Al Viro | f466c6f | 2012-03-17 01:16:43 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details |
| 3 | */ |
| 4 | |
| 5 | #include <linux/reiserfs_fs.h> |
| 6 | |
| 7 | #include <linux/slab.h> |
| 8 | #include <linux/interrupt.h> |
| 9 | #include <linux/sched.h> |
Linus Torvalds | ed2d265 | 2012-03-24 10:08:39 -0700 | [diff] [blame] | 10 | #include <linux/bug.h> |
Al Viro | f466c6f | 2012-03-17 01:16:43 -0400 | [diff] [blame] | 11 | #include <linux/workqueue.h> |
| 12 | #include <asm/unaligned.h> |
| 13 | #include <linux/bitops.h> |
| 14 | #include <linux/proc_fs.h> |
| 15 | #include <linux/buffer_head.h> |
Al Viro | f466c6f | 2012-03-17 01:16:43 -0400 | [diff] [blame] | 16 | |
| 17 | /* the 32 bit compat definitions with int argument */ |
| 18 | #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) |
| 19 | #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS |
| 20 | #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS |
| 21 | #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION |
| 22 | #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION |
| 23 | |
Al Viro | 765fd6b | 2012-03-17 01:19:24 -0400 | [diff] [blame] | 24 | struct reiserfs_journal_list; |
| 25 | |
| 26 | /** bitmasks for i_flags field in reiserfs-specific part of inode */ |
| 27 | typedef enum { |
| 28 | /** this says what format of key do all items (but stat data) of |
| 29 | an object have. If this is set, that format is 3.6 otherwise |
| 30 | - 3.5 */ |
| 31 | i_item_key_version_mask = 0x0001, |
| 32 | /** If this is unset, object has 3.5 stat data, otherwise, it has |
| 33 | 3.6 stat data with 64bit size, 32bit nlink etc. */ |
| 34 | i_stat_data_version_mask = 0x0002, |
| 35 | /** file might need tail packing on close */ |
| 36 | i_pack_on_close_mask = 0x0004, |
| 37 | /** don't pack tail of file */ |
| 38 | i_nopack_mask = 0x0008, |
| 39 | /** If those is set, "safe link" was created for this file during |
| 40 | truncate or unlink. Safe link is used to avoid leakage of disk |
| 41 | space on crash with some files open, but unlinked. */ |
| 42 | i_link_saved_unlink_mask = 0x0010, |
| 43 | i_link_saved_truncate_mask = 0x0020, |
| 44 | i_has_xattr_dir = 0x0040, |
| 45 | i_data_log = 0x0080, |
| 46 | } reiserfs_inode_flags; |
| 47 | |
| 48 | struct reiserfs_inode_info { |
| 49 | __u32 i_key[4]; /* key is still 4 32 bit integers */ |
| 50 | /** transient inode flags that are never stored on disk. Bitmasks |
| 51 | for this field are defined above. */ |
| 52 | __u32 i_flags; |
| 53 | |
| 54 | __u32 i_first_direct_byte; // offset of first byte stored in direct item. |
| 55 | |
| 56 | /* copy of persistent inode flags read from sd_attrs. */ |
| 57 | __u32 i_attrs; |
| 58 | |
| 59 | int i_prealloc_block; /* first unused block of a sequence of unused blocks */ |
| 60 | int i_prealloc_count; /* length of that sequence */ |
| 61 | struct list_head i_prealloc_list; /* per-transaction list of inodes which |
| 62 | * have preallocated blocks */ |
| 63 | |
| 64 | unsigned new_packing_locality:1; /* new_packig_locality is created; new blocks |
| 65 | * for the contents of this directory should be |
| 66 | * displaced */ |
| 67 | |
| 68 | /* we use these for fsync or O_SYNC to decide which transaction |
| 69 | ** needs to be committed in order for this inode to be properly |
| 70 | ** flushed */ |
| 71 | unsigned int i_trans_id; |
| 72 | struct reiserfs_journal_list *i_jl; |
| 73 | atomic_t openers; |
| 74 | struct mutex tailpack; |
| 75 | #ifdef CONFIG_REISERFS_FS_XATTR |
| 76 | struct rw_semaphore i_xattr_sem; |
| 77 | #endif |
| 78 | struct inode vfs_inode; |
| 79 | }; |
| 80 | |
| 81 | typedef enum { |
| 82 | reiserfs_attrs_cleared = 0x00000001, |
| 83 | } reiserfs_super_block_flags; |
| 84 | |
| 85 | /* struct reiserfs_super_block accessors/mutators |
| 86 | * since this is a disk structure, it will always be in |
| 87 | * little endian format. */ |
| 88 | #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) |
| 89 | #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) |
| 90 | #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) |
| 91 | #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) |
| 92 | #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) |
| 93 | #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) |
| 94 | |
| 95 | #define sb_jp_journal_1st_block(sbp) \ |
| 96 | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) |
| 97 | #define set_sb_jp_journal_1st_block(sbp,v) \ |
| 98 | ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) |
| 99 | #define sb_jp_journal_dev(sbp) \ |
| 100 | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) |
| 101 | #define set_sb_jp_journal_dev(sbp,v) \ |
| 102 | ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) |
| 103 | #define sb_jp_journal_size(sbp) \ |
| 104 | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) |
| 105 | #define set_sb_jp_journal_size(sbp,v) \ |
| 106 | ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) |
| 107 | #define sb_jp_journal_trans_max(sbp) \ |
| 108 | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) |
| 109 | #define set_sb_jp_journal_trans_max(sbp,v) \ |
| 110 | ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) |
| 111 | #define sb_jp_journal_magic(sbp) \ |
| 112 | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) |
| 113 | #define set_sb_jp_journal_magic(sbp,v) \ |
| 114 | ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) |
| 115 | #define sb_jp_journal_max_batch(sbp) \ |
| 116 | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) |
| 117 | #define set_sb_jp_journal_max_batch(sbp,v) \ |
| 118 | ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) |
| 119 | #define sb_jp_jourmal_max_commit_age(sbp) \ |
| 120 | (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) |
| 121 | #define set_sb_jp_journal_max_commit_age(sbp,v) \ |
| 122 | ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) |
| 123 | |
| 124 | #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) |
| 125 | #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) |
| 126 | #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) |
| 127 | #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) |
| 128 | #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) |
| 129 | #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) |
| 130 | #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) |
| 131 | #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) |
| 132 | #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) |
| 133 | #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) |
| 134 | #define sb_hash_function_code(sbp) \ |
| 135 | (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) |
| 136 | #define set_sb_hash_function_code(sbp,v) \ |
| 137 | ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) |
| 138 | #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) |
| 139 | #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) |
| 140 | #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) |
| 141 | #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) |
| 142 | #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) |
| 143 | #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) |
| 144 | |
| 145 | #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) |
| 146 | #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) |
| 147 | |
| 148 | #define sb_reserved_for_journal(sbp) \ |
| 149 | (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) |
| 150 | #define set_sb_reserved_for_journal(sbp,v) \ |
| 151 | ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) |
| 152 | |
| 153 | /* LOGGING -- */ |
| 154 | |
| 155 | /* These all interelate for performance. |
| 156 | ** |
| 157 | ** If the journal block count is smaller than n transactions, you lose speed. |
| 158 | ** I don't know what n is yet, I'm guessing 8-16. |
| 159 | ** |
| 160 | ** typical transaction size depends on the application, how often fsync is |
| 161 | ** called, and how many metadata blocks you dirty in a 30 second period. |
| 162 | ** The more small files (<16k) you use, the larger your transactions will |
| 163 | ** be. |
| 164 | ** |
| 165 | ** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal |
| 166 | ** to wrap, which slows things down. If you need high speed meta data updates, the journal should be big enough |
| 167 | ** to prevent wrapping before dirty meta blocks get to disk. |
| 168 | ** |
| 169 | ** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal |
| 170 | ** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping. |
| 171 | ** |
| 172 | ** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash. |
| 173 | ** |
| 174 | */ |
| 175 | |
| 176 | /* don't mess with these for a while */ |
| 177 | /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ |
| 178 | #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ |
| 179 | #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ |
| 180 | #define JOURNAL_HASH_SIZE 8192 |
| 181 | #define JOURNAL_NUM_BITMAPS 5 /* number of copies of the bitmaps to have floating. Must be >= 2 */ |
| 182 | |
| 183 | /* One of these for every block in every transaction |
| 184 | ** Each one is in two hash tables. First, a hash of the current transaction, and after journal_end, a |
| 185 | ** hash of all the in memory transactions. |
| 186 | ** next and prev are used by the current transaction (journal_hash). |
| 187 | ** hnext and hprev are used by journal_list_hash. If a block is in more than one transaction, the journal_list_hash |
| 188 | ** links it in multiple times. This allows flush_journal_list to remove just the cnode belonging |
| 189 | ** to a given transaction. |
| 190 | */ |
| 191 | struct reiserfs_journal_cnode { |
| 192 | struct buffer_head *bh; /* real buffer head */ |
| 193 | struct super_block *sb; /* dev of real buffer head */ |
| 194 | __u32 blocknr; /* block number of real buffer head, == 0 when buffer on disk */ |
| 195 | unsigned long state; |
| 196 | struct reiserfs_journal_list *jlist; /* journal list this cnode lives in */ |
| 197 | struct reiserfs_journal_cnode *next; /* next in transaction list */ |
| 198 | struct reiserfs_journal_cnode *prev; /* prev in transaction list */ |
| 199 | struct reiserfs_journal_cnode *hprev; /* prev in hash list */ |
| 200 | struct reiserfs_journal_cnode *hnext; /* next in hash list */ |
| 201 | }; |
| 202 | |
| 203 | struct reiserfs_bitmap_node { |
| 204 | int id; |
| 205 | char *data; |
| 206 | struct list_head list; |
| 207 | }; |
| 208 | |
| 209 | struct reiserfs_list_bitmap { |
| 210 | struct reiserfs_journal_list *journal_list; |
| 211 | struct reiserfs_bitmap_node **bitmaps; |
| 212 | }; |
| 213 | |
| 214 | /* |
| 215 | ** one of these for each transaction. The most important part here is the j_realblock. |
| 216 | ** this list of cnodes is used to hash all the blocks in all the commits, to mark all the |
| 217 | ** real buffer heads dirty once all the commits hit the disk, |
| 218 | ** and to make sure every real block in a transaction is on disk before allowing the log area |
| 219 | ** to be overwritten */ |
| 220 | struct reiserfs_journal_list { |
| 221 | unsigned long j_start; |
| 222 | unsigned long j_state; |
| 223 | unsigned long j_len; |
| 224 | atomic_t j_nonzerolen; |
| 225 | atomic_t j_commit_left; |
| 226 | atomic_t j_older_commits_done; /* all commits older than this on disk */ |
| 227 | struct mutex j_commit_mutex; |
| 228 | unsigned int j_trans_id; |
| 229 | time_t j_timestamp; |
| 230 | struct reiserfs_list_bitmap *j_list_bitmap; |
| 231 | struct buffer_head *j_commit_bh; /* commit buffer head */ |
| 232 | struct reiserfs_journal_cnode *j_realblock; |
| 233 | struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ |
| 234 | /* time ordered list of all active transactions */ |
| 235 | struct list_head j_list; |
| 236 | |
| 237 | /* time ordered list of all transactions we haven't tried to flush yet */ |
| 238 | struct list_head j_working_list; |
| 239 | |
| 240 | /* list of tail conversion targets in need of flush before commit */ |
| 241 | struct list_head j_tail_bh_list; |
| 242 | /* list of data=ordered buffers in need of flush before commit */ |
| 243 | struct list_head j_bh_list; |
| 244 | int j_refcount; |
| 245 | }; |
| 246 | |
| 247 | struct reiserfs_journal { |
| 248 | struct buffer_head **j_ap_blocks; /* journal blocks on disk */ |
| 249 | struct reiserfs_journal_cnode *j_last; /* newest journal block */ |
| 250 | struct reiserfs_journal_cnode *j_first; /* oldest journal block. start here for traverse */ |
| 251 | |
| 252 | struct block_device *j_dev_bd; |
| 253 | fmode_t j_dev_mode; |
| 254 | int j_1st_reserved_block; /* first block on s_dev of reserved area journal */ |
| 255 | |
| 256 | unsigned long j_state; |
| 257 | unsigned int j_trans_id; |
| 258 | unsigned long j_mount_id; |
| 259 | unsigned long j_start; /* start of current waiting commit (index into j_ap_blocks) */ |
| 260 | unsigned long j_len; /* length of current waiting commit */ |
| 261 | unsigned long j_len_alloc; /* number of buffers requested by journal_begin() */ |
| 262 | atomic_t j_wcount; /* count of writers for current commit */ |
| 263 | unsigned long j_bcount; /* batch count. allows turning X transactions into 1 */ |
| 264 | unsigned long j_first_unflushed_offset; /* first unflushed transactions offset */ |
| 265 | unsigned j_last_flush_trans_id; /* last fully flushed journal timestamp */ |
| 266 | struct buffer_head *j_header_bh; |
| 267 | |
| 268 | time_t j_trans_start_time; /* time this transaction started */ |
| 269 | struct mutex j_mutex; |
| 270 | struct mutex j_flush_mutex; |
| 271 | wait_queue_head_t j_join_wait; /* wait for current transaction to finish before starting new one */ |
| 272 | atomic_t j_jlock; /* lock for j_join_wait */ |
| 273 | int j_list_bitmap_index; /* number of next list bitmap to use */ |
| 274 | int j_must_wait; /* no more journal begins allowed. MUST sleep on j_join_wait */ |
| 275 | int j_next_full_flush; /* next journal_end will flush all journal list */ |
| 276 | int j_next_async_flush; /* next journal_end will flush all async commits */ |
| 277 | |
| 278 | int j_cnode_used; /* number of cnodes on the used list */ |
| 279 | int j_cnode_free; /* number of cnodes on the free list */ |
| 280 | |
| 281 | unsigned int j_trans_max; /* max number of blocks in a transaction. */ |
| 282 | unsigned int j_max_batch; /* max number of blocks to batch into a trans */ |
| 283 | unsigned int j_max_commit_age; /* in seconds, how old can an async commit be */ |
| 284 | unsigned int j_max_trans_age; /* in seconds, how old can a transaction be */ |
| 285 | unsigned int j_default_max_commit_age; /* the default for the max commit age */ |
| 286 | |
| 287 | struct reiserfs_journal_cnode *j_cnode_free_list; |
| 288 | struct reiserfs_journal_cnode *j_cnode_free_orig; /* orig pointer returned from vmalloc */ |
| 289 | |
| 290 | struct reiserfs_journal_list *j_current_jl; |
| 291 | int j_free_bitmap_nodes; |
| 292 | int j_used_bitmap_nodes; |
| 293 | |
| 294 | int j_num_lists; /* total number of active transactions */ |
| 295 | int j_num_work_lists; /* number that need attention from kreiserfsd */ |
| 296 | |
| 297 | /* debugging to make sure things are flushed in order */ |
| 298 | unsigned int j_last_flush_id; |
| 299 | |
| 300 | /* debugging to make sure things are committed in order */ |
| 301 | unsigned int j_last_commit_id; |
| 302 | |
| 303 | struct list_head j_bitmap_nodes; |
| 304 | struct list_head j_dirty_buffers; |
| 305 | spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ |
| 306 | |
| 307 | /* list of all active transactions */ |
| 308 | struct list_head j_journal_list; |
| 309 | /* lists that haven't been touched by writeback attempts */ |
| 310 | struct list_head j_working_list; |
| 311 | |
| 312 | struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; /* array of bitmaps to record the deleted blocks */ |
| 313 | struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; /* hash table for real buffer heads in current trans */ |
| 314 | struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; /* hash table for all the real buffer heads in all |
| 315 | the transactions */ |
| 316 | struct list_head j_prealloc_list; /* list of inodes which have preallocated blocks */ |
| 317 | int j_persistent_trans; |
| 318 | unsigned long j_max_trans_size; |
| 319 | unsigned long j_max_batch_size; |
| 320 | |
| 321 | int j_errno; |
| 322 | |
| 323 | /* when flushing ordered buffers, throttle new ordered writers */ |
| 324 | struct delayed_work j_work; |
| 325 | struct super_block *j_work_sb; |
| 326 | atomic_t j_async_throttle; |
| 327 | }; |
| 328 | |
| 329 | enum journal_state_bits { |
| 330 | J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ |
| 331 | J_WRITERS_QUEUED, /* set when log is full due to too many writers */ |
