blob: 0b40f6d20bea207081fd739f8eae5b9bb3ac12f4 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _I386_BITOPS_H
2#define _I386_BITOPS_H
3
4/*
5 * Copyright 1992, Linus Torvalds.
6 */
7
Jiri Slaby06245172007-10-18 23:40:26 -07008#ifndef _LINUX_BITOPS_H
9#error only <linux/bitops.h> can be included directly
10#endif
11
Linus Torvalds1da177e2005-04-16 15:20:36 -070012#include <linux/compiler.h>
Gerd Hoffmann9a0b5812006-03-23 02:59:32 -080013#include <asm/alternative.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070014
15/*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
Linus Torvalds1da177e2005-04-16 15:20:36 -070023#define ADDR (*(volatile long *) addr)
24
25/**
26 * set_bit - Atomically set a bit in memory
27 * @nr: the bit to set
28 * @addr: the address to start counting from
29 *
30 * This function is atomic and may not be reordered. See __set_bit()
31 * if you do not require the atomic guarantees.
32 *
33 * Note: there are no guarantees that this function will not be reordered
Robert P. J. Daybeb7dd82007-05-09 07:14:03 +020034 * on non x86 architectures, so if you are writing portable code,
Linus Torvalds1da177e2005-04-16 15:20:36 -070035 * make sure not to rely on its reordering guarantees.
36 *
37 * Note that @nr may be almost arbitrarily large; this function is not
38 * restricted to acting on a single-word quantity.
39 */
40static inline void set_bit(int nr, volatile unsigned long * addr)
41{
42 __asm__ __volatile__( LOCK_PREFIX
43 "btsl %1,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +010044 :"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -070045 :"Ir" (nr));
46}
47
48/**
49 * __set_bit - Set a bit in memory
50 * @nr: the bit to set
51 * @addr: the address to start counting from
52 *
53 * Unlike set_bit(), this function is non-atomic and may be reordered.
54 * If it's called on the same region of memory simultaneously, the effect
55 * may be that only one operation succeeds.
56 */
57static inline void __set_bit(int nr, volatile unsigned long * addr)
58{
59 __asm__(
60 "btsl %1,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +010061 :"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -070062 :"Ir" (nr));
63}
64
65/**
66 * clear_bit - Clears a bit in memory
67 * @nr: Bit to clear
68 * @addr: Address to start counting from
69 *
70 * clear_bit() is atomic and may not be reordered. However, it does
71 * not contain a memory barrier, so if it is used for locking purposes,
72 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
73 * in order to ensure changes are visible on other processors.
74 */
75static inline void clear_bit(int nr, volatile unsigned long * addr)
76{
77 __asm__ __volatile__( LOCK_PREFIX
78 "btrl %1,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +010079 :"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 :"Ir" (nr));
81}
82
Nick Piggin418ccbe2007-10-19 07:13:02 +020083/*
84 * clear_bit_unlock - Clears a bit in memory
85 * @nr: Bit to clear
86 * @addr: Address to start counting from
87 *
88 * clear_bit() is atomic and implies release semantics before the memory
89 * operation. It can be used for an unlock.
90 */
91static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
92{
93 barrier();
94 clear_bit(nr, addr);
95}
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097static inline void __clear_bit(int nr, volatile unsigned long * addr)
98{
99 __asm__ __volatile__(
100 "btrl %1,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100101 :"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700102 :"Ir" (nr));
103}
Nick Piggin418ccbe2007-10-19 07:13:02 +0200104
105/*
106 * __clear_bit_unlock - Clears a bit in memory
107 * @nr: Bit to clear
108 * @addr: Address to start counting from
109 *
110 * __clear_bit() is non-atomic and implies release semantics before the memory
111 * operation. It can be used for an unlock if no other CPUs can concurrently
112 * modify other bits in the word.
113 *
114 * No memory barrier is required here, because x86 cannot reorder stores past
115 * older loads. Same principle as spin_unlock.
