Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/mm/slab.c |
| 3 | * Written by Mark Hemment, 1996/97. |
| 4 | * (markhe@nextd.demon.co.uk) |
| 5 | * |
| 6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli |
| 7 | * |
| 8 | * Major cleanup, different bufctl logic, per-cpu arrays |
| 9 | * (c) 2000 Manfred Spraul |
| 10 | * |
| 11 | * Cleanup, make the head arrays unconditional, preparation for NUMA |
| 12 | * (c) 2002 Manfred Spraul |
| 13 | * |
| 14 | * An implementation of the Slab Allocator as described in outline in; |
| 15 | * UNIX Internals: The New Frontiers by Uresh Vahalia |
| 16 | * Pub: Prentice Hall ISBN 0-13-101908-2 |
| 17 | * or with a little more detail in; |
| 18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator |
| 19 | * Jeff Bonwick (Sun Microsystems). |
| 20 | * Presented at: USENIX Summer 1994 Technical Conference |
| 21 | * |
| 22 | * The memory is organized in caches, one cache for each object type. |
| 23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) |
| 24 | * Each cache consists out of many slabs (they are small (usually one |
| 25 | * page long) and always contiguous), and each slab contains multiple |
| 26 | * initialized objects. |
| 27 | * |
| 28 | * This means, that your constructor is used only for newly allocated |
| 29 | * slabs and you must pass objects with the same intializations to |
| 30 | * kmem_cache_free. |
| 31 | * |
| 32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, |
| 33 | * normal). If you need a special memory type, then must create a new |
| 34 | * cache for that memory type. |
| 35 | * |
| 36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: |
| 37 | * full slabs with 0 free objects |
| 38 | * partial slabs |
| 39 | * empty slabs with no allocated objects |
| 40 | * |
| 41 | * If partial slabs exist, then new allocations come from these slabs, |
| 42 | * otherwise from empty slabs or new slabs are allocated. |
| 43 | * |
| 44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache |
| 45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. |
| 46 | * |
| 47 | * Each cache has a short per-cpu head array, most allocs |
| 48 | * and frees go into that array, and if that array overflows, then 1/2 |
| 49 | * of the entries in the array are given back into the global cache. |
| 50 | * The head array is strictly LIFO and should improve the cache hit rates. |
| 51 | * On SMP, it additionally reduces the spinlock operations. |
| 52 | * |
| 53 | * The c_cpuarray may not be read with enabled local interrupts - |
| 54 | * it's changed with a smp_call_function(). |
| 55 | * |
| 56 | * SMP synchronization: |
| 57 | * constructors and destructors are called without any locking. |
| 58 | * Several members in kmem_cache_t and struct slab never change, they |
| 59 | * are accessed without any locking. |
| 60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, |
| 61 | * and local interrupts are disabled so slab code is preempt-safe. |
| 62 | * The non-constant members are protected with a per-cache irq spinlock. |
| 63 | * |
| 64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch |
| 65 | * in 2000 - many ideas in the current implementation are derived from |
| 66 | * his patch. |
| 67 | * |
| 68 | * Further notes from the original documentation: |
| 69 | * |
| 70 | * 11 April '97. Started multi-threading - markhe |
| 71 | * The global cache-chain is protected by the semaphore 'cache_chain_sem'. |
| 72 | * The sem is only needed when accessing/extending the cache-chain, which |
| 73 | * can never happen inside an interrupt (kmem_cache_create(), |
| 74 | * kmem_cache_shrink() and kmem_cache_reap()). |
| 75 | * |
| 76 | * At present, each engine can be growing a cache. This should be blocked. |
| 77 | * |
| 78 | */ |
| 79 | |
| 80 | #include <linux/config.h> |
| 81 | #include <linux/slab.h> |
| 82 | #include <linux/mm.h> |
| 83 | #include <linux/swap.h> |
| 84 | #include <linux/cache.h> |
| 85 | #include <linux/interrupt.h> |
| 86 | #include <linux/init.h> |
| 87 | #include <linux/compiler.h> |
| 88 | #include <linux/seq_file.h> |
| 89 | #include <linux/notifier.h> |
| 90 | #include <linux/kallsyms.h> |
| 91 | #include <linux/cpu.h> |
| 92 | #include <linux/sysctl.h> |
| 93 | #include <linux/module.h> |
| 94 | #include <linux/rcupdate.h> |
| 95 | |
| 96 | #include <asm/uaccess.h> |
| 97 | #include <asm/cacheflush.h> |
| 98 | #include <asm/tlbflush.h> |
| 99 | #include <asm/page.h> |
| 100 | |
| 101 | /* |
| 102 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, |
| 103 | * SLAB_RED_ZONE & SLAB_POISON. |
| 104 | * 0 for faster, smaller code (especially in the critical paths). |
| 105 | * |
| 106 | * STATS - 1 to collect stats for /proc/slabinfo. |
| 107 | * 0 for faster, smaller code (especially in the critical paths). |
| 108 | * |
| 109 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) |
| 110 | */ |
| 111 | |
| 112 | #ifdef CONFIG_DEBUG_SLAB |
| 113 | #define DEBUG 1 |
| 114 | #define STATS 1 |
| 115 | #define FORCED_DEBUG 1 |
| 116 | #else |
| 117 | #define DEBUG 0 |
| 118 | #define STATS 0 |
| 119 | #define FORCED_DEBUG 0 |
| 120 | #endif |
| 121 | |
| 122 | |
| 123 | /* Shouldn't this be in a header file somewhere? */ |
| 124 | #define BYTES_PER_WORD sizeof(void *) |
| 125 | |
| 126 | #ifndef cache_line_size |
| 127 | #define cache_line_size() L1_CACHE_BYTES |
| 128 | #endif |
| 129 | |
| 130 | #ifndef ARCH_KMALLOC_MINALIGN |
| 131 | /* |
| 132 | * Enforce a minimum alignment for the kmalloc caches. |
| 133 | * Usually, the kmalloc caches are cache_line_size() aligned, except when |
| 134 | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. |
| 135 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed |
| 136 | * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. |
| 137 | * Note that this flag disables some debug features. |
| 138 | */ |
| 139 | #define ARCH_KMALLOC_MINALIGN 0 |
| 140 | #endif |
| 141 | |
| 142 | #ifndef ARCH_SLAB_MINALIGN |
| 143 | /* |
| 144 | * Enforce a minimum alignment for all caches. |
| 145 | * Intended for archs that get misalignment faults even for BYTES_PER_WORD |
| 146 | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. |
| 147 | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables |
| 148 | * some debug features. |
| 149 | */ |
| 150 | #define ARCH_SLAB_MINALIGN 0 |
| 151 | #endif |
| 152 | |
| 153 | #ifndef ARCH_KMALLOC_FLAGS |
| 154 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN |
| 155 | #endif |
| 156 | |
| 157 | /* Legal flag mask for kmem_cache_create(). */ |
| 158 | #if DEBUG |
| 159 | # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ |
| 160 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ |
| 161 | SLAB_NO_REAP | SLAB_CACHE_DMA | \ |
| 162 | SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ |
| 163 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
| 164 | SLAB_DESTROY_BY_RCU) |
| 165 | #else |
| 166 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \ |
| 167 | SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ |
| 168 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
| 169 | SLAB_DESTROY_BY_RCU) |
| 170 | #endif |
| 171 | |
| 172 | /* |
| 173 | * kmem_bufctl_t: |
| 174 | * |
| 175 | * Bufctl's are used for linking objs within a slab |
| 176 | * linked offsets. |
| 177 | * |
| 178 | * This implementation relies on "struct page" for locating the cache & |
| 179 | * slab an object belongs to. |
| 180 | * This allows the bufctl structure to be small (one int), but limits |
| 181 | * the number of objects a slab (not a cache) can contain when off-slab |
| 182 | * bufctls are used. The limit is the size of the largest general cache |
| 183 | * that does not use off-slab slabs. |
| 184 | * For 32bit archs with 4 kB pages, is this 56. |
| 185 | * This is not serious, as it is only for large objects, when it is unwise |
| 186 | * to have too many per slab. |
| 187 | * Note: This limit can be raised by introducing a general cache whose size |
| 188 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. |
| 189 | */ |
| 190 | |
| 191 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
| 192 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) |
| 193 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2) |
| 194 | |
| 195 | /* Max number of objs-per-slab for caches which use off-slab slabs. |
| 196 | * Needed to avoid a possible looping condition in cache_grow(). |
| 197 | */ |
| 198 | static unsigned long offslab_limit; |
| 199 | |
| 200 | /* |
| 201 | * struct slab |
| 202 | * |
| 203 | * Manages the objs in a slab. Placed either at the beginning of mem allocated |
| 204 | * for a slab, or allocated from an general cache. |
| 205 | * Slabs are chained into three list: fully used, partial, fully free slabs. |
| 206 | */ |
| 207 | struct slab { |
| 208 | struct list_head list; |
| 209 | unsigned long colouroff; |
| 210 | void *s_mem; /* including colour offset */ |
| 211 | unsigned int inuse; /* num of objs active in slab */ |
| 212 | kmem_bufctl_t free; |
| 213 | }; |
| 214 | |
| 215 | /* |
| 216 | * struct slab_rcu |
| 217 | * |
| 218 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to |
| 219 | * arrange for kmem_freepages to be called via RCU. This is useful if |
| 220 | * we need to approach a kernel structure obliquely, from its address |
| 221 | * obtained without the usual locking. We can lock the structure to |
| 222 | * stabilize it and check it's still at the given address, only if we |
| 223 | * can be sure that the memory has not been meanwhile reused for some |
| 224 | * other kind of object (which our subsystem's lock might corrupt). |
| 225 | * |
| 226 | * rcu_read_lock before reading the address, then rcu_read_unlock after |
| 227 | * taking the spinlock within the structure expected at that address. |
| 228 | * |
| 229 | * We assume struct slab_rcu can overlay struct slab when destroying. |
| 230 | */ |
| 231 | struct slab_rcu { |
| 232 | struct rcu_head head; |
| 233 | kmem_cache_t *cachep; |
| 234 | void *addr; |
| 235 | }; |
| 236 | |
| 237 | /* |
| 238 | * struct array_cache |
| 239 | * |
| 240 | * Per cpu structures |
| 241 | * Purpose: |
| 242 | * - LIFO ordering, to hand out cache-warm objects from _alloc |
| 243 | * - reduce the number of linked list operations |
| 244 | * - reduce spinlock operations |
| 245 | * |
| 246 | * The limit is stored in the per-cpu structure to reduce the data cache |
| 247 | * footprint. |
| 248 | * |
| 249 | */ |
| 250 | struct array_cache { |
| 251 | unsigned int avail; |
| 252 | unsigned int limit; |
| 253 | unsigned int batchcount; |
| 254 | unsigned int touched; |
| 255 | }; |
| 256 | |
| 257 | /* bootstrap: The caches do not work without cpuarrays anymore, |
| 258 | * but the cpuarrays are allocated from the generic caches... |
| 259 | */ |
| 260 | #define BOOT_CPUCACHE_ENTRIES 1 |
| 261 | struct arraycache_init { |
| 262 | struct array_cache cache; |
| 263 | void * entries[BOOT_CPUCACHE_ENTRIES]; |
| 264 | }; |
| 265 | |
| 266 | /* |
| 267 | * The slab lists of all objects. |
| 268 | * Hopefully reduce the internal fragmentation |
| 269 | * NUMA: The spinlock could be moved from the kmem_cache_t |
| 270 | * into this structure, too. Figure out what causes |
| 271 | * fewer cross-node spinlock operations. |
| 272 | */ |
| 273 | struct kmem_list3 { |
| 274 | struct list_head slabs_partial; /* partial list first, better asm code */ |
| 275 | struct list_head slabs_full; |
| 276 | struct list_head slabs_free; |
| 277 | unsigned long free_objects; |
| 278 | int free_touched; |
| 279 | unsigned long next_reap; |
| 280 | struct array_cache *shared; |
| 281 | }; |
| 282 | |
| 283 | #define LIST3_INIT(parent) \ |
| 284 | { \ |
| 285 | .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \ |
| 286 | .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \ |
| 287 | .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \ |
| 288 | } |
| 289 | #define list3_data(cachep) \ |
| 290 | (&(cachep)->lists) |
| 291 | |
| 292 | /* NUMA: per-node */ |
| 293 | #define list3_data_ptr(cachep, ptr) \ |
| 294 | list3_data(cachep) |
| 295 | |
| 296 | /* |
| 297 | * kmem_cache_t |
| 298 | * |
| 299 | * manages a cache. |
| 300 | */ |
| 301 | |
| 302 | struct kmem_cache_s { |
| 303 | /* 1) per-cpu data, touched during every alloc/free */ |
| 304 | struct array_cache *array[NR_CPUS]; |
| 305 | unsigned int batchcount; |
| 306 | unsigned int limit; |
| 307 | /* 2) touched by every alloc & free from the backend */ |
| 308 | struct kmem_list3 lists; |
| 309 | /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */ |
| 310 | unsigned int objsize; |
| 311 | unsigned int flags; /* constant flags */ |
| 312 | unsigned int num; /* # of objs per slab */ |
| 313 | unsigned int free_limit; /* upper limit of objects in the lists */ |
| 314 | spinlock_t spinlock; |
| 315 | |
| 316 | /* 3) cache_grow/shrink */ |
| 317 | /* order of pgs per slab (2^n) */ |
| 318 | unsigned int gfporder; |
| 319 | |
| 320 | /* force GFP flags, e.g. GFP_DMA */ |
| 321 | unsigned int gfpflags; |
| 322 | |
| 323 | size_t colour; /* cache colouring range */ |
| 324 | unsigned int colour_off; /* colour offset */ |
| 325 | unsigned int colour_next; /* cache colouring */ |
| 326 | kmem_cache_t *slabp_cache; |
| 327 | unsigned int slab_size; |
| 328 | unsigned int dflags; /* dynamic flags */ |
| 329 | |
| 330 | /* constructor func */ |
| 331 | void (*ctor)(void *, kmem_cache_t *, unsigned long); |
| 332 | |
| 333 | /* de-constructor func */ |
| 334 | void (*dtor)(void *, kmem_cache_t *, unsigned long); |
| 335 | |
| 336 | /* 4) cache creation/removal */ |
| 337 | const char *name; |
| 338 | struct list_head next; |
| 339 | |
| 340 | /* 5) statistics */ |
| 341 | #if STATS |
| 342 | unsigned long num_active; |
| 343 | unsigned long num_allocations; |
| 344 | unsigned long high_mark; |
| 345 | unsigned long grown; |
| 346 | unsigned long reaped; |
| 347 | unsigned long errors; |
