Mike Looijmans | 19fbbbb | 2015-06-03 07:25:19 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Driver for TI Dual PLL CDCE925 clock synthesizer |
| 3 | * |
| 4 | * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1 |
| 5 | * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve |
| 6 | * basis. Clients can directly request any frequency that the chip can |
| 7 | * deliver using the standard clk framework. In addition, the device can |
| 8 | * be configured and activated via the devicetree. |
| 9 | * |
| 10 | * Copyright (C) 2014, Topic Embedded Products |
| 11 | * Licenced under GPL |
| 12 | */ |
Stephen Boyd | a826a1a | 2015-06-10 14:14:28 -0700 | [diff] [blame] | 13 | #include <linux/clk.h> |
Mike Looijmans | 19fbbbb | 2015-06-03 07:25:19 +0200 | [diff] [blame] | 14 | #include <linux/clk-provider.h> |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/i2c.h> |
| 18 | #include <linux/regmap.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/gcd.h> |
| 21 | |
| 22 | /* The chip has 2 PLLs which can be routed through dividers to 5 outputs. |
| 23 | * Model this as 2 PLL clocks which are parents to the outputs. |
| 24 | */ |
| 25 | #define NUMBER_OF_PLLS 2 |
| 26 | #define NUMBER_OF_OUTPUTS 5 |
| 27 | |
| 28 | #define CDCE925_REG_GLOBAL1 0x01 |
| 29 | #define CDCE925_REG_Y1SPIPDIVH 0x02 |
| 30 | #define CDCE925_REG_PDIVL 0x03 |
| 31 | #define CDCE925_REG_XCSEL 0x05 |
| 32 | /* PLL parameters start at 0x10, steps of 0x10 */ |
| 33 | #define CDCE925_OFFSET_PLL 0x10 |
| 34 | /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */ |
| 35 | #define CDCE925_PLL_MUX_OUTPUTS 0x14 |
| 36 | #define CDCE925_PLL_MULDIV 0x18 |
| 37 | |
| 38 | #define CDCE925_PLL_FREQUENCY_MIN 80000000ul |
| 39 | #define CDCE925_PLL_FREQUENCY_MAX 230000000ul |
| 40 | struct clk_cdce925_chip; |
| 41 | |
| 42 | struct clk_cdce925_output { |
| 43 | struct clk_hw hw; |
| 44 | struct clk_cdce925_chip *chip; |
| 45 | u8 index; |
| 46 | u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */ |
| 47 | }; |
| 48 | #define to_clk_cdce925_output(_hw) \ |
| 49 | container_of(_hw, struct clk_cdce925_output, hw) |
| 50 | |
| 51 | struct clk_cdce925_pll { |
| 52 | struct clk_hw hw; |
| 53 | struct clk_cdce925_chip *chip; |
| 54 | u8 index; |
| 55 | u16 m; /* 1..511 */ |
| 56 | u16 n; /* 1..4095 */ |
| 57 | }; |
| 58 | #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw) |
| 59 | |
| 60 | struct clk_cdce925_chip { |
| 61 | struct regmap *regmap; |
| 62 | struct i2c_client *i2c_client; |
| 63 | struct clk_cdce925_pll pll[NUMBER_OF_PLLS]; |
| 64 | struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS]; |
| 65 | struct clk *dt_clk[NUMBER_OF_OUTPUTS]; |
| 66 | struct clk_onecell_data onecell; |
| 67 | }; |
| 68 | |
| 69 | /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */ |
| 70 | |
| 71 | static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate, |
| 72 | u16 n, u16 m) |
| 73 | { |
| 74 | if ((!m || !n) || (m == n)) |
| 75 | return parent_rate; /* In bypass mode runs at same frequency */ |
| 76 | return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m); |
| 77 | } |
| 78 | |
| 79 | static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw, |
| 80 | unsigned long parent_rate) |
| 81 | { |