116 */
117static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
118{
119 barrier();
120 __clear_bit(nr, addr);
121}
122
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123#define smp_mb__before_clear_bit() barrier()
124#define smp_mb__after_clear_bit() barrier()
125
126/**
127 * __change_bit - Toggle a bit in memory
128 * @nr: the bit to change
129 * @addr: the address to start counting from
130 *
131 * Unlike change_bit(), this function is non-atomic and may be reordered.
132 * If it's called on the same region of memory simultaneously, the effect
133 * may be that only one operation succeeds.
134 */
135static inline void __change_bit(int nr, volatile unsigned long * addr)
136{
137 __asm__ __volatile__(
138 "btcl %1,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100139 :"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700140 :"Ir" (nr));
141}
142
143/**
144 * change_bit - Toggle a bit in memory
145 * @nr: Bit to change
146 * @addr: Address to start counting from
147 *
148 * change_bit() is atomic and may not be reordered. It may be
149 * reordered on other architectures than x86.
150 * Note that @nr may be almost arbitrarily large; this function is not
151 * restricted to acting on a single-word quantity.
152 */
153static inline void change_bit(int nr, volatile unsigned long * addr)
154{
155 __asm__ __volatile__( LOCK_PREFIX
156 "btcl %1,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100157 :"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158 :"Ir" (nr));
159}
160
161/**
162 * test_and_set_bit - Set a bit and return its old value
163 * @nr: Bit to set
164 * @addr: Address to count from
165 *
166 * This operation is atomic and cannot be reordered.
167 * It may be reordered on other architectures than x86.
168 * It also implies a memory barrier.
169 */
170static inline int test_and_set_bit(int nr, volatile unsigned long * addr)
171{
172 int oldbit;
173
174 __asm__ __volatile__( LOCK_PREFIX
175 "btsl %2,%1\n\tsbbl %0,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100176 :"=r" (oldbit),"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177 :"Ir" (nr) : "memory");
178 return oldbit;
179}
180
181/**
Nick Piggin418ccbe2007-10-19 07:13:02 +0200182 * test_and_set_bit_lock - Set a bit and return its old value for lock
183 * @nr: Bit to set
184 * @addr: Address to count from
185 *
Randy Dunlapfb9431e2007-10-25 14:21:49 -0700186 * This is the same as test_and_set_bit on x86.
Nick Piggin418ccbe2007-10-19 07:13:02 +0200187 */
Randy Dunlapfb9431e2007-10-25 14:21:49 -0700188static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
189{
190 return test_and_set_bit(nr, addr);
191}
Nick Piggin418ccbe2007-10-19 07:13:02 +0200192
193/**
Linus Torvalds1da177e2005-04-16 15:20:36 -0700194 * __test_and_set_bit - Set a bit and return its old value
195 * @nr: Bit to set
196 * @addr: Address to count from
197 *
198 * This operation is non-atomic and can be reordered.
199 * If two examples of this operation race, one can appear to succeed
200 * but actually fail. You must protect multiple accesses with a lock.
201 */
202static inline int __test_and_set_bit(int nr, volatile unsigned long * addr)
203{
204 int oldbit;
205
206 __asm__(
207 "btsl %2,%1\n\tsbbl %0,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100208 :"=r" (oldbit),"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209 :"Ir" (nr));
210 return oldbit;
211}
212
213/**
214 * test_and_clear_bit - Clear a bit and return its old value
215 * @nr: Bit to clear
216 * @addr: Address to count from
217 *
218 * This operation is atomic and cannot be reordered.
219 * It can be reorderdered on other architectures other than x86.
220 * It also implies a memory barrier.
221 */
222static inline int test_and_clear_bit(int nr, volatile unsigned long * addr)
223{
224 int oldbit;
225
226 __asm__ __volatile__( LOCK_PREFIX
227 "btrl %2,%1\n\tsbbl %0,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100228 :"=r" (oldbit),"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700229 :"Ir" (nr) : "memory");
230 return oldbit;
231}
232
233/**
234 * __test_and_clear_bit - Clear a bit and return its old value
235 * @nr: Bit to clear
236 * @addr: Address to count from
237 *
238 * This operation is non-atomic and can be reordered.