| 348 | unsigned long max_freeable; |
| 349 | unsigned long node_allocs; |
| 350 | atomic_t allochit; |
| 351 | atomic_t allocmiss; |
| 352 | atomic_t freehit; |
| 353 | atomic_t freemiss; |
| 354 | #endif |
| 355 | #if DEBUG |
| 356 | int dbghead; |
| 357 | int reallen; |
| 358 | #endif |
| 359 | }; |
| 360 | |
| 361 | #define CFLGS_OFF_SLAB (0x80000000UL) |
| 362 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) |
| 363 | |
| 364 | #define BATCHREFILL_LIMIT 16 |
| 365 | /* Optimization question: fewer reaps means less |
| 366 | * probability for unnessary cpucache drain/refill cycles. |
| 367 | * |
| 368 | * OTHO the cpuarrays can contain lots of objects, |
| 369 | * which could lock up otherwise freeable slabs. |
| 370 | */ |
| 371 | #define REAPTIMEOUT_CPUC (2*HZ) |
| 372 | #define REAPTIMEOUT_LIST3 (4*HZ) |
| 373 | |
| 374 | #if STATS |
| 375 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) |
| 376 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) |
| 377 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) |
| 378 | #define STATS_INC_GROWN(x) ((x)->grown++) |
| 379 | #define STATS_INC_REAPED(x) ((x)->reaped++) |
| 380 | #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \ |
| 381 | (x)->high_mark = (x)->num_active; \ |
| 382 | } while (0) |
| 383 | #define STATS_INC_ERR(x) ((x)->errors++) |
| 384 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) |
| 385 | #define STATS_SET_FREEABLE(x, i) \ |
| 386 | do { if ((x)->max_freeable < i) \ |
| 387 | (x)->max_freeable = i; \ |
| 388 | } while (0) |
| 389 | |
| 390 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
| 391 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) |
| 392 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) |
| 393 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) |
| 394 | #else |
| 395 | #define STATS_INC_ACTIVE(x) do { } while (0) |
| 396 | #define STATS_DEC_ACTIVE(x) do { } while (0) |
| 397 | #define STATS_INC_ALLOCED(x) do { } while (0) |
| 398 | #define STATS_INC_GROWN(x) do { } while (0) |
| 399 | #define STATS_INC_REAPED(x) do { } while (0) |
| 400 | #define STATS_SET_HIGH(x) do { } while (0) |
| 401 | #define STATS_INC_ERR(x) do { } while (0) |
| 402 | #define STATS_INC_NODEALLOCS(x) do { } while (0) |
| 403 | #define STATS_SET_FREEABLE(x, i) \ |
| 404 | do { } while (0) |
| 405 | |
| 406 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
| 407 | #define STATS_INC_ALLOCMISS(x) do { } while (0) |
| 408 | #define STATS_INC_FREEHIT(x) do { } while (0) |
| 409 | #define STATS_INC_FREEMISS(x) do { } while (0) |
| 410 | #endif |
| 411 | |
| 412 | #if DEBUG |
| 413 | /* Magic nums for obj red zoning. |
| 414 | * Placed in the first word before and the first word after an obj. |
| 415 | */ |
| 416 | #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */ |
| 417 | #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */ |
| 418 | |
| 419 | /* ...and for poisoning */ |
| 420 | #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */ |
| 421 | #define POISON_FREE 0x6b /* for use-after-free poisoning */ |
| 422 | #define POISON_END 0xa5 /* end-byte of poisoning */ |
| 423 | |
| 424 | /* memory layout of objects: |
| 425 | * 0 : objp |
| 426 | * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that |
| 427 | * the end of an object is aligned with the end of the real |
| 428 | * allocation. Catches writes behind the end of the allocation. |
| 429 | * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: |
| 430 | * redzone word. |
| 431 | * cachep->dbghead: The real object. |
| 432 | * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
| 433 | * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] |
| 434 | */ |
| 435 | static int obj_dbghead(kmem_cache_t *cachep) |
| 436 | { |
| 437 | return cachep->dbghead; |
| 438 | } |
| 439 | |
| 440 | static int obj_reallen(kmem_cache_t *cachep) |
| 441 | { |
| 442 | return cachep->reallen; |
| 443 | } |
| 444 | |
| 445 | static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) |
| 446 | { |
| 447 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); |
| 448 | return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); |
| 449 | } |
| 450 | |
| 451 | static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) |
| 452 | { |
| 453 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); |
| 454 | if (cachep->flags & SLAB_STORE_USER) |
| 455 | return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD); |
| 456 | return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD); |
| 457 | } |
| 458 | |
| 459 | static void **dbg_userword(kmem_cache_t *cachep, void *objp) |
| 460 | { |
| 461 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); |
| 462 | return (void**)(objp+cachep->objsize-BYTES_PER_WORD); |
| 463 | } |
| 464 | |
| 465 | #else |
| 466 | |
| 467 | #define obj_dbghead(x) 0 |
| 468 | #define obj_reallen(cachep) (cachep->objsize) |
| 469 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) |
| 470 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) |
| 471 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
| 472 | |
| 473 | #endif |
| 474 | |
| 475 | /* |
| 476 | * Maximum size of an obj (in 2^order pages) |
| 477 | * and absolute limit for the gfp order. |
| 478 | */ |
| 479 | #if defined(CONFIG_LARGE_ALLOCS) |
| 480 | #define MAX_OBJ_ORDER 13 /* up to 32Mb */ |
| 481 | #define MAX_GFP_ORDER 13 /* up to 32Mb */ |
| 482 | #elif defined(CONFIG_MMU) |
| 483 | #define MAX_OBJ_ORDER 5 /* 32 pages */ |
| 484 | #define MAX_GFP_ORDER 5 /* 32 pages */ |
| 485 | #else |
| 486 | #define MAX_OBJ_ORDER 8 /* up to 1Mb */ |
| 487 | #define MAX_GFP_ORDER 8 /* up to 1Mb */ |
| 488 | #endif |
| 489 | |
| 490 | /* |
| 491 | * Do not go above this order unless 0 objects fit into the slab. |
| 492 | */ |
| 493 | #define BREAK_GFP_ORDER_HI 1 |
| 494 | #define BREAK_GFP_ORDER_LO 0 |
| 495 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; |
| 496 | |
| 497 | /* Macros for storing/retrieving the cachep and or slab from the |
| 498 | * global 'mem_map'. These are used to find the slab an obj belongs to. |
| 499 | * With kfree(), these are used to find the cache which an obj belongs to. |
| 500 | */ |
| 501 | #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x)) |
| 502 | #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next) |
| 503 | #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x)) |
| 504 | #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev) |
| 505 | |
| 506 | /* These are the default caches for kmalloc. Custom caches can have other sizes. */ |
| 507 | struct cache_sizes malloc_sizes[] = { |
| 508 | #define CACHE(x) { .cs_size = (x) }, |
| 509 | #include <linux/kmalloc_sizes.h> |
| 510 | CACHE(ULONG_MAX) |
| 511 | #undef CACHE |
| 512 | }; |
| 513 | EXPORT_SYMBOL(malloc_sizes); |
| 514 | |
| 515 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ |
| 516 | struct cache_names { |
| 517 | char *name; |
| 518 | char *name_dma; |
| 519 | }; |
| 520 | |
| 521 | static struct cache_names __initdata cache_names[] = { |
| 522 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, |
| 523 | #include <linux/kmalloc_sizes.h> |
| 524 | { NULL, } |
| 525 | #undef CACHE |
| 526 | }; |
| 527 | |
| 528 | static struct arraycache_init initarray_cache __initdata = |
| 529 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
| 530 | static struct arraycache_init initarray_generic = |
| 531 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
| 532 | |
| 533 | /* internal cache of cache description objs */ |
| 534 | static kmem_cache_t cache_cache = { |
| 535 | .lists = LIST3_INIT(cache_cache.lists), |
| 536 | .batchcount = 1, |
| 537 | .limit = BOOT_CPUCACHE_ENTRIES, |
| 538 | .objsize = sizeof(kmem_cache_t), |
| 539 | .flags = SLAB_NO_REAP, |
| 540 | .spinlock = SPIN_LOCK_UNLOCKED, |
| 541 | .name = "kmem_cache", |
| 542 | #if DEBUG |
| 543 | .reallen = sizeof(kmem_cache_t), |
| 544 | #endif |
| 545 | }; |
| 546 | |
| 547 | /* Guard access to the cache-chain. */ |
| 548 | static struct semaphore cache_chain_sem; |
| 549 | static struct list_head cache_chain; |
| 550 | |
| 551 | /* |
| 552 | * vm_enough_memory() looks at this to determine how many |
| 553 | * slab-allocated pages are possibly freeable under pressure |
| 554 | * |
| 555 | * SLAB_RECLAIM_ACCOUNT turns this on per-slab |
| 556 | */ |
| 557 | atomic_t slab_reclaim_pages; |
| 558 | EXPORT_SYMBOL(slab_reclaim_pages); |
| 559 | |
| 560 | /* |
| 561 | * chicken and egg problem: delay the per-cpu array allocation |
| 562 | * until the general caches are up. |
| 563 | */ |
| 564 | static enum { |
| 565 | NONE, |
| 566 | PARTIAL, |
| 567 | FULL |
| 568 | } g_cpucache_up; |
| 569 | |
| 570 | static DEFINE_PER_CPU(struct work_struct, reap_work); |
| 571 | |
| 572 | static void free_block(kmem_cache_t* cachep, void** objpp, int len); |
| 573 | static void enable_cpucache (kmem_cache_t *cachep); |
| 574 | static void cache_reap (void *unused); |
| 575 | |
| 576 | static inline void **ac_entry(struct array_cache *ac) |
| 577 | { |
| 578 | return (void**)(ac+1); |
| 579 | } |
| 580 | |
| 581 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) |
| 582 | { |
| 583 | return cachep->array[smp_processor_id()]; |
| 584 | } |
| 585 | |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 586 | static inline kmem_cache_t *__find_general_cachep(size_t size, int gfpflags) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 587 | { |
| 588 | struct cache_sizes *csizep = malloc_sizes; |
| 589 | |
| 590 | #if DEBUG |
| 591 | /* This happens if someone tries to call |
| 592 | * kmem_cache_create(), or __kmalloc(), before |
| 593 | * the generic caches are initialized. |
| 594 | */ |
| 595 | BUG_ON(csizep->cs_cachep == NULL); |
| 596 | #endif |
| 597 | while (size > csizep->cs_size) |
| 598 | csizep++; |
| 599 | |
| 600 | /* |
| 601 | * Really subtile: The last entry with cs->cs_size==ULONG_MAX |
| 602 | * has cs_{dma,}cachep==NULL. Thus no special case |
| 603 | * for large kmalloc calls required. |
| 604 | */ |
| 605 | if (unlikely(gfpflags & GFP_DMA)) |
| 606 | return csizep->cs_dmacachep; |
| 607 | return csizep->cs_cachep; |
| 608 | } |
| 609 | |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 610 | kmem_cache_t *kmem_find_general_cachep(size_t size, int gfpflags) |
| 611 | { |
| 612 | return __find_general_cachep(size, gfpflags); |
| 613 | } |
| 614 | EXPORT_SYMBOL(kmem_find_general_cachep); |
| 615 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 616 | /* Cal the num objs, wastage, and bytes left over for a given slab size. */ |
| 617 | static void cache_estimate(unsigned long gfporder, size_t size, size_t align, |
| 618 | int flags, size_t *left_over, unsigned int *num) |
| 619 | { |
| 620 | int i; |
| 621 | size_t wastage = PAGE_SIZE<<gfporder; |
| 622 | size_t extra = 0; |
| 623 | size_t base = 0; |
| 624 | |
| 625 | if (!(flags & CFLGS_OFF_SLAB)) { |
| 626 | base = sizeof(struct slab); |
| 627 | extra = sizeof(kmem_bufctl_t); |
| 628 | } |
| 629 | i = 0; |
| 630 | while (i*size + ALIGN(base+i*extra, align) <= wastage) |
| 631 | i++; |
| 632 | if (i > 0) |
| 633 | i--; |
| 634 | |
| 635 | if (i > SLAB_LIMIT) |
| 636 | i = SLAB_LIMIT; |
| 637 | |
| 638 | *num = i; |
| 639 | wastage -= i*size; |
| 640 | wastage -= ALIGN(base+i*extra, align); |
| 641 | *left_over = wastage; |
| 642 | } |
| 643 | |
| 644 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) |
| 645 | |
| 646 | static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) |
| 647 | { |
| 648 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", |
| 649 | function, cachep->name, msg); |
| 650 | dump_stack(); |
| 651 | } |
| 652 | |
| 653 | /* |
| 654 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz |
| 655 | * via the workqueue/eventd. |
| 656 | * Add the CPU number into the expiration time to minimize the possibility of |
| 657 | * the CPUs getting into lockstep and contending for the global cache chain |
| 658 | * lock. |
| 659 | */ |
| 660 | static void __devinit start_cpu_timer(int cpu) |
| 661 | { |
| 662 | struct work_struct *reap_work = &per_cpu(reap_work, cpu); |
| 663 | |
| 664 | /* |
| 665 | * When this gets called from do_initcalls via cpucache_init(), |
| 666 | * init_workqueues() has already run, so keventd will be setup |
| 667 | * at that time. |
| 668 | */ |
| 669 | if (keventd_up() && reap_work->func == NULL) { |
| 670 | INIT_WORK(reap_work, cache_reap, NULL); |
| 671 | schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | static struct array_cache *alloc_arraycache(int cpu, int entries, |
| 676 | int batchcount) |
| 677 | { |
| 678 | int memsize = sizeof(void*)*entries+sizeof(struct array_cache); |
| 679 | struct array_cache *nc = NULL; |
| 680 | |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 681 | if (cpu == -1) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 682 | nc = kmalloc(memsize, GFP_KERNEL); |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 683 | else |
| 684 | nc = kmalloc_node(memsize, GFP_KERNEL, cpu_to_node(cpu)); |
| 685 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 686 | if (nc) { |
| 687 | nc->avail = 0; |
| 688 | nc->limit = entries; |
| 689 | nc->batchcount = batchcount; |
| 690 | nc->touched = 0; |
| 691 | } |
| 692 | return nc; |
| 693 | } |
| 694 | |
| 695 | static int __devinit cpuup_callback(struct notifier_block *nfb, |
| 696 | unsigned long action, void *hcpu) |
| 697 | { |
| 698 | long cpu = (long)hcpu; |
| 699 | kmem_cache_t* cachep; |
| 700 | |
| 701 | switch (action) { |
| 702 | case CPU_UP_PREPARE: |
| 703 | down(&cache_chain_sem); |
| 704 | list_for_each_entry(cachep, &cache_chain, next) { |
| 705 | struct array_cache *nc; |
| 706 | |
| 707 | nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount); |
| 708 | if (!nc) |
| 709 | goto bad; |
| 710 | |
| 711 | spin_lock_irq(&cachep->spinlock); |
| 712 | cachep->array[cpu] = nc; |
| 713 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount |
| 714 | + cachep->num; |
| 715 | spin_unlock_irq(&cachep->spinlock); |
| 716 | |
| 717 | } |
| 718 | up(&cache_chain_sem); |
| 719 | break; |
| 720 | case CPU_ONLINE: |
| 721 | start_cpu_timer(cpu); |
| 722 | break; |
| 723 | #ifdef CONFIG_HOTPLUG_CPU |
| 724 | case CPU_DEAD: |
| 725 | /* fall thru */ |
| 726 | case CPU_UP_CANCELED: |
| 727 | down(&cache_chain_sem); |
| 728 | |
| 729 | list_for_each_entry(cachep, &cache_chain, next) { |
| 730 | struct array_cache *nc; |
| 731 | |
| 732 | spin_lock_irq(&cachep->spinlock); |
| 733 | /* cpu is dead; no one can alloc from it. */ |
| 734 | nc = cachep->array[cpu]; |
| 735 | cachep->array[cpu] = NULL; |
| 736 | cachep->free_limit -= cachep->batchcount; |
| 737 | free_block(cachep, ac_entry(nc), nc->avail); |
| 738 | spin_unlock_irq(&cachep->spinlock); |
| 739 | kfree(nc); |
| 740 | } |
| 741 | up(&cache_chain_sem); |
| 742 | break; |
| 743 | #endif |
| 744 | } |
| 745 | return NOTIFY_OK; |
| 746 | bad: |
| 747 | up(&cache_chain_sem); |
| 748 | return NOTIFY_BAD; |
| 749 | } |
| 750 | |
| 751 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; |
| 752 | |
| 753 | /* Initialisation. |
| 754 | * Called after the gfp() functions have been enabled, and before smp_init(). |
| 755 | */ |
| 756 | void __init kmem_cache_init(void) |
| 757 | { |
| 758 | size_t left_over; |
| 759 | struct cache_sizes *sizes; |
| 760 | struct cache_names *names; |
| 761 | |
| 762 | /* |
| 763 | * Fragmentation resistance on low memory - only use bigger |
| 764 | * page orders on machines with more than 32MB of memory. |
| 765 | */ |
| 766 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) |
| 767 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; |
| 768 | |
| 769 | |
| 770 | /* Bootstrap is tricky, because several objects are allocated |
| 771 | * from caches that do not exist yet: |
| 772 | * 1) initialize the cache_cache cache: it contains the kmem_cache_t |
| 773 | * structures of all caches, except cache_cache itself: cache_cache |
| 774 | * is statically allocated. |
| 775 | * Initially an __init data area is used for the head array, it's |
| 776 | * replaced with a kmalloc allocated array at the end of the bootstrap. |
| 777 | * 2) Create the first kmalloc cache. |
| 778 | * The kmem_cache_t for the new cache is allocated normally. An __init |
| 779 | * data area is used for the head array. |
| 780 | * 3) Create the remaining kmalloc caches, with minimally sized head arrays. |
| 781 | * 4) Replace the __init data head arrays for cache_cache and the first |
| 782 | * kmalloc cache with kmalloc allocated arrays. |
| 783 | * 5) Resize the head arrays of the kmalloc caches to their final sizes. |
| 784 | */ |
| 785 | |
| 786 | /* 1) create the cache_cache */ |
| 787 | init_MUTEX(&cache_chain_sem); |
| 788 | INIT_LIST_HEAD(&cache_chain); |
| 789 | list_add(&cache_cache.next, &cache_chain); |
| 790 | cache_cache.colour_off = cache_line_size(); |
| 791 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; |
| 792 | |
| 793 | cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); |
| 794 | |
| 795 | cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, |
| 796 | &left_over, &cache_cache.num); |
| 797 | if (!cache_cache.num) |
| 798 | BUG(); |
| 799 | |
| 800 | cache_cache.colour = left_over/cache_cache.colour_off; |
| 801 | cache_cache.colour_next = 0; |
| 802 | cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) + |
| 803 | sizeof(struct slab), cache_line_size()); |
| 804 | |
| 805 | /* 2+3) create the kmalloc caches */ |
| 806 | sizes = malloc_sizes; |
| 807 | names = cache_names; |
| 808 | |
| 809 | while (sizes->cs_size != ULONG_MAX) { |
| 810 | /* For performance, all the general caches are L1 aligned. |
| 811 | * This should be particularly beneficial on SMP boxes, as it |
| 812 | * eliminates "false sharing". |
| 813 | * Note for systems short on memory removing the alignment will |
| 814 | * allow tighter packing of the smaller caches. */ |
| 815 | sizes->cs_cachep = kmem_cache_create(names->name, |
| 816 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, |
| 817 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); |
| 818 | |
| 819 | /* Inc off-slab bufctl limit until the ceiling is hit. */ |
| 820 | if (!(OFF_SLAB(sizes->cs_cachep))) { |
| 821 | offslab_limit = sizes->cs_size-sizeof(struct slab); |
| 822 | offslab_limit /= sizeof(kmem_bufctl_t); |
| 823 | } |
| 824 | |
| 825 | sizes->cs_dmacachep = kmem_cache_create(names->name_dma, |
| 826 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, |
| 827 | (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC), |
| 828 | NULL, NULL); |
| 829 | |
| 830 | sizes++; |
| 831 | names++; |
| 832 | } |
| 833 | /* 4) Replace the bootstrap head arrays */ |
| 834 | { |
| 835 | void * ptr; |
| 836 | |
| 837 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
| 838 | local_irq_disable(); |
| 839 | BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); |
| 840 | memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init)); |
| 841 | cache_cache.array[smp_processor_id()] = ptr; |
| 842 | local_irq_enable(); |
| 843 | |
| 844 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
| 845 | local_irq_disable(); |
| 846 | BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache); |
| 847 | memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep), |
| 848 | sizeof(struct arraycache_init)); |
| 849 | malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr; |
| 850 | local_irq_enable(); |
| 851 | } |
| 852 | |
| 853 | /* 5) resize the head arrays to their final sizes */ |
| 854 | { |
| 855 | kmem_cache_t *cachep; |
| 856 | down(&cache_chain_sem); |
| 857 | list_for_each_entry(cachep, &cache_chain, next) |
| 858 | enable_cpucache(cachep); |
| 859 | up(&cache_chain_sem); |
| 860 | } |
| 861 | |
| 862 | /* Done! */ |
| 863 | g_cpucache_up = FULL; |
| 864 | |
| 865 | /* Register a cpu startup notifier callback |
| 866 | * that initializes ac_data for all new cpus |
| 867 | */ |
| 868 | register_cpu_notifier(&cpucache_notifier); |
| 869 | |
| 870 | |
| 871 | /* The reap timers are started later, with a module init call: |
| 872 | * That part of the kernel is not yet operational. |
| 873 | */ |
| 874 | } |
| 875 | |
| 876 | static int __init cpucache_init(void) |
| 877 | { |
| 878 | int cpu; |
| 879 | |
| 880 | /* |
| 881 | * Register the timers that return unneeded |
| 882 | * pages to gfp. |
| 883 | */ |
| 884 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| 885 | if (cpu_online(cpu)) |
| 886 | start_cpu_timer(cpu); |
| 887 | } |
| 888 | |
| 889 | return 0; |
| 890 | } |
| 891 | |
| 892 | __initcall(cpucache_init); |
| 893 | |
| 894 | /* |
| 895 | * Interface to system's page allocator. No need to hold the cache-lock. |
| 896 | * |
| 897 | * If we requested dmaable memory, we will get it. Even if we |
| 898 | * did not request dmaable memory, we might get it, but that |
| 899 | * would be relatively rare and ignorable. |
| 900 | */ |
| 901 | static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) |
| 902 | { |
| 903 | struct page *page; |
| 904 | void *addr; |
| 905 | int i; |
| 906 | |
| 907 | flags |= cachep->gfpflags; |
| 908 | if (likely(nodeid == -1)) { |
| 909 | page = alloc_pages(flags, cachep->gfporder); |
| 910 | } else { |
| 911 | page = alloc_pages_node(nodeid, flags, cachep->gfporder); |
| 912 | } |
| 913 | if (!page) |
| 914 | return NULL; |
| 915 | addr = page_address(page); |
| 916 | |
| 917 | i = (1 << cachep->gfporder); |
| 918 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
| 919 | atomic_add(i, &slab_reclaim_pages); |
| 920 | add_page_state(nr_slab, i); |
| 921 | while (i--) { |
| 922 | SetPageSlab(page); |
| 923 | page++; |
| 924 | } |
| 925 | return addr; |
| 926 | } |
| 927 | |
| 928 | /* |
| 929 | * Interface to system's page release. |
| 930 | */ |
| 931 | static void kmem_freepages(kmem_cache_t *cachep, void *addr) |
| 932 | { |
| 933 | unsigned long i = (1<<cachep->gfporder); |
| 934 | struct page *page = virt_to_page(addr); |
| 935 | const unsigned long nr_freed = i; |
| 936 | |
| 937 | while (i--) { |
| 938 | if (!TestClearPageSlab(page)) |
| 939 | BUG(); |
| 940 | page++; |
| 941 | } |
| 942 | sub_page_state(nr_slab, nr_freed); |
| 943 | if (current->reclaim_state) |
| 944 | current->reclaim_state->reclaimed_slab += nr_freed; |
| 945 | free_pages((unsigned long)addr, cachep->gfporder); |
| 946 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
| 947 | atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages); |
| 948 | } |
| 949 | |
| 950 | static void kmem_rcu_free(struct rcu_head *head) |
| 951 | { |
| 952 | struct slab_rcu *slab_rcu = (struct slab_rcu *) head; |
| 953 | kmem_cache_t *cachep = slab_rcu->cachep; |
| 954 | |
| 955 | kmem_freepages(cachep, slab_rcu->addr); |
| 956 | if (OFF_SLAB(cachep)) |
| 957 | kmem_cache_free(cachep->slabp_cache, slab_rcu); |
| 958 | } |
| 959 | |
| 960 | #if DEBUG |
| 961 | |
| 962 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 963 | static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, |
| 964 | unsigned long caller) |
| 965 | { |
| 966 | int size = obj_reallen(cachep); |
| 967 | |
| 968 | addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)]; |
| 969 | |
| 970 | if (size < 5*sizeof(unsigned long)) |
| 971 | return; |
| 972 | |
| 973 | *addr++=0x12345678; |
| 974 | *addr++=caller; |
| 975 | *addr++=smp_processor_id(); |
| 976 | size -= 3*sizeof(unsigned long); |
| 977 | { |
| 978 | unsigned long *sptr = &caller; |
| 979 | unsigned long svalue; |
| 980 | |
| 981 | while (!kstack_end(sptr)) { |
| 982 | svalue = *sptr++; |
| 983 | if (kernel_text_address(svalue)) { |
| 984 | *addr++=svalue; |
| 985 | size -= sizeof(unsigned long); |
| 986 | if (size <= sizeof(unsigned long)) |
| 987 | break; |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | } |
| 992 | *addr++=0x87654321; |
| 993 | } |
| 994 | #endif |
| 995 | |
| 996 | static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) |
| 997 | { |
| 998 | int size = obj_reallen(cachep); |
| 999 | addr = &((char*)addr)[obj_dbghead(cachep)]; |
| 1000 | |
| 1001 | memset(addr, val, size); |
| 1002 | *(unsigned char *)(addr+size-1) = POISON_END; |
| 1003 | } |
| 1004 | |
| 1005 | static void dump_line(char *data, int offset, int limit) |
| 1006 | { |
| 1007 | int i; |
| 1008 | printk(KERN_ERR "%03x:", offset); |
| 1009 | for (i=0;i<limit;i++) { |
| 1010 | printk(" %02x", (unsigned char)data[offset+i]); |
| 1011 | } |
| 1012 | printk("\n"); |
| 1013 | } |
| 1014 | #endif |
| 1015 | |
| 1016 | #if DEBUG |
| 1017 | |
| 1018 | static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) |
| 1019 | { |
| 1020 | int i, size; |
| 1021 | char *realobj; |
| 1022 | |
| 1023 | if (cachep->flags & SLAB_RED_ZONE) { |
| 1024 | printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", |
| 1025 | *dbg_redzone1(cachep, objp), |
| 1026 | *dbg_redzone2(cachep, objp)); |
| 1027 | } |
| 1028 | |
| 1029 | if (cachep->flags & SLAB_STORE_USER) { |
| 1030 | printk(KERN_ERR "Last user: [<%p>]", |
| 1031 | *dbg_userword(cachep, objp)); |
| 1032 | print_symbol("(%s)", |
| 1033 | (unsigned long)*dbg_userword(cachep, objp)); |
| 1034 | printk("\n"); |
| 1035 | } |
| 1036 | realobj = (char*)objp+obj_dbghead(cachep); |
| 1037 | size = obj_reallen(cachep); |
| 1038 | for (i=0; i<size && lines;i+=16, lines--) { |
| 1039 | int limit; |
| 1040 | limit = 16; |
| 1041 | if (i+limit > size) |
| 1042 | limit = size-i; |
| 1043 | dump_line(realobj, i, limit); |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | static void check_poison_obj(kmem_cache_t *cachep, void *objp) |
| 1048 | { |
| 1049 | char *realobj; |
| 1050 | int size, i; |
| 1051 | int lines = 0; |
| 1052 | |
| 1053 | realobj = (char*)objp+obj_dbghead(cachep); |
| 1054 | size = obj_reallen(cachep); |
| 1055 | |
| 1056 | for (i=0;i<size;i++) { |
| 1057 | char exp = POISON_FREE; |
| 1058 | if (i == size-1) |
| 1059 | exp = POISON_END; |
| 1060 | if (realobj[i] != exp) { |
| 1061 | int limit; |
| 1062 | /* Mismatch ! */ |
| 1063 | /* Print header */ |
| 1064 | if (lines == 0) { |
| 1065 | printk(KERN_ERR "Slab corruption: start=%p, len=%d\n", |
| 1066 | realobj, size); |
| 1067 | print_objinfo(cachep, objp, 0); |
| 1068 | } |
| 1069 | /* Hexdump the affected line */ |
| 1070 | i = (i/16)*16; |
| 1071 | limit = 16; |
| 1072 | if (i+limit > size) |
| 1073 | limit = size-i; |
| 1074 | dump_line(realobj, i, limit); |
| 1075 | i += 16; |
| 1076 | lines++; |
| 1077 | /* Limit to 5 lines */ |
| 1078 | if (lines > 5) |
| 1079 | break; |
| 1080 | } |
| 1081 | } |
| 1082 | if (lines != 0) { |
| 1083 | /* Print some data about the neighboring objects, if they |
| 1084 | * exist: |
| 1085 | */ |
| 1086 | struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp)); |
| 1087 | int objnr; |
| 1088 | |
| 1089 | objnr = (objp-slabp->s_mem)/cachep->objsize; |
| 1090 | if (objnr) { |
| 1091 | objp = slabp->s_mem+(objnr-1)*cachep->objsize; |
| 1092 | realobj = (char*)objp+obj_dbghead(cachep); |
| 1093 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
| 1094 | realobj, size); |
| 1095 | print_objinfo(cachep, objp, 2); |
| 1096 | } |
| 1097 | if (objnr+1 < cachep->num) { |
| 1098 | objp = slabp->s_mem+(objnr+1)*cachep->objsize; |
| 1099 | realobj = (char*)objp+obj_dbghead(cachep); |
| 1100 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
| 1101 | realobj, size); |
| 1102 | print_objinfo(cachep, objp, 2); |
| 1103 | } |
| 1104 | } |
| 1105 | } |
| 1106 | #endif |
| 1107 | |
| 1108 | /* Destroy all the objs in a slab, and release the mem back to the system. |
| 1109 | * Before calling the slab must have been unlinked from the cache. |
| 1110 | * The cache-lock is not held/needed. |
| 1111 | */ |
| 1112 | static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) |
| 1113 | { |
| 1114 | void *addr = slabp->s_mem - slabp->colouroff; |
| 1115 | |
| 1116 | #if DEBUG |
| 1117 | int i; |