| 82 | /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */ |
| 83 | struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); |
| 84 | |
| 85 | return cdce925_pll_calculate_rate(parent_rate, data->n, data->m); |
| 86 | } |
| 87 | |
| 88 | static void cdce925_pll_find_rate(unsigned long rate, |
| 89 | unsigned long parent_rate, u16 *n, u16 *m) |
| 90 | { |
| 91 | unsigned long un; |
| 92 | unsigned long um; |
| 93 | unsigned long g; |
| 94 | |
| 95 | if (rate <= parent_rate) { |
| 96 | /* Can always deliver parent_rate in bypass mode */ |
| 97 | rate = parent_rate; |
| 98 | *n = 0; |
| 99 | *m = 0; |
| 100 | } else { |
| 101 | /* In PLL mode, need to apply min/max range */ |
| 102 | if (rate < CDCE925_PLL_FREQUENCY_MIN) |
| 103 | rate = CDCE925_PLL_FREQUENCY_MIN; |
| 104 | else if (rate > CDCE925_PLL_FREQUENCY_MAX) |
| 105 | rate = CDCE925_PLL_FREQUENCY_MAX; |
| 106 | |
| 107 | g = gcd(rate, parent_rate); |
| 108 | um = parent_rate / g; |
| 109 | un = rate / g; |
| 110 | /* When outside hw range, reduce to fit (rounding errors) */ |
| 111 | while ((un > 4095) || (um > 511)) { |
| 112 | un >>= 1; |
| 113 | um >>= 1; |
| 114 | } |
| 115 | if (un == 0) |
| 116 | un = 1; |
| 117 | if (um == 0) |
| 118 | um = 1; |
| 119 | |
| 120 | *n = un; |
| 121 | *m = um; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate, |
| 126 | unsigned long *parent_rate) |
| 127 | { |
| 128 | u16 n, m; |
| 129 | |
| 130 | cdce925_pll_find_rate(rate, *parent_rate, &n, &m); |
| 131 | return (long)cdce925_pll_calculate_rate(*parent_rate, n, m); |
| 132 | } |
| 133 | |
| 134 | static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate, |
| 135 | unsigned long parent_rate) |
| 136 | { |
| 137 | struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); |
| 138 | |
| 139 | if (!rate || (rate == parent_rate)) { |
| 140 | data->m = 0; /* Bypass mode */ |
| 141 | data->n = 0; |
| 142 | return 0; |
| 143 | } |
| 144 | |
| 145 | if ((rate < CDCE925_PLL_FREQUENCY_MIN) || |
| 146 | (rate > CDCE925_PLL_FREQUENCY_MAX)) { |
| 147 | pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate); |
| 148 | return -EINVAL; |
| 149 | } |
| 150 | |
| 151 | if (rate < parent_rate) { |
| 152 | pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__, |
| 153 | rate, parent_rate); |
| 154 | return -EINVAL; |
| 155 | } |
| 156 | |
| 157 | cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m); |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | |
| 162 | /* calculate p = max(0, 4 - int(log2 (n/m))) */ |
| 163 | static u8 cdce925_pll_calc_p(u16 n, u16 m) |
| 164 | { |
| 165 | u8 p; |
| 166 | u16 r = n / m; |
| 167 | |
| 168 | if (r >= 16) |
| 169 | return 0; |
| 170 | p = 4; |
| 171 | while (r > 1) { |
| 172 | r >>= 1; |
| 173 | --p; |
| 174 | } |
| 175 | return p; |
| 176 | } |
| 177 | |
| 178 | /* Returns VCO range bits for VCO1_0_RANGE */ |
| 179 | static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m) |
| 180 | { |
| 181 | struct clk *parent = clk_get_parent(hw->clk); |
| 182 | unsigned long rate = clk_get_rate(parent); |
| 183 | |
| 184 | rate = mult_frac(rate, (unsigned long)n, (unsigned long)m); |
| 185 | if (rate >= 175000000) |
| 186 | return 0x3; |
| 187 | if (rate >= 150000000) |
| 188 | return 0x02; |
