Leo Chen | 859277f | 2009-08-07 20:01:13 +0100 | [diff] [blame] | 1 | /***************************************************************************** |
| 2 | * Copyright 2004 - 2008 Broadcom Corporation. All rights reserved. |
| 3 | * |
| 4 | * Unless you and Broadcom execute a separate written software license |
| 5 | * agreement governing use of this software, this software is licensed to you |
| 6 | * under the terms of the GNU General Public License version 2, available at |
| 7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). |
| 8 | * |
| 9 | * Notwithstanding the above, under no circumstances may you combine this |
| 10 | * software in any way with any other Broadcom software provided under a |
| 11 | * license other than the GPL, without Broadcom's express prior written |
| 12 | * consent. |
| 13 | *****************************************************************************/ |
| 14 | |
| 15 | /****************************************************************************/ |
| 16 | /** |
| 17 | * @file dma.c |
| 18 | * |
| 19 | * @brief Implements the DMA interface. |
| 20 | */ |
| 21 | /****************************************************************************/ |
| 22 | |
| 23 | /* ---- Include Files ---------------------------------------------------- */ |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/device.h> |
| 27 | #include <linux/dma-mapping.h> |
| 28 | #include <linux/interrupt.h> |
| 29 | #include <linux/irqreturn.h> |
| 30 | #include <linux/proc_fs.h> |
| 31 | |
| 32 | #include <mach/timer.h> |
| 33 | |
| 34 | #include <linux/mm.h> |
| 35 | #include <linux/pfn.h> |
| 36 | #include <asm/atomic.h> |
| 37 | #include <mach/dma.h> |
| 38 | |
| 39 | /* I don't quite understand why dc4 fails when this is set to 1 and DMA is enabled */ |
| 40 | /* especially since dc4 doesn't use kmalloc'd memory. */ |
| 41 | |
| 42 | #define ALLOW_MAP_OF_KMALLOC_MEMORY 0 |
| 43 | |
| 44 | /* ---- Public Variables ------------------------------------------------- */ |
| 45 | |
| 46 | /* ---- Private Constants and Types -------------------------------------- */ |
| 47 | |
| 48 | #define MAKE_HANDLE(controllerIdx, channelIdx) (((controllerIdx) << 4) | (channelIdx)) |
| 49 | |
| 50 | #define CONTROLLER_FROM_HANDLE(handle) (((handle) >> 4) & 0x0f) |
| 51 | #define CHANNEL_FROM_HANDLE(handle) ((handle) & 0x0f) |
| 52 | |
| 53 | #define DMA_MAP_DEBUG 0 |
| 54 | |
| 55 | #if DMA_MAP_DEBUG |
| 56 | # define DMA_MAP_PRINT(fmt, args...) printk("%s: " fmt, __func__, ## args) |
| 57 | #else |
| 58 | # define DMA_MAP_PRINT(fmt, args...) |
| 59 | #endif |
| 60 | |
| 61 | /* ---- Private Variables ------------------------------------------------ */ |
| 62 | |
| 63 | static DMA_Global_t gDMA; |
| 64 | static struct proc_dir_entry *gDmaDir; |
| 65 | |
| 66 | static atomic_t gDmaStatMemTypeKmalloc = ATOMIC_INIT(0); |
| 67 | static atomic_t gDmaStatMemTypeVmalloc = ATOMIC_INIT(0); |
| 68 | static atomic_t gDmaStatMemTypeUser = ATOMIC_INIT(0); |
| 69 | static atomic_t gDmaStatMemTypeCoherent = ATOMIC_INIT(0); |
| 70 | |
| 71 | #include "dma_device.c" |
| 72 | |
| 73 | /* ---- Private Function Prototypes -------------------------------------- */ |
| 74 | |
| 75 | /* ---- Functions ------------------------------------------------------- */ |
| 76 | |
| 77 | /****************************************************************************/ |
| 78 | /** |
| 79 | * Displays information for /proc/dma/mem-type |
| 80 | */ |
| 81 | /****************************************************************************/ |
| 82 | |
| 83 | static int dma_proc_read_mem_type(char *buf, char **start, off_t offset, |
| 84 | int count, int *eof, void *data) |
| 85 | { |
| 86 | int len = 0; |
| 87 | |
| 88 | len += sprintf(buf + len, "dma_map_mem statistics\n"); |
| 89 | len += |
| 90 | sprintf(buf + len, "coherent: %d\n", |
| 91 | atomic_read(&gDmaStatMemTypeCoherent)); |
| 92 | len += |
| 93 | sprintf(buf + len, "kmalloc: %d\n", |
| 94 | atomic_read(&gDmaStatMemTypeKmalloc)); |
| 95 | len += |
| 96 | sprintf(buf + len, "vmalloc: %d\n", |
| 97 | atomic_read(&gDmaStatMemTypeVmalloc)); |
| 98 | len += |
| 99 | sprintf(buf + len, "user: %d\n", |
| 100 | atomic_read(&gDmaStatMemTypeUser)); |
| 101 | |
| 102 | return len; |
| 103 | } |
| 104 | |
| 105 | /****************************************************************************/ |
| 106 | /** |
| 107 | * Displays information for /proc/dma/channels |
| 108 | */ |
| 109 | /****************************************************************************/ |
| 110 | |
| 111 | static int dma_proc_read_channels(char *buf, char **start, off_t offset, |
| 112 | int count, int *eof, void *data) |
| 113 | { |
| 114 | int controllerIdx; |
| 115 | int channelIdx; |
| 116 | int limit = count - 200; |
| 117 | int len = 0; |
| 118 | DMA_Channel_t *channel; |
| 119 | |
| 120 | if (down_interruptible(&gDMA.lock) < 0) { |
| 121 | return -ERESTARTSYS; |
| 122 | } |
| 123 | |
| 124 | for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; |
| 125 | controllerIdx++) { |
| 126 | for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; |
| 127 | channelIdx++) { |
| 128 | if (len >= limit) { |
| 129 | break; |
| 130 | } |
| 131 | |
| 132 | channel = |
| 133 | &gDMA.controller[controllerIdx].channel[channelIdx]; |
| 134 | |
| 135 | len += |
| 136 | sprintf(buf + len, "%d:%d ", controllerIdx, |
| 137 | channelIdx); |
| 138 | |
| 139 | if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) != |
| 140 | 0) { |
| 141 | len += |
| 142 | sprintf(buf + len, "Dedicated for %s ", |
| 143 | DMA_gDeviceAttribute[channel-> |
| 144 | devType].name); |
| 145 | } else { |
| 146 | len += sprintf(buf + len, "Shared "); |
| 147 | } |
| 148 | |
| 149 | if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) != 0) { |
| 150 | len += sprintf(buf + len, "No ISR "); |
| 151 | } |
| 152 | |
| 153 | if ((channel->flags & DMA_CHANNEL_FLAG_LARGE_FIFO) != 0) { |
| 154 | len += sprintf(buf + len, "Fifo: 128 "); |
| 155 | } else { |
| 156 | len += sprintf(buf + len, "Fifo: 64 "); |
| 157 | } |
| 158 | |
| 159 | if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) { |
| 160 | len += |
| 161 | sprintf(buf + len, "InUse by %s", |
| 162 | DMA_gDeviceAttribute[channel-> |
| 163 | devType].name); |
| 164 | #if (DMA_DEBUG_TRACK_RESERVATION) |
| 165 | len += |
| 166 | sprintf(buf + len, " (%s:%d)", |
| 167 | channel->fileName, |
| 168 | channel->lineNum); |
| 169 | #endif |
| 170 | } else { |
| 171 | len += sprintf(buf + len, "Avail "); |
| 172 | } |
| 173 | |
| 174 | if (channel->lastDevType != DMA_DEVICE_NONE) { |
| 175 | len += |
| 176 | sprintf(buf + len, "Last use: %s ", |
| 177 | DMA_gDeviceAttribute[channel-> |
| 178 | lastDevType]. |
| 179 | name); |
| 180 | } |
| 181 | |
| 182 | len += sprintf(buf + len, "\n"); |
| 183 | } |
| 184 | } |
| 185 | up(&gDMA.lock); |
| 186 | *eof = 1; |
| 187 | |
| 188 | return len; |
| 189 | } |
| 190 | |
| 191 | /****************************************************************************/ |
| 192 | /** |
| 193 | * Displays information for /proc/dma/devices |
| 194 | */ |
| 195 | /****************************************************************************/ |
| 196 | |
| 197 | static int dma_proc_read_devices(char *buf, char **start, off_t offset, |
| 198 | int count, int *eof, void *data) |
| 199 | { |
| 200 | int limit = count - 200; |
| 201 | int len = 0; |
| 202 | int devIdx; |
| 203 | |
| 204 | if (down_interruptible(&gDMA.lock) < 0) { |
| 205 | return -ERESTARTSYS; |
| 206 | } |
| 207 | |
| 208 | for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) { |
| 209 | DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx]; |
| 210 | |
| 211 | if (devAttr->name == NULL) { |
| 212 | continue; |
| 213 | } |
| 214 | |
| 215 | if (len >= limit) { |
| 216 | break; |
| 217 | } |
| 218 | |
| 219 | len += sprintf(buf + len, "%-12s ", devAttr->name); |
| 220 | |
| 221 | if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { |
| 222 | len += |
| 223 | sprintf(buf + len, "Dedicated %d:%d ", |
| 224 | devAttr->dedicatedController, |
| 225 | devAttr->dedicatedChannel); |
| 226 | } else { |
| 227 | len += sprintf(buf + len, "Shared DMA:"); |
| 228 | if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA0) != 0) { |
| 229 | len += sprintf(buf + len, "0"); |
| 230 | } |
| 231 | if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA1) != 0) { |
| 232 | len += sprintf(buf + len, "1"); |
| 233 | } |
| 234 | len += sprintf(buf + len, " "); |
| 235 | } |
| 236 | if ((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) { |
| 237 | len += sprintf(buf + len, "NoISR "); |
| 238 | } |
| 239 | if ((devAttr->flags & DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) != 0) { |
| 240 | len += sprintf(buf + len, "Allow-128 "); |
| 241 | } |
| 242 | |
| 243 | len += |
| 244 | sprintf(buf + len, |
| 245 | "Xfer #: %Lu Ticks: %Lu Bytes: %Lu DescLen: %u\n", |
| 246 | devAttr->numTransfers, devAttr->transferTicks, |
| 247 | devAttr->transferBytes, |
| 248 | devAttr->ring.bytesAllocated); |
| 249 | |
| 250 | } |
| 251 | |
| 252 | up(&gDMA.lock); |
| 253 | *eof = 1; |
| 254 | |
| 255 | return len; |
| 256 | } |
| 257 | |
| 258 | /****************************************************************************/ |
| 259 | /** |
| 260 | * Determines if a DMA_Device_t is "valid". |
| 261 | * |
| 262 | * @return |
| 263 | * TRUE - dma device is valid |
| 264 | * FALSE - dma device isn't valid |
| 265 | */ |
| 266 | /****************************************************************************/ |
| 267 | |
| 268 | static inline int IsDeviceValid(DMA_Device_t device) |
| 269 | { |
| 270 | return (device >= 0) && (device < DMA_NUM_DEVICE_ENTRIES); |
| 271 | } |
| 272 | |
| 273 | /****************************************************************************/ |
| 274 | /** |
| 275 | * Translates a DMA handle into a pointer to a channel. |
| 276 | * |
| 277 | * @return |
| 278 | * non-NULL - pointer to DMA_Channel_t |
| 279 | * NULL - DMA Handle was invalid |
| 280 | */ |
| 281 | /****************************************************************************/ |
| 282 | |
| 283 | static inline DMA_Channel_t *HandleToChannel(DMA_Handle_t handle) |
| 284 | { |
| 285 | int controllerIdx; |