| 1118 | for (i = 0; i < cachep->num; i++) { |
| 1119 | void *objp = slabp->s_mem + cachep->objsize * i; |
| 1120 | |
| 1121 | if (cachep->flags & SLAB_POISON) { |
| 1122 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 1123 | if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep)) |
| 1124 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1); |
| 1125 | else |
| 1126 | check_poison_obj(cachep, objp); |
| 1127 | #else |
| 1128 | check_poison_obj(cachep, objp); |
| 1129 | #endif |
| 1130 | } |
| 1131 | if (cachep->flags & SLAB_RED_ZONE) { |
| 1132 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
| 1133 | slab_error(cachep, "start of a freed object " |
| 1134 | "was overwritten"); |
| 1135 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
| 1136 | slab_error(cachep, "end of a freed object " |
| 1137 | "was overwritten"); |
| 1138 | } |
| 1139 | if (cachep->dtor && !(cachep->flags & SLAB_POISON)) |
| 1140 | (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0); |
| 1141 | } |
| 1142 | #else |
| 1143 | if (cachep->dtor) { |
| 1144 | int i; |
| 1145 | for (i = 0; i < cachep->num; i++) { |
| 1146 | void* objp = slabp->s_mem+cachep->objsize*i; |
| 1147 | (cachep->dtor)(objp, cachep, 0); |
| 1148 | } |
| 1149 | } |
| 1150 | #endif |
| 1151 | |
| 1152 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
| 1153 | struct slab_rcu *slab_rcu; |
| 1154 | |
| 1155 | slab_rcu = (struct slab_rcu *) slabp; |
| 1156 | slab_rcu->cachep = cachep; |
| 1157 | slab_rcu->addr = addr; |
| 1158 | call_rcu(&slab_rcu->head, kmem_rcu_free); |
| 1159 | } else { |
| 1160 | kmem_freepages(cachep, addr); |
| 1161 | if (OFF_SLAB(cachep)) |
| 1162 | kmem_cache_free(cachep->slabp_cache, slabp); |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | /** |
| 1167 | * kmem_cache_create - Create a cache. |
| 1168 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
| 1169 | * @size: The size of objects to be created in this cache. |
| 1170 | * @align: The required alignment for the objects. |
| 1171 | * @flags: SLAB flags |
| 1172 | * @ctor: A constructor for the objects. |
| 1173 | * @dtor: A destructor for the objects. |
| 1174 | * |
| 1175 | * Returns a ptr to the cache on success, NULL on failure. |
| 1176 | * Cannot be called within a int, but can be interrupted. |
| 1177 | * The @ctor is run when new pages are allocated by the cache |
| 1178 | * and the @dtor is run before the pages are handed back. |
| 1179 | * |
| 1180 | * @name must be valid until the cache is destroyed. This implies that |
| 1181 | * the module calling this has to destroy the cache before getting |
| 1182 | * unloaded. |
| 1183 | * |
| 1184 | * The flags are |
| 1185 | * |
| 1186 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) |
| 1187 | * to catch references to uninitialised memory. |
| 1188 | * |
| 1189 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check |
| 1190 | * for buffer overruns. |
| 1191 | * |
| 1192 | * %SLAB_NO_REAP - Don't automatically reap this cache when we're under |
| 1193 | * memory pressure. |
| 1194 | * |
| 1195 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
| 1196 | * cacheline. This can be beneficial if you're counting cycles as closely |
| 1197 | * as davem. |
| 1198 | */ |
| 1199 | kmem_cache_t * |
| 1200 | kmem_cache_create (const char *name, size_t size, size_t align, |
| 1201 | unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), |
| 1202 | void (*dtor)(void*, kmem_cache_t *, unsigned long)) |
| 1203 | { |
| 1204 | size_t left_over, slab_size, ralign; |
| 1205 | kmem_cache_t *cachep = NULL; |
| 1206 | |
| 1207 | /* |
| 1208 | * Sanity checks... these are all serious usage bugs. |
| 1209 | */ |
| 1210 | if ((!name) || |
| 1211 | in_interrupt() || |
| 1212 | (size < BYTES_PER_WORD) || |
| 1213 | (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) || |
| 1214 | (dtor && !ctor)) { |
| 1215 | printk(KERN_ERR "%s: Early error in slab %s\n", |
| 1216 | __FUNCTION__, name); |
| 1217 | BUG(); |
| 1218 | } |
| 1219 | |
| 1220 | #if DEBUG |
| 1221 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
| 1222 | if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { |
| 1223 | /* No constructor, but inital state check requested */ |
| 1224 | printk(KERN_ERR "%s: No con, but init state check " |
| 1225 | "requested - %s\n", __FUNCTION__, name); |
| 1226 | flags &= ~SLAB_DEBUG_INITIAL; |
| 1227 | } |
| 1228 | |
| 1229 | #if FORCED_DEBUG |
| 1230 | /* |
| 1231 | * Enable redzoning and last user accounting, except for caches with |
| 1232 | * large objects, if the increased size would increase the object size |
| 1233 | * above the next power of two: caches with object sizes just above a |
| 1234 | * power of two have a significant amount of internal fragmentation. |
| 1235 | */ |
| 1236 | if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))) |
| 1237 | flags |= SLAB_RED_ZONE|SLAB_STORE_USER; |
| 1238 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
| 1239 | flags |= SLAB_POISON; |
| 1240 | #endif |
| 1241 | if (flags & SLAB_DESTROY_BY_RCU) |
| 1242 | BUG_ON(flags & SLAB_POISON); |
| 1243 | #endif |
| 1244 | if (flags & SLAB_DESTROY_BY_RCU) |
| 1245 | BUG_ON(dtor); |
| 1246 | |
| 1247 | /* |
| 1248 | * Always checks flags, a caller might be expecting debug |
| 1249 | * support which isn't available. |
| 1250 | */ |
| 1251 | if (flags & ~CREATE_MASK) |
| 1252 | BUG(); |
| 1253 | |
| 1254 | /* Check that size is in terms of words. This is needed to avoid |
| 1255 | * unaligned accesses for some archs when redzoning is used, and makes |
| 1256 | * sure any on-slab bufctl's are also correctly aligned. |
| 1257 | */ |
| 1258 | if (size & (BYTES_PER_WORD-1)) { |
| 1259 | size += (BYTES_PER_WORD-1); |
| 1260 | size &= ~(BYTES_PER_WORD-1); |
| 1261 | } |
| 1262 | |
| 1263 | /* calculate out the final buffer alignment: */ |
| 1264 | /* 1) arch recommendation: can be overridden for debug */ |
| 1265 | if (flags & SLAB_HWCACHE_ALIGN) { |
| 1266 | /* Default alignment: as specified by the arch code. |
| 1267 | * Except if an object is really small, then squeeze multiple |
| 1268 | * objects into one cacheline. |
| 1269 | */ |
| 1270 | ralign = cache_line_size(); |
| 1271 | while (size <= ralign/2) |
| 1272 | ralign /= 2; |
| 1273 | } else { |
| 1274 | ralign = BYTES_PER_WORD; |
| 1275 | } |
| 1276 | /* 2) arch mandated alignment: disables debug if necessary */ |
| 1277 | if (ralign < ARCH_SLAB_MINALIGN) { |
| 1278 | ralign = ARCH_SLAB_MINALIGN; |
| 1279 | if (ralign > BYTES_PER_WORD) |
| 1280 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); |
| 1281 | } |
| 1282 | /* 3) caller mandated alignment: disables debug if necessary */ |
| 1283 | if (ralign < align) { |
| 1284 | ralign = align; |
| 1285 | if (ralign > BYTES_PER_WORD) |
| 1286 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); |
| 1287 | } |
| 1288 | /* 4) Store it. Note that the debug code below can reduce |
| 1289 | * the alignment to BYTES_PER_WORD. |
| 1290 | */ |
| 1291 | align = ralign; |
| 1292 | |
| 1293 | /* Get cache's description obj. */ |
| 1294 | cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); |
| 1295 | if (!cachep) |
| 1296 | goto opps; |
| 1297 | memset(cachep, 0, sizeof(kmem_cache_t)); |
| 1298 | |
| 1299 | #if DEBUG |
| 1300 | cachep->reallen = size; |
| 1301 | |
| 1302 | if (flags & SLAB_RED_ZONE) { |
| 1303 | /* redzoning only works with word aligned caches */ |
| 1304 | align = BYTES_PER_WORD; |
| 1305 | |
| 1306 | /* add space for red zone words */ |
| 1307 | cachep->dbghead += BYTES_PER_WORD; |
| 1308 | size += 2*BYTES_PER_WORD; |
| 1309 | } |
| 1310 | if (flags & SLAB_STORE_USER) { |
| 1311 | /* user store requires word alignment and |
| 1312 | * one word storage behind the end of the real |
| 1313 | * object. |
| 1314 | */ |
| 1315 | align = BYTES_PER_WORD; |
| 1316 | size += BYTES_PER_WORD; |
| 1317 | } |
| 1318 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) |
| 1319 | if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { |
| 1320 | cachep->dbghead += PAGE_SIZE - size; |
| 1321 | size = PAGE_SIZE; |
| 1322 | } |
| 1323 | #endif |
| 1324 | #endif |
| 1325 | |
| 1326 | /* Determine if the slab management is 'on' or 'off' slab. */ |
| 1327 | if (size >= (PAGE_SIZE>>3)) |
| 1328 | /* |
| 1329 | * Size is large, assume best to place the slab management obj |
| 1330 | * off-slab (should allow better packing of objs). |
| 1331 | */ |
| 1332 | flags |= CFLGS_OFF_SLAB; |
| 1333 | |
| 1334 | size = ALIGN(size, align); |
| 1335 | |
| 1336 | if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) { |
| 1337 | /* |
| 1338 | * A VFS-reclaimable slab tends to have most allocations |
| 1339 | * as GFP_NOFS and we really don't want to have to be allocating |
| 1340 | * higher-order pages when we are unable to shrink dcache. |
| 1341 | */ |
| 1342 | cachep->gfporder = 0; |
| 1343 | cache_estimate(cachep->gfporder, size, align, flags, |
| 1344 | &left_over, &cachep->num); |
| 1345 | } else { |
| 1346 | /* |
| 1347 | * Calculate size (in pages) of slabs, and the num of objs per |
| 1348 | * slab. This could be made much more intelligent. For now, |
| 1349 | * try to avoid using high page-orders for slabs. When the |
| 1350 | * gfp() funcs are more friendly towards high-order requests, |
| 1351 | * this should be changed. |
| 1352 | */ |
| 1353 | do { |
| 1354 | unsigned int break_flag = 0; |
| 1355 | cal_wastage: |
| 1356 | cache_estimate(cachep->gfporder, size, align, flags, |
| 1357 | &left_over, &cachep->num); |
| 1358 | if (break_flag) |
| 1359 | break; |
| 1360 | if (cachep->gfporder >= MAX_GFP_ORDER) |
| 1361 | break; |
| 1362 | if (!cachep->num) |
| 1363 | goto next; |
| 1364 | if (flags & CFLGS_OFF_SLAB && |
| 1365 | cachep->num > offslab_limit) { |
| 1366 | /* This num of objs will cause problems. */ |
| 1367 | cachep->gfporder--; |
| 1368 | break_flag++; |
| 1369 | goto cal_wastage; |
| 1370 | } |
| 1371 | |
| 1372 | /* |
| 1373 | * Large num of objs is good, but v. large slabs are |
| 1374 | * currently bad for the gfp()s. |
| 1375 | */ |
| 1376 | if (cachep->gfporder >= slab_break_gfp_order) |
| 1377 | break; |
| 1378 | |
| 1379 | if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder)) |
| 1380 | break; /* Acceptable internal fragmentation. */ |
| 1381 | next: |
| 1382 | cachep->gfporder++; |
| 1383 | } while (1); |
| 1384 | } |
| 1385 | |
| 1386 | if (!cachep->num) { |
| 1387 | printk("kmem_cache_create: couldn't create cache %s.\n", name); |
| 1388 | kmem_cache_free(&cache_cache, cachep); |
| 1389 | cachep = NULL; |
| 1390 | goto opps; |
| 1391 | } |
| 1392 | slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t) |
| 1393 | + sizeof(struct slab), align); |
| 1394 | |
| 1395 | /* |
| 1396 | * If the slab has been placed off-slab, and we have enough space then |
| 1397 | * move it on-slab. This is at the expense of any extra colouring. |
| 1398 | */ |
| 1399 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { |
| 1400 | flags &= ~CFLGS_OFF_SLAB; |
| 1401 | left_over -= slab_size; |
| 1402 | } |
| 1403 | |
| 1404 | if (flags & CFLGS_OFF_SLAB) { |
| 1405 | /* really off slab. No need for manual alignment */ |
| 1406 | slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab); |
| 1407 | } |
| 1408 | |
| 1409 | cachep->colour_off = cache_line_size(); |
| 1410 | /* Offset must be a multiple of the alignment. */ |
| 1411 | if (cachep->colour_off < align) |
| 1412 | cachep->colour_off = align; |
| 1413 | cachep->colour = left_over/cachep->colour_off; |
| 1414 | cachep->slab_size = slab_size; |
| 1415 | cachep->flags = flags; |
| 1416 | cachep->gfpflags = 0; |
| 1417 | if (flags & SLAB_CACHE_DMA) |
| 1418 | cachep->gfpflags |= GFP_DMA; |
| 1419 | spin_lock_init(&cachep->spinlock); |
| 1420 | cachep->objsize = size; |
| 1421 | /* NUMA */ |
| 1422 | INIT_LIST_HEAD(&cachep->lists.slabs_full); |
| 1423 | INIT_LIST_HEAD(&cachep->lists.slabs_partial); |
| 1424 | INIT_LIST_HEAD(&cachep->lists.slabs_free); |
| 1425 | |
| 1426 | if (flags & CFLGS_OFF_SLAB) |
| 1427 | cachep->slabp_cache = kmem_find_general_cachep(slab_size,0); |
| 1428 | cachep->ctor = ctor; |
| 1429 | cachep->dtor = dtor; |
| 1430 | cachep->name = name; |
| 1431 | |
| 1432 | /* Don't let CPUs to come and go */ |
| 1433 | lock_cpu_hotplug(); |
| 1434 | |
| 1435 | if (g_cpucache_up == FULL) { |
| 1436 | enable_cpucache(cachep); |
| 1437 | } else { |
| 1438 | if (g_cpucache_up == NONE) { |
| 1439 | /* Note: the first kmem_cache_create must create |
| 1440 | * the cache that's used by kmalloc(24), otherwise |
| 1441 | * the creation of further caches will BUG(). |
| 1442 | */ |
| 1443 | cachep->array[smp_processor_id()] = &initarray_generic.cache; |
| 1444 | g_cpucache_up = PARTIAL; |
| 1445 | } else { |
| 1446 | cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL); |
| 1447 | } |
| 1448 | BUG_ON(!ac_data(cachep)); |
| 1449 | ac_data(cachep)->avail = 0; |
| 1450 | ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; |
| 1451 | ac_data(cachep)->batchcount = 1; |
| 1452 | ac_data(cachep)->touched = 0; |
| 1453 | cachep->batchcount = 1; |
| 1454 | cachep->limit = BOOT_CPUCACHE_ENTRIES; |
| 1455 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount |
| 1456 | + cachep->num; |
| 1457 | } |
| 1458 | |
| 1459 | cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 + |
| 1460 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; |
| 1461 | |
| 1462 | /* Need the semaphore to access the chain. */ |
| 1463 | down(&cache_chain_sem); |
| 1464 | { |
| 1465 | struct list_head *p; |
| 1466 | mm_segment_t old_fs; |
| 1467 | |
| 1468 | old_fs = get_fs(); |
| 1469 | set_fs(KERNEL_DS); |
| 1470 | list_for_each(p, &cache_chain) { |
| 1471 | kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); |
| 1472 | char tmp; |
| 1473 | /* This happens when the module gets unloaded and doesn't |
| 1474 | destroy its slab cache and noone else reuses the vmalloc |
| 1475 | area of the module. Print a warning. */ |