| 189 | if (rate >= 125000000) |
| 190 | return 0x01; |
| 191 | return 0x00; |
| 192 | } |
| 193 | |
| 194 | /* I2C clock, hence everything must happen in (un)prepare because this |
| 195 | * may sleep */ |
| 196 | static int cdce925_pll_prepare(struct clk_hw *hw) |
| 197 | { |
| 198 | struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); |
| 199 | u16 n = data->n; |
| 200 | u16 m = data->m; |
| 201 | u16 r; |
| 202 | u8 q; |
| 203 | u8 p; |
| 204 | u16 nn; |
| 205 | u8 pll[4]; /* Bits are spread out over 4 byte registers */ |
| 206 | u8 reg_ofs = data->index * CDCE925_OFFSET_PLL; |
| 207 | unsigned i; |
| 208 | |
| 209 | if ((!m || !n) || (m == n)) { |
| 210 | /* Set PLL mux to bypass mode, leave the rest as is */ |
| 211 | regmap_update_bits(data->chip->regmap, |
| 212 | reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80); |
| 213 | } else { |
| 214 | /* According to data sheet: */ |
| 215 | /* p = max(0, 4 - int(log2 (n/m))) */ |
| 216 | p = cdce925_pll_calc_p(n, m); |
| 217 | /* nn = n * 2^p */ |
| 218 | nn = n * BIT(p); |
| 219 | /* q = int(nn/m) */ |
| 220 | q = nn / m; |
| 221 | if ((q < 16) || (1 > 64)) { |
| 222 | pr_debug("%s invalid q=%d\n", __func__, q); |
| 223 | return -EINVAL; |
| 224 | } |
| 225 | r = nn - (m*q); |
| 226 | if (r > 511) { |
| 227 | pr_debug("%s invalid r=%d\n", __func__, r); |
| 228 | return -EINVAL; |
| 229 | } |
| 230 | pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__, |
| 231 | n, m, p, q, r); |
| 232 | /* encode into register bits */ |
| 233 | pll[0] = n >> 4; |
| 234 | pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F); |
| 235 | pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07); |
| 236 | pll[3] = ((q & 0x07) << 5) | (p << 2) | |
| 237 | cdce925_pll_calc_range_bits(hw, n, m); |
| 238 | /* Write to registers */ |
| 239 | for (i = 0; i < ARRAY_SIZE(pll); ++i) |
| 240 | regmap_write(data->chip->regmap, |
| 241 | reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]); |
| 242 | /* Enable PLL */ |
| 243 | regmap_update_bits(data->chip->regmap, |
| 244 | reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00); |
| 245 | } |
| 246 | |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | static void cdce925_pll_unprepare(struct clk_hw *hw) |
| 251 | { |
| 252 | struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); |
| 253 | u8 reg_ofs = data->index * CDCE925_OFFSET_PLL; |
| 254 | |
| 255 | regmap_update_bits(data->chip->regmap, |
| 256 | reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80); |
| 257 | } |
| 258 | |
| 259 | static const struct clk_ops cdce925_pll_ops = { |
| 260 | .prepare = cdce925_pll_prepare, |
| 261 | .unprepare = cdce925_pll_unprepare, |
| 262 | .recalc_rate = cdce925_pll_recalc_rate, |
| 263 | .round_rate = cdce925_pll_round_rate, |
| 264 | .set_rate = cdce925_pll_set_rate, |
| 265 | }; |
| 266 | |
| 267 | |
| 268 | static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv) |
| 269 | { |
| 270 | switch (data->index) { |
| 271 | case 0: |
| 272 | regmap_update_bits(data->chip->regmap, |
| 273 | CDCE925_REG_Y1SPIPDIVH, |
| 274 | 0x03, (pdiv >> 8) & 0x03); |
| 275 | regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF); |
| 276 | break; |
| 277 | case 1: |
| 278 | regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv); |