| 286 | int channelIdx; |
| 287 | |
| 288 | controllerIdx = CONTROLLER_FROM_HANDLE(handle); |
| 289 | channelIdx = CHANNEL_FROM_HANDLE(handle); |
| 290 | |
| 291 | if ((controllerIdx > DMA_NUM_CONTROLLERS) |
| 292 | || (channelIdx > DMA_NUM_CHANNELS)) { |
| 293 | return NULL; |
| 294 | } |
| 295 | return &gDMA.controller[controllerIdx].channel[channelIdx]; |
| 296 | } |
| 297 | |
| 298 | /****************************************************************************/ |
| 299 | /** |
| 300 | * Interrupt handler which is called to process DMA interrupts. |
| 301 | */ |
| 302 | /****************************************************************************/ |
| 303 | |
| 304 | static irqreturn_t dma_interrupt_handler(int irq, void *dev_id) |
| 305 | { |
| 306 | DMA_Channel_t *channel; |
| 307 | DMA_DeviceAttribute_t *devAttr; |
| 308 | int irqStatus; |
| 309 | |
| 310 | channel = (DMA_Channel_t *) dev_id; |
| 311 | |
| 312 | /* Figure out why we were called, and knock down the interrupt */ |
| 313 | |
| 314 | irqStatus = dmacHw_getInterruptStatus(channel->dmacHwHandle); |
| 315 | dmacHw_clearInterrupt(channel->dmacHwHandle); |
| 316 | |
| 317 | if ((channel->devType < 0) |
| 318 | || (channel->devType > DMA_NUM_DEVICE_ENTRIES)) { |
| 319 | printk(KERN_ERR "dma_interrupt_handler: Invalid devType: %d\n", |
| 320 | channel->devType); |
| 321 | return IRQ_NONE; |
| 322 | } |
| 323 | devAttr = &DMA_gDeviceAttribute[channel->devType]; |
| 324 | |
| 325 | /* Update stats */ |
| 326 | |
| 327 | if ((irqStatus & dmacHw_INTERRUPT_STATUS_TRANS) != 0) { |
| 328 | devAttr->transferTicks += |
| 329 | (timer_get_tick_count() - devAttr->transferStartTime); |
| 330 | } |
| 331 | |
| 332 | if ((irqStatus & dmacHw_INTERRUPT_STATUS_ERROR) != 0) { |
| 333 | printk(KERN_ERR |
| 334 | "dma_interrupt_handler: devType :%d DMA error (%s)\n", |
| 335 | channel->devType, devAttr->name); |
| 336 | } else { |
| 337 | devAttr->numTransfers++; |
| 338 | devAttr->transferBytes += devAttr->numBytes; |
| 339 | } |
| 340 | |
| 341 | /* Call any installed handler */ |
| 342 | |
| 343 | if (devAttr->devHandler != NULL) { |
| 344 | devAttr->devHandler(channel->devType, irqStatus, |
| 345 | devAttr->userData); |
| 346 | } |
| 347 | |
| 348 | return IRQ_HANDLED; |
| 349 | } |
| 350 | |
| 351 | /****************************************************************************/ |
| 352 | /** |
| 353 | * Allocates memory to hold a descriptor ring. The descriptor ring then |
| 354 | * needs to be populated by making one or more calls to |
| 355 | * dna_add_descriptors. |
| 356 | * |
| 357 | * The returned descriptor ring will be automatically initialized. |
| 358 | * |
| 359 | * @return |
| 360 | * 0 Descriptor ring was allocated successfully |
| 361 | * -EINVAL Invalid parameters passed in |
| 362 | * -ENOMEM Unable to allocate memory for the desired number of descriptors. |
| 363 | */ |
| 364 | /****************************************************************************/ |
| 365 | |
| 366 | int dma_alloc_descriptor_ring(DMA_DescriptorRing_t *ring, /* Descriptor ring to populate */ |
| 367 | int numDescriptors /* Number of descriptors that need to be allocated. */ |
| 368 | ) { |
| 369 | size_t bytesToAlloc = dmacHw_descriptorLen(numDescriptors); |
| 370 | |
| 371 | if ((ring == NULL) || (numDescriptors <= 0)) { |
| 372 | return -EINVAL; |
| 373 | } |
| 374 | |
| 375 | ring->physAddr = 0; |
| 376 | ring->descriptorsAllocated = 0; |
| 377 | ring->bytesAllocated = 0; |
| 378 | |
| 379 | ring->virtAddr = dma_alloc_writecombine(NULL, |
| 380 | bytesToAlloc, |
| 381 | &ring->physAddr, |
| 382 | GFP_KERNEL); |
| 383 | if (ring->virtAddr == NULL) { |
| 384 | return -ENOMEM; |
| 385 | } |
| 386 | |
| 387 | ring->bytesAllocated = bytesToAlloc; |
| 388 | ring->descriptorsAllocated = numDescriptors; |
| 389 | |
| 390 | return dma_init_descriptor_ring(ring, numDescriptors); |
| 391 | } |
| 392 | |
| 393 | EXPORT_SYMBOL(dma_alloc_descriptor_ring); |
| 394 | |
| 395 | /****************************************************************************/ |
| 396 | /** |
| 397 | * Releases the memory which was previously allocated for a descriptor ring. |
| 398 | */ |
| 399 | /****************************************************************************/ |
| 400 | |
| 401 | void dma_free_descriptor_ring(DMA_DescriptorRing_t *ring /* Descriptor to release */ |
| 402 | ) { |
| 403 | if (ring->virtAddr != NULL) { |
| 404 | dma_free_writecombine(NULL, |
| 405 | ring->bytesAllocated, |
| 406 | ring->virtAddr, ring->physAddr); |
| 407 | } |
| 408 | |
| 409 | ring->bytesAllocated = 0; |
| 410 | ring->descriptorsAllocated = 0; |
| 411 | ring->virtAddr = NULL; |
| 412 | ring->physAddr = 0; |
| 413 | } |
| 414 | |
| 415 | EXPORT_SYMBOL(dma_free_descriptor_ring); |
| 416 | |
| 417 | /****************************************************************************/ |
| 418 | /** |
| 419 | * Initializes a descriptor ring, so that descriptors can be added to it. |
| 420 | * Once a descriptor ring has been allocated, it may be reinitialized for |
| 421 | * use with additional/different regions of memory. |
| 422 | * |
| 423 | * Note that if 7 descriptors are allocated, it's perfectly acceptable to |
| 424 | * initialize the ring with a smaller number of descriptors. The amount |
| 425 | * of memory allocated for the descriptor ring will not be reduced, and |
| 426 | * the descriptor ring may be reinitialized later |
| 427 | * |
| 428 | * @return |
| 429 | * 0 Descriptor ring was initialized successfully |
| 430 | * -ENOMEM The descriptor which was passed in has insufficient space |
| 431 | * to hold the desired number of descriptors. |
| 432 | */ |
| 433 | /****************************************************************************/ |
| 434 | |
| 435 | int dma_init_descriptor_ring(DMA_DescriptorRing_t *ring, /* Descriptor ring to initialize */ |
| 436 | int numDescriptors /* Number of descriptors to initialize. */ |
| 437 | ) { |
| 438 | if (ring->virtAddr == NULL) { |
| 439 | return -EINVAL; |
| 440 | } |
| 441 | if (dmacHw_initDescriptor(ring->virtAddr, |
| 442 | ring->physAddr, |
| 443 | ring->bytesAllocated, numDescriptors) < 0) { |
| 444 | printk(KERN_ERR |
| 445 | "dma_init_descriptor_ring: dmacHw_initDescriptor failed\n"); |
| 446 | return -ENOMEM; |
| 447 | } |
| 448 | |
| 449 | return 0; |
| 450 | } |
| 451 | |
| 452 | EXPORT_SYMBOL(dma_init_descriptor_ring); |
| 453 | |
| 454 | /****************************************************************************/ |
| 455 | /** |
| 456 | * Determines the number of descriptors which would be required for a |
| 457 | * transfer of the indicated memory region. |
| 458 | * |
| 459 | * This function also needs to know which DMA device this transfer will |
| 460 | * be destined for, so that the appropriate DMA configuration can be retrieved. |
| 461 | * DMA parameters such as transfer width, and whether this is a memory-to-memory |
| 462 | * or memory-to-peripheral, etc can all affect the actual number of descriptors |
| 463 | * required. |
| 464 | * |
| 465 | * @return |
| 466 | * > 0 Returns the number of descriptors required for the indicated transfer |
| 467 | * -ENODEV - Device handed in is invalid. |
| 468 | * -EINVAL Invalid parameters |
| 469 | * -ENOMEM Memory exhausted |
| 470 | */ |
| 471 | /****************************************************************************/ |
| 472 | |
| 473 | int dma_calculate_descriptor_count(DMA_Device_t device, /* DMA Device that this will be associated with */ |
| 474 | dma_addr_t srcData, /* Place to get data to write to device */ |
| 475 | dma_addr_t dstData, /* Pointer to device data address */ |
| 476 | size_t numBytes /* Number of bytes to transfer to the device */ |
| 477 | ) { |
| 478 | int numDescriptors; |
| 479 | DMA_DeviceAttribute_t *devAttr; |
| 480 | |
| 481 | if (!IsDeviceValid(device)) { |
| 482 | return -ENODEV; |
| 483 | } |
| 484 | devAttr = &DMA_gDeviceAttribute[device]; |
| 485 | |
| 486 | numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config, |
| 487 | (void *)srcData, |
| 488 | (void *)dstData, |
| 489 | numBytes); |
| 490 | if (numDescriptors < 0) { |
| 491 | printk(KERN_ERR |
| 492 | "dma_calculate_descriptor_count: dmacHw_calculateDescriptorCount failed\n"); |
| 493 | return -EINVAL; |
| 494 | } |
| 495 | |
| 496 | return numDescriptors; |
| 497 | } |
| 498 | |
| 499 | EXPORT_SYMBOL(dma_calculate_descriptor_count); |
| 500 | |
| 501 | /****************************************************************************/ |
| 502 | /** |
| 503 | * Adds a region of memory to the descriptor ring. Note that it may take |
| 504 | * multiple descriptors for each region of memory. It is the callers |
| 505 | * responsibility to allocate a sufficiently large descriptor ring. |
| 506 | * |
| 507 | * @return |
| 508 | * 0 Descriptors were added successfully |
| 509 | * -ENODEV Device handed in is invalid. |
| 510 | * -EINVAL Invalid parameters |
| 511 | * -ENOMEM Memory exhausted |
| 512 | */ |
| 513 | /****************************************************************************/ |
| 514 | |
| 515 | int dma_add_descriptors(DMA_DescriptorRing_t *ring, /* Descriptor ring to add descriptors to */ |
| 516 | DMA_Device_t device, /* DMA Device that descriptors are for */ |
| 517 | dma_addr_t srcData, /* Place to get data (memory or device) */ |
| 518 | dma_addr_t dstData, /* Place to put data (memory or device) */ |
| 519 | size_t numBytes /* Number of bytes to transfer to the device */ |
| 520 | ) { |
| 521 | int rc; |
| 522 | DMA_DeviceAttribute_t *devAttr; |
| 523 | |
| 524 | if (!IsDeviceValid(device)) { |
| 525 | return -ENODEV; |
| 526 | } |
| 527 | devAttr = &DMA_gDeviceAttribute[device]; |
| 528 | |
| 529 | rc = dmacHw_setDataDescriptor(&devAttr->config, |
| 530 | ring->virtAddr, |
| 531 | (void *)srcData, |
| 532 | (void *)dstData, numBytes); |
| 533 | if (rc < 0) { |
| 534 | printk(KERN_ERR |
| 535 | "dma_add_descriptors: dmacHw_setDataDescriptor failed with code: %d\n", |
| 536 | rc); |
| 537 | return -ENOMEM; |
| 538 | } |
| 539 | |
| 540 | return 0; |
| 541 | } |
| 542 | |
| 543 | EXPORT_SYMBOL(dma_add_descriptors); |
| 544 | |
| 545 | /****************************************************************************/ |
