blob: 0a8e6badb29bcf05f9a1c968a9c2e2c2d271df1e [file] [log] [blame]
Bjarke Istrup Pedersen5267cf02014-01-22 09:16:58 +00001/*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25#ifndef _UAPI_HYPERV_H
26#define _UAPI_HYPERV_H
27
K. Y. Srinivasan013254762014-02-16 11:34:30 -080028#include <linux/uuid.h>
29
Bjarke Istrup Pedersen5267cf02014-01-22 09:16:58 +000030/*
31 * Framework version for util services.
32 */
33#define UTIL_FW_MINOR 0
34
35#define UTIL_WS2K8_FW_MAJOR 1
36#define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
37
38#define UTIL_FW_MAJOR 3
39#define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
40
41
42/*
43 * Implementation of host controlled snapshot of the guest.
44 */
45
46#define VSS_OP_REGISTER 128
47
48enum hv_vss_op {
49 VSS_OP_CREATE = 0,
50 VSS_OP_DELETE,
51 VSS_OP_HOT_BACKUP,
52 VSS_OP_GET_DM_INFO,
53 VSS_OP_BU_COMPLETE,
54 /*
55 * Following operations are only supported with IC version >= 5.0
56 */
57 VSS_OP_FREEZE, /* Freeze the file systems in the VM */
58 VSS_OP_THAW, /* Unfreeze the file systems */
59 VSS_OP_AUTO_RECOVER,
60 VSS_OP_COUNT /* Number of operations, must be last */
61};
62
63
64/*
65 * Header for all VSS messages.
66 */
67struct hv_vss_hdr {
68 __u8 operation;
69 __u8 reserved[7];
70} __attribute__((packed));
71
72
73/*
74 * Flag values for the hv_vss_check_feature. Linux supports only
75 * one value.
76 */
77#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
78
79struct hv_vss_check_feature {
80 __u32 flags;
81} __attribute__((packed));
82
83struct hv_vss_check_dm_info {
84 __u32 flags;
85} __attribute__((packed));
86
87struct hv_vss_msg {
88 union {
89 struct hv_vss_hdr vss_hdr;
90 int error;
91 };
92 union {
93 struct hv_vss_check_feature vss_cf;
94 struct hv_vss_check_dm_info dm_info;
95 };
96} __attribute__((packed));
97
98/*
K. Y. Srinivasan013254762014-02-16 11:34:30 -080099 * Implementation of a host to guest copy facility.
100 */
101
102#define FCOPY_VERSION_0 0
103#define FCOPY_CURRENT_VERSION FCOPY_VERSION_0
104#define W_MAX_PATH 260
105
106enum hv_fcopy_op {
107 START_FILE_COPY = 0,
108 WRITE_TO_FILE,
109 COMPLETE_FCOPY,
110 CANCEL_FCOPY,
111};
112
113struct hv_fcopy_hdr {
114 __u32 operation;
115 uuid_le service_id0; /* currently unused */
116 uuid_le service_id1; /* currently unused */
117} __attribute__((packed));
118
119#define OVER_WRITE 0x1
120#define CREATE_PATH 0x2
121
122struct hv_start_fcopy {
123 struct hv_fcopy_hdr hdr;
124 __u16 file_name[W_MAX_PATH];
125 __u16 path_name[W_MAX_PATH];
126 __u32 copy_flags;
127 __u64 file_size;
128} __attribute__((packed));
129
130/*
131 * The file is chunked into fragments.
132 */
133#define DATA_FRAGMENT (6 * 1024)
134
135struct hv_do_fcopy {
136 struct hv_fcopy_hdr hdr;
137 __u64 offset;
138 __u32 size;
139 __u8 data[DATA_FRAGMENT];
K. Y. Srinivasanbc5a5b02014-09-02 19:21:47 -0700140} __attribute__((packed));
K. Y. Srinivasan013254762014-02-16 11:34:30 -0800141
142/*
Bjarke Istrup Pedersen5267cf02014-01-22 09:16:58 +0000143 * An implementation of HyperV key value pair (KVP) functionality for Linux.
144 *
145 *
146 * Copyright (C) 2010, Novell, Inc.