| 279 | break; |
| 280 | case 2: |
| 281 | regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv); |
| 282 | break; |
| 283 | case 3: |
| 284 | regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv); |
| 285 | break; |
| 286 | case 4: |
| 287 | regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv); |
| 288 | break; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | static void cdce925_clk_activate(struct clk_cdce925_output *data) |
| 293 | { |
| 294 | switch (data->index) { |
| 295 | case 0: |
| 296 | regmap_update_bits(data->chip->regmap, |
| 297 | CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c); |
| 298 | break; |
| 299 | case 1: |
| 300 | case 2: |
| 301 | regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03); |
| 302 | break; |
| 303 | case 3: |
| 304 | case 4: |
| 305 | regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03); |
| 306 | break; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | static int cdce925_clk_prepare(struct clk_hw *hw) |
| 311 | { |
| 312 | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); |
| 313 | |
| 314 | cdce925_clk_set_pdiv(data, data->pdiv); |
| 315 | cdce925_clk_activate(data); |
| 316 | return 0; |
| 317 | } |
| 318 | |
| 319 | static void cdce925_clk_unprepare(struct clk_hw *hw) |
| 320 | { |
| 321 | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); |
| 322 | |
| 323 | /* Disable clock by setting divider to "0" */ |
| 324 | cdce925_clk_set_pdiv(data, 0); |
| 325 | } |
| 326 | |
| 327 | static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw, |
| 328 | unsigned long parent_rate) |
| 329 | { |
| 330 | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); |
| 331 | |
| 332 | if (data->pdiv) |
| 333 | return parent_rate / data->pdiv; |
| 334 | return 0; |
| 335 | } |
| 336 | |
| 337 | static u16 cdce925_calc_divider(unsigned long rate, |
| 338 | unsigned long parent_rate) |
| 339 | { |
| 340 | unsigned long divider; |
| 341 | |
| 342 | if (!rate) |
| 343 | return 0; |
| 344 | if (rate >= parent_rate) |
| 345 | return 1; |
| 346 | |
| 347 | divider = DIV_ROUND_CLOSEST(parent_rate, rate); |
| 348 | if (divider > 0x7F) |
| 349 | divider = 0x7F; |
| 350 | |
| 351 | return (u16)divider; |
| 352 | } |
| 353 | |
| 354 | static unsigned long cdce925_clk_best_parent_rate( |
| 355 | struct clk_hw *hw, unsigned long rate) |
| 356 | { |
| 357 | struct clk *pll = clk_get_parent(hw->clk); |
| 358 | struct clk *root = clk_get_parent(pll); |
| 359 | unsigned long root_rate = clk_get_rate(root); |
| 360 | unsigned long best_rate_error = rate; |
| 361 | u16 pdiv_min; |
| 362 | u16 pdiv_max; |
| 363 | u16 pdiv_best; |
| 364 | u16 pdiv_now; |
| 365 | |
| 366 | if (root_rate % rate == 0) |
| 367 | return root_rate; /* Don't need the PLL, use bypass */ |
| 368 | |
| 369 | pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate)); |
| 370 | pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate); |
| 371 | |
| 372 | if (pdiv_min > pdiv_max) |
| 373 | return 0; /* No can do? */ |
| 374 | |
| 375 | pdiv_best = pdiv_min; |
| 376 | for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) { |
| 377 | unsigned long target_rate = rate * pdiv_now; |
| 378 | long pll_rate = clk_round_rate(pll, target_rate); |