| 546 | /** |
| 547 | * Sets the descriptor ring associated with a device. |
| 548 | * |
| 549 | * Once set, the descriptor ring will be associated with the device, even |
| 550 | * across channel request/free calls. Passing in a NULL descriptor ring |
| 551 | * will release any descriptor ring currently associated with the device. |
| 552 | * |
| 553 | * Note: If you call dma_transfer, or one of the other dma_alloc_ functions |
| 554 | * the descriptor ring may be released and reallocated. |
| 555 | * |
| 556 | * Note: This function will release the descriptor memory for any current |
| 557 | * descriptor ring associated with this device. |
| 558 | * |
| 559 | * @return |
| 560 | * 0 Descriptors were added successfully |
| 561 | * -ENODEV Device handed in is invalid. |
| 562 | */ |
| 563 | /****************************************************************************/ |
| 564 | |
| 565 | int dma_set_device_descriptor_ring(DMA_Device_t device, /* Device to update the descriptor ring for. */ |
| 566 | DMA_DescriptorRing_t *ring /* Descriptor ring to add descriptors to */ |
| 567 | ) { |
| 568 | DMA_DeviceAttribute_t *devAttr; |
| 569 | |
| 570 | if (!IsDeviceValid(device)) { |
| 571 | return -ENODEV; |
| 572 | } |
| 573 | devAttr = &DMA_gDeviceAttribute[device]; |
| 574 | |
| 575 | /* Free the previously allocated descriptor ring */ |
| 576 | |
| 577 | dma_free_descriptor_ring(&devAttr->ring); |
| 578 | |
| 579 | if (ring != NULL) { |
| 580 | /* Copy in the new one */ |
| 581 | |
| 582 | devAttr->ring = *ring; |
| 583 | } |
| 584 | |
| 585 | /* Set things up so that if dma_transfer is called then this descriptor */ |
| 586 | /* ring will get freed. */ |
| 587 | |
| 588 | devAttr->prevSrcData = 0; |
| 589 | devAttr->prevDstData = 0; |
| 590 | devAttr->prevNumBytes = 0; |
| 591 | |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | EXPORT_SYMBOL(dma_set_device_descriptor_ring); |
| 596 | |
| 597 | /****************************************************************************/ |
| 598 | /** |
| 599 | * Retrieves the descriptor ring associated with a device. |
| 600 | * |
| 601 | * @return |
| 602 | * 0 Descriptors were added successfully |
| 603 | * -ENODEV Device handed in is invalid. |
| 604 | */ |
| 605 | /****************************************************************************/ |
| 606 | |
| 607 | int dma_get_device_descriptor_ring(DMA_Device_t device, /* Device to retrieve the descriptor ring for. */ |
| 608 | DMA_DescriptorRing_t *ring /* Place to store retrieved ring */ |
| 609 | ) { |
| 610 | DMA_DeviceAttribute_t *devAttr; |
| 611 | |
| 612 | memset(ring, 0, sizeof(*ring)); |
| 613 | |
| 614 | if (!IsDeviceValid(device)) { |
| 615 | return -ENODEV; |
| 616 | } |
| 617 | devAttr = &DMA_gDeviceAttribute[device]; |
| 618 | |
| 619 | *ring = devAttr->ring; |
| 620 | |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | EXPORT_SYMBOL(dma_get_device_descriptor_ring); |
| 625 | |
| 626 | /****************************************************************************/ |
| 627 | /** |
| 628 | * Configures a DMA channel. |
| 629 | * |
| 630 | * @return |
| 631 | * >= 0 - Initialization was successfull. |
| 632 | * |
| 633 | * -EBUSY - Device is currently being used. |
| 634 | * -ENODEV - Device handed in is invalid. |
| 635 | */ |
| 636 | /****************************************************************************/ |
| 637 | |
| 638 | static int ConfigChannel(DMA_Handle_t handle) |
| 639 | { |
| 640 | DMA_Channel_t *channel; |
| 641 | DMA_DeviceAttribute_t *devAttr; |
| 642 | int controllerIdx; |
| 643 | |
| 644 | channel = HandleToChannel(handle); |
| 645 | if (channel == NULL) { |
| 646 | return -ENODEV; |
| 647 | } |
| 648 | devAttr = &DMA_gDeviceAttribute[channel->devType]; |
| 649 | controllerIdx = CONTROLLER_FROM_HANDLE(handle); |
| 650 | |
| 651 | if ((devAttr->flags & DMA_DEVICE_FLAG_PORT_PER_DMAC) != 0) { |
| 652 | if (devAttr->config.transferType == |
| 653 | dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL) { |
| 654 | devAttr->config.dstPeripheralPort = |
| 655 | devAttr->dmacPort[controllerIdx]; |
| 656 | } else if (devAttr->config.transferType == |
| 657 | dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM) { |
| 658 | devAttr->config.srcPeripheralPort = |
| 659 | devAttr->dmacPort[controllerIdx]; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | if (dmacHw_configChannel(channel->dmacHwHandle, &devAttr->config) != 0) { |
| 664 | printk(KERN_ERR "ConfigChannel: dmacHw_configChannel failed\n"); |
| 665 | return -EIO; |
| 666 | } |
| 667 | |
| 668 | return 0; |
| 669 | } |
| 670 | |
| 671 | /****************************************************************************/ |
| 672 | /** |
| 673 | * Intializes all of the data structures associated with the DMA. |
| 674 | * @return |
| 675 | * >= 0 - Initialization was successfull. |
| 676 | * |
| 677 | * -EBUSY - Device is currently being used. |
| 678 | * -ENODEV - Device handed in is invalid. |
| 679 | */ |
| 680 | /****************************************************************************/ |
| 681 | |
| 682 | int dma_init(void) |
| 683 | { |
| 684 | int rc = 0; |
| 685 | int controllerIdx; |
| 686 | int channelIdx; |
| 687 | DMA_Device_t devIdx; |
| 688 | DMA_Channel_t *channel; |
| 689 | DMA_Handle_t dedicatedHandle; |
| 690 | |
| 691 | memset(&gDMA, 0, sizeof(gDMA)); |
| 692 | |
| 693 | init_MUTEX_LOCKED(&gDMA.lock); |
| 694 | init_waitqueue_head(&gDMA.freeChannelQ); |
| 695 | |
| 696 | /* Initialize the Hardware */ |
| 697 | |
| 698 | dmacHw_initDma(); |
| 699 | |
| 700 | /* Start off by marking all of the DMA channels as shared. */ |
| 701 | |
| 702 | for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; |
| 703 | controllerIdx++) { |
| 704 | for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; |
| 705 | channelIdx++) { |
| 706 | channel = |
| 707 | &gDMA.controller[controllerIdx].channel[channelIdx]; |
| 708 | |
| 709 | channel->flags = 0; |
| 710 | channel->devType = DMA_DEVICE_NONE; |
| 711 | channel->lastDevType = DMA_DEVICE_NONE; |
| 712 | |
| 713 | #if (DMA_DEBUG_TRACK_RESERVATION) |
| 714 | channel->fileName = ""; |
| 715 | channel->lineNum = 0; |
| 716 | #endif |
| 717 | |
| 718 | channel->dmacHwHandle = |
| 719 | dmacHw_getChannelHandle(dmacHw_MAKE_CHANNEL_ID |
| 720 | (controllerIdx, |
| 721 | channelIdx)); |
| 722 | dmacHw_initChannel(channel->dmacHwHandle); |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | /* Record any special attributes that channels may have */ |
| 727 | |
| 728 | gDMA.controller[0].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; |
| 729 | gDMA.controller[0].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; |
| 730 | gDMA.controller[1].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; |
| 731 | gDMA.controller[1].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; |
| 732 | |
| 733 | /* Now walk through and record the dedicated channels. */ |
| 734 | |
| 735 | for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) { |
| 736 | DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx]; |
| 737 | |
| 738 | if (((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) |
| 739 | && ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0)) { |
| 740 | printk(KERN_ERR |
| 741 | "DMA Device: %s Can only request NO_ISR for dedicated devices\n", |
| 742 | devAttr->name); |
| 743 | rc = -EINVAL; |
| 744 | goto out; |
| 745 | } |
| 746 | |
| 747 | if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { |
| 748 | /* This is a dedicated device. Mark the channel as being reserved. */ |
| 749 | |
| 750 | if (devAttr->dedicatedController >= DMA_NUM_CONTROLLERS) { |
| 751 | printk(KERN_ERR |
| 752 | "DMA Device: %s DMA Controller %d is out of range\n", |
| 753 | devAttr->name, |
| 754 | devAttr->dedicatedController); |
| 755 | rc = -EINVAL; |
| 756 | goto out; |
| 757 | } |
| 758 | |
| 759 | if (devAttr->dedicatedChannel >= DMA_NUM_CHANNELS) { |
| 760 | printk(KERN_ERR |
| 761 | "DMA Device: %s DMA Channel %d is out of range\n", |
| 762 | devAttr->name, |
| 763 | devAttr->dedicatedChannel); |
| 764 | rc = -EINVAL; |
| 765 | goto out; |
| 766 | } |
| 767 | |
| 768 | dedicatedHandle = |
| 769 | MAKE_HANDLE(devAttr->dedicatedController, |
| 770 | devAttr->dedicatedChannel); |
| 771 | channel = HandleToChannel(dedicatedHandle); |
| 772 | |
| 773 | if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) != |
| 774 | 0) { |
| 775 | printk |
| 776 | ("DMA Device: %s attempting to use same DMA Controller:Channel (%d:%d) as %s\n", |
| 777 | devAttr->name, |
| 778 | devAttr->dedicatedController, |
| 779 | devAttr->dedicatedChannel, |
| 780 | DMA_gDeviceAttribute[channel->devType]. |
| 781 | name); |
| 782 | rc = -EBUSY; |
| 783 | goto out; |
| 784 | } |
| 785 | |
| 786 | channel->flags |= DMA_CHANNEL_FLAG_IS_DEDICATED; |
| 787 | channel->devType = devIdx; |
| 788 | |
| 789 | if (devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) { |
| 790 | channel->flags |= DMA_CHANNEL_FLAG_NO_ISR; |
| 791 | } |
| 792 | |
| 793 | /* For dedicated channels, we can go ahead and configure the DMA channel now */ |
| 794 | /* as well. */ |
| 795 | |
| 796 | ConfigChannel(dedicatedHandle); |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | /* Go through and register the interrupt handlers */ |
| 801 | |
| 802 | for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; |
| 803 | controllerIdx++) { |
| 804 | for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; |
| 805 | channelIdx++) { |
| 806 | channel = |
| 807 | &gDMA.controller[controllerIdx].channel[channelIdx]; |
| 808 | |
| 809 | if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) == 0) { |
| 810 | snprintf(channel->name, sizeof(channel->name), |
| 811 | "dma %d:%d %s", controllerIdx, |
| 812 | channelIdx, |
| 813 | channel->devType == |
| 814 | DMA_DEVICE_NONE ? "" : |
| 815 | DMA_gDeviceAttribute[channel->devType]. |
| 816 | name); |
| 817 | |
| 818 | rc = |
| 819 | request_irq(IRQ_DMA0C0 + |
| 820 | (controllerIdx * |
| 821 | DMA_NUM_CHANNELS) + |
| 822 | channelIdx, |
| 823 | dma_interrupt_handler, |
| 824 | IRQF_DISABLED, channel->name, |
| 825 | channel); |
| 826 | if (rc != 0) { |
| 827 | printk(KERN_ERR |
| 828 | "request_irq for IRQ_DMA%dC%d failed\n", |