| 1476 | if (__get_user(tmp,pc->name)) { |
| 1477 | printk("SLAB: cache with size %d has lost its name\n", |
| 1478 | pc->objsize); |
| 1479 | continue; |
| 1480 | } |
| 1481 | if (!strcmp(pc->name,name)) { |
| 1482 | printk("kmem_cache_create: duplicate cache %s\n",name); |
| 1483 | up(&cache_chain_sem); |
| 1484 | unlock_cpu_hotplug(); |
| 1485 | BUG(); |
| 1486 | } |
| 1487 | } |
| 1488 | set_fs(old_fs); |
| 1489 | } |
| 1490 | |
| 1491 | /* cache setup completed, link it into the list */ |
| 1492 | list_add(&cachep->next, &cache_chain); |
| 1493 | up(&cache_chain_sem); |
| 1494 | unlock_cpu_hotplug(); |
| 1495 | opps: |
| 1496 | if (!cachep && (flags & SLAB_PANIC)) |
| 1497 | panic("kmem_cache_create(): failed to create slab `%s'\n", |
| 1498 | name); |
| 1499 | return cachep; |
| 1500 | } |
| 1501 | EXPORT_SYMBOL(kmem_cache_create); |
| 1502 | |
| 1503 | #if DEBUG |
| 1504 | static void check_irq_off(void) |
| 1505 | { |
| 1506 | BUG_ON(!irqs_disabled()); |
| 1507 | } |
| 1508 | |
| 1509 | static void check_irq_on(void) |
| 1510 | { |
| 1511 | BUG_ON(irqs_disabled()); |
| 1512 | } |
| 1513 | |
| 1514 | static void check_spinlock_acquired(kmem_cache_t *cachep) |
| 1515 | { |
| 1516 | #ifdef CONFIG_SMP |
| 1517 | check_irq_off(); |
| 1518 | BUG_ON(spin_trylock(&cachep->spinlock)); |
| 1519 | #endif |
| 1520 | } |
| 1521 | #else |
| 1522 | #define check_irq_off() do { } while(0) |
| 1523 | #define check_irq_on() do { } while(0) |
| 1524 | #define check_spinlock_acquired(x) do { } while(0) |
| 1525 | #endif |
| 1526 | |
| 1527 | /* |
| 1528 | * Waits for all CPUs to execute func(). |
| 1529 | */ |
| 1530 | static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) |
| 1531 | { |
| 1532 | check_irq_on(); |
| 1533 | preempt_disable(); |
| 1534 | |
| 1535 | local_irq_disable(); |
| 1536 | func(arg); |
| 1537 | local_irq_enable(); |
| 1538 | |
| 1539 | if (smp_call_function(func, arg, 1, 1)) |
| 1540 | BUG(); |
| 1541 | |
| 1542 | preempt_enable(); |
| 1543 | } |
| 1544 | |
| 1545 | static void drain_array_locked(kmem_cache_t* cachep, |
| 1546 | struct array_cache *ac, int force); |
| 1547 | |
| 1548 | static void do_drain(void *arg) |
| 1549 | { |
| 1550 | kmem_cache_t *cachep = (kmem_cache_t*)arg; |
| 1551 | struct array_cache *ac; |
| 1552 | |
| 1553 | check_irq_off(); |
| 1554 | ac = ac_data(cachep); |
| 1555 | spin_lock(&cachep->spinlock); |
| 1556 | free_block(cachep, &ac_entry(ac)[0], ac->avail); |
| 1557 | spin_unlock(&cachep->spinlock); |
| 1558 | ac->avail = 0; |
| 1559 | } |
| 1560 | |
| 1561 | static void drain_cpu_caches(kmem_cache_t *cachep) |
| 1562 | { |
| 1563 | smp_call_function_all_cpus(do_drain, cachep); |
| 1564 | check_irq_on(); |
| 1565 | spin_lock_irq(&cachep->spinlock); |
| 1566 | if (cachep->lists.shared) |
| 1567 | drain_array_locked(cachep, cachep->lists.shared, 1); |
| 1568 | spin_unlock_irq(&cachep->spinlock); |
| 1569 | } |
| 1570 | |
| 1571 | |
| 1572 | /* NUMA shrink all list3s */ |
| 1573 | static int __cache_shrink(kmem_cache_t *cachep) |
| 1574 | { |
| 1575 | struct slab *slabp; |
| 1576 | int ret; |
| 1577 | |
| 1578 | drain_cpu_caches(cachep); |
| 1579 | |
| 1580 | check_irq_on(); |
| 1581 | spin_lock_irq(&cachep->spinlock); |
| 1582 | |
| 1583 | for(;;) { |
| 1584 | struct list_head *p; |
| 1585 | |
| 1586 | p = cachep->lists.slabs_free.prev; |
| 1587 | if (p == &cachep->lists.slabs_free) |
| 1588 | break; |
| 1589 | |
| 1590 | slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list); |
| 1591 | #if DEBUG |
| 1592 | if (slabp->inuse) |
| 1593 | BUG(); |
| 1594 | #endif |
| 1595 | list_del(&slabp->list); |
| 1596 | |
| 1597 | cachep->lists.free_objects -= cachep->num; |
| 1598 | spin_unlock_irq(&cachep->spinlock); |
| 1599 | slab_destroy(cachep, slabp); |
| 1600 | spin_lock_irq(&cachep->spinlock); |
| 1601 | } |
| 1602 | ret = !list_empty(&cachep->lists.slabs_full) || |
| 1603 | !list_empty(&cachep->lists.slabs_partial); |
| 1604 | spin_unlock_irq(&cachep->spinlock); |
| 1605 | return ret; |
| 1606 | } |
| 1607 | |
| 1608 | /** |
| 1609 | * kmem_cache_shrink - Shrink a cache. |
| 1610 | * @cachep: The cache to shrink. |
| 1611 | * |
| 1612 | * Releases as many slabs as possible for a cache. |
| 1613 | * To help debugging, a zero exit status indicates all slabs were released. |
| 1614 | */ |
| 1615 | int kmem_cache_shrink(kmem_cache_t *cachep) |
| 1616 | { |
| 1617 | if (!cachep || in_interrupt()) |
| 1618 | BUG(); |
| 1619 | |
| 1620 | return __cache_shrink(cachep); |
| 1621 | } |
| 1622 | EXPORT_SYMBOL(kmem_cache_shrink); |
| 1623 | |
| 1624 | /** |
| 1625 | * kmem_cache_destroy - delete a cache |
| 1626 | * @cachep: the cache to destroy |
| 1627 | * |
| 1628 | * Remove a kmem_cache_t object from the slab cache. |
| 1629 | * Returns 0 on success. |
| 1630 | * |
| 1631 | * It is expected this function will be called by a module when it is |
| 1632 | * unloaded. This will remove the cache completely, and avoid a duplicate |
| 1633 | * cache being allocated each time a module is loaded and unloaded, if the |
| 1634 | * module doesn't have persistent in-kernel storage across loads and unloads. |
| 1635 | * |
| 1636 | * The cache must be empty before calling this function. |
| 1637 | * |
| 1638 | * The caller must guarantee that noone will allocate memory from the cache |
| 1639 | * during the kmem_cache_destroy(). |
| 1640 | */ |
| 1641 | int kmem_cache_destroy(kmem_cache_t * cachep) |
| 1642 | { |
| 1643 | int i; |
| 1644 | |
| 1645 | if (!cachep || in_interrupt()) |
| 1646 | BUG(); |
| 1647 | |
| 1648 | /* Don't let CPUs to come and go */ |
| 1649 | lock_cpu_hotplug(); |
| 1650 | |
| 1651 | /* Find the cache in the chain of caches. */ |
| 1652 | down(&cache_chain_sem); |
| 1653 | /* |
| 1654 | * the chain is never empty, cache_cache is never destroyed |
| 1655 | */ |
| 1656 | list_del(&cachep->next); |
| 1657 | up(&cache_chain_sem); |
| 1658 | |
| 1659 | if (__cache_shrink(cachep)) { |
| 1660 | slab_error(cachep, "Can't free all objects"); |
| 1661 | down(&cache_chain_sem); |
| 1662 | list_add(&cachep->next,&cache_chain); |
| 1663 | up(&cache_chain_sem); |
| 1664 | unlock_cpu_hotplug(); |
| 1665 | return 1; |
| 1666 | } |
| 1667 | |
| 1668 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) |
Paul E. McKenney | fbd568a3e | 2005-05-01 08:59:04 -0700 | [diff] [blame] | 1669 | synchronize_rcu(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1670 | |
| 1671 | /* no cpu_online check required here since we clear the percpu |
| 1672 | * array on cpu offline and set this to NULL. |
| 1673 | */ |
| 1674 | for (i = 0; i < NR_CPUS; i++) |
| 1675 | kfree(cachep->array[i]); |
| 1676 | |
| 1677 | /* NUMA: free the list3 structures */ |
| 1678 | kfree(cachep->lists.shared); |
| 1679 | cachep->lists.shared = NULL; |
| 1680 | kmem_cache_free(&cache_cache, cachep); |
| 1681 | |
| 1682 | unlock_cpu_hotplug(); |
| 1683 | |
| 1684 | return 0; |
| 1685 | } |
| 1686 | EXPORT_SYMBOL(kmem_cache_destroy); |
| 1687 | |
| 1688 | /* Get the memory for a slab management obj. */ |
| 1689 | static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, |
| 1690 | void *objp, int colour_off, unsigned int __nocast local_flags) |
| 1691 | { |
| 1692 | struct slab *slabp; |
| 1693 | |
| 1694 | if (OFF_SLAB(cachep)) { |
| 1695 | /* Slab management obj is off-slab. */ |
| 1696 | slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags); |
| 1697 | if (!slabp) |
| 1698 | return NULL; |
| 1699 | } else { |
| 1700 | slabp = objp+colour_off; |
| 1701 | colour_off += cachep->slab_size; |
| 1702 | } |
| 1703 | slabp->inuse = 0; |
| 1704 | slabp->colouroff = colour_off; |
| 1705 | slabp->s_mem = objp+colour_off; |
| 1706 | |
| 1707 | return slabp; |
| 1708 | } |
| 1709 | |
| 1710 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) |
| 1711 | { |
| 1712 | return (kmem_bufctl_t *)(slabp+1); |
| 1713 | } |
| 1714 | |
| 1715 | static void cache_init_objs(kmem_cache_t *cachep, |
| 1716 | struct slab *slabp, unsigned long ctor_flags) |
| 1717 | { |
| 1718 | int i; |
| 1719 | |
| 1720 | for (i = 0; i < cachep->num; i++) { |
| 1721 | void* objp = slabp->s_mem+cachep->objsize*i; |
| 1722 | #if DEBUG |
| 1723 | /* need to poison the objs? */ |
| 1724 | if (cachep->flags & SLAB_POISON) |
| 1725 | poison_obj(cachep, objp, POISON_FREE); |
| 1726 | if (cachep->flags & SLAB_STORE_USER) |
| 1727 | *dbg_userword(cachep, objp) = NULL; |
| 1728 | |
| 1729 | if (cachep->flags & SLAB_RED_ZONE) { |
| 1730 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
| 1731 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; |
| 1732 | } |
| 1733 | /* |
| 1734 | * Constructors are not allowed to allocate memory from |
| 1735 | * the same cache which they are a constructor for. |
| 1736 | * Otherwise, deadlock. They must also be threaded. |
| 1737 | */ |
| 1738 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) |
| 1739 | cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags); |
| 1740 | |
| 1741 | if (cachep->flags & SLAB_RED_ZONE) { |
| 1742 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
| 1743 | slab_error(cachep, "constructor overwrote the" |
| 1744 | " end of an object"); |
| 1745 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
| 1746 | slab_error(cachep, "constructor overwrote the" |
| 1747 | " start of an object"); |
| 1748 | } |
| 1749 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) |
| 1750 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); |
| 1751 | #else |
| 1752 | if (cachep->ctor) |
| 1753 | cachep->ctor(objp, cachep, ctor_flags); |
| 1754 | #endif |
| 1755 | slab_bufctl(slabp)[i] = i+1; |
| 1756 | } |
| 1757 | slab_bufctl(slabp)[i-1] = BUFCTL_END; |
| 1758 | slabp->free = 0; |
| 1759 | } |
| 1760 | |
| 1761 | static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags) |
| 1762 | { |
| 1763 | if (flags & SLAB_DMA) { |
| 1764 | if (!(cachep->gfpflags & GFP_DMA)) |
| 1765 | BUG(); |
| 1766 | } else { |
| 1767 | if (cachep->gfpflags & GFP_DMA) |
| 1768 | BUG(); |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) |
| 1773 | { |
| 1774 | int i; |
| 1775 | struct page *page; |
| 1776 | |
| 1777 | /* Nasty!!!!!! I hope this is OK. */ |
| 1778 | i = 1 << cachep->gfporder; |
| 1779 | page = virt_to_page(objp); |
| 1780 | do { |
| 1781 | SET_PAGE_CACHE(page, cachep); |
| 1782 | SET_PAGE_SLAB(page, slabp); |
| 1783 | page++; |
| 1784 | } while (--i); |
| 1785 | } |
| 1786 | |
| 1787 | /* |
| 1788 | * Grow (by 1) the number of slabs within a cache. This is called by |
| 1789 | * kmem_cache_alloc() when there are no active objs left in a cache. |
| 1790 | */ |
| 1791 | static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) |
| 1792 | { |
| 1793 | struct slab *slabp; |
| 1794 | void *objp; |
| 1795 | size_t offset; |
| 1796 | unsigned int local_flags; |
| 1797 | unsigned long ctor_flags; |
| 1798 | |
| 1799 | /* Be lazy and only check for valid flags here, |
| 1800 | * keeping it out of the critical path in kmem_cache_alloc(). |
| 1801 | */ |
| 1802 | if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) |
| 1803 | BUG(); |
| 1804 | if (flags & SLAB_NO_GROW) |
| 1805 | return 0; |
| 1806 | |
| 1807 | ctor_flags = SLAB_CTOR_CONSTRUCTOR; |
| 1808 | local_flags = (flags & SLAB_LEVEL_MASK); |
| 1809 | if (!(local_flags & __GFP_WAIT)) |
| 1810 | /* |
| 1811 | * Not allowed to sleep. Need to tell a constructor about |
| 1812 | * this - it might need to know... |
| 1813 | */ |
| 1814 | ctor_flags |= SLAB_CTOR_ATOMIC; |
| 1815 | |
| 1816 | /* About to mess with non-constant members - lock. */ |
| 1817 | check_irq_off(); |
| 1818 | spin_lock(&cachep->spinlock); |
| 1819 | |
| 1820 | /* Get colour for the slab, and cal the next value. */ |
| 1821 | offset = cachep->colour_next; |
| 1822 | cachep->colour_next++; |
| 1823 | if (cachep->colour_next >= cachep->colour) |
| 1824 | cachep->colour_next = 0; |
| 1825 | offset *= cachep->colour_off; |
| 1826 | |
| 1827 | spin_unlock(&cachep->spinlock); |
| 1828 | |
| 1829 | if (local_flags & __GFP_WAIT) |
| 1830 | local_irq_enable(); |
| 1831 | |
| 1832 | /* |
| 1833 | * The test for missing atomic flag is performed here, rather than |
| 1834 | * the more obvious place, simply to reduce the critical path length |
| 1835 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they |
| 1836 | * will eventually be caught here (where it matters). |
| 1837 | */ |
| 1838 | kmem_flagcheck(cachep, flags); |
| 1839 | |
| 1840 | |
| 1841 | /* Get mem for the objs. */ |
| 1842 | if (!(objp = kmem_getpages(cachep, flags, nodeid))) |
| 1843 | goto failed; |
| 1844 | |
| 1845 | /* Get slab management. */ |
| 1846 | if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) |
| 1847 | goto opps1; |
| 1848 | |
| 1849 | set_slab_attr(cachep, slabp, objp); |
| 1850 | |
| 1851 | cache_init_objs(cachep, slabp, ctor_flags); |
| 1852 | |
| 1853 | if (local_flags & __GFP_WAIT) |
| 1854 | local_irq_disable(); |
| 1855 | check_irq_off(); |
| 1856 | spin_lock(&cachep->spinlock); |
| 1857 | |
| 1858 | /* Make slab active. */ |
| 1859 | list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free)); |
| 1860 | STATS_INC_GROWN(cachep); |
| 1861 | list3_data(cachep)->free_objects += cachep->num; |
| 1862 | spin_unlock(&cachep->spinlock); |
| 1863 | return 1; |
| 1864 | opps1: |
| 1865 | kmem_freepages(cachep, objp); |
| 1866 | failed: |
| 1867 | if (local_flags & __GFP_WAIT) |
| 1868 | local_irq_disable(); |
| 1869 | return 0; |
| 1870 | } |
| 1871 | |
| 1872 | #if DEBUG |
| 1873 | |
| 1874 | /* |
| 1875 | * Perform extra freeing checks: |
| 1876 | * - detect bad pointers. |
| 1877 | * - POISON/RED_ZONE checking |
| 1878 | * - destructor calls, for caches with POISON+dtor |
| 1879 | */ |
| 1880 | static void kfree_debugcheck(const void *objp) |
| 1881 | { |
| 1882 | struct page *page; |
| 1883 | |
| 1884 | if (!virt_addr_valid(objp)) { |
| 1885 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", |
| 1886 | (unsigned long)objp); |