| 379 | unsigned long actual_rate; |
| 380 | unsigned long rate_error; |
| 381 | |
| 382 | if (pll_rate <= 0) |
| 383 | continue; |
| 384 | actual_rate = pll_rate / pdiv_now; |
| 385 | rate_error = abs((long)actual_rate - (long)rate); |
| 386 | if (rate_error < best_rate_error) { |
| 387 | pdiv_best = pdiv_now; |
| 388 | best_rate_error = rate_error; |
| 389 | } |
| 390 | /* TODO: Consider PLL frequency based on smaller n/m values |
| 391 | * and pick the better one if the error is equal */ |
| 392 | } |
| 393 | |
| 394 | return rate * pdiv_best; |
| 395 | } |
| 396 | |
| 397 | static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate, |
| 398 | unsigned long *parent_rate) |
| 399 | { |
| 400 | unsigned long l_parent_rate = *parent_rate; |
| 401 | u16 divider = cdce925_calc_divider(rate, l_parent_rate); |
| 402 | |
| 403 | if (l_parent_rate / divider != rate) { |
| 404 | l_parent_rate = cdce925_clk_best_parent_rate(hw, rate); |
| 405 | divider = cdce925_calc_divider(rate, l_parent_rate); |
| 406 | *parent_rate = l_parent_rate; |
| 407 | } |
| 408 | |
| 409 | if (divider) |
| 410 | return (long)(l_parent_rate / divider); |
| 411 | return 0; |
| 412 | } |
| 413 | |
| 414 | static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate, |
| 415 | unsigned long parent_rate) |
| 416 | { |
| 417 | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); |
| 418 | |
| 419 | data->pdiv = cdce925_calc_divider(rate, parent_rate); |
| 420 | |
| 421 | return 0; |
| 422 | } |
| 423 | |
| 424 | static const struct clk_ops cdce925_clk_ops = { |
| 425 | .prepare = cdce925_clk_prepare, |
| 426 | .unprepare = cdce925_clk_unprepare, |
| 427 | .recalc_rate = cdce925_clk_recalc_rate, |
| 428 | .round_rate = cdce925_clk_round_rate, |
| 429 | .set_rate = cdce925_clk_set_rate, |
| 430 | }; |
| 431 | |
| 432 | |
| 433 | static u16 cdce925_y1_calc_divider(unsigned long rate, |
| 434 | unsigned long parent_rate) |
| 435 | { |
| 436 | unsigned long divider; |
| 437 | |
| 438 | if (!rate) |
| 439 | return 0; |
| 440 | if (rate >= parent_rate) |
| 441 | return 1; |
| 442 | |
| 443 | divider = DIV_ROUND_CLOSEST(parent_rate, rate); |
| 444 | if (divider > 0x3FF) /* Y1 has 10-bit divider */ |
| 445 | divider = 0x3FF; |
| 446 | |
| 447 | return (u16)divider; |
| 448 | } |
| 449 | |
| 450 | static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate, |
| 451 | unsigned long *parent_rate) |
| 452 | { |
| 453 | unsigned long l_parent_rate = *parent_rate; |
| 454 | u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate); |
| 455 | |
| 456 | if (divider) |
| 457 | return (long)(l_parent_rate / divider); |
| 458 | return 0; |
| 459 | } |
| 460 | |
| 461 | static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate, |
| 462 | unsigned long parent_rate) |
| 463 | { |
| 464 | struct clk_cdce925_output *data = to_clk_cdce925_output(hw); |
| 465 | |
| 466 | data->pdiv = cdce925_y1_calc_divider(rate, parent_rate); |
| 467 | |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | static const struct clk_ops cdce925_clk_y1_ops = { |
| 472 | .prepare = cdce925_clk_prepare, |
| 473 | .unprepare = cdce925_clk_unprepare, |
| 474 | .recalc_rate = cdce925_clk_recalc_rate, |
| 475 | .round_rate = cdce925_clk_y1_round_rate, |
