Hitoshi Mitake | df8bc08c | 2008-10-29 14:00:50 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Intel X38 Memory Controller kernel module |
| 3 | * Copyright (C) 2008 Cluster Computing, Inc. |
| 4 | * |
| 5 | * This file may be distributed under the terms of the |
| 6 | * GNU General Public License. |
| 7 | * |
| 8 | * This file is based on i3200_edac.c |
| 9 | * |
| 10 | */ |
| 11 | |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/pci.h> |
| 15 | #include <linux/pci_ids.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/edac.h> |
| 18 | #include "edac_core.h" |
| 19 | |
| 20 | #define X38_REVISION "1.1" |
| 21 | |
| 22 | #define EDAC_MOD_STR "x38_edac" |
| 23 | |
| 24 | #define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0 |
| 25 | |
| 26 | #define X38_RANKS 8 |
| 27 | #define X38_RANKS_PER_CHANNEL 4 |
| 28 | #define X38_CHANNELS 2 |
| 29 | |
| 30 | /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */ |
| 31 | |
| 32 | #define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */ |
| 33 | #define X38_MCHBAR_HIGH 0x4b |
| 34 | #define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */ |
| 35 | #define X38_MMR_WINDOW_SIZE 16384 |
| 36 | |
| 37 | #define X38_TOM 0xa0 /* Top of Memory (16b) |
| 38 | * |
| 39 | * 15:10 reserved |
| 40 | * 9:0 total populated physical memory |
| 41 | */ |
| 42 | #define X38_TOM_MASK 0x3ff /* bits 9:0 */ |
| 43 | #define X38_TOM_SHIFT 26 /* 64MiB grain */ |
| 44 | |
| 45 | #define X38_ERRSTS 0xc8 /* Error Status Register (16b) |
| 46 | * |
| 47 | * 15 reserved |
| 48 | * 14 Isochronous TBWRR Run Behind FIFO Full |
| 49 | * (ITCV) |
| 50 | * 13 Isochronous TBWRR Run Behind FIFO Put |
| 51 | * (ITSTV) |
| 52 | * 12 reserved |
| 53 | * 11 MCH Thermal Sensor Event |
| 54 | * for SMI/SCI/SERR (GTSE) |
| 55 | * 10 reserved |
| 56 | * 9 LOCK to non-DRAM Memory Flag (LCKF) |
| 57 | * 8 reserved |
| 58 | * 7 DRAM Throttle Flag (DTF) |
| 59 | * 6:2 reserved |
| 60 | * 1 Multi-bit DRAM ECC Error Flag (DMERR) |
| 61 | * 0 Single-bit DRAM ECC Error Flag (DSERR) |
| 62 | */ |
| 63 | #define X38_ERRSTS_UE 0x0002 |
| 64 | #define X38_ERRSTS_CE 0x0001 |
| 65 | #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE) |
| 66 | |
| 67 | |
| 68 | /* Intel MMIO register space - device 0 function 0 - MMR space */ |
| 69 | |
| 70 | #define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4) |
| 71 | * |
| 72 | * 15:10 reserved |
| 73 | * 9:0 Channel 0 DRAM Rank Boundary Address |
| 74 | */ |
| 75 | #define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */ |
| 76 | #define X38_DRB_MASK 0x3ff /* bits 9:0 */ |
| 77 | #define X38_DRB_SHIFT 26 /* 64MiB grain */ |
| 78 | |
| 79 | #define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b) |
| 80 | * |
| 81 | * 63:48 Error Column Address (ERRCOL) |
| 82 | * 47:32 Error Row Address (ERRROW) |
| 83 | * 31:29 Error Bank Address (ERRBANK) |
| 84 | * 28:27 Error Rank Address (ERRRANK) |
| 85 | * 26:24 reserved |
| 86 | * 23:16 Error Syndrome (ERRSYND) |
| 87 | * 15: 2 reserved |
| 88 | * 1 Multiple Bit Error Status (MERRSTS) |
| 89 | * 0 Correctable Error Status (CERRSTS) |
| 90 | */ |
| 91 | #define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */ |
| 92 | #define X38_ECCERRLOG_CE 0x1 |
| 93 | #define X38_ECCERRLOG_UE 0x2 |
| 94 | #define X38_ECCERRLOG_RANK_BITS 0x18000000 |