| 1887 | BUG(); |
| 1888 | } |
| 1889 | page = virt_to_page(objp); |
| 1890 | if (!PageSlab(page)) { |
| 1891 | printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp); |
| 1892 | BUG(); |
| 1893 | } |
| 1894 | } |
| 1895 | |
| 1896 | static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, |
| 1897 | void *caller) |
| 1898 | { |
| 1899 | struct page *page; |
| 1900 | unsigned int objnr; |
| 1901 | struct slab *slabp; |
| 1902 | |
| 1903 | objp -= obj_dbghead(cachep); |
| 1904 | kfree_debugcheck(objp); |
| 1905 | page = virt_to_page(objp); |
| 1906 | |
| 1907 | if (GET_PAGE_CACHE(page) != cachep) { |
| 1908 | printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n", |
| 1909 | GET_PAGE_CACHE(page),cachep); |
| 1910 | printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); |
| 1911 | printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name); |
| 1912 | WARN_ON(1); |
| 1913 | } |
| 1914 | slabp = GET_PAGE_SLAB(page); |
| 1915 | |
| 1916 | if (cachep->flags & SLAB_RED_ZONE) { |
| 1917 | if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { |
| 1918 | slab_error(cachep, "double free, or memory outside" |
| 1919 | " object was overwritten"); |
| 1920 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", |
| 1921 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); |
| 1922 | } |
| 1923 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
| 1924 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; |
| 1925 | } |
| 1926 | if (cachep->flags & SLAB_STORE_USER) |
| 1927 | *dbg_userword(cachep, objp) = caller; |
| 1928 | |
| 1929 | objnr = (objp-slabp->s_mem)/cachep->objsize; |
| 1930 | |
| 1931 | BUG_ON(objnr >= cachep->num); |
| 1932 | BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize); |
| 1933 | |
| 1934 | if (cachep->flags & SLAB_DEBUG_INITIAL) { |
| 1935 | /* Need to call the slab's constructor so the |
| 1936 | * caller can perform a verify of its state (debugging). |
| 1937 | * Called without the cache-lock held. |
| 1938 | */ |
| 1939 | cachep->ctor(objp+obj_dbghead(cachep), |
| 1940 | cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); |
| 1941 | } |
| 1942 | if (cachep->flags & SLAB_POISON && cachep->dtor) { |
| 1943 | /* we want to cache poison the object, |
| 1944 | * call the destruction callback |
| 1945 | */ |
| 1946 | cachep->dtor(objp+obj_dbghead(cachep), cachep, 0); |
| 1947 | } |
| 1948 | if (cachep->flags & SLAB_POISON) { |
| 1949 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 1950 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { |
| 1951 | store_stackinfo(cachep, objp, (unsigned long)caller); |
| 1952 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); |
| 1953 | } else { |
| 1954 | poison_obj(cachep, objp, POISON_FREE); |
| 1955 | } |
| 1956 | #else |
| 1957 | poison_obj(cachep, objp, POISON_FREE); |
| 1958 | #endif |
| 1959 | } |
| 1960 | return objp; |
| 1961 | } |
| 1962 | |
| 1963 | static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) |
| 1964 | { |
| 1965 | kmem_bufctl_t i; |
| 1966 | int entries = 0; |
| 1967 | |
| 1968 | check_spinlock_acquired(cachep); |
| 1969 | /* Check slab's freelist to see if this obj is there. */ |
| 1970 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { |
| 1971 | entries++; |
| 1972 | if (entries > cachep->num || i >= cachep->num) |
| 1973 | goto bad; |
| 1974 | } |
| 1975 | if (entries != cachep->num - slabp->inuse) { |
| 1976 | bad: |
| 1977 | printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", |
| 1978 | cachep->name, cachep->num, slabp, slabp->inuse); |
| 1979 | for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) { |
| 1980 | if ((i%16)==0) |
| 1981 | printk("\n%03x:", i); |
| 1982 | printk(" %02x", ((unsigned char*)slabp)[i]); |
| 1983 | } |
| 1984 | printk("\n"); |
| 1985 | BUG(); |
| 1986 | } |
| 1987 | } |
| 1988 | #else |
| 1989 | #define kfree_debugcheck(x) do { } while(0) |
| 1990 | #define cache_free_debugcheck(x,objp,z) (objp) |
| 1991 | #define check_slabp(x,y) do { } while(0) |
| 1992 | #endif |
| 1993 | |
| 1994 | static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags) |
| 1995 | { |
| 1996 | int batchcount; |
| 1997 | struct kmem_list3 *l3; |
| 1998 | struct array_cache *ac; |
| 1999 | |
| 2000 | check_irq_off(); |
| 2001 | ac = ac_data(cachep); |
| 2002 | retry: |
| 2003 | batchcount = ac->batchcount; |
| 2004 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { |
| 2005 | /* if there was little recent activity on this |
| 2006 | * cache, then perform only a partial refill. |
| 2007 | * Otherwise we could generate refill bouncing. |
| 2008 | */ |
| 2009 | batchcount = BATCHREFILL_LIMIT; |
| 2010 | } |
| 2011 | l3 = list3_data(cachep); |
| 2012 | |
| 2013 | BUG_ON(ac->avail > 0); |
| 2014 | spin_lock(&cachep->spinlock); |
| 2015 | if (l3->shared) { |
| 2016 | struct array_cache *shared_array = l3->shared; |
| 2017 | if (shared_array->avail) { |
| 2018 | if (batchcount > shared_array->avail) |
| 2019 | batchcount = shared_array->avail; |
| 2020 | shared_array->avail -= batchcount; |
| 2021 | ac->avail = batchcount; |
| 2022 | memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail], |
| 2023 | sizeof(void*)*batchcount); |
| 2024 | shared_array->touched = 1; |
| 2025 | goto alloc_done; |
| 2026 | } |
| 2027 | } |
| 2028 | while (batchcount > 0) { |
| 2029 | struct list_head *entry; |
| 2030 | struct slab *slabp; |
| 2031 | /* Get slab alloc is to come from. */ |
| 2032 | entry = l3->slabs_partial.next; |
| 2033 | if (entry == &l3->slabs_partial) { |
| 2034 | l3->free_touched = 1; |
| 2035 | entry = l3->slabs_free.next; |
| 2036 | if (entry == &l3->slabs_free) |
| 2037 | goto must_grow; |
| 2038 | } |
| 2039 | |
| 2040 | slabp = list_entry(entry, struct slab, list); |
| 2041 | check_slabp(cachep, slabp); |
| 2042 | check_spinlock_acquired(cachep); |
| 2043 | while (slabp->inuse < cachep->num && batchcount--) { |
| 2044 | kmem_bufctl_t next; |
| 2045 | STATS_INC_ALLOCED(cachep); |
| 2046 | STATS_INC_ACTIVE(cachep); |
| 2047 | STATS_SET_HIGH(cachep); |
| 2048 | |
| 2049 | /* get obj pointer */ |
| 2050 | ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize; |
| 2051 | |
| 2052 | slabp->inuse++; |
| 2053 | next = slab_bufctl(slabp)[slabp->free]; |
| 2054 | #if DEBUG |
| 2055 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; |
| 2056 | #endif |
| 2057 | slabp->free = next; |
| 2058 | } |
| 2059 | check_slabp(cachep, slabp); |
| 2060 | |
| 2061 | /* move slabp to correct slabp list: */ |
| 2062 | list_del(&slabp->list); |
| 2063 | if (slabp->free == BUFCTL_END) |
| 2064 | list_add(&slabp->list, &l3->slabs_full); |
| 2065 | else |
| 2066 | list_add(&slabp->list, &l3->slabs_partial); |
| 2067 | } |
| 2068 | |
| 2069 | must_grow: |
| 2070 | l3->free_objects -= ac->avail; |
| 2071 | alloc_done: |
| 2072 | spin_unlock(&cachep->spinlock); |
| 2073 | |
| 2074 | if (unlikely(!ac->avail)) { |
| 2075 | int x; |
| 2076 | x = cache_grow(cachep, flags, -1); |
| 2077 | |
| 2078 | // cache_grow can reenable interrupts, then ac could change. |
| 2079 | ac = ac_data(cachep); |
| 2080 | if (!x && ac->avail == 0) // no objects in sight? abort |
| 2081 | return NULL; |
| 2082 | |
| 2083 | if (!ac->avail) // objects refilled by interrupt? |
| 2084 | goto retry; |
| 2085 | } |
| 2086 | ac->touched = 1; |
| 2087 | return ac_entry(ac)[--ac->avail]; |
| 2088 | } |
| 2089 | |
| 2090 | static inline void |
| 2091 | cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags) |
| 2092 | { |
| 2093 | might_sleep_if(flags & __GFP_WAIT); |
| 2094 | #if DEBUG |
| 2095 | kmem_flagcheck(cachep, flags); |
| 2096 | #endif |
| 2097 | } |
| 2098 | |
| 2099 | #if DEBUG |
| 2100 | static void * |
| 2101 | cache_alloc_debugcheck_after(kmem_cache_t *cachep, |
| 2102 | unsigned long flags, void *objp, void *caller) |
| 2103 | { |
| 2104 | if (!objp) |
| 2105 | return objp; |
| 2106 | if (cachep->flags & SLAB_POISON) { |
| 2107 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 2108 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
| 2109 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1); |
| 2110 | else |
| 2111 | check_poison_obj(cachep, objp); |
| 2112 | #else |
| 2113 | check_poison_obj(cachep, objp); |
| 2114 | #endif |
| 2115 | poison_obj(cachep, objp, POISON_INUSE); |
| 2116 | } |
| 2117 | if (cachep->flags & SLAB_STORE_USER) |
| 2118 | *dbg_userword(cachep, objp) = caller; |
| 2119 | |
| 2120 | if (cachep->flags & SLAB_RED_ZONE) { |
| 2121 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { |
| 2122 | slab_error(cachep, "double free, or memory outside" |
| 2123 | " object was overwritten"); |
| 2124 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", |
| 2125 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); |
| 2126 | } |
| 2127 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; |
| 2128 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; |
| 2129 | } |
| 2130 | objp += obj_dbghead(cachep); |
| 2131 | if (cachep->ctor && cachep->flags & SLAB_POISON) { |
| 2132 | unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; |
| 2133 | |
| 2134 | if (!(flags & __GFP_WAIT)) |
| 2135 | ctor_flags |= SLAB_CTOR_ATOMIC; |
| 2136 | |
| 2137 | cachep->ctor(objp, cachep, ctor_flags); |
| 2138 | } |
| 2139 | return objp; |
| 2140 | } |
| 2141 | #else |
| 2142 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) |
| 2143 | #endif |
| 2144 | |
| 2145 | |
| 2146 | static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) |
| 2147 | { |
| 2148 | unsigned long save_flags; |
| 2149 | void* objp; |
| 2150 | struct array_cache *ac; |
| 2151 | |
| 2152 | cache_alloc_debugcheck_before(cachep, flags); |
| 2153 | |
| 2154 | local_irq_save(save_flags); |
| 2155 | ac = ac_data(cachep); |
| 2156 | if (likely(ac->avail)) { |
| 2157 | STATS_INC_ALLOCHIT(cachep); |
| 2158 | ac->touched = 1; |
| 2159 | objp = ac_entry(ac)[--ac->avail]; |
| 2160 | } else { |
| 2161 | STATS_INC_ALLOCMISS(cachep); |
| 2162 | objp = cache_alloc_refill(cachep, flags); |
| 2163 | } |
| 2164 | local_irq_restore(save_flags); |
| 2165 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0)); |
| 2166 | return objp; |
| 2167 | } |
| 2168 | |
| 2169 | /* |
| 2170 | * NUMA: different approach needed if the spinlock is moved into |
| 2171 | * the l3 structure |
| 2172 | */ |
| 2173 | |
| 2174 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) |
| 2175 | { |
| 2176 | int i; |
| 2177 | |
| 2178 | check_spinlock_acquired(cachep); |
| 2179 | |
| 2180 | /* NUMA: move add into loop */ |
| 2181 | cachep->lists.free_objects += nr_objects; |
| 2182 | |
| 2183 | for (i = 0; i < nr_objects; i++) { |
| 2184 | void *objp = objpp[i]; |
| 2185 | struct slab *slabp; |
| 2186 | unsigned int objnr; |
| 2187 | |
| 2188 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); |
| 2189 | list_del(&slabp->list); |
| 2190 | objnr = (objp - slabp->s_mem) / cachep->objsize; |
| 2191 | check_slabp(cachep, slabp); |
| 2192 | #if DEBUG |
| 2193 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { |
| 2194 | printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n", |
| 2195 | cachep->name, objp); |
| 2196 | BUG(); |
| 2197 | } |
| 2198 | #endif |
| 2199 | slab_bufctl(slabp)[objnr] = slabp->free; |
| 2200 | slabp->free = objnr; |
| 2201 | STATS_DEC_ACTIVE(cachep); |
| 2202 | slabp->inuse--; |
| 2203 | check_slabp(cachep, slabp); |
| 2204 | |
| 2205 | /* fixup slab chains */ |
| 2206 | if (slabp->inuse == 0) { |
| 2207 | if (cachep->lists.free_objects > cachep->free_limit) { |
| 2208 | cachep->lists.free_objects -= cachep->num; |
| 2209 | slab_destroy(cachep, slabp); |
| 2210 | } else { |
| 2211 | list_add(&slabp->list, |
| 2212 | &list3_data_ptr(cachep, objp)->slabs_free); |
| 2213 | } |
| 2214 | } else { |
| 2215 | /* Unconditionally move a slab to the end of the |
| 2216 | * partial list on free - maximum time for the |
| 2217 | * other objects to be freed, too. |
| 2218 | */ |
| 2219 | list_add_tail(&slabp->list, |
| 2220 | &list3_data_ptr(cachep, objp)->slabs_partial); |
| 2221 | } |
| 2222 | } |
| 2223 | } |
| 2224 | |
| 2225 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) |
| 2226 | { |
| 2227 | int batchcount; |
| 2228 | |
| 2229 | batchcount = ac->batchcount; |
| 2230 | #if DEBUG |
| 2231 | BUG_ON(!batchcount || batchcount > ac->avail); |
| 2232 | #endif |
| 2233 | check_irq_off(); |
| 2234 | spin_lock(&cachep->spinlock); |
| 2235 | if (cachep->lists.shared) { |
| 2236 | struct array_cache *shared_array = cachep->lists.shared; |
| 2237 | int max = shared_array->limit-shared_array->avail; |
| 2238 | if (max) { |
| 2239 | if (batchcount > max) |
| 2240 | batchcount = max; |
| 2241 | memcpy(&ac_entry(shared_array)[shared_array->avail], |
| 2242 | &ac_entry(ac)[0], |
| 2243 | sizeof(void*)*batchcount); |
| 2244 | shared_array->avail += batchcount; |
| 2245 | goto free_done; |
| 2246 | } |
| 2247 | } |
| 2248 | |
| 2249 | free_block(cachep, &ac_entry(ac)[0], batchcount); |
| 2250 | free_done: |
| 2251 | #if STATS |
| 2252 | { |
| 2253 | int i = 0; |
| 2254 | struct list_head *p; |
| 2255 | |
| 2256 | p = list3_data(cachep)->slabs_free.next; |
| 2257 | while (p != &(list3_data(cachep)->slabs_free)) { |
| 2258 | struct slab *slabp; |
| 2259 | |
| 2260 | slabp = list_entry(p, struct slab, list); |
| 2261 | BUG_ON(slabp->inuse); |
| 2262 | |
| 2263 | i++; |
| 2264 | p = p->next; |
| 2265 | } |
| 2266 | STATS_SET_FREEABLE(cachep, i); |
| 2267 | } |
| 2268 | #endif |
| 2269 | spin_unlock(&cachep->spinlock); |
| 2270 | ac->avail -= batchcount; |
| 2271 | memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount], |
| 2272 | sizeof(void*)*ac->avail); |
| 2273 | } |
| 2274 | |
| 2275 | /* |
| 2276 | * __cache_free |
| 2277 | * Release an obj back to its cache. If the obj has a constructed |
| 2278 | * state, it must be in this state _before_ it is released. |
| 2279 | * |
| 2280 | * Called with disabled ints. |
| 2281 | */ |