| 476 | .set_rate = cdce925_clk_y1_set_rate, |
| 477 | }; |
| 478 | |
| 479 | |
| 480 | static struct regmap_config cdce925_regmap_config = { |
| 481 | .name = "configuration0", |
| 482 | .reg_bits = 8, |
| 483 | .val_bits = 8, |
| 484 | .cache_type = REGCACHE_RBTREE, |
| 485 | .max_register = 0x2F, |
| 486 | }; |
| 487 | |
| 488 | #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00 |
| 489 | #define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80 |
| 490 | |
| 491 | static int cdce925_regmap_i2c_write( |
| 492 | void *context, const void *data, size_t count) |
| 493 | { |
| 494 | struct device *dev = context; |
| 495 | struct i2c_client *i2c = to_i2c_client(dev); |
| 496 | int ret; |
| 497 | u8 reg_data[2]; |
| 498 | |
| 499 | if (count != 2) |
| 500 | return -ENOTSUPP; |
| 501 | |
| 502 | /* First byte is command code */ |
| 503 | reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0]; |
| 504 | reg_data[1] = ((u8 *)data)[1]; |
| 505 | |
| 506 | dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count, |
| 507 | reg_data[0], reg_data[1]); |
| 508 | |
| 509 | ret = i2c_master_send(i2c, reg_data, count); |
| 510 | if (likely(ret == count)) |
| 511 | return 0; |
| 512 | else if (ret < 0) |
| 513 | return ret; |
| 514 | else |
| 515 | return -EIO; |
| 516 | } |
| 517 | |
| 518 | static int cdce925_regmap_i2c_read(void *context, |
| 519 | const void *reg, size_t reg_size, void *val, size_t val_size) |
| 520 | { |
| 521 | struct device *dev = context; |
| 522 | struct i2c_client *i2c = to_i2c_client(dev); |
| 523 | struct i2c_msg xfer[2]; |
| 524 | int ret; |
| 525 | u8 reg_data[2]; |
| 526 | |
| 527 | if (reg_size != 1) |
| 528 | return -ENOTSUPP; |
| 529 | |
| 530 | xfer[0].addr = i2c->addr; |
| 531 | xfer[0].flags = 0; |
| 532 | xfer[0].buf = reg_data; |
| 533 | if (val_size == 1) { |
| 534 | reg_data[0] = |
| 535 | CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0]; |
| 536 | xfer[0].len = 1; |
| 537 | } else { |
| 538 | reg_data[0] = |
| 539 | CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0]; |
| 540 | reg_data[1] = val_size; |
| 541 | xfer[0].len = 2; |
| 542 | } |
| 543 | |
| 544 | xfer[1].addr = i2c->addr; |
| 545 | xfer[1].flags = I2C_M_RD; |
| 546 | xfer[1].len = val_size; |
| 547 | xfer[1].buf = val; |
| 548 | |
| 549 | ret = i2c_transfer(i2c->adapter, xfer, 2); |
| 550 | if (likely(ret == 2)) { |
Stephen Boyd | b41c7bf | 2015-06-10 14:14:28 -0700 | [diff] [blame] | 551 | dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__, |
Mike Looijmans | 19fbbbb | 2015-06-03 07:25:19 +0200 | [diff] [blame] | 552 | reg_size, val_size, reg_data[0], *((u8 *)val)); |
| 553 | return 0; |
| 554 | } else if (ret < 0) |
| 555 | return ret; |
| 556 | else |
| 557 | return -EIO; |
| 558 | } |
| 559 | |
| 560 | /* The CDCE925 uses a funky way to read/write registers. Bulk mode is |
| 561 | * just weird, so just use the single byte mode exclusively. */ |
| 562 | static struct regmap_bus regmap_cdce925_bus = { |
| 563 | .write = cdce925_regmap_i2c_write, |
| 564 | .read = cdce925_regmap_i2c_read, |
| 565 | }; |
| 566 | |
| 567 | static int cdce925_probe(struct i2c_client *client, |
| 568 | const struct i2c_device_id *id) |
| 569 | { |
| 570 | struct clk_cdce925_chip *data; |