147 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
148 *
149 */
150
151/*
152 * Maximum value size - used for both key names and value data, and includes
153 * any applicable NULL terminators.
154 *
155 * Note: This limit is somewhat arbitrary, but falls easily within what is
156 * supported for all native guests (back to Win 2000) and what is reasonable
157 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
158 * limited to 255 character key names.
159 *
160 * MSDN recommends not storing data values larger than 2048 bytes in the
161 * registry.
162 *
163 * Note: This value is used in defining the KVP exchange message - this value
164 * cannot be modified without affecting the message size and compatibility.
165 */
166
167/*
168 * bytes, including any null terminators
169 */
170#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
171
172
173/*
174 * Maximum key size - the registry limit for the length of an entry name
175 * is 256 characters, including the null terminator
176 */
177
178#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
179
180/*
181 * In Linux, we implement the KVP functionality in two components:
182 * 1) The kernel component which is packaged as part of the hv_utils driver
183 * is responsible for communicating with the host and responsible for
184 * implementing the host/guest protocol. 2) A user level daemon that is
185 * responsible for data gathering.
186 *
187 * Host/Guest Protocol: The host iterates over an index and expects the guest
188 * to assign a key name to the index and also return the value corresponding to
189 * the key. The host will have atmost one KVP transaction outstanding at any
190 * given point in time. The host side iteration stops when the guest returns
191 * an error. Microsoft has specified the following mapping of key names to
192 * host specified index:
193 *
194 * Index Key Name
195 * 0 FullyQualifiedDomainName
196 * 1 IntegrationServicesVersion
197 * 2 NetworkAddressIPv4
198 * 3 NetworkAddressIPv6
199 * 4 OSBuildNumber
200 * 5 OSName
201 * 6 OSMajorVersion
202 * 7 OSMinorVersion
203 * 8 OSVersion
204 * 9 ProcessorArchitecture
205 *
206 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
207 *
208 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
209 * data gathering functionality in a user mode daemon. The user level daemon
210 * is also responsible for binding the key name to the index as well. The
211 * kernel and user-level daemon communicate using a connector channel.
212 *
213 * The user mode component first registers with the
214 * the kernel component. Subsequently, the kernel component requests, data
215 * for the specified keys. In response to this message the user mode component
216 * fills in the value corresponding to the specified key. We overload the
217 * sequence field in the cn_msg header to define our KVP message types.
218 *
219 *
220 * The kernel component simply acts as a conduit for communication between the
221 * Windows host and the user-level daemon. The kernel component passes up the
222 * index received from the Host to the user-level daemon. If the index is
223 * valid (supported), the corresponding key as well as its
224 * value (both are strings) is returned. If the index is invalid
225 * (not supported), a NULL key string is returned.
226 */
227
228
229/*
230 * Registry value types.
231 */
232
233#define REG_SZ 1
234#define REG_U32 4
235#define REG_U64 8
236
237/*
238 * As we look at expanding the KVP functionality to include
239 * IP injection functionality, we need to maintain binary
240 * compatibility with older daemons.
241 *
242 * The KVP opcodes are defined by the host and it was unfortunate
243 * that I chose to treat the registration operation as part of the
244 * KVP operations defined by the host.
245 * Here is the level of compatibility
246 * (between the user level daemon and the kernel KVP driver) that we
247 * will implement:
248 *
249 * An older daemon will always be supported on a newer driver.
250 * A given user level daemon will require a minimal version of the
251 * kernel driver.
252 * If we cannot handle the version differences, we will fail gracefully
253 * (this can happen when we have a user level daemon that is more
254 * advanced than the KVP driver.
255 *
256 * We will use values used in this handshake for determining if we have
257 * workable user level daemon and the kernel driver. We begin by taking the
258 * registration opcode out of the KVP opcode namespace. We will however,
259 * maintain compatibility with the existing user-level daemon code.
260 */
261
262/*
263 * Daemon code not supporting IP injection (legacy daemon).
264 */
265
266#define KVP_OP_REGISTER 4
267
268/*
269 * Daemon code supporting IP injection.
270 * The KVP opcode field is used to communicate the
271 * registration information; so define a namespace that
272 * will be distinct from the host defined KVP opcode.
