Auke Kok | 9d5c824 | 2008-01-24 02:22:38 -0800 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel(R) Gigabit Ethernet Linux driver |
| 4 | Copyright(c) 2007 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 25 | |
| 26 | *******************************************************************************/ |
| 27 | |
| 28 | #include <linux/if_ether.h> |
| 29 | #include <linux/delay.h> |
| 30 | |
| 31 | #include "e1000_mac.h" |
| 32 | #include "e1000_nvm.h" |
| 33 | |
| 34 | /** |
| 35 | * e1000_raise_eec_clk - Raise EEPROM clock |
| 36 | * @hw: pointer to the HW structure |
| 37 | * @eecd: pointer to the EEPROM |
| 38 | * |
| 39 | * Enable/Raise the EEPROM clock bit. |
| 40 | **/ |
| 41 | static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| 42 | { |
| 43 | *eecd = *eecd | E1000_EECD_SK; |
| 44 | wr32(E1000_EECD, *eecd); |
| 45 | wrfl(); |
| 46 | udelay(hw->nvm.delay_usec); |
| 47 | } |
| 48 | |
| 49 | /** |
| 50 | * e1000_lower_eec_clk - Lower EEPROM clock |
| 51 | * @hw: pointer to the HW structure |
| 52 | * @eecd: pointer to the EEPROM |
| 53 | * |
| 54 | * Clear/Lower the EEPROM clock bit. |
| 55 | **/ |
| 56 | static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| 57 | { |
| 58 | *eecd = *eecd & ~E1000_EECD_SK; |
| 59 | wr32(E1000_EECD, *eecd); |
| 60 | wrfl(); |
| 61 | udelay(hw->nvm.delay_usec); |
| 62 | } |
| 63 | |
| 64 | /** |
| 65 | * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM |
| 66 | * @hw: pointer to the HW structure |
| 67 | * @data: data to send to the EEPROM |
| 68 | * @count: number of bits to shift out |
| 69 | * |
| 70 | * We need to shift 'count' bits out to the EEPROM. So, the value in the |
| 71 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| 72 | * In order to do this, "data" must be broken down into bits. |
| 73 | **/ |
| 74 | static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) |
| 75 | { |
| 76 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 77 | u32 eecd = rd32(E1000_EECD); |
| 78 | u32 mask; |
| 79 | |
| 80 | mask = 0x01 << (count - 1); |
| 81 | if (nvm->type == e1000_nvm_eeprom_microwire) |
| 82 | eecd &= ~E1000_EECD_DO; |
| 83 | else if (nvm->type == e1000_nvm_eeprom_spi) |
| 84 | eecd |= E1000_EECD_DO; |
| 85 | |
| 86 | do { |
| 87 | eecd &= ~E1000_EECD_DI; |
| 88 | |
| 89 | if (data & mask) |
| 90 | eecd |= E1000_EECD_DI; |
| 91 | |
| 92 | wr32(E1000_EECD, eecd); |
| 93 | wrfl(); |
| 94 | |
| 95 | udelay(nvm->delay_usec); |
| 96 | |
| 97 | igb_raise_eec_clk(hw, &eecd); |
| 98 | igb_lower_eec_clk(hw, &eecd); |
| 99 | |
| 100 | mask >>= 1; |
| 101 | } while (mask); |
| 102 | |
| 103 | eecd &= ~E1000_EECD_DI; |
| 104 | wr32(E1000_EECD, eecd); |
| 105 | } |
| 106 | |
| 107 | /** |
| 108 | * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM |
| 109 | * @hw: pointer to the HW structure |
| 110 | * @count: number of bits to shift in |
| 111 | * |
| 112 | * In order to read a register from the EEPROM, we need to shift 'count' bits |
| 113 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
| 114 | * the EEPROM (setting the SK bit), and then reading the value of the data out |
| 115 | * "DO" bit. During this "shifting in" process the data in "DI" bit should |
| 116 | * always be clear. |
| 117 | **/ |
| 118 | static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) |
| 119 | { |
| 120 | u32 eecd; |
| 121 | u32 i; |
| 122 | u16 data; |
| 123 | |
| 124 | eecd = rd32(E1000_EECD); |
| 125 | |
| 126 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 127 | data = 0; |
| 128 | |
| 129 | for (i = 0; i < count; i++) { |
| 130 | data <<= 1; |
| 131 | igb_raise_eec_clk(hw, &eecd); |
| 132 | |
| 133 | eecd = rd32(E1000_EECD); |
| 134 | |
| 135 | eecd &= ~E1000_EECD_DI; |
| 136 | if (eecd & E1000_EECD_DO) |