| 829 | controllerIdx, channelIdx); |
| 830 | } |
| 831 | } |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | /* Create /proc/dma/channels and /proc/dma/devices */ |
| 836 | |
| 837 | gDmaDir = create_proc_entry("dma", S_IFDIR | S_IRUGO | S_IXUGO, NULL); |
| 838 | |
| 839 | if (gDmaDir == NULL) { |
| 840 | printk(KERN_ERR "Unable to create /proc/dma\n"); |
| 841 | } else { |
| 842 | create_proc_read_entry("channels", 0, gDmaDir, |
| 843 | dma_proc_read_channels, NULL); |
| 844 | create_proc_read_entry("devices", 0, gDmaDir, |
| 845 | dma_proc_read_devices, NULL); |
| 846 | create_proc_read_entry("mem-type", 0, gDmaDir, |
| 847 | dma_proc_read_mem_type, NULL); |
| 848 | } |
| 849 | |
| 850 | out: |
| 851 | |
| 852 | up(&gDMA.lock); |
| 853 | |
| 854 | return rc; |
| 855 | } |
| 856 | |
| 857 | /****************************************************************************/ |
| 858 | /** |
| 859 | * Reserves a channel for use with @a dev. If the device is setup to use |
| 860 | * a shared channel, then this function will block until a free channel |
| 861 | * becomes available. |
| 862 | * |
| 863 | * @return |
| 864 | * >= 0 - A valid DMA Handle. |
| 865 | * -EBUSY - Device is currently being used. |
| 866 | * -ENODEV - Device handed in is invalid. |
| 867 | */ |
| 868 | /****************************************************************************/ |
| 869 | |
| 870 | #if (DMA_DEBUG_TRACK_RESERVATION) |
| 871 | DMA_Handle_t dma_request_channel_dbg |
| 872 | (DMA_Device_t dev, const char *fileName, int lineNum) |
| 873 | #else |
| 874 | DMA_Handle_t dma_request_channel(DMA_Device_t dev) |
| 875 | #endif |
| 876 | { |
| 877 | DMA_Handle_t handle; |
| 878 | DMA_DeviceAttribute_t *devAttr; |
| 879 | DMA_Channel_t *channel; |
| 880 | int controllerIdx; |
| 881 | int controllerIdx2; |
| 882 | int channelIdx; |
| 883 | |
| 884 | if (down_interruptible(&gDMA.lock) < 0) { |
| 885 | return -ERESTARTSYS; |
| 886 | } |
| 887 | |
| 888 | if ((dev < 0) || (dev >= DMA_NUM_DEVICE_ENTRIES)) { |
| 889 | handle = -ENODEV; |
| 890 | goto out; |
| 891 | } |
| 892 | devAttr = &DMA_gDeviceAttribute[dev]; |
| 893 | |
| 894 | #if (DMA_DEBUG_TRACK_RESERVATION) |
| 895 | { |
| 896 | char *s; |
| 897 | |
| 898 | s = strrchr(fileName, '/'); |
| 899 | if (s != NULL) { |
| 900 | fileName = s + 1; |
| 901 | } |
| 902 | } |
| 903 | #endif |
| 904 | if ((devAttr->flags & DMA_DEVICE_FLAG_IN_USE) != 0) { |
| 905 | /* This device has already been requested and not been freed */ |
| 906 | |
| 907 | printk(KERN_ERR "%s: device %s is already requested\n", |
| 908 | __func__, devAttr->name); |
| 909 | handle = -EBUSY; |
| 910 | goto out; |
| 911 | } |
| 912 | |
| 913 | if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { |
| 914 | /* This device has a dedicated channel. */ |
| 915 | |
| 916 | channel = |
| 917 | &gDMA.controller[devAttr->dedicatedController]. |
| 918 | channel[devAttr->dedicatedChannel]; |
| 919 | if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) { |
| 920 | handle = -EBUSY; |
| 921 | goto out; |
| 922 | } |
| 923 | |
| 924 | channel->flags |= DMA_CHANNEL_FLAG_IN_USE; |
| 925 | devAttr->flags |= DMA_DEVICE_FLAG_IN_USE; |
| 926 | |
| 927 | #if (DMA_DEBUG_TRACK_RESERVATION) |
| 928 | channel->fileName = fileName; |
| 929 | channel->lineNum = lineNum; |
| 930 | #endif |
| 931 | handle = |
| 932 | MAKE_HANDLE(devAttr->dedicatedController, |
| 933 | devAttr->dedicatedChannel); |
| 934 | goto out; |
| 935 | } |
| 936 | |
| 937 | /* This device needs to use one of the shared channels. */ |
| 938 | |
| 939 | handle = DMA_INVALID_HANDLE; |
| 940 | while (handle == DMA_INVALID_HANDLE) { |
| 941 | /* Scan through the shared channels and see if one is available */ |
| 942 | |
| 943 | for (controllerIdx2 = 0; controllerIdx2 < DMA_NUM_CONTROLLERS; |
| 944 | controllerIdx2++) { |
| 945 | /* Check to see if we should try on controller 1 first. */ |
| 946 | |
| 947 | controllerIdx = controllerIdx2; |
| 948 | if ((devAttr-> |
| 949 | flags & DMA_DEVICE_FLAG_ALLOC_DMA1_FIRST) != 0) { |
| 950 | controllerIdx = 1 - controllerIdx; |
| 951 | } |
| 952 | |
| 953 | /* See if the device is available on the controller being tested */ |
| 954 | |
| 955 | if ((devAttr-> |
| 956 | flags & (DMA_DEVICE_FLAG_ON_DMA0 << controllerIdx)) |
| 957 | != 0) { |
| 958 | for (channelIdx = 0; |
| 959 | channelIdx < DMA_NUM_CHANNELS; |
| 960 | channelIdx++) { |
| 961 | channel = |
| 962 | &gDMA.controller[controllerIdx]. |
| 963 | channel[channelIdx]; |
| 964 | |
| 965 | if (((channel-> |
| 966 | flags & |
| 967 | DMA_CHANNEL_FLAG_IS_DEDICATED) == |
| 968 | 0) |
| 969 | && |
| 970 | ((channel-> |
| 971 | flags & DMA_CHANNEL_FLAG_IN_USE) |
| 972 | == 0)) { |
| 973 | if (((channel-> |
| 974 | flags & |
| 975 | DMA_CHANNEL_FLAG_LARGE_FIFO) |
| 976 | != 0) |
| 977 | && |
| 978 | ((devAttr-> |
| 979 | flags & |
| 980 | DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) |
| 981 | == 0)) { |
| 982 | /* This channel is a large fifo - don't tie it up */ |
| 983 | /* with devices that we don't want using it. */ |
| 984 | |
| 985 | continue; |
| 986 | } |
| 987 | |
| 988 | channel->flags |= |
| 989 | DMA_CHANNEL_FLAG_IN_USE; |
| 990 | channel->devType = dev; |
| 991 | devAttr->flags |= |
| 992 | DMA_DEVICE_FLAG_IN_USE; |
| 993 | |
| 994 | #if (DMA_DEBUG_TRACK_RESERVATION) |
| 995 | channel->fileName = fileName; |
| 996 | channel->lineNum = lineNum; |
| 997 | #endif |
| 998 | handle = |
| 999 | MAKE_HANDLE(controllerIdx, |
| 1000 | channelIdx); |
| 1001 | |
| 1002 | /* Now that we've reserved the channel - we can go ahead and configure it */ |
| 1003 | |
| 1004 | if (ConfigChannel(handle) != 0) { |
| 1005 | handle = -EIO; |
| 1006 | printk(KERN_ERR |
| 1007 | "dma_request_channel: ConfigChannel failed\n"); |
| 1008 | } |
| 1009 | goto out; |
| 1010 | } |
| 1011 | } |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | /* No channels are currently available. Let's wait for one to free up. */ |
| 1016 | |
| 1017 | { |
| 1018 | DEFINE_WAIT(wait); |
| 1019 | |
| 1020 | prepare_to_wait(&gDMA.freeChannelQ, &wait, |
| 1021 | TASK_INTERRUPTIBLE); |
| 1022 | up(&gDMA.lock); |
| 1023 | schedule(); |
| 1024 | finish_wait(&gDMA.freeChannelQ, &wait); |
| 1025 | |
| 1026 | if (signal_pending(current)) { |
| 1027 | /* We don't currently hold gDMA.lock, so we return directly */ |
| 1028 | |
| 1029 | return -ERESTARTSYS; |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | if (down_interruptible(&gDMA.lock)) { |
| 1034 | return -ERESTARTSYS; |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | out: |
| 1039 | up(&gDMA.lock); |
| 1040 | |
| 1041 | return handle; |
| 1042 | } |
| 1043 | |
| 1044 | /* Create both _dbg and non _dbg functions for modules. */ |
| 1045 | |
| 1046 | #if (DMA_DEBUG_TRACK_RESERVATION) |
| 1047 | #undef dma_request_channel |
| 1048 | DMA_Handle_t dma_request_channel(DMA_Device_t dev) |
| 1049 | { |
| 1050 | return dma_request_channel_dbg(dev, __FILE__, __LINE__); |
| 1051 | } |
| 1052 | |
| 1053 | EXPORT_SYMBOL(dma_request_channel_dbg); |
| 1054 | #endif |
| 1055 | EXPORT_SYMBOL(dma_request_channel); |
| 1056 | |
| 1057 | /****************************************************************************/ |
| 1058 | /** |
| 1059 | * Frees a previously allocated DMA Handle. |
| 1060 | */ |
| 1061 | /****************************************************************************/ |
| 1062 | |
| 1063 | int dma_free_channel(DMA_Handle_t handle /* DMA handle. */ |
| 1064 | ) { |
| 1065 | int rc = 0; |
| 1066 | DMA_Channel_t *channel; |
| 1067 | DMA_DeviceAttribute_t *devAttr; |
| 1068 | |
| 1069 | if (down_interruptible(&gDMA.lock) < 0) { |
| 1070 | return -ERESTARTSYS; |
| 1071 | } |
| 1072 | |
| 1073 | channel = HandleToChannel(handle); |
| 1074 | if (channel == NULL) { |
| 1075 | rc = -EINVAL; |
| 1076 | goto out; |
| 1077 | } |
| 1078 | |
| 1079 | devAttr = &DMA_gDeviceAttribute[channel->devType]; |
| 1080 | |
| 1081 | if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) == 0) { |
| 1082 | channel->lastDevType = channel->devType; |
| 1083 | channel->devType = DMA_DEVICE_NONE; |
| 1084 | } |
| 1085 | channel->flags &= ~DMA_CHANNEL_FLAG_IN_USE; |
| 1086 | devAttr->flags &= ~DMA_DEVICE_FLAG_IN_USE; |
| 1087 | |
| 1088 | out: |
| 1089 | up(&gDMA.lock); |
| 1090 | |
| 1091 | wake_up_interruptible(&gDMA.freeChannelQ); |
| 1092 | |
| 1093 | return rc; |
| 1094 | } |
| 1095 | |
| 1096 | EXPORT_SYMBOL(dma_free_channel); |
| 1097 | |
| 1098 | /****************************************************************************/ |
| 1099 | /** |
| 1100 | * Determines if a given device has been configured as using a shared |
| 1101 | * channel. |
| 1102 | * |
| 1103 | * @return |
| 1104 | * 0 Device uses a dedicated channel |
| 1105 | * > zero Device uses a shared channel |
| 1106 | * < zero Error code |
| 1107 | */ |
| 1108 | /****************************************************************************/ |
| 1109 | |
| 1110 | int dma_device_is_channel_shared(DMA_Device_t device /* Device to check. */ |
| 1111 | ) { |
| 1112 | DMA_DeviceAttribute_t *devAttr; |
| 1113 | |
| 1114 | if (!IsDeviceValid(device)) { |
| 1115 | return -ENODEV; |
| 1116 | } |
| 1117 | devAttr = &DMA_gDeviceAttribute[device]; |
| 1118 | |
| 1119 | return ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0); |
| 1120 | } |
| 1121 | |
| 1122 | EXPORT_SYMBOL(dma_device_is_channel_shared); |
| 1123 | |
| 1124 | /****************************************************************************/ |
| 1125 | /** |
| 1126 | * Allocates buffers for the descriptors. This is normally done automatically |
| 1127 | * but needs to be done explicitly when initiating a dma from interrupt |
| 1128 | * context. |
| 1129 | * |
| 1130 | * @return |
| 1131 | * 0 Descriptors were allocated successfully |
| 1132 | * -EINVAL Invalid device type for this kind of transfer |
| 1133 | * (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM) |
| 1134 | * -ENOMEM Memory exhausted |
| 1135 | */ |
| 1136 | /****************************************************************************/ |
| 1137 | |
| 1138 | int dma_alloc_descriptors(DMA_Handle_t handle, /* DMA Handle */ |
| 1139 | dmacHw_TRANSFER_TYPE_e transferType, /* Type of transfer being performed */ |