| 332 | J_ABORTED, /* set when log is aborted */ |
| 333 | }; |
| 334 | |
| 335 | #define JOURNAL_DESC_MAGIC "ReIsErLB" /* ick. magic string to find desc blocks in the journal */ |
| 336 | |
| 337 | typedef __u32(*hashf_t) (const signed char *, int); |
| 338 | |
| 339 | struct reiserfs_bitmap_info { |
| 340 | __u32 free_count; |
| 341 | }; |
| 342 | |
| 343 | struct proc_dir_entry; |
| 344 | |
| 345 | #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) |
| 346 | typedef unsigned long int stat_cnt_t; |
| 347 | typedef struct reiserfs_proc_info_data { |
| 348 | spinlock_t lock; |
| 349 | int exiting; |
| 350 | int max_hash_collisions; |
| 351 | |
| 352 | stat_cnt_t breads; |
| 353 | stat_cnt_t bread_miss; |
| 354 | stat_cnt_t search_by_key; |
| 355 | stat_cnt_t search_by_key_fs_changed; |
| 356 | stat_cnt_t search_by_key_restarted; |
| 357 | |
| 358 | stat_cnt_t insert_item_restarted; |
| 359 | stat_cnt_t paste_into_item_restarted; |
| 360 | stat_cnt_t cut_from_item_restarted; |
| 361 | stat_cnt_t delete_solid_item_restarted; |
| 362 | stat_cnt_t delete_item_restarted; |
| 363 | |
| 364 | stat_cnt_t leaked_oid; |
| 365 | stat_cnt_t leaves_removable; |
| 366 | |
| 367 | /* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */ |
| 368 | stat_cnt_t balance_at[5]; /* XXX */ |
| 369 | /* sbk == search_by_key */ |
| 370 | stat_cnt_t sbk_read_at[5]; /* XXX */ |
| 371 | stat_cnt_t sbk_fs_changed[5]; |
| 372 | stat_cnt_t sbk_restarted[5]; |
| 373 | stat_cnt_t items_at[5]; /* XXX */ |
| 374 | stat_cnt_t free_at[5]; /* XXX */ |
| 375 | stat_cnt_t can_node_be_removed[5]; /* XXX */ |
| 376 | long int lnum[5]; /* XXX */ |
| 377 | long int rnum[5]; /* XXX */ |
| 378 | long int lbytes[5]; /* XXX */ |
| 379 | long int rbytes[5]; /* XXX */ |
| 380 | stat_cnt_t get_neighbors[5]; |
| 381 | stat_cnt_t get_neighbors_restart[5]; |
| 382 | stat_cnt_t need_l_neighbor[5]; |
| 383 | stat_cnt_t need_r_neighbor[5]; |
| 384 | |
| 385 | stat_cnt_t free_block; |
| 386 | struct __scan_bitmap_stats { |
| 387 | stat_cnt_t call; |
| 388 | stat_cnt_t wait; |
| 389 | stat_cnt_t bmap; |
| 390 | stat_cnt_t retry; |
| 391 | stat_cnt_t in_journal_hint; |
| 392 | stat_cnt_t in_journal_nohint; |
| 393 | stat_cnt_t stolen; |
| 394 | } scan_bitmap; |
| 395 | struct __journal_stats { |
| 396 | stat_cnt_t in_journal; |
| 397 | stat_cnt_t in_journal_bitmap; |
| 398 | stat_cnt_t in_journal_reusable; |
| 399 | stat_cnt_t lock_journal; |
| 400 | stat_cnt_t lock_journal_wait; |
| 401 | stat_cnt_t journal_being; |
| 402 | stat_cnt_t journal_relock_writers; |
| 403 | stat_cnt_t journal_relock_wcount; |
| 404 | stat_cnt_t mark_dirty; |
| 405 | stat_cnt_t mark_dirty_already; |
| 406 | stat_cnt_t mark_dirty_notjournal; |
| 407 | stat_cnt_t restore_prepared; |
| 408 | stat_cnt_t prepare; |
| 409 | stat_cnt_t prepare_retry; |
| 410 | } journal; |
| 411 | } reiserfs_proc_info_data_t; |
| 412 | #else |
| 413 | typedef struct reiserfs_proc_info_data { |
| 414 | } reiserfs_proc_info_data_t; |
| 415 | #endif |
| 416 | |
| 417 | /* reiserfs union of in-core super block data */ |
| 418 | struct reiserfs_sb_info { |
| 419 | struct buffer_head *s_sbh; /* Buffer containing the super block */ |
| 420 | /* both the comment and the choice of |
| 421 | name are unclear for s_rs -Hans */ |
| 422 | struct reiserfs_super_block *s_rs; /* Pointer to the super block in the buffer */ |
| 423 | struct reiserfs_bitmap_info *s_ap_bitmap; |
| 424 | struct reiserfs_journal *s_journal; /* pointer to journal information */ |
| 425 | unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ |
| 426 | |
| 427 | /* Serialize writers access, replace the old bkl */ |
| 428 | struct mutex lock; |
| 429 | /* Owner of the lock (can be recursive) */ |
| 430 | struct task_struct *lock_owner; |
| 431 | /* Depth of the lock, start from -1 like the bkl */ |
| 432 | int lock_depth; |
| 433 | |
| 434 | /* Comment? -Hans */ |
| 435 | void (*end_io_handler) (struct buffer_head *, int); |
| 436 | hashf_t s_hash_function; /* pointer to function which is used |
| 437 | to sort names in directory. Set on |
| 438 | mount */ |
| 439 | unsigned long s_mount_opt; /* reiserfs's mount options are set |
| 440 | here (currently - NOTAIL, NOLOG, |
| 441 | REPLAYONLY) */ |
| 442 | |
| 443 | struct { /* This is a structure that describes block allocator options */ |
| 444 | unsigned long bits; /* Bitfield for enable/disable kind of options */ |
| 445 | unsigned long large_file_size; /* size started from which we consider file to be a large one(in blocks) */ |
| 446 | int border; /* percentage of disk, border takes */ |
| 447 | int preallocmin; /* Minimal file size (in blocks) starting from which we do preallocations */ |
| 448 | int preallocsize; /* Number of blocks we try to prealloc when file |
| 449 | reaches preallocmin size (in blocks) or |
| 450 | prealloc_list is empty. */ |
| 451 | } s_alloc_options; |
| 452 | |
| 453 | /* Comment? -Hans */ |
| 454 | wait_queue_head_t s_wait; |
| 455 | /* To be obsoleted soon by per buffer seals.. -Hans */ |
| 456 | atomic_t s_generation_counter; // increased by one every time the |
| 457 | // tree gets re-balanced |
| 458 | unsigned long s_properties; /* File system properties. Currently holds |
| 459 | on-disk FS format */ |
| 460 | |
| 461 | /* session statistics */ |
| 462 | int s_disk_reads; |
| 463 | int s_disk_writes; |
| 464 | int s_fix_nodes; |
| 465 | int s_do_balance; |
| 466 | int s_unneeded_left_neighbor; |
| 467 | int s_good_search_by_key_reada; |
| 468 | int s_bmaps; |
| 469 | int s_bmaps_without_search; |
| 470 | int s_direct2indirect; |
| 471 | int s_indirect2direct; |
| 472 | /* set up when it's ok for reiserfs_read_inode2() to read from |
| 473 | disk inode with nlink==0. Currently this is only used during |
| 474 | finish_unfinished() processing at mount time */ |
| 475 | int s_is_unlinked_ok; |
| 476 | reiserfs_proc_info_data_t s_proc_info_data; |
| 477 | struct proc_dir_entry *procdir; |
| 478 | int reserved_blocks; /* amount of blocks reserved for further allocations */ |
| 479 | spinlock_t bitmap_lock; /* this lock on now only used to protect reserved_blocks variable */ |
| 480 | struct dentry *priv_root; /* root of /.reiserfs_priv */ |
| 481 | struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ |
| 482 | int j_errno; |
| 483 | #ifdef CONFIG_QUOTA |
| 484 | char *s_qf_names[MAXQUOTAS]; |
| 485 | int s_jquota_fmt; |
| 486 | #endif |
| 487 | char *s_jdev; /* Stored jdev for mount option showing */ |
| 488 | #ifdef CONFIG_REISERFS_CHECK |
| 489 | |
| 490 | struct tree_balance *cur_tb; /* |
| 491 | * Detects whether more than one |
| 492 | * copy of tb exists per superblock |
| 493 | * as a means of checking whether |
| 494 | * do_balance is executing concurrently |
| 495 | * against another tree reader/writer |
| 496 | * on a same mount point. |
| 497 | */ |
| 498 | #endif |
| 499 | }; |
| 500 | |
| 501 | /* Definitions of reiserfs on-disk properties: */ |
| 502 | #define REISERFS_3_5 0 |
| 503 | #define REISERFS_3_6 1 |
| 504 | #define REISERFS_OLD_FORMAT 2 |
| 505 | |
| 506 | enum reiserfs_mount_options { |
| 507 | /* Mount options */ |
| 508 | REISERFS_LARGETAIL, /* large tails will be created in a session */ |
| 509 | REISERFS_SMALLTAIL, /* small (for files less than block size) tails will be created in a session */ |
| 510 | REPLAYONLY, /* replay journal and return 0. Use by fsck */ |
| 511 | REISERFS_CONVERT, /* -o conv: causes conversion of old |
| 512 | format super block to the new |
| 513 | format. If not specified - old |
| 514 | partition will be dealt with in a |
| 515 | manner of 3.5.x */ |
| 516 | |
| 517 | /* -o hash={tea, rupasov, r5, detect} is meant for properly mounting |
| 518 | ** reiserfs disks from 3.5.19 or earlier. 99% of the time, this option |
| 519 | ** is not required. If the normal autodection code can't determine which |
| 520 | ** hash to use (because both hashes had the same value for a file) |
| 521 | ** use this option to force a specific hash. It won't allow you to override |
| 522 | ** the existing hash on the FS, so if you have a tea hash disk, and mount |
| 523 | ** with -o hash=rupasov, the mount will fail. |
| 524 | */ |
| 525 | FORCE_TEA_HASH, /* try to force tea hash on mount */ |
| 526 | FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ |
| 527 | FORCE_R5_HASH, /* try to force rupasov hash on mount */ |
| 528 | FORCE_HASH_DETECT, /* try to detect hash function on mount */ |
| 529 | |
| 530 | REISERFS_DATA_LOG, |
| 531 | REISERFS_DATA_ORDERED, |
| 532 | REISERFS_DATA_WRITEBACK, |
| 533 | |
| 534 | /* used for testing experimental features, makes benchmarking new |
| 535 | features with and without more convenient, should never be used by |
| 536 | users in any code shipped to users (ideally) */ |
| 537 | |
| 538 | REISERFS_NO_BORDER, |
| 539 | REISERFS_NO_UNHASHED_RELOCATION, |
| 540 | REISERFS_HASHED_RELOCATION, |
| 541 | REISERFS_ATTRS, |
| 542 | REISERFS_XATTRS_USER, |
| 543 | REISERFS_POSIXACL, |
| 544 | REISERFS_EXPOSE_PRIVROOT, |
| 545 | REISERFS_BARRIER_NONE, |
| 546 | REISERFS_BARRIER_FLUSH, |
| 547 | |
| 548 | /* Actions on error */ |
| 549 | REISERFS_ERROR_PANIC, |
| 550 | REISERFS_ERROR_RO, |
| 551 | REISERFS_ERROR_CONTINUE, |
| 552 | |
| 553 | REISERFS_USRQUOTA, /* User quota option specified */ |
| 554 | REISERFS_GRPQUOTA, /* Group quota option specified */ |
| 555 | |
| 556 | REISERFS_TEST1, |
| 557 | REISERFS_TEST2, |
| 558 | REISERFS_TEST3, |
| 559 | REISERFS_TEST4, |
| 560 | REISERFS_UNSUPPORTED_OPT, |
| 561 | }; |
| 562 | |
| 563 | #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) |
| 564 | #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) |
| 565 | #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) |
| 566 | #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) |
| 567 | #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) |
| 568 | #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) |
| 569 | #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) |
| 570 | #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) |
| 571 | |
| 572 | #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) |
| 573 | #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) |
| 574 | #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) |
| 575 | #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) |
| 576 | #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) |
| 577 | #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) |
| 578 | #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) |
| 579 | #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) |
| 580 | #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) |
| 581 | #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) |
| 582 | #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) |
| 583 | #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) |
| 584 | #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) |
| 585 | #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) |
| 586 | #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) |
| 587 | |
| 588 | #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) |
| 589 | #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) |
| 590 | |
| 591 | void reiserfs_file_buffer(struct buffer_head *bh, int list); |
| 592 | extern struct file_system_type reiserfs_fs_type; |
| 593 | int reiserfs_resize(struct super_block *, unsigned long); |
| 594 | |
| 595 | #define CARRY_ON 0 |
| 596 | #define SCHEDULE_OCCURRED 1 |
| 597 | |
| 598 | #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) |
| 599 | #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) |
| 600 | #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) |
| 601 | #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) |
| 602 | #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) |
| 603 | |
| 604 | #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) |
| 605 | |
| 606 | /* A safe version of the "bdevname", which returns the "s_id" field of |
| 607 | * a superblock or else "Null superblock" if the super block is NULL. |
| 608 | */ |
| 609 | static inline char *reiserfs_bdevname(struct super_block *s) |
| 610 | { |
| 611 | return (s == NULL) ? "Null superblock" : s->s_id; |
| 612 | } |
| 613 | |
| 614 | #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) |
| 615 | static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal |
| 616 | *journal) |
| 617 | { |
| 618 | return test_bit(J_ABORTED, &journal->j_state); |
| 619 | } |
| 620 | |
Al Viro | f466c6f | 2012-03-17 01:16:43 -0400 | [diff] [blame] | 621 | /* |
| 622 | * Locking primitives. The write lock is a per superblock |
| 623 | * special mutex that has properties close to the Big Kernel Lock |
| 624 | * which was used in the previous locking scheme. |
| 625 | */ |
| 626 | void reiserfs_write_lock(struct super_block *s); |
| 627 | void reiserfs_write_unlock(struct super_block *s); |
| 628 | int reiserfs_write_lock_once(struct super_block *s); |
| 629 | void reiserfs_write_unlock_once(struct super_block *s, int lock_depth); |
| 630 | |
| 631 | #ifdef CONFIG_REISERFS_CHECK |
| 632 | void reiserfs_lock_check_recursive(struct super_block *s); |
| 633 | #else |
| 634 | static inline void reiserfs_lock_check_recursive(struct super_block *s) { } |
| 635 | #endif |
| 636 | |
| 637 | /* |
| 638 | * Several mutexes depend on the write lock. |
| 639 | * However sometimes we want to relax the write lock while we hold |
| 640 | * these mutexes, according to the release/reacquire on schedule() |
| 641 | * properties of the Bkl that were used. |
| 642 | * Reiserfs performances and locking were based on this scheme. |
| 643 | * Now that the write lock is a mutex and not the bkl anymore, doing so |
| 644 | * may result in a deadlock: |
| 645 | * |
| 646 | * A acquire write_lock |
| 647 | * A acquire j_commit_mutex |
| 648 | * A release write_lock and wait for something |
| 649 | * B acquire write_lock |
| 650 | * B can't acquire j_commit_mutex and sleep |
| 651 | * A can't acquire write lock anymore |
| 652 | * deadlock |
| 653 | * |
| 654 | * What we do here is avoiding such deadlock by playing the same game |
| 655 | * than the Bkl: if we can't acquire a mutex that depends on the write lock, |
| 656 | * we release the write lock, wait a bit and then retry. |
| 657 | * |
| 658 | * The mutexes concerned by this hack are: |
| 659 | * - The commit mutex of a journal list |
| 660 | * - The flush mutex |
| 661 | * - The journal lock |
| 662 | * - The inode mutex |
| 663 | */ |
| 664 | static inline void reiserfs_mutex_lock_safe(struct mutex *m, |
| 665 | struct super_block *s) |
| 666 | { |
| 667 | reiserfs_lock_check_recursive(s); |
| 668 | reiserfs_write_unlock(s); |
| 669 | mutex_lock(m); |
| 670 | reiserfs_write_lock(s); |
| 671 | } |
| 672 | |
| 673 | static inline void |
| 674 | reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, |
| 675 | struct super_block *s) |
| 676 | { |
| 677 | reiserfs_lock_check_recursive(s); |
| 678 | reiserfs_write_unlock(s); |
| 679 | mutex_lock_nested(m, subclass); |
| 680 | reiserfs_write_lock(s); |
| 681 | } |
| 682 | |
| 683 | static inline void |
| 684 | reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) |
| 685 | { |
| 686 | reiserfs_lock_check_recursive(s); |
| 687 | reiserfs_write_unlock(s); |
| 688 | down_read(sem); |
| 689 | reiserfs_write_lock(s); |
| 690 | } |
| 691 | |
| 692 | /* |
| 693 | * When we schedule, we usually want to also release the write lock, |
| 694 | * according to the previous bkl based locking scheme of reiserfs. |
| 695 | */ |
| 696 | static inline void reiserfs_cond_resched(struct super_block *s) |
| 697 | { |
| 698 | if (need_resched()) { |
| 699 | reiserfs_write_unlock(s); |
| 700 | schedule(); |
| 701 | reiserfs_write_lock(s); |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | struct fid; |
| 706 | |
| 707 | /* in reading the #defines, it may help to understand that they employ |
| 708 | the following abbreviations: |
| 709 | |
| 710 | B = Buffer |
| 711 | I = Item header |
| 712 | H = Height within the tree (should be changed to LEV) |
| 713 | N = Number of the item in the node |
| 714 | STAT = stat data |
| 715 | DEH = Directory Entry Header |
| 716 | EC = Entry Count |
| 717 | E = Entry number |
| 718 | UL = Unsigned Long |
| 719 | BLKH = BLocK Header |
| 720 | UNFM = UNForMatted node |
| 721 | DC = Disk Child |
| 722 | P = Path |
| 723 | |
| 724 | These #defines are named by concatenating these abbreviations, |
| 725 | where first comes the arguments, and last comes the return value, |
| 726 | of the macro. |
| 727 | |
| 728 | */ |
| 729 | |
| 730 | #define USE_INODE_GENERATION_COUNTER |
| 731 | |
| 732 | #define REISERFS_PREALLOCATE |
| 733 | #define DISPLACE_NEW_PACKING_LOCALITIES |
| 734 | #define PREALLOCATION_SIZE 9 |
| 735 | |
| 736 | /* n must be power of 2 */ |