| 95 | #define X38_ECCERRLOG_SYNDROME_BITS 0xff0000 |
| 96 | |
| 97 | #define X38_CAPID0 0xe0 /* see P.94 of spec for details */ |
| 98 | |
| 99 | static int x38_channel_num; |
| 100 | |
| 101 | static int how_many_channel(struct pci_dev *pdev) |
| 102 | { |
| 103 | unsigned char capid0_8b; /* 8th byte of CAPID0 */ |
| 104 | |
| 105 | pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b); |
| 106 | if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */ |
| 107 | debugf0("In single channel mode.\n"); |
| 108 | x38_channel_num = 1; |
| 109 | } else { |
| 110 | debugf0("In dual channel mode.\n"); |
| 111 | x38_channel_num = 2; |
| 112 | } |
| 113 | |
| 114 | return x38_channel_num; |
| 115 | } |
| 116 | |
| 117 | static unsigned long eccerrlog_syndrome(u64 log) |
| 118 | { |
| 119 | return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16; |
| 120 | } |
| 121 | |
| 122 | static int eccerrlog_row(int channel, u64 log) |
| 123 | { |
| 124 | return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) | |
| 125 | (channel * X38_RANKS_PER_CHANNEL); |
| 126 | } |
| 127 | |
| 128 | enum x38_chips { |
| 129 | X38 = 0, |
| 130 | }; |
| 131 | |
| 132 | struct x38_dev_info { |
| 133 | const char *ctl_name; |
| 134 | }; |
| 135 | |
| 136 | struct x38_error_info { |
| 137 | u16 errsts; |
| 138 | u16 errsts2; |
| 139 | u64 eccerrlog[X38_CHANNELS]; |
| 140 | }; |
| 141 | |
| 142 | static const struct x38_dev_info x38_devs[] = { |
| 143 | [X38] = { |
| 144 | .ctl_name = "x38"}, |
| 145 | }; |
| 146 | |
| 147 | static struct pci_dev *mci_pdev; |
| 148 | static int x38_registered = 1; |
| 149 | |
| 150 | |
| 151 | static void x38_clear_error_info(struct mem_ctl_info *mci) |
| 152 | { |
| 153 | struct pci_dev *pdev; |
| 154 | |
| 155 | pdev = to_pci_dev(mci->dev); |
| 156 | |
| 157 | /* |
| 158 | * Clear any error bits. |
| 159 | * (Yes, we really clear bits by writing 1 to them.) |
| 160 | */ |
| 161 | pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS, |
| 162 | X38_ERRSTS_BITS); |
| 163 | } |
| 164 | |
| 165 | static u64 x38_readq(const void __iomem *addr) |
| 166 | { |
| 167 | return readl(addr) | (((u64)readl(addr + 4)) << 32); |
| 168 | } |
| 169 | |
| 170 | static void x38_get_and_clear_error_info(struct mem_ctl_info *mci, |
| 171 | struct x38_error_info *info) |
| 172 | { |
| 173 | struct pci_dev *pdev; |
| 174 | void __iomem *window = mci->pvt_info; |
| 175 | |
| 176 | pdev = to_pci_dev(mci->dev); |
| 177 | |
| 178 | /* |
| 179 | * This is a mess because there is no atomic way to read all the |
| 180 | * registers at once and the registers can transition from CE being |
| 181 | * overwritten by UE. |
| 182 | */ |
| 183 | pci_read_config_word(pdev, X38_ERRSTS, &info->errsts); |
| 184 | if (!(info->errsts & X38_ERRSTS_BITS)) |
| 185 | return; |
| 186 | |
| 187 | info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG); |
| 188 | if (x38_channel_num == 2) |
| 189 | info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG); |
| 190 | |
| 191 | pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2); |
| 192 | |
| 193 | /* |
| 194 | * If the error is the same for both reads then the first set |
| 195 | * of reads is valid. If there is a change then there is a CE |
| 196 | * with no info and the second set of reads is valid and |