| 571 | struct device_node *node = client->dev.of_node; |
| 572 | const char *parent_name; |
| 573 | const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,}; |
| 574 | struct clk_init_data init; |
| 575 | struct clk *clk; |
| 576 | u32 value; |
| 577 | int i; |
| 578 | int err; |
| 579 | struct device_node *np_output; |
| 580 | char child_name[6]; |
| 581 | |
| 582 | dev_dbg(&client->dev, "%s\n", __func__); |
| 583 | data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); |
| 584 | if (!data) |
| 585 | return -ENOMEM; |
| 586 | |
| 587 | data->i2c_client = client; |
| 588 | data->regmap = devm_regmap_init(&client->dev, ®map_cdce925_bus, |
| 589 | &client->dev, &cdce925_regmap_config); |
| 590 | if (IS_ERR(data->regmap)) { |
| 591 | dev_err(&client->dev, "failed to allocate register map\n"); |
| 592 | return PTR_ERR(data->regmap); |
| 593 | } |
| 594 | i2c_set_clientdata(client, data); |
| 595 | |
| 596 | parent_name = of_clk_get_parent_name(node, 0); |
| 597 | if (!parent_name) { |
| 598 | dev_err(&client->dev, "missing parent clock\n"); |
| 599 | return -ENODEV; |
| 600 | } |
| 601 | dev_dbg(&client->dev, "parent is: %s\n", parent_name); |
| 602 | |
| 603 | if (of_property_read_u32(node, "xtal-load-pf", &value) == 0) |
| 604 | regmap_write(data->regmap, |
| 605 | CDCE925_REG_XCSEL, (value << 3) & 0xF8); |
| 606 | /* PWDN bit */ |
| 607 | regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0); |
| 608 | |
| 609 | /* Set input source for Y1 to be the XTAL */ |
| 610 | regmap_update_bits(data->regmap, 0x02, BIT(7), 0); |
| 611 | |
| 612 | init.ops = &cdce925_pll_ops; |
| 613 | init.flags = 0; |
| 614 | init.parent_names = &parent_name; |
| 615 | init.num_parents = parent_name ? 1 : 0; |
| 616 | |
| 617 | /* Register PLL clocks */ |
| 618 | for (i = 0; i < NUMBER_OF_PLLS; ++i) { |
| 619 | pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d", |
| 620 | client->dev.of_node->name, i); |
| 621 | init.name = pll_clk_name[i]; |
| 622 | data->pll[i].chip = data; |
| 623 | data->pll[i].hw.init = &init; |
| 624 | data->pll[i].index = i; |
| 625 | clk = devm_clk_register(&client->dev, &data->pll[i].hw); |
| 626 | if (IS_ERR(clk)) { |
| 627 | dev_err(&client->dev, "Failed register PLL %d\n", i); |
| 628 | err = PTR_ERR(clk); |
| 629 | goto error; |
| 630 | } |
| 631 | sprintf(child_name, "PLL%d", i+1); |
| 632 | np_output = of_get_child_by_name(node, child_name); |
| 633 | if (!np_output) |
| 634 | continue; |
| 635 | if (!of_property_read_u32(np_output, |
| 636 | "clock-frequency", &value)) { |
| 637 | err = clk_set_rate(clk, value); |
| 638 | if (err) |
| 639 | dev_err(&client->dev, |
| 640 | "unable to set PLL frequency %ud\n", |
| 641 | value); |
| 642 | } |
| 643 | if (!of_property_read_u32(np_output, |
| 644 | "spread-spectrum", &value)) { |
| 645 | u8 flag = of_property_read_bool(np_output, |
| 646 | "spread-spectrum-center") ? 0x80 : 0x00; |
| 647 | regmap_update_bits(data->regmap, |
| 648 | 0x16 + (i*CDCE925_OFFSET_PLL), |
| 649 | 0x80, flag); |
| 650 | regmap_update_bits(data->regmap, |
| 651 | 0x12 + (i*CDCE925_OFFSET_PLL), |
| 652 | 0x07, value & 0x07); |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /* Register output clock Y1 */ |
| 657 | init.ops = &cdce925_clk_y1_ops; |