| 737 | #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) |
| 738 | |
| 739 | // to be ok for alpha and others we have to align structures to 8 byte |
| 740 | // boundary. |
| 741 | // FIXME: do not change 4 by anything else: there is code which relies on that |
| 742 | #define ROUND_UP(x) _ROUND_UP(x,8LL) |
| 743 | |
| 744 | /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug |
| 745 | ** messages. |
| 746 | */ |
| 747 | #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ |
| 748 | |
| 749 | void __reiserfs_warning(struct super_block *s, const char *id, |
| 750 | const char *func, const char *fmt, ...); |
| 751 | #define reiserfs_warning(s, id, fmt, args...) \ |
| 752 | __reiserfs_warning(s, id, __func__, fmt, ##args) |
| 753 | /* assertions handling */ |
| 754 | |
| 755 | /** always check a condition and panic if it's false. */ |
| 756 | #define __RASSERT(cond, scond, format, args...) \ |
| 757 | do { \ |
| 758 | if (!(cond)) \ |
| 759 | reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ |
| 760 | __FILE__ ":%i:%s: " format "\n", \ |
| 761 | in_interrupt() ? -1 : task_pid_nr(current), \ |
| 762 | __LINE__, __func__ , ##args); \ |
| 763 | } while (0) |
| 764 | |
| 765 | #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) |
| 766 | |
| 767 | #if defined( CONFIG_REISERFS_CHECK ) |
| 768 | #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) |
| 769 | #else |
| 770 | #define RFALSE( cond, format, args... ) do {;} while( 0 ) |
| 771 | #endif |
| 772 | |
| 773 | #define CONSTF __attribute_const__ |
| 774 | /* |
| 775 | * Disk Data Structures |
| 776 | */ |
| 777 | |
| 778 | /***************************************************************************/ |
| 779 | /* SUPER BLOCK */ |
| 780 | /***************************************************************************/ |
| 781 | |
| 782 | /* |
| 783 | * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs |
| 784 | * the version in RAM is part of a larger structure containing fields never written to disk. |
| 785 | */ |
| 786 | #define UNSET_HASH 0 // read_super will guess about, what hash names |
| 787 | // in directories were sorted with |
| 788 | #define TEA_HASH 1 |
| 789 | #define YURA_HASH 2 |
| 790 | #define R5_HASH 3 |
| 791 | #define DEFAULT_HASH R5_HASH |
| 792 | |
| 793 | struct journal_params { |
| 794 | __le32 jp_journal_1st_block; /* where does journal start from on its |
| 795 | * device */ |
| 796 | __le32 jp_journal_dev; /* journal device st_rdev */ |
| 797 | __le32 jp_journal_size; /* size of the journal */ |
| 798 | __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */ |
| 799 | __le32 jp_journal_magic; /* random value made on fs creation (this |
| 800 | * was sb_journal_block_count) */ |
| 801 | __le32 jp_journal_max_batch; /* max number of blocks to batch into a |
| 802 | * trans */ |
| 803 | __le32 jp_journal_max_commit_age; /* in seconds, how old can an async |
| 804 | * commit be */ |
| 805 | __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction |
| 806 | * be */ |
| 807 | }; |
| 808 | |
| 809 | /* this is the super from 3.5.X, where X >= 10 */ |
| 810 | struct reiserfs_super_block_v1 { |
| 811 | __le32 s_block_count; /* blocks count */ |
| 812 | __le32 s_free_blocks; /* free blocks count */ |
| 813 | __le32 s_root_block; /* root block number */ |
| 814 | struct journal_params s_journal; |
| 815 | __le16 s_blocksize; /* block size */ |
| 816 | __le16 s_oid_maxsize; /* max size of object id array, see |
| 817 | * get_objectid() commentary */ |
| 818 | __le16 s_oid_cursize; /* current size of object id array */ |
| 819 | __le16 s_umount_state; /* this is set to 1 when filesystem was |
| 820 | * umounted, to 2 - when not */ |
| 821 | char s_magic[10]; /* reiserfs magic string indicates that |
| 822 | * file system is reiserfs: |
| 823 | * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ |
| 824 | __le16 s_fs_state; /* it is set to used by fsck to mark which |
| 825 | * phase of rebuilding is done */ |
| 826 | __le32 s_hash_function_code; /* indicate, what hash function is being use |
| 827 | * to sort names in a directory*/ |
| 828 | __le16 s_tree_height; /* height of disk tree */ |
| 829 | __le16 s_bmap_nr; /* amount of bitmap blocks needed to address |
| 830 | * each block of file system */ |
| 831 | __le16 s_version; /* this field is only reliable on filesystem |
| 832 | * with non-standard journal */ |
| 833 | __le16 s_reserved_for_journal; /* size in blocks of journal area on main |
| 834 | * device, we need to keep after |
| 835 | * making fs with non-standard journal */ |
| 836 | } __attribute__ ((__packed__)); |
| 837 | |
| 838 | #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) |
| 839 | |
| 840 | /* this is the on disk super block */ |
| 841 | struct reiserfs_super_block { |
| 842 | struct reiserfs_super_block_v1 s_v1; |
| 843 | __le32 s_inode_generation; |
| 844 | __le32 s_flags; /* Right now used only by inode-attributes, if enabled */ |
| 845 | unsigned char s_uuid[16]; /* filesystem unique identifier */ |
| 846 | unsigned char s_label[16]; /* filesystem volume label */ |
| 847 | __le16 s_mnt_count; /* Count of mounts since last fsck */ |
| 848 | __le16 s_max_mnt_count; /* Maximum mounts before check */ |
| 849 | __le32 s_lastcheck; /* Timestamp of last fsck */ |
| 850 | __le32 s_check_interval; /* Interval between checks */ |
| 851 | char s_unused[76]; /* zero filled by mkreiserfs and |
| 852 | * reiserfs_convert_objectid_map_v1() |
| 853 | * so any additions must be updated |
| 854 | * there as well. */ |
| 855 | } __attribute__ ((__packed__)); |
| 856 | |
| 857 | #define SB_SIZE (sizeof(struct reiserfs_super_block)) |
| 858 | |
| 859 | #define REISERFS_VERSION_1 0 |
| 860 | #define REISERFS_VERSION_2 2 |
| 861 | |
| 862 | // on-disk super block fields converted to cpu form |
| 863 | #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) |
| 864 | #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) |
| 865 | #define SB_BLOCKSIZE(s) \ |
| 866 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) |
| 867 | #define SB_BLOCK_COUNT(s) \ |
| 868 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) |
| 869 | #define SB_FREE_BLOCKS(s) \ |
| 870 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) |
| 871 | #define SB_REISERFS_MAGIC(s) \ |
| 872 | (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) |
| 873 | #define SB_ROOT_BLOCK(s) \ |
| 874 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) |
| 875 | #define SB_TREE_HEIGHT(s) \ |
| 876 | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) |
| 877 | #define SB_REISERFS_STATE(s) \ |
| 878 | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) |
| 879 | #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) |
| 880 | #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) |
| 881 | |
| 882 | #define PUT_SB_BLOCK_COUNT(s, val) \ |
| 883 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) |
| 884 | #define PUT_SB_FREE_BLOCKS(s, val) \ |
| 885 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) |
| 886 | #define PUT_SB_ROOT_BLOCK(s, val) \ |
| 887 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) |
| 888 | #define PUT_SB_TREE_HEIGHT(s, val) \ |
| 889 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) |
| 890 | #define PUT_SB_REISERFS_STATE(s, val) \ |
| 891 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) |
| 892 | #define PUT_SB_VERSION(s, val) \ |
| 893 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) |
| 894 | #define PUT_SB_BMAP_NR(s, val) \ |
| 895 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) |
| 896 | |
| 897 | #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) |
| 898 | #define SB_ONDISK_JOURNAL_SIZE(s) \ |
| 899 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) |
| 900 | #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ |
| 901 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) |
| 902 | #define SB_ONDISK_JOURNAL_DEVICE(s) \ |
| 903 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) |
| 904 | #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ |
| 905 | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) |
| 906 | |
| 907 | #define is_block_in_log_or_reserved_area(s, block) \ |
| 908 | block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ |
| 909 | && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ |
| 910 | ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ |
| 911 | SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) |
| 912 | |
| 913 | int is_reiserfs_3_5(struct reiserfs_super_block *rs); |
| 914 | int is_reiserfs_3_6(struct reiserfs_super_block *rs); |
| 915 | int is_reiserfs_jr(struct reiserfs_super_block *rs); |
| 916 | |
| 917 | /* ReiserFS leaves the first 64k unused, so that partition labels have |
| 918 | enough space. If someone wants to write a fancy bootloader that |
| 919 | needs more than 64k, let us know, and this will be increased in size. |
| 920 | This number must be larger than than the largest block size on any |
| 921 | platform, or code will break. -Hans */ |
| 922 | #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) |
| 923 | #define REISERFS_FIRST_BLOCK unused_define |
| 924 | #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES |
| 925 | |
| 926 | /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ |
| 927 | #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) |
| 928 | |
| 929 | /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ |
| 930 | #define CARRY_ON 0 |
| 931 | #define REPEAT_SEARCH -1 |
| 932 | #define IO_ERROR -2 |
| 933 | #define NO_DISK_SPACE -3 |
| 934 | #define NO_BALANCING_NEEDED (-4) |
| 935 | #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) |
| 936 | #define QUOTA_EXCEEDED -6 |
| 937 | |
| 938 | typedef __u32 b_blocknr_t; |
| 939 | typedef __le32 unp_t; |
| 940 | |
| 941 | struct unfm_nodeinfo { |
| 942 | unp_t unfm_nodenum; |
| 943 | unsigned short unfm_freespace; |
| 944 | }; |
| 945 | |
| 946 | /* there are two formats of keys: 3.5 and 3.6 |
| 947 | */ |
| 948 | #define KEY_FORMAT_3_5 0 |
| 949 | #define KEY_FORMAT_3_6 1 |
| 950 | |
| 951 | /* there are two stat datas */ |
| 952 | #define STAT_DATA_V1 0 |
| 953 | #define STAT_DATA_V2 1 |
| 954 | |
| 955 | static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) |
| 956 | { |
| 957 | return container_of(inode, struct reiserfs_inode_info, vfs_inode); |
| 958 | } |
| 959 | |
| 960 | static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) |
| 961 | { |
| 962 | return sb->s_fs_info; |
| 963 | } |
| 964 | |
| 965 | /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 |
| 966 | * which overflows on large file systems. */ |
| 967 | static inline __u32 reiserfs_bmap_count(struct super_block *sb) |
| 968 | { |
| 969 | return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; |
| 970 | } |
| 971 | |
| 972 | static inline int bmap_would_wrap(unsigned bmap_nr) |
| 973 | { |
| 974 | return bmap_nr > ((1LL << 16) - 1); |
| 975 | } |
| 976 | |
| 977 | /** this says about version of key of all items (but stat data) the |
| 978 | object consists of */ |
| 979 | #define get_inode_item_key_version( inode ) \ |
| 980 | ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) |
| 981 | |
| 982 | #define set_inode_item_key_version( inode, version ) \ |
| 983 | ({ if((version)==KEY_FORMAT_3_6) \ |
| 984 | REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ |
| 985 | else \ |
| 986 | REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) |
| 987 | |
| 988 | #define get_inode_sd_version(inode) \ |
| 989 | ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) |
| 990 | |
| 991 | #define set_inode_sd_version(inode, version) \ |
| 992 | ({ if((version)==STAT_DATA_V2) \ |
| 993 | REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ |
| 994 | else \ |
| 995 | REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) |
| 996 | |
| 997 | /* This is an aggressive tail suppression policy, I am hoping it |
| 998 | improves our benchmarks. The principle behind it is that percentage |
| 999 | space saving is what matters, not absolute space saving. This is |
| 1000 | non-intuitive, but it helps to understand it if you consider that the |
| 1001 | cost to access 4 blocks is not much more than the cost to access 1 |
| 1002 | block, if you have to do a seek and rotate. A tail risks a |
| 1003 | non-linear disk access that is significant as a percentage of total |
| 1004 | time cost for a 4 block file and saves an amount of space that is |
| 1005 | less significant as a percentage of space, or so goes the hypothesis. |
| 1006 | -Hans */ |
| 1007 | #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ |
| 1008 | (\ |
| 1009 | (!(n_tail_size)) || \ |
| 1010 | (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ |
| 1011 | ( (n_file_size) >= (n_block_size) * 4 ) || \ |
| 1012 | ( ( (n_file_size) >= (n_block_size) * 3 ) && \ |
| 1013 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ |
| 1014 | ( ( (n_file_size) >= (n_block_size) * 2 ) && \ |
| 1015 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ |
| 1016 | ( ( (n_file_size) >= (n_block_size) ) && \ |
| 1017 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ |
| 1018 | ) |
| 1019 | |
| 1020 | /* Another strategy for tails, this one means only create a tail if all the |
| 1021 | file would fit into one DIRECT item. |
| 1022 | Primary intention for this one is to increase performance by decreasing |
| 1023 | seeking. |
| 1024 | */ |
| 1025 | #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ |
| 1026 | (\ |
| 1027 | (!(n_tail_size)) || \ |
| 1028 | (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ |
| 1029 | ) |
| 1030 | |
| 1031 | /* |
| 1032 | * values for s_umount_state field |
| 1033 | */ |
| 1034 | #define REISERFS_VALID_FS 1 |
| 1035 | #define REISERFS_ERROR_FS 2 |
| 1036 | |
| 1037 | // |
| 1038 | // there are 5 item types currently |
| 1039 | // |
| 1040 | #define TYPE_STAT_DATA 0 |
| 1041 | #define TYPE_INDIRECT 1 |
| 1042 | #define TYPE_DIRECT 2 |
| 1043 | #define TYPE_DIRENTRY 3 |
| 1044 | #define TYPE_MAXTYPE 3 |
| 1045 | #define TYPE_ANY 15 // FIXME: comment is required |
| 1046 | |
| 1047 | /***************************************************************************/ |
| 1048 | /* KEY & ITEM HEAD */ |
| 1049 | /***************************************************************************/ |
| 1050 | |
| 1051 | // |
| 1052 | // directories use this key as well as old files |
| 1053 | // |
| 1054 | struct offset_v1 { |
| 1055 | __le32 k_offset; |
| 1056 | __le32 k_uniqueness; |
| 1057 | } __attribute__ ((__packed__)); |
| 1058 | |
| 1059 | struct offset_v2 { |
| 1060 | __le64 v; |
| 1061 | } __attribute__ ((__packed__)); |
| 1062 | |
| 1063 | static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) |
| 1064 | { |
| 1065 | __u8 type = le64_to_cpu(v2->v) >> 60; |
| 1066 | return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; |
| 1067 | } |
| 1068 | |
| 1069 | static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) |
| 1070 | { |
| 1071 | v2->v = |
| 1072 | (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); |
| 1073 | } |
| 1074 | |
| 1075 | static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) |
| 1076 | { |
| 1077 | return le64_to_cpu(v2->v) & (~0ULL >> 4); |
| 1078 | } |
| 1079 | |
| 1080 | static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) |
| 1081 | { |
| 1082 | offset &= (~0ULL >> 4); |
| 1083 | v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); |
| 1084 | } |
| 1085 | |
| 1086 | /* Key of an item determines its location in the S+tree, and |
| 1087 | is composed of 4 components */ |
| 1088 | struct reiserfs_key { |
| 1089 | __le32 k_dir_id; /* packing locality: by default parent |
| 1090 | directory object id */ |
| 1091 | __le32 k_objectid; /* object identifier */ |
| 1092 | union { |
| 1093 | struct offset_v1 k_offset_v1; |
| 1094 | struct offset_v2 k_offset_v2; |
| 1095 | } __attribute__ ((__packed__)) u; |
| 1096 | } __attribute__ ((__packed__)); |
| 1097 | |
| 1098 | struct in_core_key { |
| 1099 | __u32 k_dir_id; /* packing locality: by default parent |
| 1100 | directory object id */ |
| 1101 | __u32 k_objectid; /* object identifier */ |
| 1102 | __u64 k_offset; |
| 1103 | __u8 k_type; |
| 1104 | }; |
| 1105 | |
| 1106 | struct cpu_key { |
| 1107 | struct in_core_key on_disk_key; |
| 1108 | int version; |
| 1109 | int key_length; /* 3 in all cases but direct2indirect and |
| 1110 | indirect2direct conversion */ |
| 1111 | }; |
| 1112 | |
| 1113 | /* Our function for comparing keys can compare keys of different |
| 1114 | lengths. It takes as a parameter the length of the keys it is to |
| 1115 | compare. These defines are used in determining what is to be passed |
| 1116 | to it as that parameter. */ |
| 1117 | #define REISERFS_FULL_KEY_LEN 4 |
| 1118 | #define REISERFS_SHORT_KEY_LEN 2 |
| 1119 | |
| 1120 | /* The result of the key compare */ |