| 2282 | static inline void __cache_free(kmem_cache_t *cachep, void *objp) |
| 2283 | { |
| 2284 | struct array_cache *ac = ac_data(cachep); |
| 2285 | |
| 2286 | check_irq_off(); |
| 2287 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); |
| 2288 | |
| 2289 | if (likely(ac->avail < ac->limit)) { |
| 2290 | STATS_INC_FREEHIT(cachep); |
| 2291 | ac_entry(ac)[ac->avail++] = objp; |
| 2292 | return; |
| 2293 | } else { |
| 2294 | STATS_INC_FREEMISS(cachep); |
| 2295 | cache_flusharray(cachep, ac); |
| 2296 | ac_entry(ac)[ac->avail++] = objp; |
| 2297 | } |
| 2298 | } |
| 2299 | |
| 2300 | /** |
| 2301 | * kmem_cache_alloc - Allocate an object |
| 2302 | * @cachep: The cache to allocate from. |
| 2303 | * @flags: See kmalloc(). |
| 2304 | * |
| 2305 | * Allocate an object from this cache. The flags are only relevant |
| 2306 | * if the cache has no available objects. |
| 2307 | */ |
| 2308 | void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) |
| 2309 | { |
| 2310 | return __cache_alloc(cachep, flags); |
| 2311 | } |
| 2312 | EXPORT_SYMBOL(kmem_cache_alloc); |
| 2313 | |
| 2314 | /** |
| 2315 | * kmem_ptr_validate - check if an untrusted pointer might |
| 2316 | * be a slab entry. |
| 2317 | * @cachep: the cache we're checking against |
| 2318 | * @ptr: pointer to validate |
| 2319 | * |
| 2320 | * This verifies that the untrusted pointer looks sane: |
| 2321 | * it is _not_ a guarantee that the pointer is actually |
| 2322 | * part of the slab cache in question, but it at least |
| 2323 | * validates that the pointer can be dereferenced and |
| 2324 | * looks half-way sane. |
| 2325 | * |
| 2326 | * Currently only used for dentry validation. |
| 2327 | */ |
| 2328 | int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) |
| 2329 | { |
| 2330 | unsigned long addr = (unsigned long) ptr; |
| 2331 | unsigned long min_addr = PAGE_OFFSET; |
| 2332 | unsigned long align_mask = BYTES_PER_WORD-1; |
| 2333 | unsigned long size = cachep->objsize; |
| 2334 | struct page *page; |
| 2335 | |
| 2336 | if (unlikely(addr < min_addr)) |
| 2337 | goto out; |
| 2338 | if (unlikely(addr > (unsigned long)high_memory - size)) |
| 2339 | goto out; |
| 2340 | if (unlikely(addr & align_mask)) |
| 2341 | goto out; |
| 2342 | if (unlikely(!kern_addr_valid(addr))) |
| 2343 | goto out; |
| 2344 | if (unlikely(!kern_addr_valid(addr + size - 1))) |
| 2345 | goto out; |
| 2346 | page = virt_to_page(ptr); |
| 2347 | if (unlikely(!PageSlab(page))) |
| 2348 | goto out; |
| 2349 | if (unlikely(GET_PAGE_CACHE(page) != cachep)) |
| 2350 | goto out; |
| 2351 | return 1; |
| 2352 | out: |
| 2353 | return 0; |
| 2354 | } |
| 2355 | |
| 2356 | #ifdef CONFIG_NUMA |
| 2357 | /** |
| 2358 | * kmem_cache_alloc_node - Allocate an object on the specified node |
| 2359 | * @cachep: The cache to allocate from. |
| 2360 | * @flags: See kmalloc(). |
| 2361 | * @nodeid: node number of the target node. |
| 2362 | * |
| 2363 | * Identical to kmem_cache_alloc, except that this function is slow |
| 2364 | * and can sleep. And it will allocate memory on the given node, which |
| 2365 | * can improve the performance for cpu bound structures. |
| 2366 | */ |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2367 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2368 | { |
| 2369 | int loop; |
| 2370 | void *objp; |
| 2371 | struct slab *slabp; |
| 2372 | kmem_bufctl_t next; |
| 2373 | |
| 2374 | for (loop = 0;;loop++) { |
| 2375 | struct list_head *q; |
| 2376 | |
| 2377 | objp = NULL; |
| 2378 | check_irq_on(); |
| 2379 | spin_lock_irq(&cachep->spinlock); |
| 2380 | /* walk through all partial and empty slab and find one |
| 2381 | * from the right node */ |
| 2382 | list_for_each(q,&cachep->lists.slabs_partial) { |
| 2383 | slabp = list_entry(q, struct slab, list); |
| 2384 | |
| 2385 | if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || |
| 2386 | loop > 2) |
| 2387 | goto got_slabp; |
| 2388 | } |
| 2389 | list_for_each(q, &cachep->lists.slabs_free) { |
| 2390 | slabp = list_entry(q, struct slab, list); |
| 2391 | |
| 2392 | if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || |
| 2393 | loop > 2) |
| 2394 | goto got_slabp; |
| 2395 | } |
| 2396 | spin_unlock_irq(&cachep->spinlock); |
| 2397 | |
| 2398 | local_irq_disable(); |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2399 | if (!cache_grow(cachep, flags, nodeid)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2400 | local_irq_enable(); |
| 2401 | return NULL; |
| 2402 | } |
| 2403 | local_irq_enable(); |
| 2404 | } |
| 2405 | got_slabp: |
| 2406 | /* found one: allocate object */ |
| 2407 | check_slabp(cachep, slabp); |
| 2408 | check_spinlock_acquired(cachep); |
| 2409 | |
| 2410 | STATS_INC_ALLOCED(cachep); |
| 2411 | STATS_INC_ACTIVE(cachep); |
| 2412 | STATS_SET_HIGH(cachep); |
| 2413 | STATS_INC_NODEALLOCS(cachep); |
| 2414 | |
| 2415 | objp = slabp->s_mem + slabp->free*cachep->objsize; |
| 2416 | |
| 2417 | slabp->inuse++; |
| 2418 | next = slab_bufctl(slabp)[slabp->free]; |
| 2419 | #if DEBUG |
| 2420 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; |
| 2421 | #endif |
| 2422 | slabp->free = next; |
| 2423 | check_slabp(cachep, slabp); |
| 2424 | |
| 2425 | /* move slabp to correct slabp list: */ |
| 2426 | list_del(&slabp->list); |
| 2427 | if (slabp->free == BUFCTL_END) |
| 2428 | list_add(&slabp->list, &cachep->lists.slabs_full); |
| 2429 | else |
| 2430 | list_add(&slabp->list, &cachep->lists.slabs_partial); |
| 2431 | |
| 2432 | list3_data(cachep)->free_objects--; |
| 2433 | spin_unlock_irq(&cachep->spinlock); |
| 2434 | |
| 2435 | objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp, |
| 2436 | __builtin_return_address(0)); |
| 2437 | return objp; |
| 2438 | } |
| 2439 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
| 2440 | |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2441 | void *kmalloc_node(size_t size, int flags, int node) |
| 2442 | { |
| 2443 | kmem_cache_t *cachep; |
| 2444 | |
| 2445 | cachep = kmem_find_general_cachep(size, flags); |
| 2446 | if (unlikely(cachep == NULL)) |
| 2447 | return NULL; |
| 2448 | return kmem_cache_alloc_node(cachep, flags, node); |
| 2449 | } |
| 2450 | EXPORT_SYMBOL(kmalloc_node); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2451 | #endif |
| 2452 | |
| 2453 | /** |
| 2454 | * kmalloc - allocate memory |
| 2455 | * @size: how many bytes of memory are required. |
| 2456 | * @flags: the type of memory to allocate. |
| 2457 | * |
| 2458 | * kmalloc is the normal method of allocating memory |
| 2459 | * in the kernel. |
| 2460 | * |
| 2461 | * The @flags argument may be one of: |
| 2462 | * |
| 2463 | * %GFP_USER - Allocate memory on behalf of user. May sleep. |
| 2464 | * |
| 2465 | * %GFP_KERNEL - Allocate normal kernel ram. May sleep. |
| 2466 | * |
| 2467 | * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers. |
| 2468 | * |
| 2469 | * Additionally, the %GFP_DMA flag may be set to indicate the memory |
| 2470 | * must be suitable for DMA. This can mean different things on different |
| 2471 | * platforms. For example, on i386, it means that the memory must come |
| 2472 | * from the first 16MB. |
| 2473 | */ |
| 2474 | void *__kmalloc(size_t size, unsigned int __nocast flags) |
| 2475 | { |
| 2476 | kmem_cache_t *cachep; |
| 2477 | |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2478 | /* If you want to save a few bytes .text space: replace |
| 2479 | * __ with kmem_. |
| 2480 | * Then kmalloc uses the uninlined functions instead of the inline |
| 2481 | * functions. |
| 2482 | */ |
| 2483 | cachep = __find_general_cachep(size, flags); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2484 | if (unlikely(cachep == NULL)) |
| 2485 | return NULL; |
| 2486 | return __cache_alloc(cachep, flags); |
| 2487 | } |
| 2488 | EXPORT_SYMBOL(__kmalloc); |
| 2489 | |
| 2490 | #ifdef CONFIG_SMP |
| 2491 | /** |
| 2492 | * __alloc_percpu - allocate one copy of the object for every present |
| 2493 | * cpu in the system, zeroing them. |
| 2494 | * Objects should be dereferenced using the per_cpu_ptr macro only. |
| 2495 | * |
| 2496 | * @size: how many bytes of memory are required. |
| 2497 | * @align: the alignment, which can't be greater than SMP_CACHE_BYTES. |
| 2498 | */ |
| 2499 | void *__alloc_percpu(size_t size, size_t align) |
| 2500 | { |
| 2501 | int i; |
| 2502 | struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); |
| 2503 | |
| 2504 | if (!pdata) |
| 2505 | return NULL; |
| 2506 | |
| 2507 | for (i = 0; i < NR_CPUS; i++) { |
| 2508 | if (!cpu_possible(i)) |
| 2509 | continue; |
Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2510 | pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, |
| 2511 | cpu_to_node(i)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2512 | |
| 2513 | if (!pdata->ptrs[i]) |
| 2514 | goto unwind_oom; |
| 2515 | memset(pdata->ptrs[i], 0, size); |
| 2516 | } |
| 2517 | |
| 2518 | /* Catch derefs w/o wrappers */ |
| 2519 | return (void *) (~(unsigned long) pdata); |
| 2520 | |
| 2521 | unwind_oom: |
| 2522 | while (--i >= 0) { |
| 2523 | if (!cpu_possible(i)) |
| 2524 | continue; |
| 2525 | kfree(pdata->ptrs[i]); |
| 2526 | } |
| 2527 | kfree(pdata); |
| 2528 | return NULL; |
| 2529 | } |
| 2530 | EXPORT_SYMBOL(__alloc_percpu); |
| 2531 | #endif |
| 2532 | |
| 2533 | /** |
| 2534 | * kmem_cache_free - Deallocate an object |
| 2535 | * @cachep: The cache the allocation was from. |
| 2536 | * @objp: The previously allocated object. |
| 2537 | * |
| 2538 | * Free an object which was previously allocated from this |
| 2539 | * cache. |
| 2540 | */ |
| 2541 | void kmem_cache_free(kmem_cache_t *cachep, void *objp) |
| 2542 | { |
| 2543 | unsigned long flags; |
| 2544 | |
| 2545 | local_irq_save(flags); |
| 2546 | __cache_free(cachep, objp); |
| 2547 | local_irq_restore(flags); |
| 2548 | } |
| 2549 | EXPORT_SYMBOL(kmem_cache_free); |
| 2550 | |
| 2551 | /** |
| 2552 | * kcalloc - allocate memory for an array. The memory is set to zero. |
| 2553 | * @n: number of elements. |
| 2554 | * @size: element size. |
| 2555 | * @flags: the type of memory to allocate. |
| 2556 | */ |
| 2557 | void *kcalloc(size_t n, size_t size, unsigned int __nocast flags) |
| 2558 | { |
| 2559 | void *ret = NULL; |
| 2560 | |
| 2561 | if (n != 0 && size > INT_MAX / n) |
| 2562 | return ret; |
| 2563 | |
| 2564 | ret = kmalloc(n * size, flags); |
| 2565 | if (ret) |
| 2566 | memset(ret, 0, n * size); |
| 2567 | return ret; |
| 2568 | } |
| 2569 | EXPORT_SYMBOL(kcalloc); |
| 2570 | |
| 2571 | /** |
| 2572 | * kfree - free previously allocated memory |
| 2573 | * @objp: pointer returned by kmalloc. |
| 2574 | * |
| 2575 | * Don't free memory not originally allocated by kmalloc() |
| 2576 | * or you will run into trouble. |
| 2577 | */ |
| 2578 | void kfree(const void *objp) |
| 2579 | { |
| 2580 | kmem_cache_t *c; |
| 2581 | unsigned long flags; |
| 2582 | |
| 2583 | if (unlikely(!objp)) |
| 2584 | return; |
| 2585 | local_irq_save(flags); |
| 2586 | kfree_debugcheck(objp); |
| 2587 | c = GET_PAGE_CACHE(virt_to_page(objp)); |
| 2588 | __cache_free(c, (void*)objp); |
| 2589 | local_irq_restore(flags); |
| 2590 | } |
| 2591 | EXPORT_SYMBOL(kfree); |
| 2592 | |
| 2593 | #ifdef CONFIG_SMP |
| 2594 | /** |
| 2595 | * free_percpu - free previously allocated percpu memory |
| 2596 | * @objp: pointer returned by alloc_percpu. |
| 2597 | * |
| 2598 | * Don't free memory not originally allocated by alloc_percpu() |
| 2599 | * The complemented objp is to check for that. |
| 2600 | */ |
| 2601 | void |
| 2602 | free_percpu(const void *objp) |
| 2603 | { |
| 2604 | int i; |
| 2605 | struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); |
| 2606 | |
| 2607 | for (i = 0; i < NR_CPUS; i++) { |
| 2608 | if (!cpu_possible(i)) |
| 2609 | continue; |
| 2610 | kfree(p->ptrs[i]); |
| 2611 | } |
| 2612 | kfree(p); |
| 2613 | } |
| 2614 | EXPORT_SYMBOL(free_percpu); |
| 2615 | #endif |
| 2616 | |
| 2617 | unsigned int kmem_cache_size(kmem_cache_t *cachep) |
| 2618 | { |
| 2619 | return obj_reallen(cachep); |
| 2620 | } |
| 2621 | EXPORT_SYMBOL(kmem_cache_size); |
| 2622 | |
| 2623 | struct ccupdate_struct { |
| 2624 | kmem_cache_t *cachep; |
| 2625 | struct array_cache *new[NR_CPUS]; |
| 2626 | }; |
| 2627 | |
| 2628 | static void do_ccupdate_local(void *info) |
| 2629 | { |
| 2630 | struct ccupdate_struct *new = (struct ccupdate_struct *)info; |
| 2631 | struct array_cache *old; |
| 2632 | |
| 2633 | check_irq_off(); |
| 2634 | old = ac_data(new->cachep); |
| 2635 | |
| 2636 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
| 2637 | new->new[smp_processor_id()] = old; |
| 2638 | } |
| 2639 | |
| 2640 | |
| 2641 | static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, |
| 2642 | int shared) |
| 2643 | { |
| 2644 | struct ccupdate_struct new; |
| 2645 | struct array_cache *new_shared; |
| 2646 | int i; |
| 2647 | |
| 2648 | memset(&new.new,0,sizeof(new.new)); |
| 2649 | for (i = 0; i < NR_CPUS; i++) { |
| 2650 | if (cpu_online(i)) { |
| 2651 | new.new[i] = alloc_arraycache(i, limit, batchcount); |
| 2652 | if (!new.new[i]) { |
| 2653 | for (i--; i >= 0; i--) kfree(new.new[i]); |
| 2654 | return -ENOMEM; |
| 2655 | } |
| 2656 | } else { |
| 2657 | new.new[i] = NULL; |
| 2658 | } |
| 2659 | } |
| 2660 | new.cachep = cachep; |
| 2661 | |
| 2662 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); |
| 2663 | |
| 2664 | check_irq_on(); |
| 2665 | spin_lock_irq(&cachep->spinlock); |
| 2666 | cachep->batchcount = batchcount; |
| 2667 | cachep->limit = limit; |
| 2668 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num; |
| 2669 | spin_unlock_irq(&cachep->spinlock); |
| 2670 | |
| 2671 | for (i = 0; i < NR_CPUS; i++) { |
| 2672 | struct array_cache *ccold = new.new[i]; |
| 2673 | if (!ccold) |
| 2674 | continue; |
| 2675 | spin_lock_irq(&cachep->spinlock); |
| 2676 | free_block(cachep, ac_entry(ccold), ccold->avail); |
| 2677 | spin_unlock_irq(&cachep->spinlock); |