273 */
274
275#define KVP_OP_REGISTER1 100
276
277enum hv_kvp_exchg_op {
278 KVP_OP_GET = 0,
279 KVP_OP_SET,
280 KVP_OP_DELETE,
281 KVP_OP_ENUMERATE,
282 KVP_OP_GET_IP_INFO,
283 KVP_OP_SET_IP_INFO,
284 KVP_OP_COUNT /* Number of operations, must be last. */
285};
286
287enum hv_kvp_exchg_pool {
288 KVP_POOL_EXTERNAL = 0,
289 KVP_POOL_GUEST,
290 KVP_POOL_AUTO,
291 KVP_POOL_AUTO_EXTERNAL,
292 KVP_POOL_AUTO_INTERNAL,
293 KVP_POOL_COUNT /* Number of pools, must be last. */
294};
295
296/*
297 * Some Hyper-V status codes.
298 */
299
300#define HV_S_OK 0x00000000
301#define HV_E_FAIL 0x80004005
302#define HV_S_CONT 0x80070103
303#define HV_ERROR_NOT_SUPPORTED 0x80070032
304#define HV_ERROR_MACHINE_LOCKED 0x800704F7
305#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
306#define HV_INVALIDARG 0x80070057
307#define HV_GUID_NOTFOUND 0x80041002
K. Y. Srinivasan314672a2014-04-09 17:24:16 -0700308#define HV_ERROR_ALREADY_EXISTS 0x80070050
Bjarke Istrup Pedersen5267cf02014-01-22 09:16:58 +0000309
310#define ADDR_FAMILY_NONE 0x00
311#define ADDR_FAMILY_IPV4 0x01
312#define ADDR_FAMILY_IPV6 0x02
313
314#define MAX_ADAPTER_ID_SIZE 128
315#define MAX_IP_ADDR_SIZE 1024
316#define MAX_GATEWAY_SIZE 512
317
318
319struct hv_kvp_ipaddr_value {
320 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
321 __u8 addr_family;
322 __u8 dhcp_enabled;
323 __u16 ip_addr[MAX_IP_ADDR_SIZE];
324 __u16 sub_net[MAX_IP_ADDR_SIZE];
325 __u16 gate_way[MAX_GATEWAY_SIZE];
326 __u16 dns_addr[MAX_IP_ADDR_SIZE];
327} __attribute__((packed));
328
329
330struct hv_kvp_hdr {
331 __u8 operation;
332 __u8 pool;
333 __u16 pad;
334} __attribute__((packed));
335
336struct hv_kvp_exchg_msg_value {
337 __u32 value_type;
338 __u32 key_size;
339 __u32 value_size;
340 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
341 union {
342 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
343 __u32 value_u32;
344 __u64 value_u64;
345 };
346} __attribute__((packed));
347
348struct hv_kvp_msg_enumerate {
349 __u32 index;
350 struct hv_kvp_exchg_msg_value data;
351} __attribute__((packed));
352
353struct hv_kvp_msg_get {
354 struct hv_kvp_exchg_msg_value data;
355};
356
357struct hv_kvp_msg_set {
358 struct hv_kvp_exchg_msg_value data;
359};
360
361struct hv_kvp_msg_delete {
362 __u32 key_size;
363 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
364};
365
366struct hv_kvp_register {
367 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
368};
369
370struct hv_kvp_msg {
371 union {
372 struct hv_kvp_hdr kvp_hdr;
373 int error;
374 };
375 union {
376 struct hv_kvp_msg_get kvp_get;
377 struct hv_kvp_msg_set kvp_set;
378 struct hv_kvp_msg_delete kvp_delete;
379 struct hv_kvp_msg_enumerate kvp_enum_data;
380 struct hv_kvp_ipaddr_value kvp_ip_val;
381 struct hv_kvp_register kvp_register;
382 } body;
383} __attribute__((packed));
384
385struct hv_kvp_ip_msg {
386 __u8 operation;
387 __u8 pool;
388 struct hv_kvp_ipaddr_value kvp_ip_val;
389} __attribute__((packed));
390
391#endif /* _UAPI_HYPERV_H */