239 * If two examples of this operation race, one can appear to succeed
240 * but actually fail. You must protect multiple accesses with a lock.
241 */
242static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
243{
244 int oldbit;
245
246 __asm__(
247 "btrl %2,%1\n\tsbbl %0,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100248 :"=r" (oldbit),"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249 :"Ir" (nr));
250 return oldbit;
251}
252
253/* WARNING: non atomic and it can be reordered! */
254static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
255{
256 int oldbit;
257
258 __asm__ __volatile__(
259 "btcl %2,%1\n\tsbbl %0,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100260 :"=r" (oldbit),"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700261 :"Ir" (nr) : "memory");
262 return oldbit;
263}
264
265/**
266 * test_and_change_bit - Change a bit and return its old value
267 * @nr: Bit to change
268 * @addr: Address to count from
269 *
270 * This operation is atomic and cannot be reordered.
271 * It also implies a memory barrier.
272 */
273static inline int test_and_change_bit(int nr, volatile unsigned long* addr)
274{
275 int oldbit;
276
277 __asm__ __volatile__( LOCK_PREFIX
278 "btcl %2,%1\n\tsbbl %0,%0"
Andi Kleen92934bc2006-01-11 22:42:32 +0100279 :"=r" (oldbit),"+m" (ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 :"Ir" (nr) : "memory");
281 return oldbit;
282}
283
284#if 0 /* Fool kernel-doc since it doesn't do macros yet */
285/**
286 * test_bit - Determine whether a bit is set
287 * @nr: bit number to test
288 * @addr: Address to start counting from
289 */
290static int test_bit(int nr, const volatile void * addr);
291#endif
292
Ingo Molnar652050a2006-01-14 13:21:30 -0800293static __always_inline int constant_test_bit(int nr, const volatile unsigned long *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294{
295 return ((1UL << (nr & 31)) & (addr[nr >> 5])) != 0;
296}
297
298static inline int variable_test_bit(int nr, const volatile unsigned long * addr)
299{
300 int oldbit;
301
302 __asm__ __volatile__(
303 "btl %2,%1\n\tsbbl %0,%0"
304 :"=r" (oldbit)
305 :"m" (ADDR),"Ir" (nr));
306 return oldbit;
307}
308
309#define test_bit(nr,addr) \
310(__builtin_constant_p(nr) ? \
311 constant_test_bit((nr),(addr)) : \
312 variable_test_bit((nr),(addr)))
313
314#undef ADDR
315
316/**
317 * find_first_zero_bit - find the first zero bit in a memory region
318 * @addr: The address to start the search at
319 * @size: The maximum size to search
320 *
321 * Returns the bit-number of the first zero bit, not the number of the byte
322 * containing a bit.
323 */
324static inline int find_first_zero_bit(const unsigned long *addr, unsigned size)
325{
326 int d0, d1, d2;
327 int res;
328
329 if (!size)
330 return 0;
331 /* This looks at memory. Mark it volatile to tell gcc not to move it around */
332 __asm__ __volatile__(
333 "movl $-1,%%eax\n\t"
334 "xorl %%edx,%%edx\n\t"
335 "repe; scasl\n\t"
336 "je 1f\n\t"
337 "xorl -4(%%edi),%%eax\n\t"
338 "subl $4,%%edi\n\t"
339 "bsfl %%eax,%%edx\n"
340 "1:\tsubl %%ebx,%%edi\n\t"
341 "shll $3,%%edi\n\t"
342 "addl %%edi,%%edx"
343 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
344 :"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
345 return res;
346}
347
348/**
349 * find_next_zero_bit - find the first zero bit in a memory region
350 * @addr: The address to base the search on
351 * @offset: The bitnumber to start searching at
352 * @size: The maximum size to search
353 */
354int find_next_zero_bit(const unsigned long *addr, int size, int offset);
355
356/**
Steven Rostedtcd85c8b2005-07-28 08:45:06 -0400357 * __ffs - find first bit in word.
358 * @word: The word to search
359 *
360 * Undefined if no bit exists, so code should check against 0 first.
