| 1208 | fep->mii_if.phy_id_mask = 0x1f; |
| 1209 | fep->mii_if.reg_num_mask = 0x1f; |
| 1210 | fep->mii_if.phy_id = fec_mii_phy_id_detect(dev); |
| 1211 | } |
| 1212 | |
| 1213 | *devp = dev; |
| 1214 | |
| 1215 | return 0; |
| 1216 | |
| 1217 | err: |
| 1218 | if (dev != NULL) { |
| 1219 | if (fecp != NULL) |
| 1220 | fec_whack_reset(fecp); |
| 1221 | |
| 1222 | if (registered) |
| 1223 | unregister_netdev(dev); |
| 1224 | |
| 1225 | if (fep != NULL) { |
| 1226 | if (fep->ring_base) |
| 1227 | dma_free_coherent(NULL, |
| 1228 | (fpi->tx_ring + |
| 1229 | fpi->rx_ring) * |
| 1230 | sizeof(cbd_t), fep->ring_base, |
| 1231 | fep->ring_mem_addr); |
| 1232 | } |
| 1233 | free_netdev(dev); |
| 1234 | } |
| 1235 | return err; |
| 1236 | } |
| 1237 | |
| 1238 | int fec_8xx_cleanup_one(struct net_device *dev) |
| 1239 | { |
| 1240 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1241 | fec_t *fecp = fep->fecp; |
| 1242 | const struct fec_platform_info *fpi = fep->fpi; |
| 1243 | |
| 1244 | fec_whack_reset(fecp); |
| 1245 | |
| 1246 | unregister_netdev(dev); |
| 1247 | |
| 1248 | dma_free_coherent(NULL, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t), |
| 1249 | fep->ring_base, fep->ring_mem_addr); |
| 1250 | |
| 1251 | free_netdev(dev); |
| 1252 | |
| 1253 | return 0; |
| 1254 | } |
| 1255 | |
| 1256 | /**************************************************************************************/ |
| 1257 | /**************************************************************************************/ |
| 1258 | /**************************************************************************************/ |
| 1259 | |
| 1260 | static int __init fec_8xx_init(void) |
| 1261 | { |
| 1262 | return fec_8xx_platform_init(); |
| 1263 | } |
| 1264 | |
| 1265 | static void __exit fec_8xx_cleanup(void) |
| 1266 | { |
| 1267 | fec_8xx_platform_cleanup(); |
| 1268 | } |
| 1269 | |
| 1270 | /**************************************************************************************/ |
| 1271 | /**************************************************************************************/ |
| 1272 | /**************************************************************************************/ |
| 1273 | |
| 1274 | module_init(fec_8xx_init); |
| 1275 | module_exit(fec_8xx_cleanup); |