| 1121 | #define FIRST_GREATER 1 |
| 1122 | #define SECOND_GREATER -1 |
| 1123 | #define KEYS_IDENTICAL 0 |
| 1124 | #define KEY_FOUND 1 |
| 1125 | #define KEY_NOT_FOUND 0 |
| 1126 | |
| 1127 | #define KEY_SIZE (sizeof(struct reiserfs_key)) |
| 1128 | #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) |
| 1129 | |
| 1130 | /* return values for search_by_key and clones */ |
| 1131 | #define ITEM_FOUND 1 |
| 1132 | #define ITEM_NOT_FOUND 0 |
| 1133 | #define ENTRY_FOUND 1 |
| 1134 | #define ENTRY_NOT_FOUND 0 |
| 1135 | #define DIRECTORY_NOT_FOUND -1 |
| 1136 | #define REGULAR_FILE_FOUND -2 |
| 1137 | #define DIRECTORY_FOUND -3 |
| 1138 | #define BYTE_FOUND 1 |
| 1139 | #define BYTE_NOT_FOUND 0 |
| 1140 | #define FILE_NOT_FOUND -1 |
| 1141 | |
| 1142 | #define POSITION_FOUND 1 |
| 1143 | #define POSITION_NOT_FOUND 0 |
| 1144 | |
| 1145 | // return values for reiserfs_find_entry and search_by_entry_key |
| 1146 | #define NAME_FOUND 1 |
| 1147 | #define NAME_NOT_FOUND 0 |
| 1148 | #define GOTO_PREVIOUS_ITEM 2 |
| 1149 | #define NAME_FOUND_INVISIBLE 3 |
| 1150 | |
| 1151 | /* Everything in the filesystem is stored as a set of items. The |
| 1152 | item head contains the key of the item, its free space (for |
| 1153 | indirect items) and specifies the location of the item itself |
| 1154 | within the block. */ |
| 1155 | |
| 1156 | struct item_head { |
| 1157 | /* Everything in the tree is found by searching for it based on |
| 1158 | * its key.*/ |
| 1159 | struct reiserfs_key ih_key; |
| 1160 | union { |
| 1161 | /* The free space in the last unformatted node of an |
| 1162 | indirect item if this is an indirect item. This |
| 1163 | equals 0xFFFF iff this is a direct item or stat data |
| 1164 | item. Note that the key, not this field, is used to |
| 1165 | determine the item type, and thus which field this |
| 1166 | union contains. */ |
| 1167 | __le16 ih_free_space_reserved; |
| 1168 | /* Iff this is a directory item, this field equals the |
| 1169 | number of directory entries in the directory item. */ |
| 1170 | __le16 ih_entry_count; |
| 1171 | } __attribute__ ((__packed__)) u; |
| 1172 | __le16 ih_item_len; /* total size of the item body */ |
| 1173 | __le16 ih_item_location; /* an offset to the item body |
| 1174 | * within the block */ |
| 1175 | __le16 ih_version; /* 0 for all old items, 2 for new |
| 1176 | ones. Highest bit is set by fsck |
| 1177 | temporary, cleaned after all |
| 1178 | done */ |
| 1179 | } __attribute__ ((__packed__)); |
| 1180 | /* size of item header */ |
| 1181 | #define IH_SIZE (sizeof(struct item_head)) |
| 1182 | |
| 1183 | #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) |
| 1184 | #define ih_version(ih) le16_to_cpu((ih)->ih_version) |
| 1185 | #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) |
| 1186 | #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) |
| 1187 | #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) |
| 1188 | |
| 1189 | #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) |
| 1190 | #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) |
| 1191 | #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) |
| 1192 | #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) |
| 1193 | #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) |
| 1194 | |
| 1195 | #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) |
| 1196 | |
| 1197 | #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) |
| 1198 | #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) |
| 1199 | |
| 1200 | /* these operate on indirect items, where you've got an array of ints |
| 1201 | ** at a possibly unaligned location. These are a noop on ia32 |
| 1202 | ** |
| 1203 | ** p is the array of __u32, i is the index into the array, v is the value |
| 1204 | ** to store there. |
| 1205 | */ |
| 1206 | #define get_block_num(p, i) get_unaligned_le32((p) + (i)) |
| 1207 | #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) |
| 1208 | |
| 1209 | // |
| 1210 | // in old version uniqueness field shows key type |
| 1211 | // |
| 1212 | #define V1_SD_UNIQUENESS 0 |
| 1213 | #define V1_INDIRECT_UNIQUENESS 0xfffffffe |
| 1214 | #define V1_DIRECT_UNIQUENESS 0xffffffff |
| 1215 | #define V1_DIRENTRY_UNIQUENESS 500 |
| 1216 | #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required |
| 1217 | |
| 1218 | // |
| 1219 | // here are conversion routines |
| 1220 | // |
| 1221 | static inline int uniqueness2type(__u32 uniqueness) CONSTF; |
| 1222 | static inline int uniqueness2type(__u32 uniqueness) |
| 1223 | { |
| 1224 | switch ((int)uniqueness) { |
| 1225 | case V1_SD_UNIQUENESS: |
| 1226 | return TYPE_STAT_DATA; |
| 1227 | case V1_INDIRECT_UNIQUENESS: |
| 1228 | return TYPE_INDIRECT; |
| 1229 | case V1_DIRECT_UNIQUENESS: |
| 1230 | return TYPE_DIRECT; |
| 1231 | case V1_DIRENTRY_UNIQUENESS: |
| 1232 | return TYPE_DIRENTRY; |
| 1233 | case V1_ANY_UNIQUENESS: |
| 1234 | default: |
| 1235 | return TYPE_ANY; |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | static inline __u32 type2uniqueness(int type) CONSTF; |
| 1240 | static inline __u32 type2uniqueness(int type) |
| 1241 | { |
| 1242 | switch (type) { |
| 1243 | case TYPE_STAT_DATA: |
| 1244 | return V1_SD_UNIQUENESS; |
| 1245 | case TYPE_INDIRECT: |
| 1246 | return V1_INDIRECT_UNIQUENESS; |
| 1247 | case TYPE_DIRECT: |
| 1248 | return V1_DIRECT_UNIQUENESS; |
| 1249 | case TYPE_DIRENTRY: |
| 1250 | return V1_DIRENTRY_UNIQUENESS; |
| 1251 | case TYPE_ANY: |
| 1252 | default: |
| 1253 | return V1_ANY_UNIQUENESS; |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | // |
| 1258 | // key is pointer to on disk key which is stored in le, result is cpu, |
| 1259 | // there is no way to get version of object from key, so, provide |
| 1260 | // version to these defines |
| 1261 | // |
| 1262 | static inline loff_t le_key_k_offset(int version, |
| 1263 | const struct reiserfs_key *key) |
| 1264 | { |
| 1265 | return (version == KEY_FORMAT_3_5) ? |
| 1266 | le32_to_cpu(key->u.k_offset_v1.k_offset) : |
| 1267 | offset_v2_k_offset(&(key->u.k_offset_v2)); |
| 1268 | } |
| 1269 | |
| 1270 | static inline loff_t le_ih_k_offset(const struct item_head *ih) |
| 1271 | { |
| 1272 | return le_key_k_offset(ih_version(ih), &(ih->ih_key)); |
| 1273 | } |
| 1274 | |
| 1275 | static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) |
| 1276 | { |
| 1277 | return (version == KEY_FORMAT_3_5) ? |
| 1278 | uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) : |
| 1279 | offset_v2_k_type(&(key->u.k_offset_v2)); |
| 1280 | } |
| 1281 | |
| 1282 | static inline loff_t le_ih_k_type(const struct item_head *ih) |
| 1283 | { |
| 1284 | return le_key_k_type(ih_version(ih), &(ih->ih_key)); |
| 1285 | } |
| 1286 | |
| 1287 | static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, |
| 1288 | loff_t offset) |
| 1289 | { |
| 1290 | (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */ |
| 1291 | (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset)); |
| 1292 | } |
| 1293 | |
| 1294 | static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) |
| 1295 | { |
| 1296 | set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); |
| 1297 | } |
| 1298 | |
| 1299 | static inline void set_le_key_k_type(int version, struct reiserfs_key *key, |
| 1300 | int type) |
| 1301 | { |
| 1302 | (version == KEY_FORMAT_3_5) ? |
| 1303 | (void)(key->u.k_offset_v1.k_uniqueness = |
| 1304 | cpu_to_le32(type2uniqueness(type))) |
| 1305 | : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type)); |
| 1306 | } |
| 1307 | |
| 1308 | static inline void set_le_ih_k_type(struct item_head *ih, int type) |
| 1309 | { |
| 1310 | set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); |
| 1311 | } |
| 1312 | |
| 1313 | static inline int is_direntry_le_key(int version, struct reiserfs_key *key) |
| 1314 | { |
| 1315 | return le_key_k_type(version, key) == TYPE_DIRENTRY; |
| 1316 | } |
| 1317 | |
| 1318 | static inline int is_direct_le_key(int version, struct reiserfs_key *key) |
| 1319 | { |
| 1320 | return le_key_k_type(version, key) == TYPE_DIRECT; |
| 1321 | } |
| 1322 | |
| 1323 | static inline int is_indirect_le_key(int version, struct reiserfs_key *key) |
| 1324 | { |
| 1325 | return le_key_k_type(version, key) == TYPE_INDIRECT; |
| 1326 | } |
| 1327 | |
| 1328 | static inline int is_statdata_le_key(int version, struct reiserfs_key *key) |
| 1329 | { |
| 1330 | return le_key_k_type(version, key) == TYPE_STAT_DATA; |
| 1331 | } |
| 1332 | |
| 1333 | // |
| 1334 | // item header has version. |
| 1335 | // |
| 1336 | static inline int is_direntry_le_ih(struct item_head *ih) |
| 1337 | { |
| 1338 | return is_direntry_le_key(ih_version(ih), &ih->ih_key); |
| 1339 | } |
| 1340 | |
| 1341 | static inline int is_direct_le_ih(struct item_head *ih) |
| 1342 | { |
| 1343 | return is_direct_le_key(ih_version(ih), &ih->ih_key); |
| 1344 | } |
| 1345 | |
| 1346 | static inline int is_indirect_le_ih(struct item_head *ih) |
| 1347 | { |
| 1348 | return is_indirect_le_key(ih_version(ih), &ih->ih_key); |
| 1349 | } |
| 1350 | |
| 1351 | static inline int is_statdata_le_ih(struct item_head *ih) |
| 1352 | { |
| 1353 | return is_statdata_le_key(ih_version(ih), &ih->ih_key); |
| 1354 | } |
| 1355 | |
| 1356 | // |
| 1357 | // key is pointer to cpu key, result is cpu |
| 1358 | // |
| 1359 | static inline loff_t cpu_key_k_offset(const struct cpu_key *key) |
| 1360 | { |
| 1361 | return key->on_disk_key.k_offset; |
| 1362 | } |
| 1363 | |
| 1364 | static inline loff_t cpu_key_k_type(const struct cpu_key *key) |
| 1365 | { |
| 1366 | return key->on_disk_key.k_type; |
| 1367 | } |
| 1368 | |
| 1369 | static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) |
| 1370 | { |
| 1371 | key->on_disk_key.k_offset = offset; |
| 1372 | } |
| 1373 | |
| 1374 | static inline void set_cpu_key_k_type(struct cpu_key *key, int type) |
| 1375 | { |
| 1376 | key->on_disk_key.k_type = type; |
| 1377 | } |
| 1378 | |
| 1379 | static inline void cpu_key_k_offset_dec(struct cpu_key *key) |
| 1380 | { |
| 1381 | key->on_disk_key.k_offset--; |
| 1382 | } |
| 1383 | |
| 1384 | #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) |
| 1385 | #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) |
| 1386 | #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) |
| 1387 | #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) |
| 1388 | |
| 1389 | /* are these used ? */ |
| 1390 | #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) |
| 1391 | #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) |
| 1392 | #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) |
| 1393 | #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) |
| 1394 | |
| 1395 | #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ |
| 1396 | (!COMP_SHORT_KEYS(ih, key) && \ |
| 1397 | I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) |
| 1398 | |
| 1399 | /* maximal length of item */ |
| 1400 | #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) |
| 1401 | #define MIN_ITEM_LEN 1 |
| 1402 | |
| 1403 | /* object identifier for root dir */ |
| 1404 | #define REISERFS_ROOT_OBJECTID 2 |
| 1405 | #define REISERFS_ROOT_PARENT_OBJECTID 1 |
| 1406 | |
| 1407 | extern struct reiserfs_key root_key; |
| 1408 | |
| 1409 | /* |
| 1410 | * Picture represents a leaf of the S+tree |
| 1411 | * ______________________________________________________ |
| 1412 | * | | Array of | | | |
| 1413 | * |Block | Object-Item | F r e e | Objects- | |
| 1414 | * | head | Headers | S p a c e | Items | |
| 1415 | * |______|_______________|___________________|___________| |
| 1416 | */ |
| 1417 | |
| 1418 | /* Header of a disk block. More precisely, header of a formatted leaf |
| 1419 | or internal node, and not the header of an unformatted node. */ |
| 1420 | struct block_head { |
| 1421 | __le16 blk_level; /* Level of a block in the tree. */ |
| 1422 | __le16 blk_nr_item; /* Number of keys/items in a block. */ |
| 1423 | __le16 blk_free_space; /* Block free space in bytes. */ |
| 1424 | __le16 blk_reserved; |
| 1425 | /* dump this in v4/planA */ |
| 1426 | struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */ |
| 1427 | }; |
| 1428 | |
| 1429 | #define BLKH_SIZE (sizeof(struct block_head)) |
| 1430 | #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) |
| 1431 | #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) |
| 1432 | #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) |
| 1433 | #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) |
| 1434 | #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) |
| 1435 | #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) |
| 1436 | #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) |
| 1437 | #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) |
| 1438 | #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) |
| 1439 | #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) |
| 1440 | |
| 1441 | /* |
| 1442 | * values for blk_level field of the struct block_head |
| 1443 | */ |
| 1444 | |
| 1445 | #define FREE_LEVEL 0 /* when node gets removed from the tree its |
| 1446 | blk_level is set to FREE_LEVEL. It is then |
| 1447 | used to see whether the node is still in the |
| 1448 | tree */ |
| 1449 | |
| 1450 | #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ |
| 1451 | |
| 1452 | /* Given the buffer head of a formatted node, resolve to the block head of that node. */ |
| 1453 | #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) |
| 1454 | /* Number of items that are in buffer. */ |
| 1455 | #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) |
| 1456 | #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) |
| 1457 | #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) |
| 1458 | |
| 1459 | #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) |
| 1460 | #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) |
| 1461 | #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) |
| 1462 | |
| 1463 | /* Get right delimiting key. -- little endian */ |
| 1464 | #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) |
| 1465 | |
| 1466 | /* Does the buffer contain a disk leaf. */ |
| 1467 | #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) |
| 1468 | |
| 1469 | /* Does the buffer contain a disk internal node */ |
| 1470 | #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ |
| 1471 | && B_LEVEL(bh) <= MAX_HEIGHT) |
| 1472 | |
| 1473 | /***************************************************************************/ |
| 1474 | /* STAT DATA */ |
| 1475 | /***************************************************************************/ |
| 1476 | |
| 1477 | // |
| 1478 | // old stat data is 32 bytes long. We are going to distinguish new one by |
| 1479 | // different size |
| 1480 | // |
| 1481 | struct stat_data_v1 { |
| 1482 | __le16 sd_mode; /* file type, permissions */ |
| 1483 | __le16 sd_nlink; /* number of hard links */ |
| 1484 | __le16 sd_uid; /* owner */ |
| 1485 | __le16 sd_gid; /* group */ |
| 1486 | __le32 sd_size; /* file size */ |
| 1487 | __le32 sd_atime; /* time of last access */ |
| 1488 | __le32 sd_mtime; /* time file was last modified */ |
| 1489 | __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ |
| 1490 | union { |
| 1491 | __le32 sd_rdev; |
| 1492 | __le32 sd_blocks; /* number of blocks file uses */ |
| 1493 | } __attribute__ ((__packed__)) u; |
| 1494 | __le32 sd_first_direct_byte; /* first byte of file which is stored |
| 1495 | in a direct item: except that if it |
| 1496 | equals 1 it is a symlink and if it |
| 1497 | equals ~(__u32)0 there is no |
| 1498 | direct item. The existence of this |
| 1499 | field really grates on me. Let's |
| 1500 | replace it with a macro based on |
| 1501 | sd_size and our tail suppression |
| 1502 | policy. Someday. -Hans */ |
| 1503 | } __attribute__ ((__packed__)); |
| 1504 | |
| 1505 | #define SD_V1_SIZE (sizeof(struct stat_data_v1)) |
| 1506 | #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) |
| 1507 | #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) |
| 1508 | #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) |
| 1509 | #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) |
| 1510 | #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) |
| 1511 | #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) |
| 1512 | #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) |
| 1513 | #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) |
| 1514 | #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) |
| 1515 | #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) |
| 1516 | #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) |
| 1517 | #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) |
| 1518 | #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) |
| 1519 | #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) |