| 137 | data |= 1; |
| 138 | |
| 139 | igb_lower_eec_clk(hw, &eecd); |
| 140 | } |
| 141 | |
| 142 | return data; |
| 143 | } |
| 144 | |
| 145 | /** |
| 146 | * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion |
| 147 | * @hw: pointer to the HW structure |
| 148 | * @ee_reg: EEPROM flag for polling |
| 149 | * |
| 150 | * Polls the EEPROM status bit for either read or write completion based |
| 151 | * upon the value of 'ee_reg'. |
| 152 | **/ |
| 153 | static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) |
| 154 | { |
| 155 | u32 attempts = 100000; |
| 156 | u32 i, reg = 0; |
| 157 | s32 ret_val = -E1000_ERR_NVM; |
| 158 | |
| 159 | for (i = 0; i < attempts; i++) { |
| 160 | if (ee_reg == E1000_NVM_POLL_READ) |
| 161 | reg = rd32(E1000_EERD); |
| 162 | else |
| 163 | reg = rd32(E1000_EEWR); |
| 164 | |
| 165 | if (reg & E1000_NVM_RW_REG_DONE) { |
| 166 | ret_val = 0; |
| 167 | break; |
| 168 | } |
| 169 | |
| 170 | udelay(5); |
| 171 | } |
| 172 | |
| 173 | return ret_val; |
| 174 | } |
| 175 | |
| 176 | /** |
| 177 | * e1000_acquire_nvm - Generic request for access to EEPROM |
| 178 | * @hw: pointer to the HW structure |
| 179 | * |
| 180 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| 181 | * Return successful if access grant bit set, else clear the request for |
| 182 | * EEPROM access and return -E1000_ERR_NVM (-1). |
| 183 | **/ |
| 184 | s32 igb_acquire_nvm(struct e1000_hw *hw) |
| 185 | { |
| 186 | u32 eecd = rd32(E1000_EECD); |
| 187 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; |
| 188 | s32 ret_val = 0; |
| 189 | |
| 190 | |
| 191 | wr32(E1000_EECD, eecd | E1000_EECD_REQ); |
| 192 | eecd = rd32(E1000_EECD); |
| 193 | |
| 194 | while (timeout) { |
| 195 | if (eecd & E1000_EECD_GNT) |
| 196 | break; |
| 197 | udelay(5); |
| 198 | eecd = rd32(E1000_EECD); |
| 199 | timeout--; |
| 200 | } |
| 201 | |
| 202 | if (!timeout) { |
| 203 | eecd &= ~E1000_EECD_REQ; |
| 204 | wr32(E1000_EECD, eecd); |
| 205 | hw_dbg(hw, "Could not acquire NVM grant\n"); |
| 206 | ret_val = -E1000_ERR_NVM; |
| 207 | } |
| 208 | |
| 209 | return ret_val; |
| 210 | } |
| 211 | |
| 212 | /** |
| 213 | * e1000_standby_nvm - Return EEPROM to standby state |
| 214 | * @hw: pointer to the HW structure |
| 215 | * |
| 216 | * Return the EEPROM to a standby state. |
| 217 | **/ |
| 218 | static void igb_standby_nvm(struct e1000_hw *hw) |
| 219 | { |
| 220 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 221 | u32 eecd = rd32(E1000_EECD); |
| 222 | |
| 223 | if (nvm->type == e1000_nvm_eeprom_microwire) { |
| 224 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 225 | wr32(E1000_EECD, eecd); |
| 226 | wrfl(); |
| 227 | udelay(nvm->delay_usec); |
| 228 | |
| 229 | igb_raise_eec_clk(hw, &eecd); |
| 230 | |
| 231 | /* Select EEPROM */ |
| 232 | eecd |= E1000_EECD_CS; |
| 233 | wr32(E1000_EECD, eecd); |
| 234 | wrfl(); |
| 235 | udelay(nvm->delay_usec); |
| 236 | |
| 237 | igb_lower_eec_clk(hw, &eecd); |
| 238 | } else if (nvm->type == e1000_nvm_eeprom_spi) { |
| 239 | /* Toggle CS to flush commands */ |
| 240 | eecd |= E1000_EECD_CS; |
| 241 | wr32(E1000_EECD, eecd); |
| 242 | wrfl(); |
| 243 | udelay(nvm->delay_usec); |
| 244 | eecd &= ~E1000_EECD_CS; |
| 245 | wr32(E1000_EECD, eecd); |
| 246 | wrfl(); |
| 247 | udelay(nvm->delay_usec); |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | /** |
| 252 | * e1000_stop_nvm - Terminate EEPROM command |
| 253 | * @hw: pointer to the HW structure |
| 254 | * |
| 255 | * Terminates the current command by inverting the EEPROM's chip select pin. |
| 256 | **/ |
| 257 | static void e1000_stop_nvm(struct e1000_hw *hw) |
| 258 | { |
| 259 | u32 eecd; |
| 260 | |
| 261 | eecd = rd32(E1000_EECD); |