| 1140 | dma_addr_t srcData, /* Place to get data to write to device */ |
| 1141 | dma_addr_t dstData, /* Pointer to device data address */ |
| 1142 | size_t numBytes /* Number of bytes to transfer to the device */ |
| 1143 | ) { |
| 1144 | DMA_Channel_t *channel; |
| 1145 | DMA_DeviceAttribute_t *devAttr; |
| 1146 | int numDescriptors; |
| 1147 | size_t ringBytesRequired; |
| 1148 | int rc = 0; |
| 1149 | |
| 1150 | channel = HandleToChannel(handle); |
| 1151 | if (channel == NULL) { |
| 1152 | return -ENODEV; |
| 1153 | } |
| 1154 | |
| 1155 | devAttr = &DMA_gDeviceAttribute[channel->devType]; |
| 1156 | |
| 1157 | if (devAttr->config.transferType != transferType) { |
| 1158 | return -EINVAL; |
| 1159 | } |
| 1160 | |
| 1161 | /* Figure out how many descriptors we need. */ |
| 1162 | |
| 1163 | /* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */ |
| 1164 | /* srcData, dstData, numBytes); */ |
| 1165 | |
| 1166 | numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config, |
| 1167 | (void *)srcData, |
| 1168 | (void *)dstData, |
| 1169 | numBytes); |
| 1170 | if (numDescriptors < 0) { |
| 1171 | printk(KERN_ERR "%s: dmacHw_calculateDescriptorCount failed\n", |
| 1172 | __func__); |
| 1173 | return -EINVAL; |
| 1174 | } |
| 1175 | |
| 1176 | /* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */ |
| 1177 | /* a new one. */ |
| 1178 | |
| 1179 | ringBytesRequired = dmacHw_descriptorLen(numDescriptors); |
| 1180 | |
| 1181 | /* printk("ringBytesRequired: %d\n", ringBytesRequired); */ |
| 1182 | |
| 1183 | if (ringBytesRequired > devAttr->ring.bytesAllocated) { |
| 1184 | /* Make sure that this code path is never taken from interrupt context. */ |
| 1185 | /* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */ |
| 1186 | /* allocation needs to have already been done. */ |
| 1187 | |
| 1188 | might_sleep(); |
| 1189 | |
| 1190 | /* Free the old descriptor ring and allocate a new one. */ |
| 1191 | |
| 1192 | dma_free_descriptor_ring(&devAttr->ring); |
| 1193 | |
| 1194 | /* And allocate a new one. */ |
| 1195 | |
| 1196 | rc = |
| 1197 | dma_alloc_descriptor_ring(&devAttr->ring, |
| 1198 | numDescriptors); |
| 1199 | if (rc < 0) { |
| 1200 | printk(KERN_ERR |
| 1201 | "%s: dma_alloc_descriptor_ring(%d) failed\n", |
| 1202 | __func__, numDescriptors); |
| 1203 | return rc; |
| 1204 | } |
| 1205 | /* Setup the descriptor for this transfer */ |
| 1206 | |
| 1207 | if (dmacHw_initDescriptor(devAttr->ring.virtAddr, |
| 1208 | devAttr->ring.physAddr, |
| 1209 | devAttr->ring.bytesAllocated, |
| 1210 | numDescriptors) < 0) { |
| 1211 | printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", |
| 1212 | __func__); |
| 1213 | return -EINVAL; |
| 1214 | } |
| 1215 | } else { |
| 1216 | /* We've already got enough ring buffer allocated. All we need to do is reset */ |
| 1217 | /* any control information, just in case the previous DMA was stopped. */ |
| 1218 | |
| 1219 | dmacHw_resetDescriptorControl(devAttr->ring.virtAddr); |
| 1220 | } |
| 1221 | |
| 1222 | /* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */ |
| 1223 | /* as last time, then we don't need to call setDataDescriptor again. */ |
| 1224 | |
| 1225 | if (dmacHw_setDataDescriptor(&devAttr->config, |
| 1226 | devAttr->ring.virtAddr, |
| 1227 | (void *)srcData, |
| 1228 | (void *)dstData, numBytes) < 0) { |
| 1229 | printk(KERN_ERR "%s: dmacHw_setDataDescriptor failed\n", |
| 1230 | __func__); |
| 1231 | return -EINVAL; |
| 1232 | } |
| 1233 | |
| 1234 | /* Remember the critical information for this transfer so that we can eliminate */ |
| 1235 | /* another call to dma_alloc_descriptors if the caller reuses the same buffers */ |
| 1236 | |
| 1237 | devAttr->prevSrcData = srcData; |
| 1238 | devAttr->prevDstData = dstData; |
| 1239 | devAttr->prevNumBytes = numBytes; |
| 1240 | |
| 1241 | return 0; |
| 1242 | } |
| 1243 | |
| 1244 | EXPORT_SYMBOL(dma_alloc_descriptors); |
| 1245 | |
| 1246 | /****************************************************************************/ |
| 1247 | /** |
| 1248 | * Allocates and sets up descriptors for a double buffered circular buffer. |
| 1249 | * |
| 1250 | * This is primarily intended to be used for things like the ingress samples |
| 1251 | * from a microphone. |
| 1252 | * |
| 1253 | * @return |
| 1254 | * > 0 Number of descriptors actually allocated. |
| 1255 | * -EINVAL Invalid device type for this kind of transfer |
| 1256 | * (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM) |
| 1257 | * -ENOMEM Memory exhausted |
| 1258 | */ |
| 1259 | /****************************************************************************/ |
| 1260 | |
| 1261 | int dma_alloc_double_dst_descriptors(DMA_Handle_t handle, /* DMA Handle */ |
| 1262 | dma_addr_t srcData, /* Physical address of source data */ |
| 1263 | dma_addr_t dstData1, /* Physical address of first destination buffer */ |
| 1264 | dma_addr_t dstData2, /* Physical address of second destination buffer */ |
| 1265 | size_t numBytes /* Number of bytes in each destination buffer */ |
| 1266 | ) { |
| 1267 | DMA_Channel_t *channel; |
| 1268 | DMA_DeviceAttribute_t *devAttr; |
| 1269 | int numDst1Descriptors; |
| 1270 | int numDst2Descriptors; |
| 1271 | int numDescriptors; |
| 1272 | size_t ringBytesRequired; |
| 1273 | int rc = 0; |
| 1274 | |
| 1275 | channel = HandleToChannel(handle); |
| 1276 | if (channel == NULL) { |
| 1277 | return -ENODEV; |
| 1278 | } |
| 1279 | |
| 1280 | devAttr = &DMA_gDeviceAttribute[channel->devType]; |
| 1281 | |
| 1282 | /* Figure out how many descriptors we need. */ |
| 1283 | |
| 1284 | /* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */ |
| 1285 | /* srcData, dstData, numBytes); */ |
| 1286 | |
| 1287 | numDst1Descriptors = |
| 1288 | dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData, |
| 1289 | (void *)dstData1, numBytes); |
| 1290 | if (numDst1Descriptors < 0) { |
| 1291 | return -EINVAL; |
| 1292 | } |
| 1293 | numDst2Descriptors = |
| 1294 | dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData, |
| 1295 | (void *)dstData2, numBytes); |
| 1296 | if (numDst2Descriptors < 0) { |
| 1297 | return -EINVAL; |
| 1298 | } |
| 1299 | numDescriptors = numDst1Descriptors + numDst2Descriptors; |
| 1300 | /* printk("numDescriptors: %d\n", numDescriptors); */ |
| 1301 | |
| 1302 | /* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */ |
| 1303 | /* a new one. */ |
| 1304 | |
| 1305 | ringBytesRequired = dmacHw_descriptorLen(numDescriptors); |
| 1306 | |
| 1307 | /* printk("ringBytesRequired: %d\n", ringBytesRequired); */ |
| 1308 | |
| 1309 | if (ringBytesRequired > devAttr->ring.bytesAllocated) { |
| 1310 | /* Make sure that this code path is never taken from interrupt context. */ |
| 1311 | /* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */ |
| 1312 | /* allocation needs to have already been done. */ |
| 1313 | |
| 1314 | might_sleep(); |
| 1315 | |
| 1316 | /* Free the old descriptor ring and allocate a new one. */ |
| 1317 | |
| 1318 | dma_free_descriptor_ring(&devAttr->ring); |
| 1319 | |
| 1320 | /* And allocate a new one. */ |
| 1321 | |
| 1322 | rc = |
| 1323 | dma_alloc_descriptor_ring(&devAttr->ring, |
| 1324 | numDescriptors); |
| 1325 | if (rc < 0) { |
| 1326 | printk(KERN_ERR |
| 1327 | "%s: dma_alloc_descriptor_ring(%d) failed\n", |
| 1328 | __func__, ringBytesRequired); |
| 1329 | return rc; |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | /* Setup the descriptor for this transfer. Since this function is used with */ |
| 1334 | /* CONTINUOUS DMA operations, we need to reinitialize every time, otherwise */ |
| 1335 | /* setDataDescriptor will keep trying to append onto the end. */ |
| 1336 | |
| 1337 | if (dmacHw_initDescriptor(devAttr->ring.virtAddr, |
| 1338 | devAttr->ring.physAddr, |
| 1339 | devAttr->ring.bytesAllocated, |
| 1340 | numDescriptors) < 0) { |
| 1341 | printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", __func__); |
| 1342 | return -EINVAL; |
| 1343 | } |
| 1344 | |
| 1345 | /* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */ |
| 1346 | /* as last time, then we don't need to call setDataDescriptor again. */ |
| 1347 | |
| 1348 | if (dmacHw_setDataDescriptor(&devAttr->config, |
| 1349 | devAttr->ring.virtAddr, |
| 1350 | (void *)srcData, |
| 1351 | (void *)dstData1, numBytes) < 0) { |
| 1352 | printk(KERN_ERR "%s: dmacHw_setDataDescriptor 1 failed\n", |
| 1353 | __func__); |
| 1354 | return -EINVAL; |
| 1355 | } |
| 1356 | if (dmacHw_setDataDescriptor(&devAttr->config, |
| 1357 | devAttr->ring.virtAddr, |
| 1358 | (void *)srcData, |
| 1359 | (void *)dstData2, numBytes) < 0) { |
| 1360 | printk(KERN_ERR "%s: dmacHw_setDataDescriptor 2 failed\n", |
| 1361 | __func__); |
| 1362 | return -EINVAL; |
| 1363 | } |
| 1364 | |
| 1365 | /* You should use dma_start_transfer rather than dma_transfer_xxx so we don't */ |
| 1366 | /* try to make the 'prev' variables right. */ |
| 1367 | |
| 1368 | devAttr->prevSrcData = 0; |
| 1369 | devAttr->prevDstData = 0; |
| 1370 | devAttr->prevNumBytes = 0; |
| 1371 | |
| 1372 | return numDescriptors; |
| 1373 | } |
| 1374 | |
| 1375 | EXPORT_SYMBOL(dma_alloc_double_dst_descriptors); |
| 1376 | |
| 1377 | /****************************************************************************/ |
| 1378 | /** |
| 1379 | * Initiates a transfer when the descriptors have already been setup. |
| 1380 | * |
| 1381 | * This is a special case, and normally, the dma_transfer_xxx functions should |
| 1382 | * be used. |
| 1383 | * |
| 1384 | * @return |
| 1385 | * 0 Transfer was started successfully |
| 1386 | * -ENODEV Invalid handle |
| 1387 | */ |
| 1388 | /****************************************************************************/ |
| 1389 | |
| 1390 | int dma_start_transfer(DMA_Handle_t handle) |
| 1391 | { |
| 1392 | DMA_Channel_t *channel; |
| 1393 | DMA_DeviceAttribute_t *devAttr; |
| 1394 | |
| 1395 | channel = HandleToChannel(handle); |
| 1396 | if (channel == NULL) { |
| 1397 | return -ENODEV; |
| 1398 | } |
| 1399 | devAttr = &DMA_gDeviceAttribute[channel->devType]; |
| 1400 | |
| 1401 | dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config, |
| 1402 | devAttr->ring.virtAddr); |
| 1403 | |
| 1404 | /* Since we got this far, everything went successfully */ |