| 658 | init.flags = 0; |
| 659 | init.num_parents = 1; |
| 660 | init.parent_names = &parent_name; /* Mux Y1 to input */ |
| 661 | init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name); |
| 662 | data->clk[0].chip = data; |
| 663 | data->clk[0].hw.init = &init; |
| 664 | data->clk[0].index = 0; |
| 665 | data->clk[0].pdiv = 1; |
| 666 | clk = devm_clk_register(&client->dev, &data->clk[0].hw); |
| 667 | kfree(init.name); /* clock framework made a copy of the name */ |
| 668 | if (IS_ERR(clk)) { |
| 669 | dev_err(&client->dev, "clock registration Y1 failed\n"); |
| 670 | err = PTR_ERR(clk); |
| 671 | goto error; |
| 672 | } |
| 673 | data->dt_clk[0] = clk; |
| 674 | |
| 675 | /* Register output clocks Y2 .. Y5*/ |
| 676 | init.ops = &cdce925_clk_ops; |
| 677 | init.flags = CLK_SET_RATE_PARENT; |
| 678 | init.num_parents = 1; |
| 679 | for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) { |
| 680 | init.name = kasprintf(GFP_KERNEL, "%s.Y%d", |
| 681 | client->dev.of_node->name, i+1); |
| 682 | data->clk[i].chip = data; |
| 683 | data->clk[i].hw.init = &init; |
| 684 | data->clk[i].index = i; |
| 685 | data->clk[i].pdiv = 1; |
| 686 | switch (i) { |
| 687 | case 1: |
| 688 | case 2: |
| 689 | /* Mux Y2/3 to PLL1 */ |
| 690 | init.parent_names = &pll_clk_name[0]; |
| 691 | break; |
| 692 | case 3: |
| 693 | case 4: |
| 694 | /* Mux Y4/5 to PLL2 */ |
| 695 | init.parent_names = &pll_clk_name[1]; |
| 696 | break; |
| 697 | } |
| 698 | clk = devm_clk_register(&client->dev, &data->clk[i].hw); |
| 699 | kfree(init.name); /* clock framework made a copy of the name */ |
| 700 | if (IS_ERR(clk)) { |
| 701 | dev_err(&client->dev, "clock registration failed\n"); |
| 702 | err = PTR_ERR(clk); |
| 703 | goto error; |
| 704 | } |
| 705 | data->dt_clk[i] = clk; |
| 706 | } |
| 707 | |
| 708 | /* Register the output clocks */ |
| 709 | data->onecell.clk_num = NUMBER_OF_OUTPUTS; |
| 710 | data->onecell.clks = data->dt_clk; |
| 711 | err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get, |
| 712 | &data->onecell); |
| 713 | if (err) |
| 714 | dev_err(&client->dev, "unable to add OF clock provider\n"); |
| 715 | |
| 716 | err = 0; |
| 717 | |
| 718 | error: |
| 719 | for (i = 0; i < NUMBER_OF_PLLS; ++i) |
| 720 | /* clock framework made a copy of the name */ |
| 721 | kfree(pll_clk_name[i]); |
| 722 | |
| 723 | return err; |
| 724 | } |
| 725 | |
| 726 | static const struct i2c_device_id cdce925_id[] = { |
| 727 | { "cdce925", 0 }, |
| 728 | { } |
| 729 | }; |
| 730 | MODULE_DEVICE_TABLE(i2c, cdce925_id); |
| 731 | |
| 732 | static const struct of_device_id clk_cdce925_of_match[] = { |
| 733 | { .compatible = "ti,cdce925" }, |
| 734 | { }, |
| 735 | }; |
| 736 | MODULE_DEVICE_TABLE(of, clk_cdce925_of_match); |
| 737 | |
| 738 | static struct i2c_driver cdce925_driver = { |
| 739 | .driver = { |
| 740 | .name = "cdce925", |
| 741 | .of_match_table = of_match_ptr(clk_cdce925_of_match), |
| 742 | }, |
| 743 | .probe = cdce925_probe, |
| 744 | .id_table = cdce925_id, |
| 745 | }; |
| 746 | module_i2c_driver(cdce925_driver); |
| 747 | |
| 748 | MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); |
| 749 | MODULE_DESCRIPTION("cdce925 driver"); |
| 750 | MODULE_LICENSE("GPL"); |