| 262 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
| 263 | /* Pull CS high */ |
| 264 | eecd |= E1000_EECD_CS; |
| 265 | igb_lower_eec_clk(hw, &eecd); |
| 266 | } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { |
| 267 | /* CS on Microcwire is active-high */ |
| 268 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| 269 | wr32(E1000_EECD, eecd); |
| 270 | igb_raise_eec_clk(hw, &eecd); |
| 271 | igb_lower_eec_clk(hw, &eecd); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | /** |
| 276 | * e1000_release_nvm - Release exclusive access to EEPROM |
| 277 | * @hw: pointer to the HW structure |
| 278 | * |
| 279 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
| 280 | **/ |
| 281 | void igb_release_nvm(struct e1000_hw *hw) |
| 282 | { |
| 283 | u32 eecd; |
| 284 | |
| 285 | e1000_stop_nvm(hw); |
| 286 | |
| 287 | eecd = rd32(E1000_EECD); |
| 288 | eecd &= ~E1000_EECD_REQ; |
| 289 | wr32(E1000_EECD, eecd); |
| 290 | } |
| 291 | |
| 292 | /** |
| 293 | * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write |
| 294 | * @hw: pointer to the HW structure |
| 295 | * |
| 296 | * Setups the EEPROM for reading and writing. |
| 297 | **/ |
| 298 | static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) |
| 299 | { |
| 300 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 301 | u32 eecd = rd32(E1000_EECD); |
| 302 | s32 ret_val = 0; |
| 303 | u16 timeout = 0; |
| 304 | u8 spi_stat_reg; |
| 305 | |
| 306 | |
| 307 | if (nvm->type == e1000_nvm_eeprom_microwire) { |
| 308 | /* Clear SK and DI */ |
| 309 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
| 310 | wr32(E1000_EECD, eecd); |
| 311 | /* Set CS */ |
| 312 | eecd |= E1000_EECD_CS; |
| 313 | wr32(E1000_EECD, eecd); |
| 314 | } else if (nvm->type == e1000_nvm_eeprom_spi) { |
| 315 | /* Clear SK and CS */ |
| 316 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 317 | wr32(E1000_EECD, eecd); |
| 318 | udelay(1); |
| 319 | timeout = NVM_MAX_RETRY_SPI; |
| 320 | |
| 321 | /* |
| 322 | * Read "Status Register" repeatedly until the LSB is cleared. |
| 323 | * The EEPROM will signal that the command has been completed |
| 324 | * by clearing bit 0 of the internal status register. If it's |
| 325 | * not cleared within 'timeout', then error out. |
| 326 | */ |
| 327 | while (timeout) { |
| 328 | igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, |
| 329 | hw->nvm.opcode_bits); |
| 330 | spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); |
| 331 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) |
| 332 | break; |
| 333 | |
| 334 | udelay(5); |
| 335 | igb_standby_nvm(hw); |
| 336 | timeout--; |
| 337 | } |
| 338 | |
| 339 | if (!timeout) { |
| 340 | hw_dbg(hw, "SPI NVM Status error\n"); |
| 341 | ret_val = -E1000_ERR_NVM; |
| 342 | goto out; |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | out: |
| 347 | return ret_val; |
| 348 | } |
| 349 | |
| 350 | /** |
| 351 | * e1000_read_nvm_eerd - Reads EEPROM using EERD register |
| 352 | * @hw: pointer to the HW structure |
| 353 | * @offset: offset of word in the EEPROM to read |
| 354 | * @words: number of words to read |
| 355 | * @data: word read from the EEPROM |
| 356 | * |
| 357 | * Reads a 16 bit word from the EEPROM using the EERD register. |
| 358 | **/ |
| 359 | s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| 360 | { |
| 361 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 362 | u32 i, eerd = 0; |
| 363 | s32 ret_val = 0; |
| 364 | |
| 365 | /* |
| 366 | * A check for invalid values: offset too large, too many words, |
| 367 | * and not enough words. |
| 368 | */ |
| 369 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 370 | (words == 0)) { |
| 371 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| 372 | ret_val = -E1000_ERR_NVM; |