| 1405 | |
| 1406 | return 0; |
| 1407 | } |
| 1408 | |
| 1409 | EXPORT_SYMBOL(dma_start_transfer); |
| 1410 | |
| 1411 | /****************************************************************************/ |
| 1412 | /** |
| 1413 | * Stops a previously started DMA transfer. |
| 1414 | * |
| 1415 | * @return |
| 1416 | * 0 Transfer was stopped successfully |
| 1417 | * -ENODEV Invalid handle |
| 1418 | */ |
| 1419 | /****************************************************************************/ |
| 1420 | |
| 1421 | int dma_stop_transfer(DMA_Handle_t handle) |
| 1422 | { |
| 1423 | DMA_Channel_t *channel; |
| 1424 | |
| 1425 | channel = HandleToChannel(handle); |
| 1426 | if (channel == NULL) { |
| 1427 | return -ENODEV; |
| 1428 | } |
| 1429 | |
| 1430 | dmacHw_stopTransfer(channel->dmacHwHandle); |
| 1431 | |
| 1432 | return 0; |
| 1433 | } |
| 1434 | |
| 1435 | EXPORT_SYMBOL(dma_stop_transfer); |
| 1436 | |
| 1437 | /****************************************************************************/ |
| 1438 | /** |
| 1439 | * Waits for a DMA to complete by polling. This function is only intended |
| 1440 | * to be used for testing. Interrupts should be used for most DMA operations. |
| 1441 | */ |
| 1442 | /****************************************************************************/ |
| 1443 | |
| 1444 | int dma_wait_transfer_done(DMA_Handle_t handle) |
| 1445 | { |
| 1446 | DMA_Channel_t *channel; |
| 1447 | dmacHw_TRANSFER_STATUS_e status; |
| 1448 | |
| 1449 | channel = HandleToChannel(handle); |
| 1450 | if (channel == NULL) { |
| 1451 | return -ENODEV; |
| 1452 | } |
| 1453 | |
| 1454 | while ((status = |
| 1455 | dmacHw_transferCompleted(channel->dmacHwHandle)) == |
| 1456 | dmacHw_TRANSFER_STATUS_BUSY) { |
| 1457 | ; |
| 1458 | } |
| 1459 | |
| 1460 | if (status == dmacHw_TRANSFER_STATUS_ERROR) { |
| 1461 | printk(KERN_ERR "%s: DMA transfer failed\n", __func__); |
| 1462 | return -EIO; |
| 1463 | } |
| 1464 | return 0; |
| 1465 | } |
| 1466 | |
| 1467 | EXPORT_SYMBOL(dma_wait_transfer_done); |
| 1468 | |
| 1469 | /****************************************************************************/ |
| 1470 | /** |
| 1471 | * Initiates a DMA, allocating the descriptors as required. |
| 1472 | * |
| 1473 | * @return |
| 1474 | * 0 Transfer was started successfully |
| 1475 | * -EINVAL Invalid device type for this kind of transfer |
| 1476 | * (i.e. the device is _DEV_TO_MEM and not _MEM_TO_DEV) |
| 1477 | */ |
| 1478 | /****************************************************************************/ |
| 1479 | |
| 1480 | int dma_transfer(DMA_Handle_t handle, /* DMA Handle */ |
| 1481 | dmacHw_TRANSFER_TYPE_e transferType, /* Type of transfer being performed */ |
| 1482 | dma_addr_t srcData, /* Place to get data to write to device */ |
| 1483 | dma_addr_t dstData, /* Pointer to device data address */ |
| 1484 | size_t numBytes /* Number of bytes to transfer to the device */ |
| 1485 | ) { |
| 1486 | DMA_Channel_t *channel; |
| 1487 | DMA_DeviceAttribute_t *devAttr; |
| 1488 | int rc = 0; |
| 1489 | |
| 1490 | channel = HandleToChannel(handle); |
| 1491 | if (channel == NULL) { |
| 1492 | return -ENODEV; |
| 1493 | } |
| 1494 | |
| 1495 | devAttr = &DMA_gDeviceAttribute[channel->devType]; |
| 1496 | |
| 1497 | if (devAttr->config.transferType != transferType) { |
| 1498 | return -EINVAL; |
| 1499 | } |
| 1500 | |
| 1501 | /* We keep track of the information about the previous request for this */ |
| 1502 | /* device, and if the attributes match, then we can use the descriptors we setup */ |
| 1503 | /* the last time, and not have to reinitialize everything. */ |
| 1504 | |
| 1505 | { |
| 1506 | rc = |
| 1507 | dma_alloc_descriptors(handle, transferType, srcData, |
| 1508 | dstData, numBytes); |
| 1509 | if (rc != 0) { |
| 1510 | return rc; |
| 1511 | } |
| 1512 | } |
| 1513 | |
| 1514 | /* And kick off the transfer */ |
| 1515 | |
| 1516 | devAttr->numBytes = numBytes; |
| 1517 | devAttr->transferStartTime = timer_get_tick_count(); |
| 1518 | |
| 1519 | dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config, |
| 1520 | devAttr->ring.virtAddr); |
| 1521 | |
| 1522 | /* Since we got this far, everything went successfully */ |
| 1523 | |
| 1524 | return 0; |
| 1525 | } |
| 1526 | |
| 1527 | EXPORT_SYMBOL(dma_transfer); |
| 1528 | |
| 1529 | /****************************************************************************/ |
| 1530 | /** |
| 1531 | * Set the callback function which will be called when a transfer completes. |
| 1532 | * If a NULL callback function is set, then no callback will occur. |
| 1533 | * |
| 1534 | * @note @a devHandler will be called from IRQ context. |
| 1535 | * |
| 1536 | * @return |
| 1537 | * 0 - Success |
| 1538 | * -ENODEV - Device handed in is invalid. |
| 1539 | */ |
| 1540 | /****************************************************************************/ |
| 1541 | |
| 1542 | int dma_set_device_handler(DMA_Device_t dev, /* Device to set the callback for. */ |
| 1543 | DMA_DeviceHandler_t devHandler, /* Function to call when the DMA completes */ |
| 1544 | void *userData /* Pointer which will be passed to devHandler. */ |
| 1545 | ) { |
| 1546 | DMA_DeviceAttribute_t *devAttr; |
| 1547 | unsigned long flags; |
| 1548 | |
| 1549 | if (!IsDeviceValid(dev)) { |
| 1550 | return -ENODEV; |
| 1551 | } |
| 1552 | devAttr = &DMA_gDeviceAttribute[dev]; |
| 1553 | |
| 1554 | local_irq_save(flags); |
| 1555 | |
| 1556 | devAttr->userData = userData; |
| 1557 | devAttr->devHandler = devHandler; |
| 1558 | |
| 1559 | local_irq_restore(flags); |
| 1560 | |
| 1561 | return 0; |
| 1562 | } |
| 1563 | |
| 1564 | EXPORT_SYMBOL(dma_set_device_handler); |
| 1565 | |
| 1566 | /****************************************************************************/ |
| 1567 | /** |
| 1568 | * Initializes a memory mapping structure |
| 1569 | */ |
| 1570 | /****************************************************************************/ |
| 1571 | |
| 1572 | int dma_init_mem_map(DMA_MemMap_t *memMap) |
| 1573 | { |
| 1574 | memset(memMap, 0, sizeof(*memMap)); |
| 1575 | |
| 1576 | init_MUTEX(&memMap->lock); |
| 1577 | |
| 1578 | return 0; |
| 1579 | } |
| 1580 | |
| 1581 | EXPORT_SYMBOL(dma_init_mem_map); |
| 1582 | |
| 1583 | /****************************************************************************/ |
| 1584 | /** |
| 1585 | * Releases any memory currently being held by a memory mapping structure. |
| 1586 | */ |
| 1587 | /****************************************************************************/ |
| 1588 | |
| 1589 | int dma_term_mem_map(DMA_MemMap_t *memMap) |
| 1590 | { |
| 1591 | down(&memMap->lock); /* Just being paranoid */ |
| 1592 | |
| 1593 | /* Free up any allocated memory */ |
| 1594 | |
| 1595 | up(&memMap->lock); |
| 1596 | memset(memMap, 0, sizeof(*memMap)); |
| 1597 | |
| 1598 | return 0; |
| 1599 | } |
| 1600 | |
| 1601 | EXPORT_SYMBOL(dma_term_mem_map); |
| 1602 | |
| 1603 | /****************************************************************************/ |
| 1604 | /** |
| 1605 | * Looks at a memory address and categorizes it. |
| 1606 | * |
| 1607 | * @return One of the values from the DMA_MemType_t enumeration. |
| 1608 | */ |
| 1609 | /****************************************************************************/ |
| 1610 | |
| 1611 | DMA_MemType_t dma_mem_type(void *addr) |
| 1612 | { |
| 1613 | unsigned long addrVal = (unsigned long)addr; |
| 1614 | |
| 1615 | if (addrVal >= VMALLOC_END) { |
| 1616 | /* NOTE: DMA virtual memory space starts at 0xFFxxxxxx */ |
| 1617 | |
| 1618 | /* dma_alloc_xxx pages are physically and virtually contiguous */ |
| 1619 | |
| 1620 | return DMA_MEM_TYPE_DMA; |
| 1621 | } |
| 1622 | |
| 1623 | /* Technically, we could add one more classification. Addresses between VMALLOC_END */ |
| 1624 | /* and the beginning of the DMA virtual address could be considered to be I/O space. */ |
| 1625 | /* Right now, nobody cares about this particular classification, so we ignore it. */ |
| 1626 | |
| 1627 | if (is_vmalloc_addr(addr)) { |
| 1628 | /* Address comes from the vmalloc'd region. Pages are virtually */ |
| 1629 | /* contiguous but NOT physically contiguous */ |
| 1630 | |
| 1631 | return DMA_MEM_TYPE_VMALLOC; |
| 1632 | } |
| 1633 | |
| 1634 | if (addrVal >= PAGE_OFFSET) { |
| 1635 | /* PAGE_OFFSET is typically 0xC0000000 */ |
| 1636 | |
| 1637 | /* kmalloc'd pages are physically contiguous */ |
| 1638 | |
| 1639 | return DMA_MEM_TYPE_KMALLOC; |
| 1640 | } |
| 1641 | |
| 1642 | return DMA_MEM_TYPE_USER; |
| 1643 | } |
| 1644 | |
| 1645 | EXPORT_SYMBOL(dma_mem_type); |
| 1646 | |
| 1647 | /****************************************************************************/ |
| 1648 | /** |
| 1649 | * Looks at a memory address and determines if we support DMA'ing to/from |
| 1650 | * that type of memory. |
| 1651 | * |
| 1652 | * @return boolean - |
| 1653 | * return value != 0 means dma supported |
| 1654 | * return value == 0 means dma not supported |
| 1655 | */ |
| 1656 | /****************************************************************************/ |
| 1657 | |
| 1658 | int dma_mem_supports_dma(void *addr) |
| 1659 | { |
| 1660 | DMA_MemType_t memType = dma_mem_type(addr); |
| 1661 | |
| 1662 | return (memType == DMA_MEM_TYPE_DMA) |
| 1663 | #if ALLOW_MAP_OF_KMALLOC_MEMORY |
| 1664 | || (memType == DMA_MEM_TYPE_KMALLOC) |
| 1665 | #endif |
| 1666 | || (memType == DMA_MEM_TYPE_USER); |
| 1667 | } |
| 1668 | |
| 1669 | EXPORT_SYMBOL(dma_mem_supports_dma); |
| 1670 | |
| 1671 | /****************************************************************************/ |
| 1672 | /** |
| 1673 | * Maps in a memory region such that it can be used for performing a DMA. |
| 1674 | * |
| 1675 | * @return |
| 1676 | */ |
| 1677 | /****************************************************************************/ |
| 1678 | |
| 1679 | int dma_map_start(DMA_MemMap_t *memMap, /* Stores state information about the map */ |
| 1680 | enum dma_data_direction dir /* Direction that the mapping will be going */ |
| 1681 | ) { |
| 1682 | int rc; |
| 1683 | |
| 1684 | down(&memMap->lock); |
| 1685 | |
| 1686 | DMA_MAP_PRINT("memMap: %p\n", memMap); |
| 1687 | |
| 1688 | if (memMap->inUse) { |
| 1689 | printk(KERN_ERR "%s: memory map %p is already being used\n", |