361 */
362static inline unsigned long __ffs(unsigned long word)
363{
364 __asm__("bsfl %1,%0"
365 :"=r" (word)
366 :"rm" (word));
367 return word;
368}
369
370/**
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371 * find_first_bit - find the first set bit in a memory region
372 * @addr: The address to start the search at
373 * @size: The maximum size to search
374 *
375 * Returns the bit-number of the first set bit, not the number of the byte
376 * containing a bit.
377 */
David Howellsd89c1452006-01-06 00:11:59 -0800378static inline unsigned find_first_bit(const unsigned long *addr, unsigned size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700379{
David Howellsd89c1452006-01-06 00:11:59 -0800380 unsigned x = 0;
Linus Torvaldsd6d2a2a2005-07-29 11:01:22 -0400381
382 while (x < size) {
383 unsigned long val = *addr++;
384 if (val)
385 return __ffs(val) + x;
Steven Rostedtcd85c8b2005-07-28 08:45:06 -0400386 x += (sizeof(*addr)<<3);
Linus Torvaldsd6d2a2a2005-07-29 11:01:22 -0400387 }
Steven Rostedtcd85c8b2005-07-28 08:45:06 -0400388 return x;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700389}
390
391/**
392 * find_next_bit - find the first set bit in a memory region
393 * @addr: The address to base the search on
394 * @offset: The bitnumber to start searching at
395 * @size: The maximum size to search
396 */
397int find_next_bit(const unsigned long *addr, int size, int offset);
398
399/**
400 * ffz - find first zero in word.
401 * @word: The word to search
402 *
403 * Undefined if no zero exists, so code should check against ~0UL first.
404 */
405static inline unsigned long ffz(unsigned long word)
406{
407 __asm__("bsfl %1,%0"
408 :"=r" (word)
409 :"r" (~word));
410 return word;
411}
412
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413#ifdef __KERNEL__
414
Akinobu Mita1cc2b992006-03-26 01:39:24 -0800415#include <asm-generic/bitops/sched.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416
417/**
418 * ffs - find first bit set
419 * @x: the word to search
420 *
421 * This is defined the same way as
422 * the libc and compiler builtin ffs routines, therefore
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800423 * differs in spirit from the above ffz() (man ffs).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424 */
425static inline int ffs(int x)
426{
427 int r;
428
429 __asm__("bsfl %1,%0\n\t"
430 "jnz 1f\n\t"
431 "movl $-1,%0\n"
432 "1:" : "=r" (r) : "rm" (x));
433 return r+1;
434}
435
436/**
Stephen Hemmingerd8322452006-01-06 00:12:12 -0800437 * fls - find last bit set
438 * @x: the word to search
439 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800440 * This is defined the same way as ffs().
Stephen Hemmingerd8322452006-01-06 00:12:12 -0800441 */
442static inline int fls(int x)
443{
444 int r;
445
446 __asm__("bsrl %1,%0\n\t"
447 "jnz 1f\n\t"
448 "movl $-1,%0\n"
449 "1:" : "=r" (r) : "rm" (x));
450 return r+1;
451}
452
Akinobu Mita1cc2b992006-03-26 01:39:24 -0800453#include <asm-generic/bitops/hweight.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700454
455#endif /* __KERNEL__ */
456
Akinobu Mita1cc2b992006-03-26 01:39:24 -0800457#include <asm-generic/bitops/fls64.h>
458
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459#ifdef __KERNEL__
460
Akinobu Mita1cc2b992006-03-26 01:39:24 -0800461#include <asm-generic/bitops/ext2-non-atomic.h>
462
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463#define ext2_set_bit_atomic(lock,nr,addr) \
464 test_and_set_bit((nr),(unsigned long*)addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700465#define ext2_clear_bit_atomic(lock,nr, addr) \
466 test_and_clear_bit((nr),(unsigned long*)addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467
Akinobu Mita1cc2b992006-03-26 01:39:24 -0800468#include <asm-generic/bitops/minix.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469
470#endif /* __KERNEL__ */
471
472#endif /* _I386_BITOPS_H */