| 1520 | #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) |
| 1521 | #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) |
| 1522 | #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) |
| 1523 | #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) |
| 1524 | #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) |
| 1525 | #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) |
| 1526 | #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) |
| 1527 | #define sd_v1_first_direct_byte(sdp) \ |
| 1528 | (le32_to_cpu((sdp)->sd_first_direct_byte)) |
| 1529 | #define set_sd_v1_first_direct_byte(sdp,v) \ |
| 1530 | ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) |
| 1531 | |
| 1532 | /* inode flags stored in sd_attrs (nee sd_reserved) */ |
| 1533 | |
| 1534 | /* we want common flags to have the same values as in ext2, |
| 1535 | so chattr(1) will work without problems */ |
| 1536 | #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL |
| 1537 | #define REISERFS_APPEND_FL FS_APPEND_FL |
| 1538 | #define REISERFS_SYNC_FL FS_SYNC_FL |
| 1539 | #define REISERFS_NOATIME_FL FS_NOATIME_FL |
| 1540 | #define REISERFS_NODUMP_FL FS_NODUMP_FL |
| 1541 | #define REISERFS_SECRM_FL FS_SECRM_FL |
| 1542 | #define REISERFS_UNRM_FL FS_UNRM_FL |
| 1543 | #define REISERFS_COMPR_FL FS_COMPR_FL |
| 1544 | #define REISERFS_NOTAIL_FL FS_NOTAIL_FL |
| 1545 | |
| 1546 | /* persistent flags that file inherits from the parent directory */ |
| 1547 | #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ |
| 1548 | REISERFS_SYNC_FL | \ |
| 1549 | REISERFS_NOATIME_FL | \ |
| 1550 | REISERFS_NODUMP_FL | \ |
| 1551 | REISERFS_SECRM_FL | \ |
| 1552 | REISERFS_COMPR_FL | \ |
| 1553 | REISERFS_NOTAIL_FL ) |
| 1554 | |
| 1555 | /* Stat Data on disk (reiserfs version of UFS disk inode minus the |
| 1556 | address blocks) */ |
| 1557 | struct stat_data { |
| 1558 | __le16 sd_mode; /* file type, permissions */ |
| 1559 | __le16 sd_attrs; /* persistent inode flags */ |
| 1560 | __le32 sd_nlink; /* number of hard links */ |
| 1561 | __le64 sd_size; /* file size */ |
| 1562 | __le32 sd_uid; /* owner */ |
| 1563 | __le32 sd_gid; /* group */ |
| 1564 | __le32 sd_atime; /* time of last access */ |
| 1565 | __le32 sd_mtime; /* time file was last modified */ |
| 1566 | __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ |
| 1567 | __le32 sd_blocks; |
| 1568 | union { |
| 1569 | __le32 sd_rdev; |
| 1570 | __le32 sd_generation; |
| 1571 | //__le32 sd_first_direct_byte; |
| 1572 | /* first byte of file which is stored in a |
| 1573 | direct item: except that if it equals 1 |
| 1574 | it is a symlink and if it equals |
| 1575 | ~(__u32)0 there is no direct item. The |
| 1576 | existence of this field really grates |
| 1577 | on me. Let's replace it with a macro |
| 1578 | based on sd_size and our tail |
| 1579 | suppression policy? */ |
| 1580 | } __attribute__ ((__packed__)) u; |
| 1581 | } __attribute__ ((__packed__)); |
| 1582 | // |
| 1583 | // this is 44 bytes long |
| 1584 | // |
| 1585 | #define SD_SIZE (sizeof(struct stat_data)) |
| 1586 | #define SD_V2_SIZE SD_SIZE |
| 1587 | #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) |
| 1588 | #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) |
| 1589 | #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) |
| 1590 | /* sd_reserved */ |
| 1591 | /* set_sd_reserved */ |
| 1592 | #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) |
| 1593 | #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) |
| 1594 | #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) |
| 1595 | #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) |
| 1596 | #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) |
| 1597 | #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) |
| 1598 | #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) |
| 1599 | #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) |
| 1600 | #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) |
| 1601 | #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) |
| 1602 | #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) |
| 1603 | #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) |
| 1604 | #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) |
| 1605 | #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) |
| 1606 | #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) |
| 1607 | #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) |
| 1608 | #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) |
| 1609 | #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) |
| 1610 | #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) |
| 1611 | #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) |
| 1612 | #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) |
| 1613 | #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) |
| 1614 | |
| 1615 | /***************************************************************************/ |
| 1616 | /* DIRECTORY STRUCTURE */ |
| 1617 | /***************************************************************************/ |
| 1618 | /* |
| 1619 | Picture represents the structure of directory items |
| 1620 | ________________________________________________ |
| 1621 | | Array of | | | | | | |
| 1622 | | directory |N-1| N-2 | .... | 1st |0th| |
| 1623 | | entry headers | | | | | | |
| 1624 | |_______________|___|_____|________|_______|___| |
| 1625 | <---- directory entries ------> |
| 1626 | |
| 1627 | First directory item has k_offset component 1. We store "." and ".." |
| 1628 | in one item, always, we never split "." and ".." into differing |
| 1629 | items. This makes, among other things, the code for removing |
| 1630 | directories simpler. */ |
| 1631 | #define SD_OFFSET 0 |
| 1632 | #define SD_UNIQUENESS 0 |
| 1633 | #define DOT_OFFSET 1 |
| 1634 | #define DOT_DOT_OFFSET 2 |
| 1635 | #define DIRENTRY_UNIQUENESS 500 |
| 1636 | |
| 1637 | /* */ |
| 1638 | #define FIRST_ITEM_OFFSET 1 |
| 1639 | |
| 1640 | /* |
| 1641 | Q: How to get key of object pointed to by entry from entry? |
| 1642 | |
| 1643 | A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key |
| 1644 | of object, entry points to */ |
| 1645 | |
| 1646 | /* NOT IMPLEMENTED: |
| 1647 | Directory will someday contain stat data of object */ |
| 1648 | |
| 1649 | struct reiserfs_de_head { |
| 1650 | __le32 deh_offset; /* third component of the directory entry key */ |
| 1651 | __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced |
| 1652 | by directory entry */ |
| 1653 | __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */ |
| 1654 | __le16 deh_location; /* offset of name in the whole item */ |
| 1655 | __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether |
| 1656 | entry is hidden (unlinked) */ |
| 1657 | } __attribute__ ((__packed__)); |
| 1658 | #define DEH_SIZE sizeof(struct reiserfs_de_head) |
| 1659 | #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) |
| 1660 | #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) |
| 1661 | #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) |
| 1662 | #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) |
| 1663 | #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) |
| 1664 | |
| 1665 | #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) |
| 1666 | #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) |
| 1667 | #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) |
| 1668 | #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) |
| 1669 | #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) |
| 1670 | |
| 1671 | /* empty directory contains two entries "." and ".." and their headers */ |
| 1672 | #define EMPTY_DIR_SIZE \ |
| 1673 | (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) |
| 1674 | |
| 1675 | /* old format directories have this size when empty */ |
| 1676 | #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) |
| 1677 | |
| 1678 | #define DEH_Statdata 0 /* not used now */ |
| 1679 | #define DEH_Visible 2 |
| 1680 | |
| 1681 | /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ |
| 1682 | #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) |
| 1683 | # define ADDR_UNALIGNED_BITS (3) |
| 1684 | #endif |
| 1685 | |
| 1686 | /* These are only used to manipulate deh_state. |
| 1687 | * Because of this, we'll use the ext2_ bit routines, |
| 1688 | * since they are little endian */ |
| 1689 | #ifdef ADDR_UNALIGNED_BITS |
| 1690 | |
| 1691 | # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) |
| 1692 | # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) |
| 1693 | |
| 1694 | # define set_bit_unaligned(nr, addr) \ |
| 1695 | __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) |
| 1696 | # define clear_bit_unaligned(nr, addr) \ |
| 1697 | __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) |
| 1698 | # define test_bit_unaligned(nr, addr) \ |
| 1699 | test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) |
| 1700 | |
| 1701 | #else |
| 1702 | |
| 1703 | # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) |
| 1704 | # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) |
| 1705 | # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) |
| 1706 | |
| 1707 | #endif |
| 1708 | |
| 1709 | #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
| 1710 | #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
| 1711 | #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
| 1712 | #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
| 1713 | |
| 1714 | #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
| 1715 | #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
| 1716 | #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
| 1717 | |
| 1718 | extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, |
| 1719 | __le32 par_dirid, __le32 par_objid); |
| 1720 | extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, |
| 1721 | __le32 par_dirid, __le32 par_objid); |
| 1722 | |
| 1723 | /* array of the entry headers */ |
| 1724 | /* get item body */ |
| 1725 | #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) |
| 1726 | #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) |
| 1727 | |
| 1728 | /* length of the directory entry in directory item. This define |
| 1729 | calculates length of i-th directory entry using directory entry |
| 1730 | locations from dir entry head. When it calculates length of 0-th |
| 1731 | directory entry, it uses length of whole item in place of entry |
| 1732 | location of the non-existent following entry in the calculation. |
| 1733 | See picture above.*/ |
| 1734 | /* |
| 1735 | #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ |
| 1736 | ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) |
| 1737 | */ |
| 1738 | static inline int entry_length(const struct buffer_head *bh, |
| 1739 | const struct item_head *ih, int pos_in_item) |
| 1740 | { |
| 1741 | struct reiserfs_de_head *deh; |
| 1742 | |
| 1743 | deh = B_I_DEH(bh, ih) + pos_in_item; |
| 1744 | if (pos_in_item) |
| 1745 | return deh_location(deh - 1) - deh_location(deh); |
| 1746 | |
| 1747 | return ih_item_len(ih) - deh_location(deh); |
| 1748 | } |
| 1749 | |
| 1750 | /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ |
| 1751 | #define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) |
| 1752 | |
| 1753 | /* name by bh, ih and entry_num */ |
| 1754 | #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) |
| 1755 | |
| 1756 | // two entries per block (at least) |
| 1757 | #define REISERFS_MAX_NAME(block_size) 255 |
| 1758 | |
| 1759 | /* this structure is used for operations on directory entries. It is |
| 1760 | not a disk structure. */ |
| 1761 | /* When reiserfs_find_entry or search_by_entry_key find directory |
| 1762 | entry, they return filled reiserfs_dir_entry structure */ |
| 1763 | struct reiserfs_dir_entry { |
| 1764 | struct buffer_head *de_bh; |
| 1765 | int de_item_num; |
| 1766 | struct item_head *de_ih; |
| 1767 | int de_entry_num; |
| 1768 | struct reiserfs_de_head *de_deh; |
| 1769 | int de_entrylen; |
| 1770 | int de_namelen; |
| 1771 | char *de_name; |
| 1772 | unsigned long *de_gen_number_bit_string; |
| 1773 | |
| 1774 | __u32 de_dir_id; |
| 1775 | __u32 de_objectid; |
| 1776 | |
| 1777 | struct cpu_key de_entry_key; |
| 1778 | }; |
| 1779 | |
| 1780 | /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ |
| 1781 | |
| 1782 | /* pointer to file name, stored in entry */ |
| 1783 | #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) |
| 1784 | |
| 1785 | /* length of name */ |
| 1786 | #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ |
| 1787 | (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) |
| 1788 | |
| 1789 | /* hash value occupies bits from 7 up to 30 */ |
| 1790 | #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) |
| 1791 | /* generation number occupies 7 bits starting from 0 up to 6 */ |
| 1792 | #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) |
| 1793 | #define MAX_GENERATION_NUMBER 127 |
| 1794 | |
| 1795 | #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) |
| 1796 | |
| 1797 | /* |
| 1798 | * Picture represents an internal node of the reiserfs tree |
| 1799 | * ______________________________________________________ |
| 1800 | * | | Array of | Array of | Free | |
| 1801 | * |block | keys | pointers | space | |
| 1802 | * | head | N | N+1 | | |
| 1803 | * |______|_______________|___________________|___________| |
| 1804 | */ |
| 1805 | |
| 1806 | /***************************************************************************/ |
| 1807 | /* DISK CHILD */ |
| 1808 | /***************************************************************************/ |
| 1809 | /* Disk child pointer: The pointer from an internal node of the tree |
| 1810 | to a node that is on disk. */ |
| 1811 | struct disk_child { |
| 1812 | __le32 dc_block_number; /* Disk child's block number. */ |
| 1813 | __le16 dc_size; /* Disk child's used space. */ |
| 1814 | __le16 dc_reserved; |
| 1815 | }; |
| 1816 | |
| 1817 | #define DC_SIZE (sizeof(struct disk_child)) |
| 1818 | #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) |
| 1819 | #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) |
| 1820 | #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) |
| 1821 | #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) |
| 1822 | |
| 1823 | /* Get disk child by buffer header and position in the tree node. */ |
| 1824 | #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ |
| 1825 | ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) |
| 1826 | |
| 1827 | /* Get disk child number by buffer header and position in the tree node. */ |
| 1828 | #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) |
| 1829 | #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ |
| 1830 | (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) |
| 1831 | |
| 1832 | /* maximal value of field child_size in structure disk_child */ |
| 1833 | /* child size is the combined size of all items and their headers */ |
| 1834 | #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) |
| 1835 | |
| 1836 | /* amount of used space in buffer (not including block head) */ |
| 1837 | #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) |
| 1838 | |
| 1839 | /* max and min number of keys in internal node */ |
| 1840 | #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) |
| 1841 | #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) |
| 1842 | |
| 1843 | /***************************************************************************/ |
| 1844 | /* PATH STRUCTURES AND DEFINES */ |
| 1845 | /***************************************************************************/ |
| 1846 | |
| 1847 | /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the |
| 1848 | key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it |
| 1849 | does not find them in the cache it reads them from disk. For each node search_by_key finds using |
| 1850 | reiserfs_bread it then uses bin_search to look through that node. bin_search will find the |
| 1851 | position of the block_number of the next node if it is looking through an internal node. If it |
| 1852 | is looking through a leaf node bin_search will find the position of the item which has key either |
| 1853 | equal to given key, or which is the maximal key less than the given key. */ |
| 1854 | |
| 1855 | struct path_element { |
| 1856 | struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */ |
| 1857 | int pe_position; /* Position in the tree node which is placed in the */ |
| 1858 | /* buffer above. */ |
| 1859 | }; |
| 1860 | |
| 1861 | #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ |
| 1862 | #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ |
| 1863 | #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */ |
| 1864 | |
| 1865 | #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ |
| 1866 | #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ |
| 1867 | |
| 1868 | /* We need to keep track of who the ancestors of nodes are. When we |
| 1869 | perform a search we record which nodes were visited while |
| 1870 | descending the tree looking for the node we searched for. This list |
| 1871 | of nodes is called the path. This information is used while |
| 1872 | performing balancing. Note that this path information may become |
| 1873 | invalid, and this means we must check it when using it to see if it |
| 1874 | is still valid. You'll need to read search_by_key and the comments |
| 1875 | in it, especially about decrement_counters_in_path(), to understand |
| 1876 | this structure. |
| 1877 | |
| 1878 | Paths make the code so much harder to work with and debug.... An |
| 1879 | enormous number of bugs are due to them, and trying to write or modify |
| 1880 | code that uses them just makes my head hurt. They are based on an |
| 1881 | excessive effort to avoid disturbing the precious VFS code.:-( The |
| 1882 | gods only know how we are going to SMP the code that uses them. |
| 1883 | znodes are the way! */ |
| 1884 | |
| 1885 | #define PATH_READA 0x1 /* do read ahead */ |
| 1886 | #define PATH_READA_BACK 0x2 /* read backwards */ |
| 1887 | |
| 1888 | struct treepath { |
| 1889 | int path_length; /* Length of the array above. */ |
| 1890 | int reada; |
| 1891 | struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */ |
| 1892 | int pos_in_item; |
| 1893 | }; |
| 1894 | |
| 1895 | #define pos_in_item(path) ((path)->pos_in_item) |
| 1896 | |
| 1897 | #define INITIALIZE_PATH(var) \ |
| 1898 | struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} |
| 1899 | |
| 1900 | /* Get path element by path and path position. */ |
| 1901 | #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) |
| 1902 | |
| 1903 | /* Get buffer header at the path by path and path position. */ |
| 1904 | #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) |
| 1905 | |
| 1906 | /* Get position in the element at the path by path and path position. */ |
| 1907 | #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) |
| 1908 | |
| 1909 | #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) |
| 1910 | /* you know, to the person who didn't |
| 1911 | write this the macro name does not |
| 1912 | at first suggest what it does. |
| 1913 | Maybe POSITION_FROM_PATH_END? Or |
| 1914 | maybe we should just focus on |
| 1915 | dumping paths... -Hans */ |
| 1916 | #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) |
| 1917 | |
| 1918 | #define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)) |
| 1919 | |
| 1920 | /* in do_balance leaf has h == 0 in contrast with path structure, |
| 1921 | where root has level == 0. That is why we need these defines */ |
| 1922 | #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */ |
| 1923 | #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */ |
| 1924 | #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) |
| 1925 | #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */ |
| 1926 | |
| 1927 | #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) |
| 1928 | |
| 1929 | #define get_last_bh(path) PATH_PLAST_BUFFER(path) |
| 1930 | #define get_ih(path) PATH_PITEM_HEAD(path) |
| 1931 | #define get_item_pos(path) PATH_LAST_POSITION(path) |
| 1932 | #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) |
| 1933 | #define item_moved(ih,path) comp_items(ih, path) |
| 1934 | #define path_changed(ih,path) comp_items (ih, path) |
| 1935 | |
| 1936 | /***************************************************************************/ |
| 1937 | /* MISC */ |
| 1938 | /***************************************************************************/ |
| 1939 | |
| 1940 | /* Size of pointer to the unformatted node. */ |
| 1941 | #define UNFM_P_SIZE (sizeof(unp_t)) |
| 1942 | #define UNFM_P_SHIFT 2 |
| 1943 | |
| 1944 | // in in-core inode key is stored on le form |
| 1945 | #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) |
| 1946 | |
| 1947 | #define MAX_UL_INT 0xffffffff |
| 1948 | #define MAX_INT 0x7ffffff |
| 1949 | #define MAX_US_INT 0xffff |
| 1950 | |
| 1951 | // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset |
| 1952 | #define U32_MAX (~(__u32)0) |
| 1953 | |
| 1954 | static inline loff_t max_reiserfs_offset(struct inode *inode) |
| 1955 | { |
| 1956 | if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) |
| 1957 | return (loff_t) U32_MAX; |
| 1958 | |
| 1959 | return (loff_t) ((~(__u64) 0) >> 4); |
| 1960 | } |
| 1961 | |
| 1962 | /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/ |
| 1963 | #define MAX_KEY_OBJECTID MAX_UL_INT |
| 1964 | |
| 1965 | #define MAX_B_NUM MAX_UL_INT |
| 1966 | #define MAX_FC_NUM MAX_US_INT |
| 1967 | |
| 1968 | /* the purpose is to detect overflow of an unsigned short */ |
| 1969 | #define REISERFS_LINK_MAX (MAX_US_INT - 1000) |
| 1970 | |
| 1971 | /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */ |
| 1972 | #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */ |
| 1973 | #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */ |
| 1974 | |
| 1975 | #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) |
| 1976 | #define get_generation(s) atomic_read (&fs_generation(s)) |
| 1977 | #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) |
| 1978 | #define __fs_changed(gen,s) (gen != get_generation (s)) |
| 1979 | #define fs_changed(gen,s) \ |
| 1980 | ({ \ |
| 1981 | reiserfs_cond_resched(s); \ |
| 1982 | __fs_changed(gen, s); \ |
| 1983 | }) |
| 1984 | |
| 1985 | /***************************************************************************/ |
| 1986 | /* FIXATE NODES */ |
| 1987 | /***************************************************************************/ |
| 1988 | |
| 1989 | #define VI_TYPE_LEFT_MERGEABLE 1 |
| 1990 | #define VI_TYPE_RIGHT_MERGEABLE 2 |
| 1991 | |
| 1992 | /* To make any changes in the tree we always first find node, that |
| 1993 | contains item to be changed/deleted or place to insert a new |
| 1994 | item. We call this node S. To do balancing we need to decide what |
| 1995 | we will shift to left/right neighbor, or to a new node, where new |
| 1996 | item will be etc. To make this analysis simpler we build virtual |
| 1997 | node. Virtual node is an array of items, that will replace items of |
| 1998 | node S. (For instance if we are going to delete an item, virtual |
| 1999 | node does not contain it). Virtual node keeps information about |
| 2000 | item sizes and types, mergeability of first and last items, sizes |
| 2001 | of all entries in directory item. We use this array of items when |
| 2002 | calculating what we can shift to neighbors and how many nodes we |
| 2003 | have to have if we do not any shiftings, if we shift to left/right |
| 2004 | neighbor or to both. */ |
| 2005 | struct virtual_item { |
| 2006 | int vi_index; // index in the array of item operations |
| 2007 | unsigned short vi_type; // left/right mergeability |
| 2008 | unsigned short vi_item_len; /* length of item that it will have after balancing */ |
| 2009 | struct item_head *vi_ih; |
| 2010 | const char *vi_item; // body of item (old or new) |
| 2011 | const void *vi_new_data; // 0 always but paste mode |
| 2012 | void *vi_uarea; // item specific area |
| 2013 | }; |
| 2014 | |
| 2015 | struct virtual_node { |
| 2016 | char *vn_free_ptr; /* this is a pointer to the free space in the buffer */ |
| 2017 | unsigned short vn_nr_item; /* number of items in virtual node */ |
| 2018 | short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */ |
| 2019 | short vn_mode; /* mode of balancing (paste, insert, delete, cut) */ |
| 2020 | short vn_affected_item_num; |
| 2021 | short vn_pos_in_item; |
| 2022 | struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */ |
| 2023 | const void *vn_data; |
| 2024 | struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */ |
| 2025 | }; |
| 2026 | |
| 2027 | /* used by directory items when creating virtual nodes */ |
| 2028 | struct direntry_uarea { |
| 2029 | int flags; |
| 2030 | __u16 entry_count; |
| 2031 | __u16 entry_sizes[1]; |
| 2032 | } __attribute__ ((__packed__)); |
| 2033 | |
| 2034 | /***************************************************************************/ |
| 2035 | /* TREE BALANCE */ |
| 2036 | /***************************************************************************/ |
| 2037 | |
| 2038 | /* This temporary structure is used in tree balance algorithms, and |
| 2039 | constructed as we go to the extent that its various parts are |
| 2040 | needed. It contains arrays of nodes that can potentially be |
| 2041 | involved in the balancing of node S, and parameters that define how |
| 2042 | each of the nodes must be balanced. Note that in these algorithms |
| 2043 | for balancing the worst case is to need to balance the current node |
| 2044 | S and the left and right neighbors and all of their parents plus |
| 2045 | create a new node. We implement S1 balancing for the leaf nodes |
| 2046 | and S0 balancing for the internal nodes (S1 and S0 are defined in |
| 2047 | our papers.)*/ |
| 2048 | |
| 2049 | #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */ |
| 2050 | |
| 2051 | /* maximum number of FEB blocknrs on a single level */ |
| 2052 | #define MAX_AMOUNT_NEEDED 2 |
| 2053 | |
| 2054 | /* someday somebody will prefix every field in this struct with tb_ */ |
| 2055 | struct tree_balance { |
| 2056 | int tb_mode; |
| 2057 | int need_balance_dirty; |
| 2058 | struct super_block *tb_sb; |
| 2059 | struct reiserfs_transaction_handle *transaction_handle; |
| 2060 | struct treepath *tb_path; |
| 2061 | struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */ |
| 2062 | struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */ |
| 2063 | struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */ |
| 2064 | struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */ |
| 2065 | struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ |
| 2066 | struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ |
| 2067 | |
| 2068 | struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals |
| 2069 | cur_blknum. */ |
| 2070 | struct buffer_head *used[MAX_FEB_SIZE]; |
| 2071 | struct buffer_head *thrown[MAX_FEB_SIZE]; |
| 2072 | int lnum[MAX_HEIGHT]; /* array of number of items which must be |
| 2073 | shifted to the left in order to balance the |
| 2074 | current node; for leaves includes item that |
| 2075 | will be partially shifted; for internal |
| 2076 | nodes, it is the number of child pointers |
| 2077 | rather than items. It includes the new item |
| 2078 | being created. The code sometimes subtracts |
| 2079 | one to get the number of wholly shifted |
| 2080 | items for other purposes. */ |
| 2081 | int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */ |
| 2082 | int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and |
| 2083 | S[h] to its item number within the node CFL[h] */ |
| 2084 | int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */ |
| 2085 | int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from |
| 2086 | S[h]. A negative value means removing. */ |
| 2087 | int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after |
| 2088 | balancing on the level h of the tree. If 0 then S is |
| 2089 | being deleted, if 1 then S is remaining and no new nodes |
| 2090 | are being created, if 2 or 3 then 1 or 2 new nodes is |
| 2091 | being created */ |
| 2092 | |
| 2093 | /* fields that are used only for balancing leaves of the tree */ |
| 2094 | int cur_blknum; /* number of empty blocks having been already allocated */ |
| 2095 | int s0num; /* number of items that fall into left most node when S[0] splits */ |
| 2096 | int s1num; /* number of items that fall into first new node when S[0] splits */ |
| 2097 | int s2num; /* number of items that fall into second new node when S[0] splits */ |
| 2098 | int lbytes; /* number of bytes which can flow to the left neighbor from the left */ |
| 2099 | /* most liquid item that cannot be shifted from S[0] entirely */ |
| 2100 | /* if -1 then nothing will be partially shifted */ |
| 2101 | int rbytes; /* number of bytes which will flow to the right neighbor from the right */ |
| 2102 | /* most liquid item that cannot be shifted from S[0] entirely */ |
| 2103 | /* if -1 then nothing will be partially shifted */ |
| 2104 | int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */ |
| 2105 | /* note: if S[0] splits into 3 nodes, then items do not need to be cut */ |
| 2106 | int s2bytes; |
| 2107 | struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */ |
| 2108 | char *vn_buf; /* kmalloced memory. Used to create |
| 2109 | virtual node and keep map of |
| 2110 | dirtied bitmap blocks */ |
| 2111 | int vn_buf_size; /* size of the vn_buf */ |
| 2112 | struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */ |
| 2113 | |
| 2114 | int fs_gen; /* saved value of `reiserfs_generation' counter |
| 2115 | see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ |
| 2116 | #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
| 2117 | struct in_core_key key; /* key pointer, to pass to block allocator or |
| 2118 | another low-level subsystem */ |
| 2119 | #endif |
| 2120 | }; |
| 2121 | |
| 2122 | /* These are modes of balancing */ |
| 2123 | |
| 2124 | /* When inserting an item. */ |
| 2125 | #define M_INSERT 'i' |
| 2126 | /* When inserting into (directories only) or appending onto an already |
| 2127 | existent item. */ |
| 2128 | #define M_PASTE 'p' |
| 2129 | /* When deleting an item. */ |
| 2130 | #define M_DELETE 'd' |
| 2131 | /* When truncating an item or removing an entry from a (directory) item. */ |
| 2132 | #define M_CUT 'c' |
| 2133 | |
| 2134 | /* used when balancing on leaf level skipped (in reiserfsck) */ |
| 2135 | #define M_INTERNAL 'n' |
| 2136 | |
| 2137 | /* When further balancing is not needed, then do_balance does not need |
| 2138 | to be called. */ |
| 2139 | #define M_SKIP_BALANCING 's' |
| 2140 | #define M_CONVERT 'v' |
| 2141 | |
| 2142 | /* modes of leaf_move_items */ |
| 2143 | #define LEAF_FROM_S_TO_L 0 |
| 2144 | #define LEAF_FROM_S_TO_R 1 |
| 2145 | #define LEAF_FROM_R_TO_L 2 |
| 2146 | #define LEAF_FROM_L_TO_R 3 |
| 2147 | #define LEAF_FROM_S_TO_SNEW 4 |
| 2148 | |
| 2149 | #define FIRST_TO_LAST 0 |
| 2150 | #define LAST_TO_FIRST 1 |
| 2151 | |
| 2152 | /* used in do_balance for passing parent of node information that has |
| 2153 | been gotten from tb struct */ |
| 2154 | struct buffer_info { |
| 2155 | struct tree_balance *tb; |
| 2156 | struct buffer_head *bi_bh; |
| 2157 | struct buffer_head *bi_parent; |
| 2158 | int bi_position; |
| 2159 | }; |
| 2160 | |
| 2161 | static inline struct super_block *sb_from_tb(struct tree_balance *tb) |
| 2162 | { |
| 2163 | return tb ? tb->tb_sb : NULL; |
| 2164 | } |
| 2165 | |
| 2166 | static inline struct super_block *sb_from_bi(struct buffer_info *bi) |
| 2167 | { |
| 2168 | return bi ? sb_from_tb(bi->tb) : NULL; |
| 2169 | } |
| 2170 | |
| 2171 | /* there are 4 types of items: stat data, directory item, indirect, direct. |
| 2172 | +-------------------+------------+--------------+------------+ |
| 2173 | | | k_offset | k_uniqueness | mergeable? | |
| 2174 | +-------------------+------------+--------------+------------+ |
| 2175 | | stat data | 0 | 0 | no | |
| 2176 | +-------------------+------------+--------------+------------+ |
| 2177 | | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no | |
| 2178 | | non 1st directory | hash value | | yes | |
| 2179 | | item | | | | |
| 2180 | +-------------------+------------+--------------+------------+ |
| 2181 | | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object |
| 2182 | +-------------------+------------+--------------+------------+ |
| 2183 | | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object |
| 2184 | +-------------------+------------+--------------+------------+ |
| 2185 | */ |
| 2186 | |
| 2187 | struct item_operations { |
| 2188 | int (*bytes_number) (struct item_head * ih, int block_size); |
| 2189 | void (*decrement_key) (struct cpu_key *); |
| 2190 | int (*is_left_mergeable) (struct reiserfs_key * ih, |
| 2191 | unsigned long bsize); |
| 2192 | void (*print_item) (struct item_head *, char *item); |
| 2193 | void (*check_item) (struct item_head *, char *item); |
| 2194 | |
| 2195 | int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, |
| 2196 | int is_affected, int insert_size); |
| 2197 | int (*check_left) (struct virtual_item * vi, int free, |
| 2198 | int start_skip, int end_skip); |
| 2199 | int (*check_right) (struct virtual_item * vi, int free); |
| 2200 | int (*part_size) (struct virtual_item * vi, int from, int to); |
| 2201 | int (*unit_num) (struct virtual_item * vi); |
| 2202 | void (*print_vi) (struct virtual_item * vi); |
| 2203 | }; |
| 2204 | |
| 2205 | extern struct item_operations *item_ops[TYPE_ANY + 1]; |
| 2206 | |
| 2207 | #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) |
| 2208 | #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) |
| 2209 | #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) |
| 2210 | #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) |
| 2211 | #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) |
| 2212 | #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) |
| 2213 | #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) |
| 2214 | #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) |
| 2215 | #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) |
| 2216 | #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) |
| 2217 | |
| 2218 | #define COMP_SHORT_KEYS comp_short_keys |
| 2219 | |
| 2220 | /* number of blocks pointed to by the indirect item */ |
| 2221 | #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) |
| 2222 | |
| 2223 | /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ |
| 2224 | #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) |
| 2225 | |
| 2226 | /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ |
| 2227 | |
| 2228 | /* get the item header */ |
| 2229 | #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) |
| 2230 | |
| 2231 | /* get key */ |
| 2232 | #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) |
| 2233 | |
| 2234 | /* get the key */ |
| 2235 | #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) |
| 2236 | |
| 2237 | /* get item body */ |
| 2238 | #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) |
| 2239 | |
| 2240 | /* get the stat data by the buffer header and the item order */ |
| 2241 | #define B_N_STAT_DATA(bh,nr) \ |
| 2242 | ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) |
| 2243 | |
| 2244 | /* following defines use reiserfs buffer header and item header */ |
| 2245 | |
| 2246 | /* get stat-data */ |
| 2247 | #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) |
| 2248 | |
| 2249 | // this is 3976 for size==4096 |
| 2250 | #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) |
| 2251 | |
| 2252 | /* indirect items consist of entries which contain blocknrs, pos |
| 2253 | indicates which entry, and B_I_POS_UNFM_POINTER resolves to the |
| 2254 | blocknr contained by the entry pos points to */ |
| 2255 | #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) |
| 2256 | #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) |
| 2257 | |
| 2258 | struct reiserfs_iget_args { |
| 2259 | __u32 objectid; |
| 2260 | __u32 dirid; |
| 2261 | }; |
| 2262 | |
| 2263 | /***************************************************************************/ |
| 2264 | /* FUNCTION DECLARATIONS */ |
| 2265 | /***************************************************************************/ |
| 2266 | |
| 2267 | #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) |
| 2268 | |
| 2269 | #define journal_trans_half(blocksize) \ |
| 2270 | ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) |
| 2271 | |
| 2272 | /* journal.c see journal.c for all the comments here */ |
| 2273 | |
| 2274 | /* first block written in a commit. */ |
| 2275 | struct reiserfs_journal_desc { |
| 2276 | __le32 j_trans_id; /* id of commit */ |
| 2277 | __le32 j_len; /* length of commit. len +1 is the commit block */ |
| 2278 | __le32 j_mount_id; /* mount id of this trans */ |
| 2279 | __le32 j_realblock[1]; /* real locations for each block */ |
| 2280 | }; |
| 2281 | |
| 2282 | #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) |
| 2283 | #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) |
| 2284 | #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) |
| 2285 | |
| 2286 | #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) |
| 2287 | #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) |
| 2288 | #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) |
| 2289 | |
| 2290 | /* last block written in a commit */ |
| 2291 | struct reiserfs_journal_commit { |
| 2292 | __le32 j_trans_id; /* must match j_trans_id from the desc block */ |
| 2293 | __le32 j_len; /* ditto */ |
| 2294 | __le32 j_realblock[1]; /* real locations for each block */ |
| 2295 | }; |
| 2296 | |
| 2297 | #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) |
| 2298 | #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) |
| 2299 | #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) |
| 2300 | |
| 2301 | #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) |
| 2302 | #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) |
| 2303 | |
| 2304 | /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the |
| 2305 | ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk, |
| 2306 | ** and this transaction does not need to be replayed. |
| 2307 | */ |
| 2308 | struct reiserfs_journal_header { |
| 2309 | __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */ |
| 2310 | __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */ |
| 2311 | __le32 j_mount_id; |
| 2312 | /* 12 */ struct journal_params jh_journal; |
| 2313 | }; |
| 2314 | |
| 2315 | /* biggest tunable defines are right here */ |
| 2316 | #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ |
| 2317 | #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */ |
| 2318 | #define JOURNAL_TRANS_MIN_DEFAULT 256 |
| 2319 | #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */ |
| 2320 | #define JOURNAL_MIN_RATIO 2 |
| 2321 | #define JOURNAL_MAX_COMMIT_AGE 30 |
| 2322 | #define JOURNAL_MAX_TRANS_AGE 30 |
| 2323 | #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) |
| 2324 | #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ |
| 2325 | 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ |
| 2326 | REISERFS_QUOTA_TRANS_BLOCKS(sb))) |
| 2327 | |
| 2328 | #ifdef CONFIG_QUOTA |
| 2329 | #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) |
| 2330 | /* We need to update data and inode (atime) */ |
| 2331 | #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) |
| 2332 | /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ |
| 2333 | #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ |
| 2334 | (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) |
| 2335 | /* same as with INIT */ |
| 2336 | #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ |
| 2337 | (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) |
| 2338 | #else |
| 2339 | #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 |
| 2340 | #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 |
| 2341 | #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 |
| 2342 | #endif |
| 2343 | |
| 2344 | /* both of these can be as low as 1, or as high as you want. The min is the |
| 2345 | ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated |
| 2346 | ** as needed, and released when transactions are committed. On release, if |
| 2347 | ** the current number of nodes is > max, the node is freed, otherwise, |
| 2348 | ** it is put on a free list for faster use later. |
| 2349 | */ |
| 2350 | #define REISERFS_MIN_BITMAP_NODES 10 |
| 2351 | #define REISERFS_MAX_BITMAP_NODES 100 |
| 2352 | |
| 2353 | #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */ |
| 2354 | #define JBH_HASH_MASK 8191 |
| 2355 | |
| 2356 | #define _jhashfn(sb,block) \ |
| 2357 | (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ |
| 2358 | (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) |
| 2359 | #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) |
| 2360 | |
| 2361 | // We need these to make journal.c code more readable |
| 2362 | #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
| 2363 | #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
| 2364 | #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
| 2365 | |
| 2366 | enum reiserfs_bh_state_bits { |
| 2367 | BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ |
| 2368 | BH_JDirty_wait, |
| 2369 | BH_JNew, /* disk block was taken off free list before |
| 2370 | * being in a finished transaction, or |
| 2371 | * written to disk. Can be reused immed. */ |
| 2372 | BH_JPrepared, |
| 2373 | BH_JRestore_dirty, |
| 2374 | BH_JTest, // debugging only will go away |
| 2375 | }; |
| 2376 | |
| 2377 | BUFFER_FNS(JDirty, journaled); |
| 2378 | TAS_BUFFER_FNS(JDirty, journaled); |
| 2379 | BUFFER_FNS(JDirty_wait, journal_dirty); |
| 2380 | TAS_BUFFER_FNS(JDirty_wait, journal_dirty); |
| 2381 | BUFFER_FNS(JNew, journal_new); |
| 2382 | TAS_BUFFER_FNS(JNew, journal_new); |
| 2383 | BUFFER_FNS(JPrepared, journal_prepared); |
| 2384 | TAS_BUFFER_FNS(JPrepared, journal_prepared); |
| 2385 | BUFFER_FNS(JRestore_dirty, journal_restore_dirty); |
| 2386 | TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); |
| 2387 | BUFFER_FNS(JTest, journal_test); |
| 2388 | TAS_BUFFER_FNS(JTest, journal_test); |
| 2389 | |
| 2390 | /* |
| 2391 | ** transaction handle which is passed around for all journal calls |
| 2392 | */ |
| 2393 | struct reiserfs_transaction_handle { |
| 2394 | struct super_block *t_super; /* super for this FS when journal_begin was |
| 2395 | called. saves calls to reiserfs_get_super |
| 2396 | also used by nested transactions to make |
| 2397 | sure they are nesting on the right FS |
| 2398 | _must_ be first in the handle |
| 2399 | */ |
| 2400 | int t_refcount; |
| 2401 | int t_blocks_logged; /* number of blocks this writer has logged */ |
| 2402 | int t_blocks_allocated; /* number of blocks this writer allocated */ |
| 2403 | unsigned int t_trans_id; /* sanity check, equals the current trans id */ |
| 2404 | void *t_handle_save; /* save existing current->journal_info */ |
| 2405 | unsigned displace_new_blocks:1; /* if new block allocation occurres, that block |
| 2406 | should be displaced from others */ |
| 2407 | struct list_head t_list; |
| 2408 | }; |
| 2409 | |
| 2410 | /* used to keep track of ordered and tail writes, attached to the buffer |
| 2411 | * head through b_journal_head. |
| 2412 | */ |
| 2413 | struct reiserfs_jh { |
| 2414 | struct reiserfs_journal_list *jl; |
| 2415 | struct buffer_head *bh; |
| 2416 | struct list_head list; |
| 2417 | }; |
| 2418 | |
| 2419 | void reiserfs_free_jh(struct buffer_head *bh); |
| 2420 | int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); |
| 2421 | int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); |
| 2422 | int journal_mark_dirty(struct reiserfs_transaction_handle *, |
| 2423 | struct super_block *, struct buffer_head *bh); |
| 2424 | |
| 2425 | static inline int reiserfs_file_data_log(struct inode *inode) |
| 2426 | { |
| 2427 | if (reiserfs_data_log(inode->i_sb) || |
| 2428 | (REISERFS_I(inode)->i_flags & i_data_log)) |
| 2429 | return 1; |
| 2430 | return 0; |
| 2431 | } |
| 2432 | |
| 2433 | static inline int reiserfs_transaction_running(struct super_block *s) |
| 2434 | { |
| 2435 | struct reiserfs_transaction_handle *th = current->journal_info; |
| 2436 | if (th && th->t_super == s) |
| 2437 | return 1; |
| 2438 | if (th && th->t_super == NULL) |
| 2439 | BUG(); |
| 2440 | return 0; |
| 2441 | } |
| 2442 | |
| 2443 | static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) |
| 2444 | { |
| 2445 | return th->t_blocks_allocated - th->t_blocks_logged; |
| 2446 | } |
| 2447 | |
| 2448 | struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct |
| 2449 | super_block |
| 2450 | *, |
| 2451 | int count); |
| 2452 | int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); |
| 2453 | int reiserfs_commit_page(struct inode *inode, struct page *page, |
| 2454 | unsigned from, unsigned to); |
| 2455 | int reiserfs_flush_old_commits(struct super_block *); |
| 2456 | int reiserfs_commit_for_inode(struct inode *); |
| 2457 | int reiserfs_inode_needs_commit(struct inode *); |
| 2458 | void reiserfs_update_inode_transaction(struct inode *); |
| 2459 | void reiserfs_wait_on_write_block(struct super_block *s); |
| 2460 | void reiserfs_block_writes(struct reiserfs_transaction_handle *th); |
| 2461 | void reiserfs_allow_writes(struct super_block *s); |
| 2462 | void reiserfs_check_lock_depth(struct super_block *s, char *caller); |
| 2463 | int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, |
| 2464 | int wait); |
| 2465 | void reiserfs_restore_prepared_buffer(struct super_block *, |
| 2466 | struct buffer_head *bh); |
| 2467 | int journal_init(struct super_block *, const char *j_dev_name, int old_format, |
| 2468 | unsigned int); |
| 2469 | int journal_release(struct reiserfs_transaction_handle *, struct super_block *); |
| 2470 | int journal_release_error(struct reiserfs_transaction_handle *, |
| 2471 | struct super_block *); |
| 2472 | int journal_end(struct reiserfs_transaction_handle *, struct super_block *, |
| 2473 | unsigned long); |
| 2474 | int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, |
| 2475 | unsigned long); |
| 2476 | int journal_mark_freed(struct reiserfs_transaction_handle *, |
| 2477 | struct super_block *, b_blocknr_t blocknr); |
| 2478 | int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); |
| 2479 | int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, |
| 2480 | int bit_nr, int searchall, b_blocknr_t *next); |
| 2481 | int journal_begin(struct reiserfs_transaction_handle *, |
| 2482 | struct super_block *sb, unsigned long); |
| 2483 | int journal_join_abort(struct reiserfs_transaction_handle *, |
| 2484 | struct super_block *sb, unsigned long); |
| 2485 | void reiserfs_abort_journal(struct super_block *sb, int errno); |
| 2486 | void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); |
| 2487 | int reiserfs_allocate_list_bitmaps(struct super_block *s, |
| 2488 | struct reiserfs_list_bitmap *, unsigned int); |
| 2489 | |
| 2490 | void add_save_link(struct reiserfs_transaction_handle *th, |
| 2491 | struct inode *inode, int truncate); |
| 2492 | int remove_save_link(struct inode *inode, int truncate); |
| 2493 | |
| 2494 | /* objectid.c */ |
| 2495 | __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); |
| 2496 | void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, |
| 2497 | __u32 objectid_to_release); |
| 2498 | int reiserfs_convert_objectid_map_v1(struct super_block *); |
| 2499 | |
| 2500 | /* stree.c */ |
| 2501 | int B_IS_IN_TREE(const struct buffer_head *); |
| 2502 | extern void copy_item_head(struct item_head *to, |
| 2503 | const struct item_head *from); |
| 2504 | |
| 2505 | // first key is in cpu form, second - le |
| 2506 | extern int comp_short_keys(const struct reiserfs_key *le_key, |
| 2507 | const struct cpu_key *cpu_key); |
| 2508 | extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); |
| 2509 | |
| 2510 | // both are in le form |
| 2511 | extern int comp_le_keys(const struct reiserfs_key *, |
| 2512 | const struct reiserfs_key *); |
| 2513 | extern int comp_short_le_keys(const struct reiserfs_key *, |
| 2514 | const struct reiserfs_key *); |
| 2515 | |
| 2516 | // |
| 2517 | // get key version from on disk key - kludge |
| 2518 | // |
| 2519 | static inline int le_key_version(const struct reiserfs_key *key) |
| 2520 | { |
| 2521 | int type; |
| 2522 | |
| 2523 | type = offset_v2_k_type(&(key->u.k_offset_v2)); |
| 2524 | if (type != TYPE_DIRECT && type != TYPE_INDIRECT |
| 2525 | && type != TYPE_DIRENTRY) |
| 2526 | return KEY_FORMAT_3_5; |
| 2527 | |
| 2528 | return KEY_FORMAT_3_6; |
| 2529 | |
| 2530 | } |
| 2531 | |
| 2532 | static inline void copy_key(struct reiserfs_key *to, |
| 2533 | const struct reiserfs_key *from) |
| 2534 | { |
| 2535 | memcpy(to, from, KEY_SIZE); |
| 2536 | } |
| 2537 | |
| 2538 | int comp_items(const struct item_head *stored_ih, const struct treepath *path); |
| 2539 | const struct reiserfs_key *get_rkey(const struct treepath *chk_path, |
| 2540 | const struct super_block *sb); |
| 2541 | int search_by_key(struct super_block *, const struct cpu_key *, |
| 2542 | struct treepath *, int); |
| 2543 | #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) |
| 2544 | int search_for_position_by_key(struct super_block *sb, |
| 2545 | const struct cpu_key *cpu_key, |
| 2546 | struct treepath *search_path); |
| 2547 | extern void decrement_bcount(struct buffer_head *bh); |
| 2548 | void decrement_counters_in_path(struct treepath *search_path); |
| 2549 | void pathrelse(struct treepath *search_path); |
| 2550 | int reiserfs_check_path(struct treepath *p); |
| 2551 | void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); |
| 2552 | |
| 2553 | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, |
| 2554 | struct treepath *path, |
| 2555 | const struct cpu_key *key, |
| 2556 | struct item_head *ih, |
| 2557 | struct inode *inode, const char *body); |
| 2558 | |
| 2559 | int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, |
| 2560 | struct treepath *path, |
| 2561 | const struct cpu_key *key, |
| 2562 | struct inode *inode, |
| 2563 | const char *body, int paste_size); |
| 2564 | |
| 2565 | int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, |