| 373 | goto out; |
| 374 | } |
| 375 | |
| 376 | for (i = 0; i < words; i++) { |
| 377 | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + |
| 378 | E1000_NVM_RW_REG_START; |
| 379 | |
| 380 | wr32(E1000_EERD, eerd); |
| 381 | ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); |
| 382 | if (ret_val) |
| 383 | break; |
| 384 | |
| 385 | data[i] = (rd32(E1000_EERD) >> |
| 386 | E1000_NVM_RW_REG_DATA); |
| 387 | } |
| 388 | |
| 389 | out: |
| 390 | return ret_val; |
| 391 | } |
| 392 | |
| 393 | /** |
| 394 | * e1000_write_nvm_spi - Write to EEPROM using SPI |
| 395 | * @hw: pointer to the HW structure |
| 396 | * @offset: offset within the EEPROM to be written to |
| 397 | * @words: number of words to write |
| 398 | * @data: 16 bit word(s) to be written to the EEPROM |
| 399 | * |
| 400 | * Writes data to EEPROM at offset using SPI interface. |
| 401 | * |
| 402 | * If e1000_update_nvm_checksum is not called after this function , the |
| 403 | * EEPROM will most likley contain an invalid checksum. |
| 404 | **/ |
| 405 | s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| 406 | { |
| 407 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 408 | s32 ret_val; |
| 409 | u16 widx = 0; |
| 410 | |
| 411 | /* |
| 412 | * A check for invalid values: offset too large, too many words, |
| 413 | * and not enough words. |
| 414 | */ |
| 415 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 416 | (words == 0)) { |
| 417 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| 418 | ret_val = -E1000_ERR_NVM; |
| 419 | goto out; |
| 420 | } |
| 421 | |
| 422 | ret_val = hw->nvm.ops.acquire_nvm(hw); |
| 423 | if (ret_val) |
| 424 | goto out; |
| 425 | |
| 426 | msleep(10); |
| 427 | |
| 428 | while (widx < words) { |
| 429 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; |
| 430 | |
| 431 | ret_val = igb_ready_nvm_eeprom(hw); |
| 432 | if (ret_val) |
| 433 | goto release; |
| 434 | |
| 435 | igb_standby_nvm(hw); |
| 436 | |
| 437 | /* Send the WRITE ENABLE command (8 bit opcode) */ |
| 438 | igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, |
| 439 | nvm->opcode_bits); |
| 440 | |
| 441 | igb_standby_nvm(hw); |
| 442 | |
| 443 | /* |
| 444 | * Some SPI eeproms use the 8th address bit embedded in the |
| 445 | * opcode |
| 446 | */ |
| 447 | if ((nvm->address_bits == 8) && (offset >= 128)) |
| 448 | write_opcode |= NVM_A8_OPCODE_SPI; |
| 449 | |
| 450 | /* Send the Write command (8-bit opcode + addr) */ |
| 451 | igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); |
| 452 | igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), |
| 453 | nvm->address_bits); |
| 454 | |
| 455 | /* Loop to allow for up to whole page write of eeprom */ |
| 456 | while (widx < words) { |
| 457 | u16 word_out = data[widx]; |
| 458 | word_out = (word_out >> 8) | (word_out << 8); |
| 459 | igb_shift_out_eec_bits(hw, word_out, 16); |
| 460 | widx++; |
| 461 | |
| 462 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { |
| 463 | igb_standby_nvm(hw); |
| 464 | break; |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | msleep(10); |
| 470 | release: |
| 471 | hw->nvm.ops.release_nvm(hw); |
| 472 | |
| 473 | out: |
| 474 | return ret_val; |
| 475 | } |
| 476 | |
| 477 | /** |
| 478 | * e1000_read_part_num - Read device part number |
| 479 | * @hw: pointer to the HW structure |
| 480 | * @part_num: pointer to device part number |
| 481 | * |
| 482 | * Reads the product board assembly (PBA) number from the EEPROM and stores |
| 483 | * the value in part_num. |
| 484 | **/ |
| 485 | s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num) |
| 486 | { |
| 487 | s32 ret_val; |
| 488 | u16 nvm_data; |
| 489 | |