| 197 | * should be UE info. |
| 198 | */ |
| 199 | if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { |
| 200 | info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG); |
| 201 | if (x38_channel_num == 2) |
| 202 | info->eccerrlog[1] = |
| 203 | x38_readq(window + X38_C1ECCERRLOG); |
| 204 | } |
| 205 | |
| 206 | x38_clear_error_info(mci); |
| 207 | } |
| 208 | |
| 209 | static void x38_process_error_info(struct mem_ctl_info *mci, |
| 210 | struct x38_error_info *info) |
| 211 | { |
| 212 | int channel; |
| 213 | u64 log; |
| 214 | |
| 215 | if (!(info->errsts & X38_ERRSTS_BITS)) |
| 216 | return; |
| 217 | |
| 218 | if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { |
| 219 | edac_mc_handle_ce_no_info(mci, "UE overwrote CE"); |
| 220 | info->errsts = info->errsts2; |
| 221 | } |
| 222 | |
| 223 | for (channel = 0; channel < x38_channel_num; channel++) { |
| 224 | log = info->eccerrlog[channel]; |
| 225 | if (log & X38_ECCERRLOG_UE) { |
| 226 | edac_mc_handle_ue(mci, 0, 0, |
| 227 | eccerrlog_row(channel, log), "x38 UE"); |
| 228 | } else if (log & X38_ECCERRLOG_CE) { |
| 229 | edac_mc_handle_ce(mci, 0, 0, |
| 230 | eccerrlog_syndrome(log), |
| 231 | eccerrlog_row(channel, log), 0, "x38 CE"); |
| 232 | } |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | static void x38_check(struct mem_ctl_info *mci) |
| 237 | { |
| 238 | struct x38_error_info info; |
| 239 | |
| 240 | debugf1("MC%d: %s()\n", mci->mc_idx, __func__); |
| 241 | x38_get_and_clear_error_info(mci, &info); |
| 242 | x38_process_error_info(mci, &info); |
| 243 | } |
| 244 | |
| 245 | |
| 246 | void __iomem *x38_map_mchbar(struct pci_dev *pdev) |
| 247 | { |
| 248 | union { |
| 249 | u64 mchbar; |
| 250 | struct { |
| 251 | u32 mchbar_low; |
| 252 | u32 mchbar_high; |
| 253 | }; |
| 254 | } u; |
| 255 | void __iomem *window; |
| 256 | |
| 257 | pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low); |
| 258 | pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1); |
| 259 | pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high); |
| 260 | u.mchbar &= X38_MCHBAR_MASK; |
| 261 | |
| 262 | if (u.mchbar != (resource_size_t)u.mchbar) { |
| 263 | printk(KERN_ERR |
| 264 | "x38: mmio space beyond accessible range (0x%llx)\n", |
| 265 | (unsigned long long)u.mchbar); |
| 266 | return NULL; |
| 267 | } |
| 268 | |
| 269 | window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE); |
| 270 | if (!window) |
| 271 | printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n", |
| 272 | (unsigned long long)u.mchbar); |
| 273 | |
| 274 | return window; |
| 275 | } |
| 276 | |
| 277 | |
| 278 | static void x38_get_drbs(void __iomem *window, |
| 279 | u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) |
| 280 | { |
| 281 | int i; |
| 282 | |
| 283 | for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) { |
| 284 | drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK; |
| 285 | drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | static bool x38_is_stacked(struct pci_dev *pdev, |
| 290 | u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) |
| 291 | { |
| 292 | u16 tom; |
| 293 | |
| 294 | pci_read_config_word(pdev, X38_TOM, &tom); |
| 295 | tom &= X38_TOM_MASK; |
| 296 | |
| 297 | return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom; |
| 298 | } |