| 2566 | struct treepath *path, |
| 2567 | struct cpu_key *key, |
| 2568 | struct inode *inode, |
| 2569 | struct page *page, loff_t new_file_size); |
| 2570 | |
| 2571 | int reiserfs_delete_item(struct reiserfs_transaction_handle *th, |
| 2572 | struct treepath *path, |
| 2573 | const struct cpu_key *key, |
| 2574 | struct inode *inode, struct buffer_head *un_bh); |
| 2575 | |
| 2576 | void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, |
| 2577 | struct inode *inode, struct reiserfs_key *key); |
| 2578 | int reiserfs_delete_object(struct reiserfs_transaction_handle *th, |
| 2579 | struct inode *inode); |
| 2580 | int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, |
| 2581 | struct inode *inode, struct page *, |
| 2582 | int update_timestamps); |
| 2583 | |
| 2584 | #define i_block_size(inode) ((inode)->i_sb->s_blocksize) |
| 2585 | #define file_size(inode) ((inode)->i_size) |
| 2586 | #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) |
| 2587 | |
| 2588 | #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ |
| 2589 | !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) |
| 2590 | |
| 2591 | void padd_item(char *item, int total_length, int length); |
| 2592 | |
| 2593 | /* inode.c */ |
| 2594 | /* args for the create parameter of reiserfs_get_block */ |
| 2595 | #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ |
| 2596 | #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ |
| 2597 | #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ |
| 2598 | #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ |
| 2599 | #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ |
| 2600 | #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ |
| 2601 | |
| 2602 | void reiserfs_read_locked_inode(struct inode *inode, |
| 2603 | struct reiserfs_iget_args *args); |
| 2604 | int reiserfs_find_actor(struct inode *inode, void *p); |
| 2605 | int reiserfs_init_locked_inode(struct inode *inode, void *p); |
| 2606 | void reiserfs_evict_inode(struct inode *inode); |
| 2607 | int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); |
| 2608 | int reiserfs_get_block(struct inode *inode, sector_t block, |
| 2609 | struct buffer_head *bh_result, int create); |
| 2610 | struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, |
| 2611 | int fh_len, int fh_type); |
| 2612 | struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, |
| 2613 | int fh_len, int fh_type); |
| 2614 | int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, |
| 2615 | int connectable); |
| 2616 | |
| 2617 | int reiserfs_truncate_file(struct inode *, int update_timestamps); |
| 2618 | void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, |
| 2619 | int type, int key_length); |
| 2620 | void make_le_item_head(struct item_head *ih, const struct cpu_key *key, |
| 2621 | int version, |
| 2622 | loff_t offset, int type, int length, int entry_count); |
| 2623 | struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); |
| 2624 | |
| 2625 | struct reiserfs_security_handle; |
| 2626 | int reiserfs_new_inode(struct reiserfs_transaction_handle *th, |
| 2627 | struct inode *dir, umode_t mode, |
| 2628 | const char *symname, loff_t i_size, |
| 2629 | struct dentry *dentry, struct inode *inode, |
| 2630 | struct reiserfs_security_handle *security); |
| 2631 | |
| 2632 | void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, |
| 2633 | struct inode *inode, loff_t size); |
| 2634 | |
| 2635 | static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, |
| 2636 | struct inode *inode) |
| 2637 | { |
| 2638 | reiserfs_update_sd_size(th, inode, inode->i_size); |
| 2639 | } |
| 2640 | |
| 2641 | void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); |
| 2642 | void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); |
| 2643 | int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); |
| 2644 | |
| 2645 | int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); |
| 2646 | |
| 2647 | /* namei.c */ |
| 2648 | void set_de_name_and_namelen(struct reiserfs_dir_entry *de); |
| 2649 | int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, |
| 2650 | struct treepath *path, struct reiserfs_dir_entry *de); |
| 2651 | struct dentry *reiserfs_get_parent(struct dentry *); |
| 2652 | |
| 2653 | #ifdef CONFIG_REISERFS_PROC_INFO |
| 2654 | int reiserfs_proc_info_init(struct super_block *sb); |
| 2655 | int reiserfs_proc_info_done(struct super_block *sb); |
| 2656 | int reiserfs_proc_info_global_init(void); |
| 2657 | int reiserfs_proc_info_global_done(void); |
| 2658 | |
| 2659 | #define PROC_EXP( e ) e |
| 2660 | |
| 2661 | #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data |
| 2662 | #define PROC_INFO_MAX( sb, field, value ) \ |
| 2663 | __PINFO( sb ).field = \ |
| 2664 | max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) |
| 2665 | #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) |
| 2666 | #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) |
| 2667 | #define PROC_INFO_BH_STAT( sb, bh, level ) \ |
| 2668 | PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ |
| 2669 | PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ |
| 2670 | PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) |
| 2671 | #else |
| 2672 | static inline int reiserfs_proc_info_init(struct super_block *sb) |
| 2673 | { |
| 2674 | return 0; |
| 2675 | } |
| 2676 | |
| 2677 | static inline int reiserfs_proc_info_done(struct super_block *sb) |
| 2678 | { |
| 2679 | return 0; |
| 2680 | } |
| 2681 | |
| 2682 | static inline int reiserfs_proc_info_global_init(void) |
| 2683 | { |
| 2684 | return 0; |
| 2685 | } |
| 2686 | |
| 2687 | static inline int reiserfs_proc_info_global_done(void) |
| 2688 | { |
| 2689 | return 0; |
| 2690 | } |
| 2691 | |
| 2692 | #define PROC_EXP( e ) |
| 2693 | #define VOID_V ( ( void ) 0 ) |
| 2694 | #define PROC_INFO_MAX( sb, field, value ) VOID_V |
| 2695 | #define PROC_INFO_INC( sb, field ) VOID_V |
| 2696 | #define PROC_INFO_ADD( sb, field, val ) VOID_V |
| 2697 | #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V |
| 2698 | #endif |
| 2699 | |
| 2700 | /* dir.c */ |
| 2701 | extern const struct inode_operations reiserfs_dir_inode_operations; |
| 2702 | extern const struct inode_operations reiserfs_symlink_inode_operations; |
| 2703 | extern const struct inode_operations reiserfs_special_inode_operations; |
| 2704 | extern const struct file_operations reiserfs_dir_operations; |
| 2705 | int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *); |
| 2706 | |
| 2707 | /* tail_conversion.c */ |
| 2708 | int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, |
| 2709 | struct treepath *, struct buffer_head *, loff_t); |
| 2710 | int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, |
| 2711 | struct page *, struct treepath *, const struct cpu_key *, |
| 2712 | loff_t, char *); |
| 2713 | void reiserfs_unmap_buffer(struct buffer_head *); |
| 2714 | |
| 2715 | /* file.c */ |
| 2716 | extern const struct inode_operations reiserfs_file_inode_operations; |
| 2717 | extern const struct file_operations reiserfs_file_operations; |
| 2718 | extern const struct address_space_operations reiserfs_address_space_operations; |
| 2719 | |
| 2720 | /* fix_nodes.c */ |
| 2721 | |
| 2722 | int fix_nodes(int n_op_mode, struct tree_balance *tb, |
| 2723 | struct item_head *ins_ih, const void *); |
| 2724 | void unfix_nodes(struct tree_balance *); |
| 2725 | |
| 2726 | /* prints.c */ |
| 2727 | void __reiserfs_panic(struct super_block *s, const char *id, |
| 2728 | const char *function, const char *fmt, ...) |
| 2729 | __attribute__ ((noreturn)); |
| 2730 | #define reiserfs_panic(s, id, fmt, args...) \ |
| 2731 | __reiserfs_panic(s, id, __func__, fmt, ##args) |
| 2732 | void __reiserfs_error(struct super_block *s, const char *id, |
| 2733 | const char *function, const char *fmt, ...); |
| 2734 | #define reiserfs_error(s, id, fmt, args...) \ |
| 2735 | __reiserfs_error(s, id, __func__, fmt, ##args) |
| 2736 | void reiserfs_info(struct super_block *s, const char *fmt, ...); |
| 2737 | void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); |
| 2738 | void print_indirect_item(struct buffer_head *bh, int item_num); |
| 2739 | void store_print_tb(struct tree_balance *tb); |
| 2740 | void print_cur_tb(char *mes); |
| 2741 | void print_de(struct reiserfs_dir_entry *de); |
| 2742 | void print_bi(struct buffer_info *bi, char *mes); |
| 2743 | #define PRINT_LEAF_ITEMS 1 /* print all items */ |
| 2744 | #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ |
| 2745 | #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ |
| 2746 | void print_block(struct buffer_head *bh, ...); |
| 2747 | void print_bmap(struct super_block *s, int silent); |
| 2748 | void print_bmap_block(int i, char *data, int size, int silent); |
| 2749 | /*void print_super_block (struct super_block * s, char * mes);*/ |
| 2750 | void print_objectid_map(struct super_block *s); |
| 2751 | void print_block_head(struct buffer_head *bh, char *mes); |
| 2752 | void check_leaf(struct buffer_head *bh); |
| 2753 | void check_internal(struct buffer_head *bh); |
| 2754 | void print_statistics(struct super_block *s); |
| 2755 | char *reiserfs_hashname(int code); |
| 2756 | |
| 2757 | /* lbalance.c */ |
| 2758 | int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, |
| 2759 | int mov_bytes, struct buffer_head *Snew); |
| 2760 | int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); |
| 2761 | int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); |
| 2762 | void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, |
| 2763 | int del_num, int del_bytes); |
| 2764 | void leaf_insert_into_buf(struct buffer_info *bi, int before, |
| 2765 | struct item_head *inserted_item_ih, |
| 2766 | const char *inserted_item_body, int zeros_number); |
| 2767 | void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, |
| 2768 | int pos_in_item, int paste_size, const char *body, |
| 2769 | int zeros_number); |
| 2770 | void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, |
| 2771 | int pos_in_item, int cut_size); |
| 2772 | void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, |
| 2773 | int new_entry_count, struct reiserfs_de_head *new_dehs, |
| 2774 | const char *records, int paste_size); |
| 2775 | /* ibalance.c */ |
| 2776 | int balance_internal(struct tree_balance *, int, int, struct item_head *, |
| 2777 | struct buffer_head **); |
| 2778 | |
| 2779 | /* do_balance.c */ |
| 2780 | void do_balance_mark_leaf_dirty(struct tree_balance *tb, |
| 2781 | struct buffer_head *bh, int flag); |
| 2782 | #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty |
| 2783 | #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty |
| 2784 | |
| 2785 | void do_balance(struct tree_balance *tb, struct item_head *ih, |
| 2786 | const char *body, int flag); |
| 2787 | void reiserfs_invalidate_buffer(struct tree_balance *tb, |
| 2788 | struct buffer_head *bh); |
| 2789 | |
| 2790 | int get_left_neighbor_position(struct tree_balance *tb, int h); |
| 2791 | int get_right_neighbor_position(struct tree_balance *tb, int h); |
| 2792 | void replace_key(struct tree_balance *tb, struct buffer_head *, int, |
| 2793 | struct buffer_head *, int); |
| 2794 | void make_empty_node(struct buffer_info *); |
| 2795 | struct buffer_head *get_FEB(struct tree_balance *); |
| 2796 | |
| 2797 | /* bitmap.c */ |
| 2798 | |
| 2799 | /* structure contains hints for block allocator, and it is a container for |
| 2800 | * arguments, such as node, search path, transaction_handle, etc. */ |
| 2801 | struct __reiserfs_blocknr_hint { |
| 2802 | struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */ |
| 2803 | sector_t block; /* file offset, in blocks */ |
| 2804 | struct in_core_key key; |
| 2805 | struct treepath *path; /* search path, used by allocator to deternine search_start by |
| 2806 | * various ways */ |
| 2807 | struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and |
| 2808 | * bitmap blocks changes */ |
| 2809 | b_blocknr_t beg, end; |
| 2810 | b_blocknr_t search_start; /* a field used to transfer search start value (block number) |
| 2811 | * between different block allocator procedures |
| 2812 | * (determine_search_start() and others) */ |
| 2813 | int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed |
| 2814 | * function that do actual allocation */ |
| 2815 | |
| 2816 | unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for |
| 2817 | * formatted/unformatted blocks with/without preallocation */ |
| 2818 | unsigned preallocate:1; |
| 2819 | }; |
| 2820 | |
| 2821 | typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; |
| 2822 | |
| 2823 | int reiserfs_parse_alloc_options(struct super_block *, char *); |
| 2824 | void reiserfs_init_alloc_options(struct super_block *s); |
| 2825 | |
| 2826 | /* |
| 2827 | * given a directory, this will tell you what packing locality |
| 2828 | * to use for a new object underneat it. The locality is returned |
| 2829 | * in disk byte order (le). |
| 2830 | */ |
| 2831 | __le32 reiserfs_choose_packing(struct inode *dir); |
| 2832 | |
| 2833 | int reiserfs_init_bitmap_cache(struct super_block *sb); |
| 2834 | void reiserfs_free_bitmap_cache(struct super_block *sb); |
| 2835 | void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); |
| 2836 | struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); |
| 2837 | int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); |
| 2838 | void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, |
| 2839 | b_blocknr_t, int for_unformatted); |
| 2840 | int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, |
| 2841 | int); |
| 2842 | static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, |
| 2843 | b_blocknr_t * new_blocknrs, |
| 2844 | int amount_needed) |
| 2845 | { |
| 2846 | reiserfs_blocknr_hint_t hint = { |
| 2847 | .th = tb->transaction_handle, |
| 2848 | .path = tb->tb_path, |
| 2849 | .inode = NULL, |
| 2850 | .key = tb->key, |
| 2851 | .block = 0, |
| 2852 | .formatted_node = 1 |
| 2853 | }; |
| 2854 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, |
| 2855 | 0); |
| 2856 | } |
| 2857 | |
| 2858 | static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle |
| 2859 | *th, struct inode *inode, |
| 2860 | b_blocknr_t * new_blocknrs, |
| 2861 | struct treepath *path, |
| 2862 | sector_t block) |
| 2863 | { |
| 2864 | reiserfs_blocknr_hint_t hint = { |
| 2865 | .th = th, |
| 2866 | .path = path, |
| 2867 | .inode = inode, |
| 2868 | .block = block, |
| 2869 | .formatted_node = 0, |
| 2870 | .preallocate = 0 |
| 2871 | }; |
| 2872 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); |
| 2873 | } |
| 2874 | |
| 2875 | #ifdef REISERFS_PREALLOCATE |
| 2876 | static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle |
| 2877 | *th, struct inode *inode, |
| 2878 | b_blocknr_t * new_blocknrs, |
| 2879 | struct treepath *path, |
| 2880 | sector_t block) |
| 2881 | { |
| 2882 | reiserfs_blocknr_hint_t hint = { |
| 2883 | .th = th, |
| 2884 | .path = path, |
| 2885 | .inode = inode, |
| 2886 | .block = block, |
| 2887 | .formatted_node = 0, |
| 2888 | .preallocate = 1 |
| 2889 | }; |
| 2890 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); |
| 2891 | } |
| 2892 | |
| 2893 | void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, |
| 2894 | struct inode *inode); |
| 2895 | void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); |
| 2896 | #endif |
| 2897 | |
| 2898 | /* hashes.c */ |
| 2899 | __u32 keyed_hash(const signed char *msg, int len); |
| 2900 | __u32 yura_hash(const signed char *msg, int len); |
| 2901 | __u32 r5_hash(const signed char *msg, int len); |
| 2902 | |
| 2903 | #define reiserfs_set_le_bit __set_bit_le |
| 2904 | #define reiserfs_test_and_set_le_bit __test_and_set_bit_le |
| 2905 | #define reiserfs_clear_le_bit __clear_bit_le |
| 2906 | #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le |
| 2907 | #define reiserfs_test_le_bit test_bit_le |
| 2908 | #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le |
| 2909 | |
| 2910 | /* sometimes reiserfs_truncate may require to allocate few new blocks |
| 2911 | to perform indirect2direct conversion. People probably used to |
| 2912 | think, that truncate should work without problems on a filesystem |
| 2913 | without free disk space. They may complain that they can not |
| 2914 | truncate due to lack of free disk space. This spare space allows us |
| 2915 | to not worry about it. 500 is probably too much, but it should be |
| 2916 | absolutely safe */ |
| 2917 | #define SPARE_SPACE 500 |
| 2918 | |
| 2919 | /* prototypes from ioctl.c */ |
| 2920 | long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); |
| 2921 | long reiserfs_compat_ioctl(struct file *filp, |
| 2922 | unsigned int cmd, unsigned long arg); |
| 2923 | int reiserfs_unpack(struct inode *inode, struct file *filp); |