| 1690 | __func__, memMap); |
| 1691 | rc = -EBUSY; |
| 1692 | goto out; |
| 1693 | } |
| 1694 | |
| 1695 | memMap->inUse = 1; |
| 1696 | memMap->dir = dir; |
| 1697 | memMap->numRegionsUsed = 0; |
| 1698 | |
| 1699 | rc = 0; |
| 1700 | |
| 1701 | out: |
| 1702 | |
| 1703 | DMA_MAP_PRINT("returning %d", rc); |
| 1704 | |
| 1705 | up(&memMap->lock); |
| 1706 | |
| 1707 | return rc; |
| 1708 | } |
| 1709 | |
| 1710 | EXPORT_SYMBOL(dma_map_start); |
| 1711 | |
| 1712 | /****************************************************************************/ |
| 1713 | /** |
| 1714 | * Adds a segment of memory to a memory map. Each segment is both |
| 1715 | * physically and virtually contiguous. |
| 1716 | * |
| 1717 | * @return 0 on success, error code otherwise. |
| 1718 | */ |
| 1719 | /****************************************************************************/ |
| 1720 | |
| 1721 | static int dma_map_add_segment(DMA_MemMap_t *memMap, /* Stores state information about the map */ |
| 1722 | DMA_Region_t *region, /* Region that the segment belongs to */ |
| 1723 | void *virtAddr, /* Virtual address of the segment being added */ |
| 1724 | dma_addr_t physAddr, /* Physical address of the segment being added */ |
| 1725 | size_t numBytes /* Number of bytes of the segment being added */ |
| 1726 | ) { |
| 1727 | DMA_Segment_t *segment; |
| 1728 | |
| 1729 | DMA_MAP_PRINT("memMap:%p va:%p pa:0x%x #:%d\n", memMap, virtAddr, |
| 1730 | physAddr, numBytes); |
| 1731 | |
| 1732 | /* Sanity check */ |
| 1733 | |
| 1734 | if (((unsigned long)virtAddr < (unsigned long)region->virtAddr) |
| 1735 | || (((unsigned long)virtAddr + numBytes)) > |
| 1736 | ((unsigned long)region->virtAddr + region->numBytes)) { |
| 1737 | printk(KERN_ERR |
| 1738 | "%s: virtAddr %p is outside region @ %p len: %d\n", |
| 1739 | __func__, virtAddr, region->virtAddr, region->numBytes); |
| 1740 | return -EINVAL; |
| 1741 | } |
| 1742 | |
| 1743 | if (region->numSegmentsUsed > 0) { |
| 1744 | /* Check to see if this segment is physically contiguous with the previous one */ |
| 1745 | |
| 1746 | segment = ®ion->segment[region->numSegmentsUsed - 1]; |
| 1747 | |
| 1748 | if ((segment->physAddr + segment->numBytes) == physAddr) { |
| 1749 | /* It is - just add on to the end */ |
| 1750 | |
| 1751 | DMA_MAP_PRINT("appending %d bytes to last segment\n", |
| 1752 | numBytes); |
| 1753 | |
| 1754 | segment->numBytes += numBytes; |
| 1755 | |
| 1756 | return 0; |
| 1757 | } |
| 1758 | } |
| 1759 | |
| 1760 | /* Reallocate to hold more segments, if required. */ |
| 1761 | |
| 1762 | if (region->numSegmentsUsed >= region->numSegmentsAllocated) { |
| 1763 | DMA_Segment_t *newSegment; |
| 1764 | size_t oldSize = |
| 1765 | region->numSegmentsAllocated * sizeof(*newSegment); |
| 1766 | int newAlloc = region->numSegmentsAllocated + 4; |
| 1767 | size_t newSize = newAlloc * sizeof(*newSegment); |
| 1768 | |
| 1769 | newSegment = kmalloc(newSize, GFP_KERNEL); |
| 1770 | if (newSegment == NULL) { |
| 1771 | return -ENOMEM; |
| 1772 | } |
| 1773 | memcpy(newSegment, region->segment, oldSize); |
| 1774 | memset(&((uint8_t *) newSegment)[oldSize], 0, |
| 1775 | newSize - oldSize); |
| 1776 | kfree(region->segment); |
| 1777 | |
| 1778 | region->numSegmentsAllocated = newAlloc; |
| 1779 | region->segment = newSegment; |
| 1780 | } |
| 1781 | |
| 1782 | segment = ®ion->segment[region->numSegmentsUsed]; |
| 1783 | region->numSegmentsUsed++; |
| 1784 | |
| 1785 | segment->virtAddr = virtAddr; |
| 1786 | segment->physAddr = physAddr; |
| 1787 | segment->numBytes = numBytes; |
| 1788 | |
| 1789 | DMA_MAP_PRINT("returning success\n"); |
| 1790 | |
| 1791 | return 0; |
| 1792 | } |
| 1793 | |
| 1794 | /****************************************************************************/ |
| 1795 | /** |
| 1796 | * Adds a region of memory to a memory map. Each region is virtually |
| 1797 | * contiguous, but not necessarily physically contiguous. |
| 1798 | * |
| 1799 | * @return 0 on success, error code otherwise. |
| 1800 | */ |
| 1801 | /****************************************************************************/ |
| 1802 | |
| 1803 | int dma_map_add_region(DMA_MemMap_t *memMap, /* Stores state information about the map */ |
| 1804 | void *mem, /* Virtual address that we want to get a map of */ |
| 1805 | size_t numBytes /* Number of bytes being mapped */ |
| 1806 | ) { |
| 1807 | unsigned long addr = (unsigned long)mem; |
| 1808 | unsigned int offset; |
| 1809 | int rc = 0; |
| 1810 | DMA_Region_t *region; |
| 1811 | dma_addr_t physAddr; |
| 1812 | |
| 1813 | down(&memMap->lock); |
| 1814 | |
| 1815 | DMA_MAP_PRINT("memMap:%p va:%p #:%d\n", memMap, mem, numBytes); |
| 1816 | |
| 1817 | if (!memMap->inUse) { |
| 1818 | printk(KERN_ERR "%s: Make sure you call dma_map_start first\n", |
| 1819 | __func__); |
| 1820 | rc = -EINVAL; |
| 1821 | goto out; |
| 1822 | } |
| 1823 | |
| 1824 | /* Reallocate to hold more regions. */ |
| 1825 | |
| 1826 | if (memMap->numRegionsUsed >= memMap->numRegionsAllocated) { |
| 1827 | DMA_Region_t *newRegion; |
| 1828 | size_t oldSize = |
| 1829 | memMap->numRegionsAllocated * sizeof(*newRegion); |
| 1830 | int newAlloc = memMap->numRegionsAllocated + 4; |
| 1831 | size_t newSize = newAlloc * sizeof(*newRegion); |
| 1832 | |
| 1833 | newRegion = kmalloc(newSize, GFP_KERNEL); |
| 1834 | if (newRegion == NULL) { |
| 1835 | rc = -ENOMEM; |
| 1836 | goto out; |
| 1837 | } |
| 1838 | memcpy(newRegion, memMap->region, oldSize); |
| 1839 | memset(&((uint8_t *) newRegion)[oldSize], 0, newSize - oldSize); |
| 1840 | |
| 1841 | kfree(memMap->region); |
| 1842 | |
| 1843 | memMap->numRegionsAllocated = newAlloc; |
| 1844 | memMap->region = newRegion; |
| 1845 | } |
| 1846 | |
| 1847 | region = &memMap->region[memMap->numRegionsUsed]; |
| 1848 | memMap->numRegionsUsed++; |
| 1849 | |
| 1850 | offset = addr & ~PAGE_MASK; |
| 1851 | |
| 1852 | region->memType = dma_mem_type(mem); |
| 1853 | region->virtAddr = mem; |
| 1854 | region->numBytes = numBytes; |
| 1855 | region->numSegmentsUsed = 0; |
| 1856 | region->numLockedPages = 0; |
| 1857 | region->lockedPages = NULL; |
| 1858 | |
| 1859 | switch (region->memType) { |
| 1860 | case DMA_MEM_TYPE_VMALLOC: |
| 1861 | { |
| 1862 | atomic_inc(&gDmaStatMemTypeVmalloc); |
| 1863 | |
| 1864 | /* printk(KERN_ERR "%s: vmalloc'd pages are not supported\n", __func__); */ |
| 1865 | |
| 1866 | /* vmalloc'd pages are not physically contiguous */ |
| 1867 | |
| 1868 | rc = -EINVAL; |
| 1869 | break; |
| 1870 | } |
| 1871 | |
| 1872 | case DMA_MEM_TYPE_KMALLOC: |
| 1873 | { |
| 1874 | atomic_inc(&gDmaStatMemTypeKmalloc); |
| 1875 | |
| 1876 | /* kmalloc'd pages are physically contiguous, so they'll have exactly */ |
| 1877 | /* one segment */ |
| 1878 | |
| 1879 | #if ALLOW_MAP_OF_KMALLOC_MEMORY |
| 1880 | physAddr = |
| 1881 | dma_map_single(NULL, mem, numBytes, memMap->dir); |
| 1882 | rc = dma_map_add_segment(memMap, region, mem, physAddr, |
| 1883 | numBytes); |
| 1884 | #else |
| 1885 | rc = -EINVAL; |
| 1886 | #endif |
| 1887 | break; |
| 1888 | } |
| 1889 | |
| 1890 | case DMA_MEM_TYPE_DMA: |
| 1891 | { |
| 1892 | /* dma_alloc_xxx pages are physically contiguous */ |
| 1893 | |
| 1894 | atomic_inc(&gDmaStatMemTypeCoherent); |
| 1895 | |
| 1896 | physAddr = (vmalloc_to_pfn(mem) << PAGE_SHIFT) + offset; |
| 1897 | |
| 1898 | dma_sync_single_for_cpu(NULL, physAddr, numBytes, |
| 1899 | memMap->dir); |
| 1900 | rc = dma_map_add_segment(memMap, region, mem, physAddr, |
| 1901 | numBytes); |
| 1902 | break; |
| 1903 | } |
| 1904 | |
| 1905 | case DMA_MEM_TYPE_USER: |
| 1906 | { |
| 1907 | size_t firstPageOffset; |
| 1908 | size_t firstPageSize; |
| 1909 | struct page **pages; |
| 1910 | struct task_struct *userTask; |
| 1911 | |
| 1912 | atomic_inc(&gDmaStatMemTypeUser); |
| 1913 | |
| 1914 | #if 1 |
| 1915 | /* If the pages are user pages, then the dma_mem_map_set_user_task function */ |
| 1916 | /* must have been previously called. */ |
| 1917 | |
| 1918 | if (memMap->userTask == NULL) { |
| 1919 | printk(KERN_ERR |
| 1920 | "%s: must call dma_mem_map_set_user_task when using user-mode memory\n", |
| 1921 | __func__); |
| 1922 | return -EINVAL; |
| 1923 | } |
| 1924 | |
| 1925 | /* User pages need to be locked. */ |
| 1926 | |
| 1927 | firstPageOffset = |
| 1928 | (unsigned long)region->virtAddr & (PAGE_SIZE - 1); |
| 1929 | firstPageSize = PAGE_SIZE - firstPageOffset; |
| 1930 | |
| 1931 | region->numLockedPages = (firstPageOffset |
| 1932 | + region->numBytes + |
| 1933 | PAGE_SIZE - 1) / PAGE_SIZE; |
| 1934 | pages = |
| 1935 | kmalloc(region->numLockedPages * |
| 1936 | sizeof(struct page *), GFP_KERNEL); |
| 1937 | |
| 1938 | if (pages == NULL) { |
| 1939 | region->numLockedPages = 0; |
| 1940 | return -ENOMEM; |
| 1941 | } |
| 1942 | |
| 1943 | userTask = memMap->userTask; |
| 1944 | |
| 1945 | down_read(&userTask->mm->mmap_sem); |
| 1946 | rc = get_user_pages(userTask, /* task */ |
| 1947 | userTask->mm, /* mm */ |
| 1948 | (unsigned long)region->virtAddr, /* start */ |
| 1949 | region->numLockedPages, /* len */ |
| 1950 | memMap->dir == DMA_FROM_DEVICE, /* write */ |
| 1951 | 0, /* force */ |
| 1952 | pages, /* pages (array of pointers to page) */ |
| 1953 | NULL); /* vmas */ |
| 1954 | up_read(&userTask->mm->mmap_sem); |
| 1955 | |
| 1956 | if (rc != region->numLockedPages) { |
| 1957 | kfree(pages); |
| 1958 | region->numLockedPages = 0; |
| 1959 | |
| 1960 | if (rc >= 0) { |
| 1961 | rc = -EINVAL; |
| 1962 | } |
| 1963 | } else { |
| 1964 | uint8_t *virtAddr = region->virtAddr; |
| 1965 | size_t bytesRemaining; |
| 1966 | int pageIdx; |
| 1967 | |
| 1968 | rc = 0; /* Since get_user_pages returns +ve number */ |
| 1969 | |
| 1970 | region->lockedPages = pages; |
| 1971 | |
| 1972 | /* We've locked the user pages. Now we need to walk them and figure */ |
| 1973 | /* out the physical addresses. */ |
| 1974 | |
| 1975 | /* The first page may be partial */ |
| 1976 | |
| 1977 | dma_map_add_segment(memMap, |
| 1978 | region, |
| 1979 | virtAddr, |
| 1980 | PFN_PHYS(page_to_pfn |
| 1981 | (pages[0])) + |
| 1982 | firstPageOffset, |
| 1983 | firstPageSize); |
| 1984 | |
| 1985 | virtAddr += firstPageSize; |
| 1986 | bytesRemaining = |