| 299 | |
| 300 | static unsigned long drb_to_nr_pages( |
| 301 | u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL], |
| 302 | bool stacked, int channel, int rank) |
| 303 | { |
| 304 | int n; |
| 305 | |
| 306 | n = drbs[channel][rank]; |
| 307 | if (rank > 0) |
| 308 | n -= drbs[channel][rank - 1]; |
| 309 | if (stacked && (channel == 1) && drbs[channel][rank] == |
| 310 | drbs[channel][X38_RANKS_PER_CHANNEL - 1]) { |
| 311 | n -= drbs[0][X38_RANKS_PER_CHANNEL - 1]; |
| 312 | } |
| 313 | |
| 314 | n <<= (X38_DRB_SHIFT - PAGE_SHIFT); |
| 315 | return n; |
| 316 | } |
| 317 | |
| 318 | static int x38_probe1(struct pci_dev *pdev, int dev_idx) |
| 319 | { |
| 320 | int rc; |
| 321 | int i; |
| 322 | struct mem_ctl_info *mci = NULL; |
| 323 | unsigned long last_page; |
| 324 | u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]; |
| 325 | bool stacked; |
| 326 | void __iomem *window; |
| 327 | |
| 328 | debugf0("MC: %s()\n", __func__); |
| 329 | |
| 330 | window = x38_map_mchbar(pdev); |
| 331 | if (!window) |
| 332 | return -ENODEV; |
| 333 | |
| 334 | x38_get_drbs(window, drbs); |
| 335 | |
| 336 | how_many_channel(pdev); |
| 337 | |
| 338 | /* FIXME: unconventional pvt_info usage */ |
| 339 | mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0); |
| 340 | if (!mci) |
| 341 | return -ENOMEM; |
| 342 | |
| 343 | debugf3("MC: %s(): init mci\n", __func__); |
| 344 | |
| 345 | mci->dev = &pdev->dev; |
| 346 | mci->mtype_cap = MEM_FLAG_DDR2; |
| 347 | |
| 348 | mci->edac_ctl_cap = EDAC_FLAG_SECDED; |
| 349 | mci->edac_cap = EDAC_FLAG_SECDED; |
| 350 | |
| 351 | mci->mod_name = EDAC_MOD_STR; |
| 352 | mci->mod_ver = X38_REVISION; |
| 353 | mci->ctl_name = x38_devs[dev_idx].ctl_name; |
| 354 | mci->dev_name = pci_name(pdev); |
| 355 | mci->edac_check = x38_check; |
| 356 | mci->ctl_page_to_phys = NULL; |
| 357 | mci->pvt_info = window; |
| 358 | |
| 359 | stacked = x38_is_stacked(pdev, drbs); |
| 360 | |
| 361 | /* |
| 362 | * The dram rank boundary (DRB) reg values are boundary addresses |
| 363 | * for each DRAM rank with a granularity of 64MB. DRB regs are |
| 364 | * cumulative; the last one will contain the total memory |
| 365 | * contained in all ranks. |
| 366 | */ |
| 367 | last_page = -1UL; |
| 368 | for (i = 0; i < mci->nr_csrows; i++) { |
| 369 | unsigned long nr_pages; |
| 370 | struct csrow_info *csrow = &mci->csrows[i]; |
| 371 | |
| 372 | nr_pages = drb_to_nr_pages(drbs, stacked, |
| 373 | i / X38_RANKS_PER_CHANNEL, |
| 374 | i % X38_RANKS_PER_CHANNEL); |
| 375 | |
| 376 | if (nr_pages == 0) { |
| 377 | csrow->mtype = MEM_EMPTY; |
| 378 | continue; |
| 379 | } |
| 380 | |
| 381 | csrow->first_page = last_page + 1; |
| 382 | last_page += nr_pages; |
| 383 | csrow->last_page = last_page; |
| 384 | csrow->nr_pages = nr_pages; |
| 385 | |
| 386 | csrow->grain = nr_pages << PAGE_SHIFT; |
| 387 | csrow->mtype = MEM_DDR2; |
| 388 | csrow->dtype = DEV_UNKNOWN; |
| 389 | csrow->edac_mode = EDAC_UNKNOWN; |
| 390 | } |
| 391 | |
| 392 | x38_clear_error_info(mci); |
| 393 | |
| 394 | rc = -ENODEV; |
| 395 | if (edac_mc_add_mc(mci)) { |
| 396 | debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__); |
| 397 | goto fail; |
| 398 | } |
| 399 | |
| 400 | /* get this far and it's successful */ |
| 401 | debugf3("MC: %s(): success\n", __func__); |