| 490 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); |
| 491 | if (ret_val) { |
| 492 | hw_dbg(hw, "NVM Read Error\n"); |
| 493 | goto out; |
| 494 | } |
| 495 | *part_num = (u32)(nvm_data << 16); |
| 496 | |
| 497 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); |
| 498 | if (ret_val) { |
| 499 | hw_dbg(hw, "NVM Read Error\n"); |
| 500 | goto out; |
| 501 | } |
| 502 | *part_num |= nvm_data; |
| 503 | |
| 504 | out: |
| 505 | return ret_val; |
| 506 | } |
| 507 | |
| 508 | /** |
| 509 | * e1000_read_mac_addr - Read device MAC address |
| 510 | * @hw: pointer to the HW structure |
| 511 | * |
| 512 | * Reads the device MAC address from the EEPROM and stores the value. |
| 513 | * Since devices with two ports use the same EEPROM, we increment the |
| 514 | * last bit in the MAC address for the second port. |
| 515 | **/ |
| 516 | s32 igb_read_mac_addr(struct e1000_hw *hw) |
| 517 | { |
| 518 | s32 ret_val = 0; |
| 519 | u16 offset, nvm_data, i; |
| 520 | |
| 521 | for (i = 0; i < ETH_ALEN; i += 2) { |
| 522 | offset = i >> 1; |
| 523 | ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data); |
| 524 | if (ret_val) { |
| 525 | hw_dbg(hw, "NVM Read Error\n"); |
| 526 | goto out; |
| 527 | } |
| 528 | hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); |
| 529 | hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); |
| 530 | } |
| 531 | |
| 532 | /* Flip last bit of mac address if we're on second port */ |
| 533 | if (hw->bus.func == E1000_FUNC_1) |
| 534 | hw->mac.perm_addr[5] ^= 1; |
| 535 | |
| 536 | for (i = 0; i < ETH_ALEN; i++) |
| 537 | hw->mac.addr[i] = hw->mac.perm_addr[i]; |
| 538 | |
| 539 | out: |
| 540 | return ret_val; |
| 541 | } |
| 542 | |
| 543 | /** |
| 544 | * e1000_validate_nvm_checksum - Validate EEPROM checksum |
| 545 | * @hw: pointer to the HW structure |
| 546 | * |
| 547 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| 548 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| 549 | **/ |
| 550 | s32 igb_validate_nvm_checksum(struct e1000_hw *hw) |
| 551 | { |
| 552 | s32 ret_val = 0; |
| 553 | u16 checksum = 0; |
| 554 | u16 i, nvm_data; |
| 555 | |
| 556 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
| 557 | ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data); |
| 558 | if (ret_val) { |
| 559 | hw_dbg(hw, "NVM Read Error\n"); |
| 560 | goto out; |
| 561 | } |
| 562 | checksum += nvm_data; |
| 563 | } |
| 564 | |
| 565 | if (checksum != (u16) NVM_SUM) { |
| 566 | hw_dbg(hw, "NVM Checksum Invalid\n"); |
| 567 | ret_val = -E1000_ERR_NVM; |
| 568 | goto out; |
| 569 | } |
| 570 | |
| 571 | out: |
| 572 | return ret_val; |
| 573 | } |
| 574 | |
| 575 | /** |
| 576 | * e1000_update_nvm_checksum - Update EEPROM checksum |
| 577 | * @hw: pointer to the HW structure |
| 578 | * |
| 579 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| 580 | * up to the checksum. Then calculates the EEPROM checksum and writes the |
| 581 | * value to the EEPROM. |
| 582 | **/ |
| 583 | s32 igb_update_nvm_checksum(struct e1000_hw *hw) |
| 584 | { |
| 585 | s32 ret_val; |
| 586 | u16 checksum = 0; |
| 587 | u16 i, nvm_data; |
| 588 | |
| 589 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| 590 | ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data); |
| 591 | if (ret_val) { |
| 592 | hw_dbg(hw, "NVM Read Error while updating checksum.\n"); |
| 593 | goto out; |
| 594 | } |
| 595 | checksum += nvm_data; |
| 596 | } |
| 597 | checksum = (u16) NVM_SUM - checksum; |
| 598 | ret_val = hw->nvm.ops.write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); |
| 599 | if (ret_val) |
| 600 | hw_dbg(hw, "NVM Write Error while updating checksum.\n"); |
| 601 | |
| 602 | out: |
| 603 | return ret_val; |
| 604 | } |
| 605 | |