| 1987 | region->numBytes - firstPageSize; |
| 1988 | |
| 1989 | for (pageIdx = 1; |
| 1990 | pageIdx < region->numLockedPages; |
| 1991 | pageIdx++) { |
| 1992 | size_t bytesThisPage = |
| 1993 | (bytesRemaining > |
| 1994 | PAGE_SIZE ? PAGE_SIZE : |
| 1995 | bytesRemaining); |
| 1996 | |
| 1997 | DMA_MAP_PRINT |
| 1998 | ("pageIdx:%d pages[pageIdx]=%p pfn=%u phys=%u\n", |
| 1999 | pageIdx, pages[pageIdx], |
| 2000 | page_to_pfn(pages[pageIdx]), |
| 2001 | PFN_PHYS(page_to_pfn |
| 2002 | (pages[pageIdx]))); |
| 2003 | |
| 2004 | dma_map_add_segment(memMap, |
| 2005 | region, |
| 2006 | virtAddr, |
| 2007 | PFN_PHYS(page_to_pfn |
| 2008 | (pages |
| 2009 | [pageIdx])), |
| 2010 | bytesThisPage); |
| 2011 | |
| 2012 | virtAddr += bytesThisPage; |
| 2013 | bytesRemaining -= bytesThisPage; |
| 2014 | } |
| 2015 | } |
| 2016 | #else |
| 2017 | printk(KERN_ERR |
| 2018 | "%s: User mode pages are not yet supported\n", |
| 2019 | __func__); |
| 2020 | |
| 2021 | /* user pages are not physically contiguous */ |
| 2022 | |
| 2023 | rc = -EINVAL; |
| 2024 | #endif |
| 2025 | break; |
| 2026 | } |
| 2027 | |
| 2028 | default: |
| 2029 | { |
| 2030 | printk(KERN_ERR "%s: Unsupported memory type: %d\n", |
| 2031 | __func__, region->memType); |
| 2032 | |
| 2033 | rc = -EINVAL; |
| 2034 | break; |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | if (rc != 0) { |
| 2039 | memMap->numRegionsUsed--; |
| 2040 | } |
| 2041 | |
| 2042 | out: |
| 2043 | |
| 2044 | DMA_MAP_PRINT("returning %d\n", rc); |
| 2045 | |
| 2046 | up(&memMap->lock); |
| 2047 | |
| 2048 | return rc; |
| 2049 | } |
| 2050 | |
| 2051 | EXPORT_SYMBOL(dma_map_add_segment); |
| 2052 | |
| 2053 | /****************************************************************************/ |
| 2054 | /** |
| 2055 | * Maps in a memory region such that it can be used for performing a DMA. |
| 2056 | * |
| 2057 | * @return 0 on success, error code otherwise. |
| 2058 | */ |
| 2059 | /****************************************************************************/ |
| 2060 | |
| 2061 | int dma_map_mem(DMA_MemMap_t *memMap, /* Stores state information about the map */ |
| 2062 | void *mem, /* Virtual address that we want to get a map of */ |
| 2063 | size_t numBytes, /* Number of bytes being mapped */ |
| 2064 | enum dma_data_direction dir /* Direction that the mapping will be going */ |
| 2065 | ) { |
| 2066 | int rc; |
| 2067 | |
| 2068 | rc = dma_map_start(memMap, dir); |
| 2069 | if (rc == 0) { |
| 2070 | rc = dma_map_add_region(memMap, mem, numBytes); |
| 2071 | if (rc < 0) { |
| 2072 | /* Since the add fails, this function will fail, and the caller won't */ |
| 2073 | /* call unmap, so we need to do it here. */ |
| 2074 | |
| 2075 | dma_unmap(memMap, 0); |
| 2076 | } |
| 2077 | } |
| 2078 | |
| 2079 | return rc; |
| 2080 | } |
| 2081 | |
| 2082 | EXPORT_SYMBOL(dma_map_mem); |
| 2083 | |
| 2084 | /****************************************************************************/ |
| 2085 | /** |
| 2086 | * Setup a descriptor ring for a given memory map. |
| 2087 | * |
| 2088 | * It is assumed that the descriptor ring has already been initialized, and |
| 2089 | * this routine will only reallocate a new descriptor ring if the existing |
| 2090 | * one is too small. |
| 2091 | * |
| 2092 | * @return 0 on success, error code otherwise. |
| 2093 | */ |
| 2094 | /****************************************************************************/ |
| 2095 | |
| 2096 | int dma_map_create_descriptor_ring(DMA_Device_t dev, /* DMA device (where the ring is stored) */ |
| 2097 | DMA_MemMap_t *memMap, /* Memory map that will be used */ |
| 2098 | dma_addr_t devPhysAddr /* Physical address of device */ |
| 2099 | ) { |
| 2100 | int rc; |
| 2101 | int numDescriptors; |
| 2102 | DMA_DeviceAttribute_t *devAttr; |
| 2103 | DMA_Region_t *region; |
| 2104 | DMA_Segment_t *segment; |
| 2105 | dma_addr_t srcPhysAddr; |
| 2106 | dma_addr_t dstPhysAddr; |
| 2107 | int regionIdx; |
| 2108 | int segmentIdx; |
| 2109 | |
| 2110 | devAttr = &DMA_gDeviceAttribute[dev]; |
| 2111 | |
| 2112 | down(&memMap->lock); |
| 2113 | |
| 2114 | /* Figure out how many descriptors we need */ |
| 2115 | |
| 2116 | numDescriptors = 0; |
| 2117 | for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { |
| 2118 | region = &memMap->region[regionIdx]; |
| 2119 | |
| 2120 | for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; |
| 2121 | segmentIdx++) { |
| 2122 | segment = ®ion->segment[segmentIdx]; |
| 2123 | |
| 2124 | if (memMap->dir == DMA_TO_DEVICE) { |
| 2125 | srcPhysAddr = segment->physAddr; |
| 2126 | dstPhysAddr = devPhysAddr; |
| 2127 | } else { |
| 2128 | srcPhysAddr = devPhysAddr; |
| 2129 | dstPhysAddr = segment->physAddr; |
| 2130 | } |
| 2131 | |
| 2132 | rc = |
| 2133 | dma_calculate_descriptor_count(dev, srcPhysAddr, |
| 2134 | dstPhysAddr, |
| 2135 | segment-> |
| 2136 | numBytes); |
| 2137 | if (rc < 0) { |
| 2138 | printk(KERN_ERR |
| 2139 | "%s: dma_calculate_descriptor_count failed: %d\n", |
| 2140 | __func__, rc); |
| 2141 | goto out; |
| 2142 | } |
| 2143 | numDescriptors += rc; |
| 2144 | } |
| 2145 | } |
| 2146 | |
| 2147 | /* Adjust the size of the ring, if it isn't big enough */ |
| 2148 | |
| 2149 | if (numDescriptors > devAttr->ring.descriptorsAllocated) { |
| 2150 | dma_free_descriptor_ring(&devAttr->ring); |
| 2151 | rc = |
| 2152 | dma_alloc_descriptor_ring(&devAttr->ring, |
| 2153 | numDescriptors); |
| 2154 | if (rc < 0) { |
| 2155 | printk(KERN_ERR |
| 2156 | "%s: dma_alloc_descriptor_ring failed: %d\n", |
| 2157 | __func__, rc); |
| 2158 | goto out; |
| 2159 | } |
| 2160 | } else { |
| 2161 | rc = |
| 2162 | dma_init_descriptor_ring(&devAttr->ring, |
| 2163 | numDescriptors); |
| 2164 | if (rc < 0) { |
| 2165 | printk(KERN_ERR |
| 2166 | "%s: dma_init_descriptor_ring failed: %d\n", |
| 2167 | __func__, rc); |
| 2168 | goto out; |
| 2169 | } |
| 2170 | } |
| 2171 | |
| 2172 | /* Populate the descriptors */ |
| 2173 | |
| 2174 | for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { |
| 2175 | region = &memMap->region[regionIdx]; |
| 2176 | |
| 2177 | for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; |
| 2178 | segmentIdx++) { |
| 2179 | segment = ®ion->segment[segmentIdx]; |
| 2180 | |
| 2181 | if (memMap->dir == DMA_TO_DEVICE) { |
| 2182 | srcPhysAddr = segment->physAddr; |
| 2183 | dstPhysAddr = devPhysAddr; |
| 2184 | } else { |
| 2185 | srcPhysAddr = devPhysAddr; |
| 2186 | dstPhysAddr = segment->physAddr; |
| 2187 | } |
| 2188 | |
| 2189 | rc = |
| 2190 | dma_add_descriptors(&devAttr->ring, dev, |
| 2191 | srcPhysAddr, dstPhysAddr, |
| 2192 | segment->numBytes); |
| 2193 | if (rc < 0) { |
| 2194 | printk(KERN_ERR |
| 2195 | "%s: dma_add_descriptors failed: %d\n", |
| 2196 | __func__, rc); |
| 2197 | goto out; |
| 2198 | } |
| 2199 | } |
| 2200 | } |
| 2201 | |
| 2202 | rc = 0; |
| 2203 | |
| 2204 | out: |
| 2205 | |
| 2206 | up(&memMap->lock); |
| 2207 | return rc; |
| 2208 | } |
| 2209 | |
| 2210 | EXPORT_SYMBOL(dma_map_create_descriptor_ring); |
| 2211 | |
| 2212 | /****************************************************************************/ |
| 2213 | /** |
| 2214 | * Maps in a memory region such that it can be used for performing a DMA. |
| 2215 | * |
| 2216 | * @return |
| 2217 | */ |
| 2218 | /****************************************************************************/ |
| 2219 | |
| 2220 | int dma_unmap(DMA_MemMap_t *memMap, /* Stores state information about the map */ |
| 2221 | int dirtied /* non-zero if any of the pages were modified */ |
| 2222 | ) { |
| 2223 | int regionIdx; |
| 2224 | int segmentIdx; |
| 2225 | DMA_Region_t *region; |
| 2226 | DMA_Segment_t *segment; |
| 2227 | |
| 2228 | for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { |
| 2229 | region = &memMap->region[regionIdx]; |
| 2230 | |
| 2231 | for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; |
| 2232 | segmentIdx++) { |
| 2233 | segment = ®ion->segment[segmentIdx]; |
| 2234 | |
| 2235 | switch (region->memType) { |
| 2236 | case DMA_MEM_TYPE_VMALLOC: |
| 2237 | { |
| 2238 | printk(KERN_ERR |
| 2239 | "%s: vmalloc'd pages are not yet supported\n", |
| 2240 | __func__); |
| 2241 | return -EINVAL; |
| 2242 | } |
| 2243 | |
| 2244 | case DMA_MEM_TYPE_KMALLOC: |
| 2245 | { |
| 2246 | #if ALLOW_MAP_OF_KMALLOC_MEMORY |
| 2247 | dma_unmap_single(NULL, |
| 2248 | segment->physAddr, |
| 2249 | segment->numBytes, |
| 2250 | memMap->dir); |
| 2251 | #endif |
| 2252 | break; |
| 2253 | } |
| 2254 | |
| 2255 | case DMA_MEM_TYPE_DMA: |
| 2256 | { |
| 2257 | dma_sync_single_for_cpu(NULL, |
| 2258 | segment-> |
| 2259 | physAddr, |
| 2260 | segment-> |
| 2261 | numBytes, |
| 2262 | memMap->dir); |
| 2263 | break; |
| 2264 | } |
| 2265 | |
| 2266 | case DMA_MEM_TYPE_USER: |
| 2267 | { |
| 2268 | /* Nothing to do here. */ |
| 2269 | |
| 2270 | break; |
| 2271 | } |
| 2272 | |
| 2273 | default: |
| 2274 | { |
| 2275 | printk(KERN_ERR |
| 2276 | "%s: Unsupported memory type: %d\n", |
| 2277 | __func__, region->memType); |
| 2278 | return -EINVAL; |
| 2279 | } |
| 2280 | } |
| 2281 | |
| 2282 | segment->virtAddr = NULL; |
| 2283 | segment->physAddr = 0; |
| 2284 | segment->numBytes = 0; |
| 2285 | } |
| 2286 | |
| 2287 | if (region->numLockedPages > 0) { |
| 2288 | int pageIdx; |
| 2289 | |
| 2290 | /* Some user pages were locked. We need to go and unlock them now. */ |
| 2291 | |
| 2292 | for (pageIdx = 0; pageIdx < region->numLockedPages; |
| 2293 | pageIdx++) { |
| 2294 | struct page *page = |
| 2295 | region->lockedPages[pageIdx]; |
| 2296 | |
| 2297 | if (memMap->dir == DMA_FROM_DEVICE) { |
| 2298 | SetPageDirty(page); |
| 2299 | } |
| 2300 | page_cache_release(page); |
| 2301 | } |
| 2302 | kfree(region->lockedPages); |
| 2303 | region->numLockedPages = 0; |
| 2304 | region->lockedPages = NULL; |
| 2305 | } |
| 2306 | |
| 2307 | region->memType = DMA_MEM_TYPE_NONE; |
| 2308 | region->virtAddr = NULL; |
| 2309 | region->numBytes = 0; |
| 2310 | region->numSegmentsUsed = 0; |
| 2311 | } |
| 2312 | memMap->userTask = NULL; |
| 2313 | memMap->numRegionsUsed = 0; |
| 2314 | memMap->inUse = 0; |
| 2315 | |
| 2316 | up(&memMap->lock); |
| 2317 | |
| 2318 | return 0; |
| 2319 | } |
| 2320 | |
| 2321 | EXPORT_SYMBOL(dma_unmap); |