| 2678 | kfree(ccold); |
| 2679 | } |
| 2680 | new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d); |
| 2681 | if (new_shared) { |
| 2682 | struct array_cache *old; |
| 2683 | |
| 2684 | spin_lock_irq(&cachep->spinlock); |
| 2685 | old = cachep->lists.shared; |
| 2686 | cachep->lists.shared = new_shared; |
| 2687 | if (old) |
| 2688 | free_block(cachep, ac_entry(old), old->avail); |
| 2689 | spin_unlock_irq(&cachep->spinlock); |
| 2690 | kfree(old); |
| 2691 | } |
| 2692 | |
| 2693 | return 0; |
| 2694 | } |
| 2695 | |
| 2696 | |
| 2697 | static void enable_cpucache(kmem_cache_t *cachep) |
| 2698 | { |
| 2699 | int err; |
| 2700 | int limit, shared; |
| 2701 | |
| 2702 | /* The head array serves three purposes: |
| 2703 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
| 2704 | * - reduce the number of spinlock operations. |
| 2705 | * - reduce the number of linked list operations on the slab and |
| 2706 | * bufctl chains: array operations are cheaper. |
| 2707 | * The numbers are guessed, we should auto-tune as described by |
| 2708 | * Bonwick. |
| 2709 | */ |
| 2710 | if (cachep->objsize > 131072) |
| 2711 | limit = 1; |
| 2712 | else if (cachep->objsize > PAGE_SIZE) |
| 2713 | limit = 8; |
| 2714 | else if (cachep->objsize > 1024) |
| 2715 | limit = 24; |
| 2716 | else if (cachep->objsize > 256) |
| 2717 | limit = 54; |
| 2718 | else |
| 2719 | limit = 120; |
| 2720 | |
| 2721 | /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound |
| 2722 | * allocation behaviour: Most allocs on one cpu, most free operations |
| 2723 | * on another cpu. For these cases, an efficient object passing between |
| 2724 | * cpus is necessary. This is provided by a shared array. The array |
| 2725 | * replaces Bonwick's magazine layer. |
| 2726 | * On uniprocessor, it's functionally equivalent (but less efficient) |
| 2727 | * to a larger limit. Thus disabled by default. |
| 2728 | */ |
| 2729 | shared = 0; |
| 2730 | #ifdef CONFIG_SMP |
| 2731 | if (cachep->objsize <= PAGE_SIZE) |
| 2732 | shared = 8; |
| 2733 | #endif |
| 2734 | |
| 2735 | #if DEBUG |
| 2736 | /* With debugging enabled, large batchcount lead to excessively |
| 2737 | * long periods with disabled local interrupts. Limit the |
| 2738 | * batchcount |
| 2739 | */ |
| 2740 | if (limit > 32) |
| 2741 | limit = 32; |
| 2742 | #endif |
| 2743 | err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared); |
| 2744 | if (err) |
| 2745 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", |
| 2746 | cachep->name, -err); |
| 2747 | } |
| 2748 | |
| 2749 | static void drain_array_locked(kmem_cache_t *cachep, |
| 2750 | struct array_cache *ac, int force) |
| 2751 | { |
| 2752 | int tofree; |
| 2753 | |
| 2754 | check_spinlock_acquired(cachep); |
| 2755 | if (ac->touched && !force) { |
| 2756 | ac->touched = 0; |
| 2757 | } else if (ac->avail) { |
| 2758 | tofree = force ? ac->avail : (ac->limit+4)/5; |
| 2759 | if (tofree > ac->avail) { |
| 2760 | tofree = (ac->avail+1)/2; |
| 2761 | } |
| 2762 | free_block(cachep, ac_entry(ac), tofree); |
| 2763 | ac->avail -= tofree; |
| 2764 | memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree], |
| 2765 | sizeof(void*)*ac->avail); |
| 2766 | } |
| 2767 | } |
| 2768 | |
| 2769 | /** |
| 2770 | * cache_reap - Reclaim memory from caches. |
| 2771 | * |
| 2772 | * Called from workqueue/eventd every few seconds. |
| 2773 | * Purpose: |
| 2774 | * - clear the per-cpu caches for this CPU. |
| 2775 | * - return freeable pages to the main free memory pool. |
| 2776 | * |
| 2777 | * If we cannot acquire the cache chain semaphore then just give up - we'll |
| 2778 | * try again on the next iteration. |
| 2779 | */ |
| 2780 | static void cache_reap(void *unused) |
| 2781 | { |
| 2782 | struct list_head *walk; |
| 2783 | |
| 2784 | if (down_trylock(&cache_chain_sem)) { |
| 2785 | /* Give up. Setup the next iteration. */ |
| 2786 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); |
| 2787 | return; |
| 2788 | } |
| 2789 | |
| 2790 | list_for_each(walk, &cache_chain) { |
| 2791 | kmem_cache_t *searchp; |
| 2792 | struct list_head* p; |
| 2793 | int tofree; |
| 2794 | struct slab *slabp; |
| 2795 | |
| 2796 | searchp = list_entry(walk, kmem_cache_t, next); |
| 2797 | |
| 2798 | if (searchp->flags & SLAB_NO_REAP) |
| 2799 | goto next; |
| 2800 | |
| 2801 | check_irq_on(); |
| 2802 | |
| 2803 | spin_lock_irq(&searchp->spinlock); |
| 2804 | |
| 2805 | drain_array_locked(searchp, ac_data(searchp), 0); |
| 2806 | |
| 2807 | if(time_after(searchp->lists.next_reap, jiffies)) |
| 2808 | goto next_unlock; |
| 2809 | |
| 2810 | searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3; |
| 2811 | |
| 2812 | if (searchp->lists.shared) |
| 2813 | drain_array_locked(searchp, searchp->lists.shared, 0); |
| 2814 | |
| 2815 | if (searchp->lists.free_touched) { |
| 2816 | searchp->lists.free_touched = 0; |
| 2817 | goto next_unlock; |
| 2818 | } |
| 2819 | |
| 2820 | tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num); |
| 2821 | do { |
| 2822 | p = list3_data(searchp)->slabs_free.next; |
| 2823 | if (p == &(list3_data(searchp)->slabs_free)) |
| 2824 | break; |
| 2825 | |
| 2826 | slabp = list_entry(p, struct slab, list); |
| 2827 | BUG_ON(slabp->inuse); |
| 2828 | list_del(&slabp->list); |
| 2829 | STATS_INC_REAPED(searchp); |
| 2830 | |
| 2831 | /* Safe to drop the lock. The slab is no longer |
| 2832 | * linked to the cache. |
| 2833 | * searchp cannot disappear, we hold |
| 2834 | * cache_chain_lock |
| 2835 | */ |
| 2836 | searchp->lists.free_objects -= searchp->num; |
| 2837 | spin_unlock_irq(&searchp->spinlock); |
| 2838 | slab_destroy(searchp, slabp); |
| 2839 | spin_lock_irq(&searchp->spinlock); |
| 2840 | } while(--tofree > 0); |
| 2841 | next_unlock: |
| 2842 | spin_unlock_irq(&searchp->spinlock); |
| 2843 | next: |
| 2844 | cond_resched(); |
| 2845 | } |
| 2846 | check_irq_on(); |
| 2847 | up(&cache_chain_sem); |
| 2848 | /* Setup the next iteration */ |
| 2849 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); |
| 2850 | } |
| 2851 | |
| 2852 | #ifdef CONFIG_PROC_FS |
| 2853 | |
| 2854 | static void *s_start(struct seq_file *m, loff_t *pos) |
| 2855 | { |
| 2856 | loff_t n = *pos; |
| 2857 | struct list_head *p; |
| 2858 | |
| 2859 | down(&cache_chain_sem); |
| 2860 | if (!n) { |
| 2861 | /* |
| 2862 | * Output format version, so at least we can change it |
| 2863 | * without _too_ many complaints. |
| 2864 | */ |
| 2865 | #if STATS |
| 2866 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
| 2867 | #else |
| 2868 | seq_puts(m, "slabinfo - version: 2.1\n"); |
| 2869 | #endif |
| 2870 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
| 2871 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
| 2872 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); |
| 2873 | #if STATS |
| 2874 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" |
| 2875 | " <error> <maxfreeable> <freelimit> <nodeallocs>"); |
| 2876 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
| 2877 | #endif |
| 2878 | seq_putc(m, '\n'); |
| 2879 | } |
| 2880 | p = cache_chain.next; |
| 2881 | while (n--) { |
| 2882 | p = p->next; |
| 2883 | if (p == &cache_chain) |
| 2884 | return NULL; |
| 2885 | } |
| 2886 | return list_entry(p, kmem_cache_t, next); |
| 2887 | } |
| 2888 | |
| 2889 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) |
| 2890 | { |
| 2891 | kmem_cache_t *cachep = p; |
| 2892 | ++*pos; |
| 2893 | return cachep->next.next == &cache_chain ? NULL |
| 2894 | : list_entry(cachep->next.next, kmem_cache_t, next); |
| 2895 | } |
| 2896 | |
| 2897 | static void s_stop(struct seq_file *m, void *p) |
| 2898 | { |
| 2899 | up(&cache_chain_sem); |
| 2900 | } |
| 2901 | |
| 2902 | static int s_show(struct seq_file *m, void *p) |
| 2903 | { |
| 2904 | kmem_cache_t *cachep = p; |
| 2905 | struct list_head *q; |
| 2906 | struct slab *slabp; |
| 2907 | unsigned long active_objs; |
| 2908 | unsigned long num_objs; |
| 2909 | unsigned long active_slabs = 0; |
| 2910 | unsigned long num_slabs; |
| 2911 | const char *name; |
| 2912 | char *error = NULL; |
| 2913 | |
| 2914 | check_irq_on(); |
| 2915 | spin_lock_irq(&cachep->spinlock); |
| 2916 | active_objs = 0; |
| 2917 | num_slabs = 0; |
| 2918 | list_for_each(q,&cachep->lists.slabs_full) { |
| 2919 | slabp = list_entry(q, struct slab, list); |
| 2920 | if (slabp->inuse != cachep->num && !error) |
| 2921 | error = "slabs_full accounting error"; |
| 2922 | active_objs += cachep->num; |
| 2923 | active_slabs++; |
| 2924 | } |
| 2925 | list_for_each(q,&cachep->lists.slabs_partial) { |
| 2926 | slabp = list_entry(q, struct slab, list); |
| 2927 | if (slabp->inuse == cachep->num && !error) |
| 2928 | error = "slabs_partial inuse accounting error"; |
| 2929 | if (!slabp->inuse && !error) |
| 2930 | error = "slabs_partial/inuse accounting error"; |
| 2931 | active_objs += slabp->inuse; |
| 2932 | active_slabs++; |
| 2933 | } |
| 2934 | list_for_each(q,&cachep->lists.slabs_free) { |
| 2935 | slabp = list_entry(q, struct slab, list); |
| 2936 | if (slabp->inuse && !error) |
| 2937 | error = "slabs_free/inuse accounting error"; |
| 2938 | num_slabs++; |
| 2939 | } |
| 2940 | num_slabs+=active_slabs; |
| 2941 | num_objs = num_slabs*cachep->num; |
| 2942 | if (num_objs - active_objs != cachep->lists.free_objects && !error) |
| 2943 | error = "free_objects accounting error"; |
| 2944 | |
| 2945 | name = cachep->name; |
| 2946 | if (error) |
| 2947 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); |
| 2948 | |
| 2949 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
| 2950 | name, active_objs, num_objs, cachep->objsize, |
| 2951 | cachep->num, (1<<cachep->gfporder)); |
| 2952 | seq_printf(m, " : tunables %4u %4u %4u", |
| 2953 | cachep->limit, cachep->batchcount, |
| 2954 | cachep->lists.shared->limit/cachep->batchcount); |
| 2955 | seq_printf(m, " : slabdata %6lu %6lu %6u", |
| 2956 | active_slabs, num_slabs, cachep->lists.shared->avail); |
| 2957 | #if STATS |
| 2958 | { /* list3 stats */ |
| 2959 | unsigned long high = cachep->high_mark; |
| 2960 | unsigned long allocs = cachep->num_allocations; |
| 2961 | unsigned long grown = cachep->grown; |
| 2962 | unsigned long reaped = cachep->reaped; |
| 2963 | unsigned long errors = cachep->errors; |
| 2964 | unsigned long max_freeable = cachep->max_freeable; |
| 2965 | unsigned long free_limit = cachep->free_limit; |
| 2966 | unsigned long node_allocs = cachep->node_allocs; |
| 2967 | |
| 2968 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu", |
| 2969 | allocs, high, grown, reaped, errors, |
| 2970 | max_freeable, free_limit, node_allocs); |
| 2971 | } |
| 2972 | /* cpu stats */ |
| 2973 | { |
| 2974 | unsigned long allochit = atomic_read(&cachep->allochit); |
| 2975 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); |
| 2976 | unsigned long freehit = atomic_read(&cachep->freehit); |
| 2977 | unsigned long freemiss = atomic_read(&cachep->freemiss); |
| 2978 | |
| 2979 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", |
| 2980 | allochit, allocmiss, freehit, freemiss); |
| 2981 | } |
| 2982 | #endif |
| 2983 | seq_putc(m, '\n'); |
| 2984 | spin_unlock_irq(&cachep->spinlock); |
| 2985 | return 0; |
| 2986 | } |
| 2987 | |
| 2988 | /* |
| 2989 | * slabinfo_op - iterator that generates /proc/slabinfo |
| 2990 | * |
| 2991 | * Output layout: |
| 2992 | * cache-name |
| 2993 | * num-active-objs |
| 2994 | * total-objs |
| 2995 | * object size |
| 2996 | * num-active-slabs |
| 2997 | * total-slabs |
| 2998 | * num-pages-per-slab |
| 2999 | * + further values on SMP and with statistics enabled |
| 3000 | */ |
| 3001 | |
| 3002 | struct seq_operations slabinfo_op = { |
| 3003 | .start = s_start, |
| 3004 | .next = s_next, |
| 3005 | .stop = s_stop, |
| 3006 | .show = s_show, |
| 3007 | }; |
| 3008 | |
| 3009 | #define MAX_SLABINFO_WRITE 128 |
| 3010 | /** |
| 3011 | * slabinfo_write - Tuning for the slab allocator |
| 3012 | * @file: unused |
| 3013 | * @buffer: user buffer |
| 3014 | * @count: data length |
| 3015 | * @ppos: unused |
| 3016 | */ |
| 3017 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
| 3018 | size_t count, loff_t *ppos) |
| 3019 | { |
| 3020 | char kbuf[MAX_SLABINFO_WRITE+1], *tmp; |
| 3021 | int limit, batchcount, shared, res; |
| 3022 | struct list_head *p; |
| 3023 | |
| 3024 | if (count > MAX_SLABINFO_WRITE) |
| 3025 | return -EINVAL; |
| 3026 | if (copy_from_user(&kbuf, buffer, count)) |
| 3027 | return -EFAULT; |
| 3028 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
| 3029 | |
| 3030 | tmp = strchr(kbuf, ' '); |
| 3031 | if (!tmp) |
| 3032 | return -EINVAL; |
| 3033 | *tmp = '\0'; |
| 3034 | tmp++; |
| 3035 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) |
| 3036 | return -EINVAL; |
| 3037 | |
| 3038 | /* Find the cache in the chain of caches. */ |
| 3039 | down(&cache_chain_sem); |
| 3040 | res = -EINVAL; |
| 3041 | list_for_each(p,&cache_chain) { |
| 3042 | kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); |
| 3043 | |
| 3044 | if (!strcmp(cachep->name, kbuf)) { |
| 3045 | if (limit < 1 || |
| 3046 | batchcount < 1 || |
| 3047 | batchcount > limit || |
| 3048 | shared < 0) { |
| 3049 | res = -EINVAL; |
| 3050 | } else { |
| 3051 | res = do_tune_cpucache(cachep, limit, batchcount, shared); |
| 3052 | } |
| 3053 | break; |
| 3054 | } |
| 3055 | } |
| 3056 | up(&cache_chain_sem); |
| 3057 | if (res >= 0) |
| 3058 | res = count; |
| 3059 | return res; |
| 3060 | } |
| 3061 | #endif |
| 3062 | |
| 3063 | unsigned int ksize(const void *objp) |
| 3064 | { |
| 3065 | kmem_cache_t *c; |
| 3066 | unsigned long flags; |
| 3067 | unsigned int size = 0; |
| 3068 | |
| 3069 | if (likely(objp != NULL)) { |
| 3070 | local_irq_save(flags); |
| 3071 | c = GET_PAGE_CACHE(virt_to_page(objp)); |
| 3072 | size = kmem_cache_size(c); |
| 3073 | local_irq_restore(flags); |
| 3074 | } |
| 3075 | |
| 3076 | return size; |
| 3077 | } |