| 402 | return 0; |
| 403 | |
| 404 | fail: |
| 405 | iounmap(window); |
| 406 | if (mci) |
| 407 | edac_mc_free(mci); |
| 408 | |
| 409 | return rc; |
| 410 | } |
| 411 | |
| 412 | static int __devinit x38_init_one(struct pci_dev *pdev, |
| 413 | const struct pci_device_id *ent) |
| 414 | { |
| 415 | int rc; |
| 416 | |
| 417 | debugf0("MC: %s()\n", __func__); |
| 418 | |
| 419 | if (pci_enable_device(pdev) < 0) |
| 420 | return -EIO; |
| 421 | |
| 422 | rc = x38_probe1(pdev, ent->driver_data); |
| 423 | if (!mci_pdev) |
| 424 | mci_pdev = pci_dev_get(pdev); |
| 425 | |
| 426 | return rc; |
| 427 | } |
| 428 | |
| 429 | static void __devexit x38_remove_one(struct pci_dev *pdev) |
| 430 | { |
| 431 | struct mem_ctl_info *mci; |
| 432 | |
| 433 | debugf0("%s()\n", __func__); |
| 434 | |
| 435 | mci = edac_mc_del_mc(&pdev->dev); |
| 436 | if (!mci) |
| 437 | return; |
| 438 | |
| 439 | iounmap(mci->pvt_info); |
| 440 | |
| 441 | edac_mc_free(mci); |
| 442 | } |
| 443 | |
| 444 | static const struct pci_device_id x38_pci_tbl[] __devinitdata = { |
| 445 | { |
| 446 | PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
| 447 | X38}, |
| 448 | { |
| 449 | 0, |
| 450 | } /* 0 terminated list. */ |
| 451 | }; |
| 452 | |
| 453 | MODULE_DEVICE_TABLE(pci, x38_pci_tbl); |
| 454 | |
| 455 | static struct pci_driver x38_driver = { |
| 456 | .name = EDAC_MOD_STR, |
| 457 | .probe = x38_init_one, |
| 458 | .remove = __devexit_p(x38_remove_one), |
| 459 | .id_table = x38_pci_tbl, |
| 460 | }; |
| 461 | |
| 462 | static int __init x38_init(void) |
| 463 | { |
| 464 | int pci_rc; |
| 465 | |
| 466 | debugf3("MC: %s()\n", __func__); |
| 467 | |
| 468 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| 469 | opstate_init(); |
| 470 | |
| 471 | pci_rc = pci_register_driver(&x38_driver); |
| 472 | if (pci_rc < 0) |
| 473 | goto fail0; |
| 474 | |
| 475 | if (!mci_pdev) { |
| 476 | x38_registered = 0; |
| 477 | mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| 478 | PCI_DEVICE_ID_INTEL_X38_HB, NULL); |
| 479 | if (!mci_pdev) { |
| 480 | debugf0("x38 pci_get_device fail\n"); |
| 481 | pci_rc = -ENODEV; |
| 482 | goto fail1; |
| 483 | } |
| 484 | |
| 485 | pci_rc = x38_init_one(mci_pdev, x38_pci_tbl); |
| 486 | if (pci_rc < 0) { |
| 487 | debugf0("x38 init fail\n"); |
| 488 | pci_rc = -ENODEV; |
| 489 | goto fail1; |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | return 0; |
| 494 | |
| 495 | fail1: |
| 496 | pci_unregister_driver(&x38_driver); |
| 497 | |
| 498 | fail0: |
| 499 | if (mci_pdev) |
| 500 | pci_dev_put(mci_pdev); |
| 501 | |
| 502 | return pci_rc; |
| 503 | } |
| 504 | |
| 505 | static void __exit x38_exit(void) |
| 506 | { |
| 507 | debugf3("MC: %s()\n", __func__); |
| 508 | |
| 509 | pci_unregister_driver(&x38_driver); |
| 510 | if (!x38_registered) { |
| 511 | x38_remove_one(mci_pdev); |
| 512 | pci_dev_put(mci_pdev); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | module_init(x38_init); |
| 517 | module_exit(x38_exit); |
| 518 | |
| 519 | MODULE_LICENSE("GPL"); |
| 520 | MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake"); |
| 521 | MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers"); |
| 522 | |
| 523 | module_param(edac_op_state, int, 0444); |
| 524 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |