James Hogan | 27bce45 | 2014-11-13 15:32:21 -0300 | [diff] [blame] | 1 | /* |
| 2 | * I2C adapter for the IMG Serial Control Bus (SCB) IP block. |
| 3 | * |
| 4 | * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * There are three ways that this I2C controller can be driven: |
| 11 | * |
| 12 | * - Raw control of the SDA and SCK signals. |
| 13 | * |
| 14 | * This corresponds to MODE_RAW, which takes control of the signals |
| 15 | * directly for a certain number of clock cycles (the INT_TIMING |
| 16 | * interrupt can be used for timing). |
| 17 | * |
| 18 | * - Atomic commands. A low level I2C symbol (such as generate |
| 19 | * start/stop/ack/nack bit, generate byte, receive byte, and receive |
| 20 | * ACK) is given to the hardware, with detection of completion by bits |
| 21 | * in the LINESTAT register. |
| 22 | * |
| 23 | * This mode of operation is used by MODE_ATOMIC, which uses an I2C |
| 24 | * state machine in the interrupt handler to compose/react to I2C |
| 25 | * transactions using atomic mode commands, and also by MODE_SEQUENCE, |
| 26 | * which emits a simple fixed sequence of atomic mode commands. |
| 27 | * |
| 28 | * Due to software control, the use of atomic commands usually results |
| 29 | * in suboptimal use of the bus, with gaps between the I2C symbols while |
| 30 | * the driver decides what to do next. |
| 31 | * |
| 32 | * - Automatic mode. A bus address, and whether to read/write is |
| 33 | * specified, and the hardware takes care of the I2C state machine, |
| 34 | * using a FIFO to send/receive bytes of data to an I2C slave. The |
| 35 | * driver just has to keep the FIFO drained or filled in response to the |
| 36 | * appropriate FIFO interrupts. |
| 37 | * |
| 38 | * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals |
| 39 | * with control of repeated start bits between I2C messages. |
| 40 | * |
| 41 | * Use of automatic mode and the FIFO can make much more efficient use |
| 42 | * of the bus compared to individual atomic commands, with potentially |
| 43 | * no wasted time between I2C symbols or I2C messages. |
| 44 | * |
| 45 | * In most cases MODE_AUTOMATIC is used, however if any of the messages in |
| 46 | * a transaction are zero byte writes (e.g. used by i2cdetect for probing |
| 47 | * the bus), MODE_ATOMIC must be used since automatic mode is normally |
| 48 | * started by the writing of data into the FIFO. |
| 49 | * |
| 50 | * The other modes are used in specific circumstances where MODE_ATOMIC and |
| 51 | * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus |
| 52 | * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure |
| 53 | * it is in a sane state. |
| 54 | * |
| 55 | * Notice that the driver implements a timer-based timeout mechanism. |
| 56 | * The reason for this mechanism is to reduce the number of interrupts |
| 57 | * received in automatic mode. |
| 58 | * |
| 59 | * The driver would get a slave event and transaction done interrupts for |
| 60 | * each atomic mode command that gets completed. However, these events are |
| 61 | * not needed in automatic mode, becase those atomic mode commands are |
| 62 | * managed automatically by the hardware. |
| 63 | * |
| 64 | * In practice, normal I2C transactions will be complete well before you |
| 65 | * get the timer interrupt, as the timer is re-scheduled during FIFO |
| 66 | * maintenance and disabled after the transaction is complete. |
| 67 | * |
| 68 | * In this way normal automatic mode operation isn't impacted by |
| 69 | * unnecessary interrupts, but the exceptional abort condition can still be |
| 70 | * detected (with a slight delay). |
| 71 | */ |
| 72 | |
| 73 | #include <linux/bitops.h> |
| 74 | #include <linux/clk.h> |
| 75 | #include <linux/completion.h> |
| 76 | #include <linux/err.h> |
| 77 | #include <linux/i2c.h> |
| 78 | #include <linux/init.h> |
| 79 | #include <linux/interrupt.h> |
| 80 | #include <linux/io.h> |
| 81 | #include <linux/kernel.h> |
| 82 | #include <linux/module.h> |
| 83 | #include <linux/of_platform.h> |
| 84 | #include <linux/platform_device.h> |
| 85 | #include <linux/slab.h> |
| 86 | #include <linux/timer.h> |
| 87 | |
| 88 | /* Register offsets */ |
| 89 | |
| 90 | #define SCB_STATUS_REG 0x00 |
| 91 | #define SCB_OVERRIDE_REG 0x04 |
| 92 | #define SCB_READ_ADDR_REG 0x08 |
| 93 | #define SCB_READ_COUNT_REG 0x0c |
| 94 | #define SCB_WRITE_ADDR_REG 0x10 |
| 95 | #define SCB_READ_DATA_REG 0x14 |
| 96 | #define SCB_WRITE_DATA_REG 0x18 |
| 97 | #define SCB_FIFO_STATUS_REG 0x1c |
| 98 | #define SCB_CONTROL_SOFT_RESET 0x1f |
| 99 | #define SCB_CLK_SET_REG 0x3c |
| 100 | #define SCB_INT_STATUS_REG 0x40 |
| 101 | #define SCB_INT_CLEAR_REG 0x44 |
| 102 | #define SCB_INT_MASK_REG 0x48 |
| 103 | #define SCB_CONTROL_REG 0x4c |
| 104 | #define SCB_TIME_TPL_REG 0x50 |
| 105 | #define SCB_TIME_TPH_REG 0x54 |
| 106 | #define SCB_TIME_TP2S_REG 0x58 |
| 107 | #define SCB_TIME_TBI_REG 0x60 |
| 108 | #define SCB_TIME_TSL_REG 0x64 |
| 109 | #define SCB_TIME_TDL_REG 0x68 |
| 110 | #define SCB_TIME_TSDL_REG 0x6c |
| 111 | #define SCB_TIME_TSDH_REG 0x70 |
| 112 | #define SCB_READ_XADDR_REG 0x74 |
| 113 | #define SCB_WRITE_XADDR_REG 0x78 |
| 114 | #define SCB_WRITE_COUNT_REG 0x7c |
| 115 | #define SCB_CORE_REV_REG 0x80 |
| 116 | #define SCB_TIME_TCKH_REG 0x84 |
| 117 | #define SCB_TIME_TCKL_REG 0x88 |
| 118 | #define SCB_FIFO_FLUSH_REG 0x8c |
| 119 | #define SCB_READ_FIFO_REG 0x94 |
| 120 | #define SCB_CLEAR_REG 0x98 |
| 121 | |
| 122 | /* SCB_CONTROL_REG bits */ |
| 123 | |
| 124 | #define SCB_CONTROL_CLK_ENABLE 0x1e0 |
| 125 | #define SCB_CONTROL_TRANSACTION_HALT 0x200 |
| 126 | |
| 127 | #define FIFO_READ_FULL BIT(0) |
| 128 | #define FIFO_READ_EMPTY BIT(1) |
| 129 | #define FIFO_WRITE_FULL BIT(2) |
| 130 | #define FIFO_WRITE_EMPTY BIT(3) |
| 131 | |
| 132 | /* SCB_CLK_SET_REG bits */ |
| 133 | #define SCB_FILT_DISABLE BIT(31) |
| 134 | #define SCB_FILT_BYPASS BIT(30) |
| 135 | #define SCB_FILT_INC_MASK 0x7f |
| 136 | #define SCB_FILT_INC_SHIFT 16 |
| 137 | #define SCB_INC_MASK 0x7f |
| 138 | #define SCB_INC_SHIFT 8 |
| 139 | |
| 140 | /* SCB_INT_*_REG bits */ |
| 141 | |
| 142 | #define INT_BUS_INACTIVE BIT(0) |
| 143 | #define INT_UNEXPECTED_START BIT(1) |
| 144 | #define INT_SCLK_LOW_TIMEOUT BIT(2) |
| 145 | #define INT_SDAT_LOW_TIMEOUT BIT(3) |
| 146 | #define INT_WRITE_ACK_ERR BIT(4) |
| 147 | #define INT_ADDR_ACK_ERR BIT(5) |
| 148 | #define INT_FIFO_FULL BIT(9) |
| 149 | #define INT_FIFO_FILLING BIT(10) |
| 150 | #define INT_FIFO_EMPTY BIT(11) |
| 151 | #define INT_FIFO_EMPTYING BIT(12) |
| 152 | #define INT_TRANSACTION_DONE BIT(15) |
| 153 | #define INT_SLAVE_EVENT BIT(16) |
| 154 | #define INT_TIMING BIT(18) |
| 155 | |
| 156 | #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING) |
| 157 | #define INT_FIFO_EMPTY_EMPTYING (INT_FIFO_EMPTY | INT_FIFO_EMPTYING) |
| 158 | |
| 159 | /* Level interrupts need clearing after handling instead of before */ |
| 160 | #define INT_LEVEL 0x01e00 |
| 161 | |
| 162 | /* Don't allow any interrupts while the clock may be off */ |
| 163 | #define INT_ENABLE_MASK_INACTIVE 0x00000 |
| 164 | |
| 165 | /* Interrupt masks for the different driver modes */ |
| 166 | |
| 167 | #define INT_ENABLE_MASK_RAW INT_TIMING |
| 168 | |
| 169 | #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \ |
| 170 | INT_SLAVE_EVENT | \ |
| 171 | INT_ADDR_ACK_ERR | \ |
| 172 | INT_WRITE_ACK_ERR) |
| 173 | |
| 174 | #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \ |
| 175 | INT_ADDR_ACK_ERR | \ |
| 176 | INT_WRITE_ACK_ERR | \ |
| 177 | INT_FIFO_FULL | \ |
| 178 | INT_FIFO_FILLING | \ |
| 179 | INT_FIFO_EMPTY | \ |
| 180 | INT_FIFO_EMPTYING) |
| 181 | |
| 182 | #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \ |
| 183 | INT_ADDR_ACK_ERR | \ |
| 184 | INT_WRITE_ACK_ERR) |
| 185 | |
| 186 | /* SCB_STATUS_REG fields */ |
| 187 | |
| 188 | #define LINESTAT_SCLK_LINE_STATUS BIT(0) |
| 189 | #define LINESTAT_SCLK_EN BIT(1) |
| 190 | #define LINESTAT_SDAT_LINE_STATUS BIT(2) |
| 191 | #define LINESTAT_SDAT_EN BIT(3) |
| 192 | #define LINESTAT_DET_START_STATUS BIT(4) |
| 193 | #define LINESTAT_DET_STOP_STATUS BIT(5) |
| 194 | #define LINESTAT_DET_ACK_STATUS BIT(6) |
| 195 | #define LINESTAT_DET_NACK_STATUS BIT(7) |
| 196 | #define LINESTAT_BUS_IDLE BIT(8) |
| 197 | #define LINESTAT_T_DONE_STATUS BIT(9) |
| 198 | #define LINESTAT_SCLK_OUT_STATUS BIT(10) |
| 199 | #define LINESTAT_SDAT_OUT_STATUS BIT(11) |
| 200 | #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12) |
| 201 | #define LINESTAT_START_BIT_DET BIT(13) |
| 202 | #define LINESTAT_STOP_BIT_DET BIT(14) |
| 203 | #define LINESTAT_ACK_DET BIT(15) |
| 204 | #define LINESTAT_NACK_DET BIT(16) |
| 205 | #define LINESTAT_INPUT_HELD_V BIT(17) |
| 206 | #define LINESTAT_ABORT_DET BIT(18) |
| 207 | #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET) |
| 208 | #define LINESTAT_INPUT_DATA 0xff000000 |
| 209 | #define LINESTAT_INPUT_DATA_SHIFT 24 |
| 210 | |
| 211 | #define LINESTAT_CLEAR_SHIFT 13 |
| 212 | #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT) |
| 213 | |
| 214 | /* SCB_OVERRIDE_REG fields */ |
| 215 | |
| 216 | #define OVERRIDE_SCLK_OVR BIT(0) |
| 217 | #define OVERRIDE_SCLKEN_OVR BIT(1) |
| 218 | #define OVERRIDE_SDAT_OVR BIT(2) |
| 219 | #define OVERRIDE_SDATEN_OVR BIT(3) |
| 220 | #define OVERRIDE_MASTER BIT(9) |
| 221 | #define OVERRIDE_LINE_OVR_EN BIT(10) |
| 222 | #define OVERRIDE_DIRECT BIT(11) |
| 223 | #define OVERRIDE_CMD_SHIFT 4 |
| 224 | #define OVERRIDE_CMD_MASK 0x1f |
| 225 | #define OVERRIDE_DATA_SHIFT 24 |
| 226 | |
| 227 | #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \ |
| 228 | OVERRIDE_SCLKEN_OVR) |
| 229 | #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \ |
| 230 | OVERRIDE_SCLKEN_OVR | \ |
| 231 | OVERRIDE_SCLK_OVR) |
| 232 | #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \ |
| 233 | OVERRIDE_SDATEN_OVR) |
| 234 | #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \ |
| 235 | OVERRIDE_SDATEN_OVR | \ |
| 236 | OVERRIDE_SDAT_OVR) |
| 237 | |
| 238 | /* OVERRIDE_CMD values */ |
| 239 | |
| 240 | #define CMD_PAUSE 0x00 |
| 241 | #define CMD_GEN_DATA 0x01 |
| 242 | #define CMD_GEN_START 0x02 |
| 243 | #define CMD_GEN_STOP 0x03 |
| 244 | #define CMD_GEN_ACK 0x04 |
| 245 | #define CMD_GEN_NACK 0x05 |
| 246 | #define CMD_RET_DATA 0x08 |
| 247 | #define CMD_RET_ACK 0x09 |
| 248 | |
| 249 | /* Fixed timing values */ |
| 250 | |
| 251 | #define TIMEOUT_TBI 0x0 |
| 252 | #define TIMEOUT_TSL 0xffff |
| 253 | #define TIMEOUT_TDL 0x0 |
| 254 | |
| 255 | /* Transaction timeout */ |
| 256 | |
| 257 | #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000)) |
| 258 | |
| 259 | /* |
| 260 | * Worst incs are 1 (innacurate) and 16*256 (irregular). |
| 261 | * So a sensible inc is the logarithmic mean: 64 (2^6), which is |
| 262 | * in the middle of the valid range (0-127). |
| 263 | */ |
| 264 | #define SCB_OPT_INC 64 |
| 265 | |
| 266 | /* Setup the clock enable filtering for 25 ns */ |
| 267 | #define SCB_FILT_GLITCH 25 |
| 268 | |
| 269 | /* |
| 270 | * Bits to return from interrupt handler functions for different modes. |
| 271 | * This delays completion until we've finished with the registers, so that the |
| 272 | * function waiting for completion can safely disable the clock to save power. |
| 273 | */ |
| 274 | #define ISR_COMPLETE_M BIT(31) |
| 275 | #define ISR_FATAL_M BIT(30) |
| 276 | #define ISR_WAITSTOP BIT(29) |
| 277 | #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */ |
| 278 | #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err))) |
| 279 | #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M) |
| 280 | |
| 281 | #define REL_SOC_IP_SCB_2_2_1 0x00020201 |
| 282 | |
| 283 | enum img_i2c_mode { |
| 284 | MODE_INACTIVE, |
| 285 | MODE_RAW, |
| 286 | MODE_ATOMIC, |
| 287 | MODE_AUTOMATIC, |
| 288 | MODE_SEQUENCE, |
| 289 | MODE_FATAL, |
| 290 | MODE_WAITSTOP, |
| 291 | MODE_SUSPEND, |
| 292 | }; |
| 293 | |
| 294 | /* Timing parameters for i2c modes (in ns) */ |
| 295 | struct img_i2c_timings { |
| 296 | const char *name; |
| 297 | unsigned int max_bitrate; |
| 298 | unsigned int tckh, tckl, tsdh, tsdl; |
| 299 | unsigned int tp2s, tpl, tph; |
| 300 | }; |
| 301 | |
| 302 | /* The timings array must be ordered from slower to faster */ |
| 303 | static struct img_i2c_timings timings[] = { |
| 304 | /* Standard mode */ |
| 305 | { |
| 306 | .name = "standard", |
| 307 | .max_bitrate = 100000, |
| 308 | .tckh = 4000, |
| 309 | .tckl = 4700, |
| 310 | .tsdh = 4700, |
| 311 | .tsdl = 8700, |
| 312 | .tp2s = 4700, |
| 313 | .tpl = 4700, |
| 314 | .tph = 4000, |
| 315 | }, |
| 316 | /* Fast mode */ |
| 317 | { |
| 318 | .name = "fast", |
| 319 | .max_bitrate = 400000, |
| 320 | .tckh = 600, |
| 321 | .tckl = 1300, |
| 322 | .tsdh = 600, |
| 323 | .tsdl = 1200, |
| 324 | .tp2s = 1300, |
| 325 | .tpl = 600, |
| 326 | .tph = 600, |
| 327 | }, |
| 328 | }; |
| 329 | |
| 330 | /* Reset dance */ |
| 331 | static u8 img_i2c_reset_seq[] = { CMD_GEN_START, |
| 332 | CMD_GEN_DATA, 0xff, |
| 333 | CMD_RET_ACK, |
| 334 | CMD_GEN_START, |
| 335 | CMD_GEN_STOP, |
| 336 | 0 }; |
| 337 | /* Just issue a stop (after an abort condition) */ |
| 338 | static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP, |
| 339 | 0 }; |
| 340 | |
| 341 | /* We're interested in different interrupts depending on the mode */ |
| 342 | static unsigned int img_i2c_int_enable_by_mode[] = { |
| 343 | [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE, |
| 344 | [MODE_RAW] = INT_ENABLE_MASK_RAW, |
| 345 | [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC, |
| 346 | [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC, |
| 347 | [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC, |
| 348 | [MODE_FATAL] = 0, |
| 349 | [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP, |
| 350 | [MODE_SUSPEND] = 0, |
| 351 | }; |
| 352 | |
| 353 | /* Atomic command names */ |
| 354 | static const char * const img_i2c_atomic_cmd_names[] = { |
| 355 | [CMD_PAUSE] = "PAUSE", |
| 356 | [CMD_GEN_DATA] = "GEN_DATA", |
| 357 | [CMD_GEN_START] = "GEN_START", |
| 358 | [CMD_GEN_STOP] = "GEN_STOP", |
| 359 | [CMD_GEN_ACK] = "GEN_ACK", |
| 360 | [CMD_GEN_NACK] = "GEN_NACK", |
| 361 | [CMD_RET_DATA] = "RET_DATA", |
| 362 | [CMD_RET_ACK] = "RET_ACK", |
| 363 | }; |
| 364 | |
| 365 | struct img_i2c { |
| 366 | struct i2c_adapter adap; |
| 367 | |
| 368 | void __iomem *base; |
| 369 | |
| 370 | /* |
| 371 | * The scb core clock is used to get the input frequency, and to disable |
| 372 | * it after every set of transactions to save some power. |
| 373 | */ |
| 374 | struct clk *scb_clk, *sys_clk; |
| 375 | unsigned int bitrate; |
| 376 | bool need_wr_rd_fence; |
| 377 | |
| 378 | /* state */ |
| 379 | struct completion msg_complete; |
| 380 | spinlock_t lock; /* lock before doing anything with the state */ |
| 381 | struct i2c_msg msg; |
| 382 | |
| 383 | /* After the last transaction, wait for a stop bit */ |
| 384 | bool last_msg; |
| 385 | int msg_status; |
| 386 | |
| 387 | enum img_i2c_mode mode; |
| 388 | u32 int_enable; /* depends on mode */ |
| 389 | u32 line_status; /* line status over command */ |
| 390 | |
| 391 | /* |
| 392 | * To avoid slave event interrupts in automatic mode, use a timer to |
| 393 | * poll the abort condition if we don't get an interrupt for too long. |
| 394 | */ |
| 395 | struct timer_list check_timer; |
| 396 | bool t_halt; |
| 397 | |
| 398 | /* atomic mode state */ |
| 399 | bool at_t_done; |
| 400 | bool at_slave_event; |
| 401 | int at_cur_cmd; |
| 402 | u8 at_cur_data; |
| 403 | |
| 404 | /* Sequence: either reset or stop. See img_i2c_sequence. */ |
| 405 | u8 *seq; |
| 406 | |
| 407 | /* raw mode */ |
| 408 | unsigned int raw_timeout; |
| 409 | }; |
| 410 | |
| 411 | static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value) |
| 412 | { |
| 413 | writel(value, i2c->base + offset); |
| 414 | } |
| 415 | |
| 416 | static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset) |
| 417 | { |
| 418 | return readl(i2c->base + offset); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * The code to read from the master read fifo, and write to the master |
| 423 | * write fifo, checks a bit in an SCB register before every byte to |
| 424 | * ensure that the fifo is not full (write fifo) or empty (read fifo). |
| 425 | * Due to clock domain crossing inside the SCB block the updated value |
| 426 | * of this bit is only visible after 2 cycles. |
| 427 | * |
| 428 | * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only |
| 429 | * revision register), and it's called after reading from or writing to the |
| 430 | * fifos to ensure that subsequent reads of the fifo status bits do not read |
| 431 | * stale values. |
| 432 | */ |
| 433 | static void img_i2c_wr_rd_fence(struct img_i2c *i2c) |
| 434 | { |
| 435 | if (i2c->need_wr_rd_fence) { |
| 436 | img_i2c_writel(i2c, SCB_CORE_REV_REG, 0); |
| 437 | img_i2c_writel(i2c, SCB_CORE_REV_REG, 0); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode) |
| 442 | { |
| 443 | i2c->mode = mode; |
| 444 | i2c->int_enable = img_i2c_int_enable_by_mode[mode]; |
| 445 | i2c->line_status = 0; |
| 446 | } |
| 447 | |
| 448 | static void img_i2c_raw_op(struct img_i2c *i2c) |
| 449 | { |
| 450 | i2c->raw_timeout = 0; |
| 451 | img_i2c_writel(i2c, SCB_OVERRIDE_REG, |
| 452 | OVERRIDE_SCLKEN_OVR | |
| 453 | OVERRIDE_SDATEN_OVR | |
| 454 | OVERRIDE_MASTER | |
| 455 | OVERRIDE_LINE_OVR_EN | |
| 456 | OVERRIDE_DIRECT | |
| 457 | ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) | |
| 458 | (i2c->at_cur_data << OVERRIDE_DATA_SHIFT)); |
| 459 | } |
| 460 | |
| 461 | static const char *img_i2c_atomic_op_name(unsigned int cmd) |
| 462 | { |
| 463 | if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names))) |
| 464 | return "UNKNOWN"; |
| 465 | return img_i2c_atomic_cmd_names[cmd]; |
| 466 | } |
| 467 | |
| 468 | /* Send a single atomic mode command to the hardware */ |
| 469 | static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data) |
| 470 | { |
| 471 | i2c->at_cur_cmd = cmd; |
| 472 | i2c->at_cur_data = data; |
| 473 | |
| 474 | /* work around lack of data setup time when generating data */ |
| 475 | if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) { |
| 476 | u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| 477 | |
| 478 | if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) { |
| 479 | /* hold the data line down for a moment */ |
| 480 | img_i2c_switch_mode(i2c, MODE_RAW); |
| 481 | img_i2c_raw_op(i2c); |
| 482 | return; |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | dev_dbg(i2c->adap.dev.parent, |
| 487 | "atomic cmd=%s (%d) data=%#x\n", |
| 488 | img_i2c_atomic_op_name(cmd), cmd, data); |
| 489 | i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK); |
| 490 | i2c->at_slave_event = false; |
| 491 | i2c->line_status = 0; |
| 492 | |
| 493 | img_i2c_writel(i2c, SCB_OVERRIDE_REG, |
| 494 | ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) | |
| 495 | OVERRIDE_MASTER | |
| 496 | OVERRIDE_DIRECT | |
| 497 | (data << OVERRIDE_DATA_SHIFT)); |
| 498 | } |
| 499 | |
| 500 | /* Start a transaction in atomic mode */ |
| 501 | static void img_i2c_atomic_start(struct img_i2c *i2c) |
| 502 | { |
| 503 | img_i2c_switch_mode(i2c, MODE_ATOMIC); |
| 504 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 505 | img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00); |
| 506 | } |
| 507 | |
| 508 | static void img_i2c_soft_reset(struct img_i2c *i2c) |
| 509 | { |
| 510 | i2c->t_halt = false; |
| 511 | img_i2c_writel(i2c, SCB_CONTROL_REG, 0); |
| 512 | img_i2c_writel(i2c, SCB_CONTROL_REG, |
| 513 | SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET); |
| 514 | } |
| 515 | |
| 516 | /* enable or release transaction halt for control of repeated starts */ |
| 517 | static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt) |
| 518 | { |
| 519 | u32 val; |
| 520 | |
| 521 | if (i2c->t_halt == t_halt) |
| 522 | return; |
| 523 | i2c->t_halt = t_halt; |
| 524 | val = img_i2c_readl(i2c, SCB_CONTROL_REG); |
| 525 | if (t_halt) |
| 526 | val |= SCB_CONTROL_TRANSACTION_HALT; |
| 527 | else |
| 528 | val &= ~SCB_CONTROL_TRANSACTION_HALT; |
| 529 | img_i2c_writel(i2c, SCB_CONTROL_REG, val); |
| 530 | } |
| 531 | |
| 532 | /* Drain data from the FIFO into the buffer (automatic mode) */ |
| 533 | static void img_i2c_read_fifo(struct img_i2c *i2c) |
| 534 | { |
| 535 | while (i2c->msg.len) { |
| 536 | u32 fifo_status; |
| 537 | u8 data; |
| 538 | |
| 539 | fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG); |
| 540 | if (fifo_status & FIFO_READ_EMPTY) |
| 541 | break; |
| 542 | |
| 543 | data = img_i2c_readl(i2c, SCB_READ_DATA_REG); |
| 544 | *i2c->msg.buf = data; |
| 545 | |
| 546 | img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff); |
| 547 | img_i2c_wr_rd_fence(i2c); |
| 548 | i2c->msg.len--; |
| 549 | i2c->msg.buf++; |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | /* Fill the FIFO with data from the buffer (automatic mode) */ |
| 554 | static void img_i2c_write_fifo(struct img_i2c *i2c) |
| 555 | { |
| 556 | while (i2c->msg.len) { |
| 557 | u32 fifo_status; |
| 558 | |
| 559 | fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG); |
| 560 | if (fifo_status & FIFO_WRITE_FULL) |
| 561 | break; |
| 562 | |
| 563 | img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf); |
| 564 | img_i2c_wr_rd_fence(i2c); |
| 565 | i2c->msg.len--; |
| 566 | i2c->msg.buf++; |
| 567 | } |
| 568 | |
| 569 | /* Disable fifo emptying interrupt if nothing more to write */ |
| 570 | if (!i2c->msg.len) |
| 571 | i2c->int_enable &= ~INT_FIFO_EMPTYING; |
| 572 | } |
| 573 | |
| 574 | /* Start a read transaction in automatic mode */ |
| 575 | static void img_i2c_read(struct img_i2c *i2c) |
| 576 | { |
| 577 | img_i2c_switch_mode(i2c, MODE_AUTOMATIC); |
| 578 | if (!i2c->last_msg) |
| 579 | i2c->int_enable |= INT_SLAVE_EVENT; |
| 580 | |
| 581 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 582 | img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr); |
| 583 | img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len); |
| 584 | |
| 585 | img_i2c_transaction_halt(i2c, false); |
| 586 | mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| 587 | } |
| 588 | |
| 589 | /* Start a write transaction in automatic mode */ |
| 590 | static void img_i2c_write(struct img_i2c *i2c) |
| 591 | { |
| 592 | img_i2c_switch_mode(i2c, MODE_AUTOMATIC); |
| 593 | if (!i2c->last_msg) |
| 594 | i2c->int_enable |= INT_SLAVE_EVENT; |
| 595 | |
| 596 | img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr); |
| 597 | img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len); |
| 598 | |
| 599 | img_i2c_transaction_halt(i2c, false); |
| 600 | mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| 601 | img_i2c_write_fifo(i2c); |
| 602 | |
| 603 | /* img_i2c_write_fifo() may modify int_enable */ |
| 604 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 605 | } |
| 606 | |
| 607 | /* |
| 608 | * Indicate that the transaction is complete. This is called from the |
| 609 | * ISR to wake up the waiting thread, after which the ISR must not |
| 610 | * access any more SCB registers. |
| 611 | */ |
| 612 | static void img_i2c_complete_transaction(struct img_i2c *i2c, int status) |
| 613 | { |
| 614 | img_i2c_switch_mode(i2c, MODE_INACTIVE); |
| 615 | if (status) { |
| 616 | i2c->msg_status = status; |
| 617 | img_i2c_transaction_halt(i2c, false); |
| 618 | } |
| 619 | complete(&i2c->msg_complete); |
| 620 | } |
| 621 | |
| 622 | static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c, |
| 623 | u32 int_status, u32 line_status) |
| 624 | { |
| 625 | /* Stay in raw mode for this, so we don't just loop infinitely */ |
| 626 | img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data); |
| 627 | img_i2c_switch_mode(i2c, MODE_ATOMIC); |
| 628 | return 0; |
| 629 | } |
| 630 | |
| 631 | static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status, |
| 632 | u32 line_status) |
| 633 | { |
| 634 | if (int_status & INT_TIMING) { |
| 635 | if (i2c->raw_timeout == 0) |
| 636 | return img_i2c_raw_atomic_delay_handler(i2c, |
| 637 | int_status, line_status); |
| 638 | --i2c->raw_timeout; |
| 639 | } |
| 640 | return 0; |
| 641 | } |
| 642 | |
| 643 | static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status) |
| 644 | { |
| 645 | static const unsigned int continue_bits[] = { |
| 646 | [CMD_GEN_START] = LINESTAT_START_BIT_DET, |
| 647 | [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V, |
| 648 | [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET, |
| 649 | [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V, |
| 650 | [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET, |
| 651 | }; |
| 652 | int next_cmd = -1; |
| 653 | u8 next_data = 0x00; |
| 654 | |
| 655 | if (int_status & INT_SLAVE_EVENT) |
| 656 | i2c->at_slave_event = true; |
| 657 | if (int_status & INT_TRANSACTION_DONE) |
| 658 | i2c->at_t_done = true; |
| 659 | |
| 660 | if (!i2c->at_slave_event || !i2c->at_t_done) |
| 661 | return 0; |
| 662 | |
| 663 | /* wait if no continue bits are set */ |
| 664 | if (i2c->at_cur_cmd >= 0 && |
| 665 | i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) { |
| 666 | unsigned int cont_bits = continue_bits[i2c->at_cur_cmd]; |
| 667 | |
| 668 | if (cont_bits) { |
| 669 | cont_bits |= LINESTAT_ABORT_DET; |
| 670 | if (!(i2c->line_status & cont_bits)) |
| 671 | return 0; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | /* follow the sequence of commands in i2c->seq */ |
| 676 | next_cmd = *i2c->seq; |
| 677 | /* stop on a nil */ |
| 678 | if (!next_cmd) { |
| 679 | img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0); |
| 680 | return ISR_COMPLETE(0); |
| 681 | } |
| 682 | /* when generating data, the next byte is the data */ |
| 683 | if (next_cmd == CMD_GEN_DATA) { |
| 684 | ++i2c->seq; |
| 685 | next_data = *i2c->seq; |
| 686 | } |
| 687 | ++i2c->seq; |
| 688 | img_i2c_atomic_op(i2c, next_cmd, next_data); |
| 689 | |
| 690 | return 0; |
| 691 | } |
| 692 | |
| 693 | static void img_i2c_reset_start(struct img_i2c *i2c) |
| 694 | { |
| 695 | /* Initiate the magic dance */ |
| 696 | img_i2c_switch_mode(i2c, MODE_SEQUENCE); |
| 697 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 698 | i2c->seq = img_i2c_reset_seq; |
| 699 | i2c->at_slave_event = true; |
| 700 | i2c->at_t_done = true; |
| 701 | i2c->at_cur_cmd = -1; |
| 702 | |
| 703 | /* img_i2c_reset_seq isn't empty so the following won't fail */ |
| 704 | img_i2c_sequence(i2c, 0); |
| 705 | } |
| 706 | |
| 707 | static void img_i2c_stop_start(struct img_i2c *i2c) |
| 708 | { |
| 709 | /* Initiate a stop bit sequence */ |
| 710 | img_i2c_switch_mode(i2c, MODE_SEQUENCE); |
| 711 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 712 | i2c->seq = img_i2c_stop_seq; |
| 713 | i2c->at_slave_event = true; |
| 714 | i2c->at_t_done = true; |
| 715 | i2c->at_cur_cmd = -1; |
| 716 | |
| 717 | /* img_i2c_stop_seq isn't empty so the following won't fail */ |
| 718 | img_i2c_sequence(i2c, 0); |
| 719 | } |
| 720 | |
| 721 | static unsigned int img_i2c_atomic(struct img_i2c *i2c, |
| 722 | u32 int_status, |
| 723 | u32 line_status) |
| 724 | { |
| 725 | int next_cmd = -1; |
| 726 | u8 next_data = 0x00; |
| 727 | |
| 728 | if (int_status & INT_SLAVE_EVENT) |
| 729 | i2c->at_slave_event = true; |
| 730 | if (int_status & INT_TRANSACTION_DONE) |
| 731 | i2c->at_t_done = true; |
| 732 | |
| 733 | if (!i2c->at_slave_event || !i2c->at_t_done) |
| 734 | goto next_atomic_cmd; |
| 735 | if (i2c->line_status & LINESTAT_ABORT_DET) { |
| 736 | dev_dbg(i2c->adap.dev.parent, "abort condition detected\n"); |
| 737 | next_cmd = CMD_GEN_STOP; |
| 738 | i2c->msg_status = -EIO; |
| 739 | goto next_atomic_cmd; |
| 740 | } |
| 741 | |
| 742 | /* i2c->at_cur_cmd may have completed */ |
| 743 | switch (i2c->at_cur_cmd) { |
| 744 | case CMD_GEN_START: |
| 745 | next_cmd = CMD_GEN_DATA; |
| 746 | next_data = (i2c->msg.addr << 1); |
| 747 | if (i2c->msg.flags & I2C_M_RD) |
| 748 | next_data |= 0x1; |
| 749 | break; |
| 750 | case CMD_GEN_DATA: |
| 751 | if (i2c->line_status & LINESTAT_INPUT_HELD_V) |
| 752 | next_cmd = CMD_RET_ACK; |
| 753 | break; |
| 754 | case CMD_RET_ACK: |
| 755 | if (i2c->line_status & LINESTAT_ACK_DET) { |
| 756 | if (i2c->msg.len == 0) { |
| 757 | next_cmd = CMD_GEN_STOP; |
| 758 | } else if (i2c->msg.flags & I2C_M_RD) { |
| 759 | next_cmd = CMD_RET_DATA; |
| 760 | } else { |
| 761 | next_cmd = CMD_GEN_DATA; |
| 762 | next_data = *i2c->msg.buf; |
| 763 | --i2c->msg.len; |
| 764 | ++i2c->msg.buf; |
| 765 | } |
| 766 | } else if (i2c->line_status & LINESTAT_NACK_DET) { |
| 767 | i2c->msg_status = -EIO; |
| 768 | next_cmd = CMD_GEN_STOP; |
| 769 | } |
| 770 | break; |
| 771 | case CMD_RET_DATA: |
| 772 | if (i2c->line_status & LINESTAT_INPUT_HELD_V) { |
| 773 | *i2c->msg.buf = (i2c->line_status & |
| 774 | LINESTAT_INPUT_DATA) |
| 775 | >> LINESTAT_INPUT_DATA_SHIFT; |
| 776 | --i2c->msg.len; |
| 777 | ++i2c->msg.buf; |
| 778 | if (i2c->msg.len) |
| 779 | next_cmd = CMD_GEN_ACK; |
| 780 | else |
| 781 | next_cmd = CMD_GEN_NACK; |
| 782 | } |
| 783 | break; |
| 784 | case CMD_GEN_ACK: |
| 785 | if (i2c->line_status & LINESTAT_ACK_DET) { |
| 786 | next_cmd = CMD_RET_DATA; |
| 787 | } else { |
| 788 | i2c->msg_status = -EIO; |
| 789 | next_cmd = CMD_GEN_STOP; |
| 790 | } |
| 791 | break; |
| 792 | case CMD_GEN_NACK: |
| 793 | next_cmd = CMD_GEN_STOP; |
| 794 | break; |
| 795 | case CMD_GEN_STOP: |
| 796 | img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0); |
| 797 | return ISR_COMPLETE(0); |
| 798 | default: |
| 799 | dev_err(i2c->adap.dev.parent, "bad atomic command %d\n", |
| 800 | i2c->at_cur_cmd); |
| 801 | i2c->msg_status = -EIO; |
| 802 | next_cmd = CMD_GEN_STOP; |
| 803 | break; |
| 804 | } |
| 805 | |
| 806 | next_atomic_cmd: |
| 807 | if (next_cmd != -1) { |
| 808 | /* don't actually stop unless we're the last transaction */ |
| 809 | if (next_cmd == CMD_GEN_STOP && !i2c->msg_status && |
| 810 | !i2c->last_msg) |
| 811 | return ISR_COMPLETE(0); |
| 812 | img_i2c_atomic_op(i2c, next_cmd, next_data); |
| 813 | } |
| 814 | return 0; |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | * Timer function to check if something has gone wrong in automatic mode (so we |
| 819 | * don't have to handle so many interrupts just to catch an exception). |
| 820 | */ |
| 821 | static void img_i2c_check_timer(unsigned long arg) |
| 822 | { |
| 823 | struct img_i2c *i2c = (struct img_i2c *)arg; |
| 824 | unsigned long flags; |
| 825 | unsigned int line_status; |
| 826 | |
| 827 | spin_lock_irqsave(&i2c->lock, flags); |
| 828 | line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| 829 | |
| 830 | /* check for an abort condition */ |
| 831 | if (line_status & LINESTAT_ABORT_DET) { |
| 832 | dev_dbg(i2c->adap.dev.parent, |
| 833 | "abort condition detected by check timer\n"); |
| 834 | /* enable slave event interrupt mask to trigger irq */ |
| 835 | img_i2c_writel(i2c, SCB_INT_MASK_REG, |
| 836 | i2c->int_enable | INT_SLAVE_EVENT); |
| 837 | } |
| 838 | |
| 839 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 840 | } |
| 841 | |
| 842 | static unsigned int img_i2c_auto(struct img_i2c *i2c, |
| 843 | unsigned int int_status, |
| 844 | unsigned int line_status) |
| 845 | { |
| 846 | if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR)) |
| 847 | return ISR_COMPLETE(EIO); |
| 848 | |
| 849 | if (line_status & LINESTAT_ABORT_DET) { |
| 850 | dev_dbg(i2c->adap.dev.parent, "abort condition detected\n"); |
| 851 | /* empty the read fifo */ |
| 852 | if ((i2c->msg.flags & I2C_M_RD) && |
| 853 | (int_status & INT_FIFO_FULL_FILLING)) |
| 854 | img_i2c_read_fifo(i2c); |
| 855 | /* use atomic mode and try to force a stop bit */ |
| 856 | i2c->msg_status = -EIO; |
| 857 | img_i2c_stop_start(i2c); |
| 858 | return 0; |
| 859 | } |
| 860 | |
| 861 | /* Enable transaction halt on start bit */ |
| 862 | if (!i2c->last_msg && i2c->line_status & LINESTAT_START_BIT_DET) { |
| 863 | img_i2c_transaction_halt(i2c, true); |
| 864 | /* we're no longer interested in the slave event */ |
| 865 | i2c->int_enable &= ~INT_SLAVE_EVENT; |
| 866 | } |
| 867 | |
| 868 | mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| 869 | |
| 870 | if (i2c->msg.flags & I2C_M_RD) { |
| 871 | if (int_status & INT_FIFO_FULL_FILLING) { |
| 872 | img_i2c_read_fifo(i2c); |
| 873 | if (i2c->msg.len == 0) |
| 874 | return ISR_WAITSTOP; |
| 875 | } |
| 876 | } else { |
| 877 | if (int_status & INT_FIFO_EMPTY_EMPTYING) { |
| 878 | /* |
| 879 | * The write fifo empty indicates that we're in the |
| 880 | * last byte so it's safe to start a new write |
| 881 | * transaction without losing any bytes from the |
| 882 | * previous one. |
| 883 | * see 2.3.7 Repeated Start Transactions. |
| 884 | */ |
| 885 | if ((int_status & INT_FIFO_EMPTY) && |
| 886 | i2c->msg.len == 0) |
| 887 | return ISR_WAITSTOP; |
| 888 | img_i2c_write_fifo(i2c); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | return 0; |
| 893 | } |
| 894 | |
| 895 | static irqreturn_t img_i2c_isr(int irq, void *dev_id) |
| 896 | { |
| 897 | struct img_i2c *i2c = (struct img_i2c *)dev_id; |
| 898 | u32 int_status, line_status; |
| 899 | /* We handle transaction completion AFTER accessing registers */ |
| 900 | unsigned int hret; |
| 901 | |
| 902 | /* Read interrupt status register. */ |
| 903 | int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG); |
| 904 | /* Clear detected interrupts. */ |
| 905 | img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status); |
| 906 | |
| 907 | /* |
| 908 | * Read line status and clear it until it actually is clear. We have |
| 909 | * to be careful not to lose any line status bits that get latched. |
| 910 | */ |
| 911 | line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| 912 | if (line_status & LINESTAT_LATCHED) { |
| 913 | img_i2c_writel(i2c, SCB_CLEAR_REG, |
| 914 | (line_status & LINESTAT_LATCHED) |
| 915 | >> LINESTAT_CLEAR_SHIFT); |
| 916 | img_i2c_wr_rd_fence(i2c); |
| 917 | } |
| 918 | |
| 919 | spin_lock(&i2c->lock); |
| 920 | |
| 921 | /* Keep track of line status bits received */ |
| 922 | i2c->line_status &= ~LINESTAT_INPUT_DATA; |
| 923 | i2c->line_status |= line_status; |
| 924 | |
| 925 | /* |
| 926 | * Certain interrupts indicate that sclk low timeout is not |
| 927 | * a problem. If any of these are set, just continue. |
| 928 | */ |
| 929 | if ((int_status & INT_SCLK_LOW_TIMEOUT) && |
| 930 | !(int_status & (INT_SLAVE_EVENT | |
| 931 | INT_FIFO_EMPTY | |
| 932 | INT_FIFO_FULL))) { |
| 933 | dev_crit(i2c->adap.dev.parent, |
| 934 | "fatal: clock low timeout occurred %s addr 0x%02x\n", |
| 935 | (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing", |
| 936 | i2c->msg.addr); |
| 937 | hret = ISR_FATAL(EIO); |
| 938 | goto out; |
| 939 | } |
| 940 | |
| 941 | if (i2c->mode == MODE_ATOMIC) |
| 942 | hret = img_i2c_atomic(i2c, int_status, line_status); |
| 943 | else if (i2c->mode == MODE_AUTOMATIC) |
| 944 | hret = img_i2c_auto(i2c, int_status, line_status); |
| 945 | else if (i2c->mode == MODE_SEQUENCE) |
| 946 | hret = img_i2c_sequence(i2c, int_status); |
| 947 | else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) && |
| 948 | (line_status & LINESTAT_STOP_BIT_DET)) |
| 949 | hret = ISR_COMPLETE(0); |
| 950 | else if (i2c->mode == MODE_RAW) |
| 951 | hret = img_i2c_raw(i2c, int_status, line_status); |
| 952 | else |
| 953 | hret = 0; |
| 954 | |
| 955 | /* Clear detected level interrupts. */ |
| 956 | img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL); |
| 957 | |
| 958 | out: |
| 959 | if (hret & ISR_WAITSTOP) { |
| 960 | /* |
| 961 | * Only wait for stop on last message. |
| 962 | * Also we may already have detected the stop bit. |
| 963 | */ |
| 964 | if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET) |
| 965 | hret = ISR_COMPLETE(0); |
| 966 | else |
| 967 | img_i2c_switch_mode(i2c, MODE_WAITSTOP); |
| 968 | } |
| 969 | |
| 970 | /* now we've finished using regs, handle transaction completion */ |
| 971 | if (hret & ISR_COMPLETE_M) { |
| 972 | int status = -(hret & ISR_STATUS_M); |
| 973 | |
| 974 | img_i2c_complete_transaction(i2c, status); |
| 975 | if (hret & ISR_FATAL_M) |
| 976 | img_i2c_switch_mode(i2c, MODE_FATAL); |
| 977 | } |
| 978 | |
| 979 | /* Enable interrupts (int_enable may be altered by changing mode) */ |
| 980 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 981 | |
| 982 | spin_unlock(&i2c->lock); |
| 983 | |
| 984 | return IRQ_HANDLED; |
| 985 | } |
| 986 | |
| 987 | /* Force a bus reset sequence and wait for it to complete */ |
| 988 | static int img_i2c_reset_bus(struct img_i2c *i2c) |
| 989 | { |
| 990 | unsigned long flags; |
Nicholas Mc Guire | 913b1d8 | 2015-02-09 10:15:21 -0500 | [diff] [blame] | 991 | unsigned long time_left; |
James Hogan | 27bce45 | 2014-11-13 15:32:21 -0300 | [diff] [blame] | 992 | |
| 993 | spin_lock_irqsave(&i2c->lock, flags); |
| 994 | reinit_completion(&i2c->msg_complete); |
| 995 | img_i2c_reset_start(i2c); |
| 996 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 997 | |
Nicholas Mc Guire | 913b1d8 | 2015-02-09 10:15:21 -0500 | [diff] [blame] | 998 | time_left = wait_for_completion_timeout(&i2c->msg_complete, |
| 999 | IMG_I2C_TIMEOUT); |
| 1000 | if (time_left == 0) |
James Hogan | 27bce45 | 2014-11-13 15:32:21 -0300 | [diff] [blame] | 1001 | return -ETIMEDOUT; |
| 1002 | return 0; |
| 1003 | } |
| 1004 | |
| 1005 | static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, |
| 1006 | int num) |
| 1007 | { |
| 1008 | struct img_i2c *i2c = i2c_get_adapdata(adap); |
| 1009 | bool atomic = false; |
| 1010 | int i, ret; |
Nicholas Mc Guire | 913b1d8 | 2015-02-09 10:15:21 -0500 | [diff] [blame] | 1011 | unsigned long time_left; |
James Hogan | 27bce45 | 2014-11-13 15:32:21 -0300 | [diff] [blame] | 1012 | |
| 1013 | if (i2c->mode == MODE_SUSPEND) { |
| 1014 | WARN(1, "refusing to service transaction in suspended state\n"); |
| 1015 | return -EIO; |
| 1016 | } |
| 1017 | |
| 1018 | if (i2c->mode == MODE_FATAL) |
| 1019 | return -EIO; |
| 1020 | |
| 1021 | for (i = 0; i < num; i++) { |
| 1022 | if (likely(msgs[i].len)) |
| 1023 | continue; |
| 1024 | /* |
| 1025 | * 0 byte reads are not possible because the slave could try |
| 1026 | * and pull the data line low, preventing a stop bit. |
| 1027 | */ |
| 1028 | if (unlikely(msgs[i].flags & I2C_M_RD)) |
| 1029 | return -EIO; |
| 1030 | /* |
| 1031 | * 0 byte writes are possible and used for probing, but we |
| 1032 | * cannot do them in automatic mode, so use atomic mode |
| 1033 | * instead. |
| 1034 | */ |
| 1035 | atomic = true; |
| 1036 | } |
| 1037 | |
| 1038 | ret = clk_prepare_enable(i2c->scb_clk); |
| 1039 | if (ret) |
| 1040 | return ret; |
| 1041 | |
| 1042 | for (i = 0; i < num; i++) { |
| 1043 | struct i2c_msg *msg = &msgs[i]; |
| 1044 | unsigned long flags; |
| 1045 | |
| 1046 | spin_lock_irqsave(&i2c->lock, flags); |
| 1047 | |
| 1048 | /* |
| 1049 | * Make a copy of the message struct. We mustn't modify the |
| 1050 | * original or we'll confuse drivers and i2c-dev. |
| 1051 | */ |
| 1052 | i2c->msg = *msg; |
| 1053 | i2c->msg_status = 0; |
| 1054 | |
| 1055 | /* |
| 1056 | * After the last message we must have waited for a stop bit. |
| 1057 | * Not waiting can cause problems when the clock is disabled |
| 1058 | * before the stop bit is sent, and the linux I2C interface |
| 1059 | * requires separate transfers not to joined with repeated |
| 1060 | * start. |
| 1061 | */ |
| 1062 | i2c->last_msg = (i == num - 1); |
| 1063 | reinit_completion(&i2c->msg_complete); |
| 1064 | |
| 1065 | if (atomic) |
| 1066 | img_i2c_atomic_start(i2c); |
| 1067 | else if (msg->flags & I2C_M_RD) |
| 1068 | img_i2c_read(i2c); |
| 1069 | else |
| 1070 | img_i2c_write(i2c); |
| 1071 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 1072 | |
Nicholas Mc Guire | 913b1d8 | 2015-02-09 10:15:21 -0500 | [diff] [blame] | 1073 | time_left = wait_for_completion_timeout(&i2c->msg_complete, |
| 1074 | IMG_I2C_TIMEOUT); |
James Hogan | 27bce45 | 2014-11-13 15:32:21 -0300 | [diff] [blame] | 1075 | del_timer_sync(&i2c->check_timer); |
| 1076 | |
Nicholas Mc Guire | 913b1d8 | 2015-02-09 10:15:21 -0500 | [diff] [blame] | 1077 | if (time_left == 0) { |
James Hogan | 27bce45 | 2014-11-13 15:32:21 -0300 | [diff] [blame] | 1078 | dev_err(adap->dev.parent, "i2c transfer timed out\n"); |
| 1079 | i2c->msg_status = -ETIMEDOUT; |
| 1080 | break; |
| 1081 | } |
| 1082 | |
| 1083 | if (i2c->msg_status) |
| 1084 | break; |
| 1085 | } |
| 1086 | |
| 1087 | clk_disable_unprepare(i2c->scb_clk); |
| 1088 | |
| 1089 | return i2c->msg_status ? i2c->msg_status : num; |
| 1090 | } |
| 1091 | |
| 1092 | static u32 img_i2c_func(struct i2c_adapter *adap) |
| 1093 | { |
| 1094 | return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| 1095 | } |
| 1096 | |
| 1097 | static const struct i2c_algorithm img_i2c_algo = { |
| 1098 | .master_xfer = img_i2c_xfer, |
| 1099 | .functionality = img_i2c_func, |
| 1100 | }; |
| 1101 | |
| 1102 | static int img_i2c_init(struct img_i2c *i2c) |
| 1103 | { |
| 1104 | unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh; |
| 1105 | unsigned int i, ret, data, prescale, inc, int_bitrate, filt; |
| 1106 | struct img_i2c_timings timing; |
| 1107 | u32 rev; |
| 1108 | |
| 1109 | ret = clk_prepare_enable(i2c->scb_clk); |
| 1110 | if (ret) |
| 1111 | return ret; |
| 1112 | |
| 1113 | rev = img_i2c_readl(i2c, SCB_CORE_REV_REG); |
| 1114 | if ((rev & 0x00ffffff) < 0x00020200) { |
| 1115 | dev_info(i2c->adap.dev.parent, |
| 1116 | "Unknown hardware revision (%d.%d.%d.%d)\n", |
| 1117 | (rev >> 24) & 0xff, (rev >> 16) & 0xff, |
| 1118 | (rev >> 8) & 0xff, rev & 0xff); |
| 1119 | clk_disable_unprepare(i2c->scb_clk); |
| 1120 | return -EINVAL; |
| 1121 | } |
| 1122 | |
| 1123 | if (rev == REL_SOC_IP_SCB_2_2_1) { |
| 1124 | i2c->need_wr_rd_fence = true; |
| 1125 | dev_info(i2c->adap.dev.parent, "fence quirk enabled"); |
| 1126 | } |
| 1127 | |
| 1128 | bitrate_khz = i2c->bitrate / 1000; |
| 1129 | clk_khz = clk_get_rate(i2c->scb_clk) / 1000; |
| 1130 | |
| 1131 | /* Determine what mode we're in from the bitrate */ |
| 1132 | timing = timings[0]; |
| 1133 | for (i = 0; i < ARRAY_SIZE(timings); i++) { |
| 1134 | if (i2c->bitrate <= timings[i].max_bitrate) { |
| 1135 | timing = timings[i]; |
| 1136 | break; |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | /* Find the prescale that would give us that inc (approx delay = 0) */ |
| 1141 | prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz); |
| 1142 | prescale = clamp_t(unsigned int, prescale, 1, 8); |
| 1143 | clk_khz /= prescale; |
| 1144 | |
| 1145 | /* Setup the clock increment value */ |
| 1146 | inc = (256 * 16 * bitrate_khz) / clk_khz; |
| 1147 | |
| 1148 | /* |
| 1149 | * The clock generation logic allows to filter glitches on the bus. |
| 1150 | * This filter is able to remove bus glitches shorter than 50ns. |
| 1151 | * If the clock enable rate is greater than 20 MHz, no filtering |
| 1152 | * is required, so we need to disable it. |
| 1153 | * If it's between the 20-40 MHz range, there's no need to divide |
| 1154 | * the clock to get a filter. |
| 1155 | */ |
| 1156 | if (clk_khz < 20000) { |
| 1157 | filt = SCB_FILT_DISABLE; |
| 1158 | } else if (clk_khz < 40000) { |
| 1159 | filt = SCB_FILT_BYPASS; |
| 1160 | } else { |
| 1161 | /* Calculate filter clock */ |
| 1162 | filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH)); |
| 1163 | |
| 1164 | /* Scale up if needed */ |
| 1165 | if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH)) |
| 1166 | inc++; |
| 1167 | |
| 1168 | if (filt > SCB_FILT_INC_MASK) |
| 1169 | filt = SCB_FILT_INC_MASK; |
| 1170 | |
| 1171 | filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT; |
| 1172 | } |
| 1173 | data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1); |
| 1174 | img_i2c_writel(i2c, SCB_CLK_SET_REG, data); |
| 1175 | |
| 1176 | /* Obtain the clock period of the fx16 clock in ns */ |
| 1177 | clk_period = (256 * 1000000) / (clk_khz * inc); |
| 1178 | |
| 1179 | /* Calculate the bitrate in terms of internal clock pulses */ |
| 1180 | int_bitrate = 1000000 / (bitrate_khz * clk_period); |
| 1181 | if ((1000000 % (bitrate_khz * clk_period)) >= |
| 1182 | ((bitrate_khz * clk_period) / 2)) |
| 1183 | int_bitrate++; |
| 1184 | |
| 1185 | /* Setup TCKH value */ |
| 1186 | tckh = timing.tckh / clk_period; |
| 1187 | if (timing.tckh % clk_period) |
| 1188 | tckh++; |
| 1189 | |
| 1190 | if (tckh > 0) |
| 1191 | data = tckh - 1; |
| 1192 | else |
| 1193 | data = 0; |
| 1194 | |
| 1195 | img_i2c_writel(i2c, SCB_TIME_TCKH_REG, data); |
| 1196 | |
| 1197 | /* Setup TCKL value */ |
| 1198 | tckl = int_bitrate - tckh; |
| 1199 | |
| 1200 | if (tckl > 0) |
| 1201 | data = tckl - 1; |
| 1202 | else |
| 1203 | data = 0; |
| 1204 | |
| 1205 | img_i2c_writel(i2c, SCB_TIME_TCKL_REG, data); |
| 1206 | |
| 1207 | /* Setup TSDH value */ |
| 1208 | tsdh = timing.tsdh / clk_period; |
| 1209 | if (timing.tsdh % clk_period) |
| 1210 | tsdh++; |
| 1211 | |
| 1212 | if (tsdh > 1) |
| 1213 | data = tsdh - 1; |
| 1214 | else |
| 1215 | data = 0x01; |
| 1216 | img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data); |
| 1217 | |
| 1218 | /* This value is used later */ |
| 1219 | tsdh = data; |
| 1220 | |
| 1221 | /* Setup TPL value */ |
| 1222 | data = timing.tpl / clk_period; |
| 1223 | if (data > 0) |
| 1224 | --data; |
| 1225 | img_i2c_writel(i2c, SCB_TIME_TPL_REG, data); |
| 1226 | |
| 1227 | /* Setup TPH value */ |
| 1228 | data = timing.tph / clk_period; |
| 1229 | if (data > 0) |
| 1230 | --data; |
| 1231 | img_i2c_writel(i2c, SCB_TIME_TPH_REG, data); |
| 1232 | |
| 1233 | /* Setup TSDL value to TPL + TSDH + 2 */ |
| 1234 | img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2); |
| 1235 | |
| 1236 | /* Setup TP2S value */ |
| 1237 | data = timing.tp2s / clk_period; |
| 1238 | if (data > 0) |
| 1239 | --data; |
| 1240 | img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data); |
| 1241 | |
| 1242 | img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI); |
| 1243 | img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL); |
| 1244 | img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL); |
| 1245 | |
| 1246 | /* Take module out of soft reset and enable clocks */ |
| 1247 | img_i2c_soft_reset(i2c); |
| 1248 | |
| 1249 | /* Disable all interrupts */ |
| 1250 | img_i2c_writel(i2c, SCB_INT_MASK_REG, 0); |
| 1251 | |
| 1252 | /* Clear all interrupts */ |
| 1253 | img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0); |
| 1254 | |
| 1255 | /* Clear the scb_line_status events */ |
| 1256 | img_i2c_writel(i2c, SCB_CLEAR_REG, ~0); |
| 1257 | |
| 1258 | /* Enable interrupts */ |
| 1259 | img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| 1260 | |
| 1261 | /* Perform a synchronous sequence to reset the bus */ |
| 1262 | ret = img_i2c_reset_bus(i2c); |
| 1263 | |
| 1264 | clk_disable_unprepare(i2c->scb_clk); |
| 1265 | |
| 1266 | return ret; |
| 1267 | } |
| 1268 | |
| 1269 | static int img_i2c_probe(struct platform_device *pdev) |
| 1270 | { |
| 1271 | struct device_node *node = pdev->dev.of_node; |
| 1272 | struct img_i2c *i2c; |
| 1273 | struct resource *res; |
| 1274 | int irq, ret; |
| 1275 | u32 val; |
| 1276 | |
| 1277 | i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL); |
| 1278 | if (!i2c) |
| 1279 | return -ENOMEM; |
| 1280 | |
| 1281 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1282 | i2c->base = devm_ioremap_resource(&pdev->dev, res); |
| 1283 | if (IS_ERR(i2c->base)) |
| 1284 | return PTR_ERR(i2c->base); |
| 1285 | |
| 1286 | irq = platform_get_irq(pdev, 0); |
| 1287 | if (irq < 0) { |
| 1288 | dev_err(&pdev->dev, "can't get irq number\n"); |
| 1289 | return irq; |
| 1290 | } |
| 1291 | |
| 1292 | i2c->sys_clk = devm_clk_get(&pdev->dev, "sys"); |
| 1293 | if (IS_ERR(i2c->sys_clk)) { |
| 1294 | dev_err(&pdev->dev, "can't get system clock\n"); |
| 1295 | return PTR_ERR(i2c->sys_clk); |
| 1296 | } |
| 1297 | |
| 1298 | i2c->scb_clk = devm_clk_get(&pdev->dev, "scb"); |
| 1299 | if (IS_ERR(i2c->scb_clk)) { |
| 1300 | dev_err(&pdev->dev, "can't get core clock\n"); |
| 1301 | return PTR_ERR(i2c->scb_clk); |
| 1302 | } |
| 1303 | |
| 1304 | ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0, |
| 1305 | pdev->name, i2c); |
| 1306 | if (ret) { |
| 1307 | dev_err(&pdev->dev, "can't request irq %d\n", irq); |
| 1308 | return ret; |
| 1309 | } |
| 1310 | |
| 1311 | /* Set up the exception check timer */ |
| 1312 | init_timer(&i2c->check_timer); |
| 1313 | i2c->check_timer.function = img_i2c_check_timer; |
| 1314 | i2c->check_timer.data = (unsigned long)i2c; |
| 1315 | |
| 1316 | i2c->bitrate = timings[0].max_bitrate; |
| 1317 | if (!of_property_read_u32(node, "clock-frequency", &val)) |
| 1318 | i2c->bitrate = val; |
| 1319 | |
| 1320 | i2c_set_adapdata(&i2c->adap, i2c); |
| 1321 | i2c->adap.dev.parent = &pdev->dev; |
| 1322 | i2c->adap.dev.of_node = node; |
| 1323 | i2c->adap.owner = THIS_MODULE; |
| 1324 | i2c->adap.algo = &img_i2c_algo; |
| 1325 | i2c->adap.retries = 5; |
| 1326 | i2c->adap.nr = pdev->id; |
| 1327 | snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C"); |
| 1328 | |
| 1329 | img_i2c_switch_mode(i2c, MODE_INACTIVE); |
| 1330 | spin_lock_init(&i2c->lock); |
| 1331 | init_completion(&i2c->msg_complete); |
| 1332 | |
| 1333 | platform_set_drvdata(pdev, i2c); |
| 1334 | |
| 1335 | ret = clk_prepare_enable(i2c->sys_clk); |
| 1336 | if (ret) |
| 1337 | return ret; |
| 1338 | |
| 1339 | ret = img_i2c_init(i2c); |
| 1340 | if (ret) |
| 1341 | goto disable_clk; |
| 1342 | |
| 1343 | ret = i2c_add_numbered_adapter(&i2c->adap); |
| 1344 | if (ret < 0) { |
| 1345 | dev_err(&pdev->dev, "failed to add adapter\n"); |
| 1346 | goto disable_clk; |
| 1347 | } |
| 1348 | |
| 1349 | return 0; |
| 1350 | |
| 1351 | disable_clk: |
| 1352 | clk_disable_unprepare(i2c->sys_clk); |
| 1353 | return ret; |
| 1354 | } |
| 1355 | |
| 1356 | static int img_i2c_remove(struct platform_device *dev) |
| 1357 | { |
| 1358 | struct img_i2c *i2c = platform_get_drvdata(dev); |
| 1359 | |
| 1360 | i2c_del_adapter(&i2c->adap); |
| 1361 | clk_disable_unprepare(i2c->sys_clk); |
| 1362 | |
| 1363 | return 0; |
| 1364 | } |
| 1365 | |
| 1366 | #ifdef CONFIG_PM_SLEEP |
| 1367 | static int img_i2c_suspend(struct device *dev) |
| 1368 | { |
| 1369 | struct img_i2c *i2c = dev_get_drvdata(dev); |
| 1370 | |
| 1371 | img_i2c_switch_mode(i2c, MODE_SUSPEND); |
| 1372 | |
| 1373 | clk_disable_unprepare(i2c->sys_clk); |
| 1374 | |
| 1375 | return 0; |
| 1376 | } |
| 1377 | |
| 1378 | static int img_i2c_resume(struct device *dev) |
| 1379 | { |
| 1380 | struct img_i2c *i2c = dev_get_drvdata(dev); |
| 1381 | int ret; |
| 1382 | |
| 1383 | ret = clk_prepare_enable(i2c->sys_clk); |
| 1384 | if (ret) |
| 1385 | return ret; |
| 1386 | |
| 1387 | img_i2c_init(i2c); |
| 1388 | |
| 1389 | return 0; |
| 1390 | } |
| 1391 | #endif /* CONFIG_PM_SLEEP */ |
| 1392 | |
| 1393 | static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume); |
| 1394 | |
| 1395 | static const struct of_device_id img_scb_i2c_match[] = { |
| 1396 | { .compatible = "img,scb-i2c" }, |
| 1397 | { } |
| 1398 | }; |
| 1399 | MODULE_DEVICE_TABLE(of, img_scb_i2c_match); |
| 1400 | |
| 1401 | static struct platform_driver img_scb_i2c_driver = { |
| 1402 | .driver = { |
| 1403 | .name = "img-i2c-scb", |
| 1404 | .of_match_table = img_scb_i2c_match, |
| 1405 | .pm = &img_i2c_pm, |
| 1406 | }, |
| 1407 | .probe = img_i2c_probe, |
| 1408 | .remove = img_i2c_remove, |
| 1409 | }; |
| 1410 | module_platform_driver(img_scb_i2c_driver); |
| 1411 | |
| 1412 | MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>"); |
| 1413 | MODULE_DESCRIPTION("IMG host I2C driver"); |
| 1414 | MODULE_LICENSE("GPL v2"); |