Dmitry Kravkov | 9f6c925 | 2010-07-27 12:34:34 +0000 | [diff] [blame] | 1 | /* bnx2x_cmn.c: Broadcom Everest network driver. |
| 2 | * |
| 3 | * Copyright (c) 2007-2010 Broadcom Corporation |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation. |
| 8 | * |
| 9 | * Maintained by: Eilon Greenstein <eilong@broadcom.com> |
| 10 | * Written by: Eliezer Tamir |
| 11 | * Based on code from Michael Chan's bnx2 driver |
| 12 | * UDP CSUM errata workaround by Arik Gendelman |
| 13 | * Slowpath and fastpath rework by Vladislav Zolotarov |
| 14 | * Statistics and Link management by Yitchak Gertner |
| 15 | * |
| 16 | */ |
| 17 | |
| 18 | |
| 19 | #include <linux/etherdevice.h> |
| 20 | #include <linux/ip.h> |
| 21 | #include <linux/ipv6.h> |
Stephen Rothwell | 7f3e01f | 2010-07-28 22:20:34 -0700 | [diff] [blame] | 22 | #include <net/ip6_checksum.h> |
Dmitry Kravkov | 9f6c925 | 2010-07-27 12:34:34 +0000 | [diff] [blame] | 23 | #include "bnx2x_cmn.h" |
| 24 | |
| 25 | #ifdef BCM_VLAN |
| 26 | #include <linux/if_vlan.h> |
| 27 | #endif |
| 28 | |
| 29 | static int bnx2x_poll(struct napi_struct *napi, int budget); |
| 30 | |
| 31 | /* free skb in the packet ring at pos idx |
| 32 | * return idx of last bd freed |
| 33 | */ |
| 34 | static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fastpath *fp, |
| 35 | u16 idx) |
| 36 | { |
| 37 | struct sw_tx_bd *tx_buf = &fp->tx_buf_ring[idx]; |
| 38 | struct eth_tx_start_bd *tx_start_bd; |
| 39 | struct eth_tx_bd *tx_data_bd; |
| 40 | struct sk_buff *skb = tx_buf->skb; |
| 41 | u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; |
| 42 | int nbd; |
| 43 | |
| 44 | /* prefetch skb end pointer to speedup dev_kfree_skb() */ |
| 45 | prefetch(&skb->end); |
| 46 | |
| 47 | DP(BNX2X_MSG_OFF, "pkt_idx %d buff @(%p)->skb %p\n", |
| 48 | idx, tx_buf, skb); |
| 49 | |
| 50 | /* unmap first bd */ |
| 51 | DP(BNX2X_MSG_OFF, "free bd_idx %d\n", bd_idx); |
| 52 | tx_start_bd = &fp->tx_desc_ring[bd_idx].start_bd; |
| 53 | dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), |
| 54 | BD_UNMAP_LEN(tx_start_bd), PCI_DMA_TODEVICE); |
| 55 | |
| 56 | nbd = le16_to_cpu(tx_start_bd->nbd) - 1; |
| 57 | #ifdef BNX2X_STOP_ON_ERROR |
| 58 | if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { |
| 59 | BNX2X_ERR("BAD nbd!\n"); |
| 60 | bnx2x_panic(); |
| 61 | } |
| 62 | #endif |
| 63 | new_cons = nbd + tx_buf->first_bd; |
| 64 | |
| 65 | /* Get the next bd */ |
| 66 | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); |
| 67 | |
| 68 | /* Skip a parse bd... */ |
| 69 | --nbd; |
| 70 | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); |
| 71 | |
| 72 | /* ...and the TSO split header bd since they have no mapping */ |
| 73 | if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { |
| 74 | --nbd; |
| 75 | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); |
| 76 | } |
| 77 | |
| 78 | /* now free frags */ |
| 79 | while (nbd > 0) { |
| 80 | |
| 81 | DP(BNX2X_MSG_OFF, "free frag bd_idx %d\n", bd_idx); |
| 82 | tx_data_bd = &fp->tx_desc_ring[bd_idx].reg_bd; |
| 83 | dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), |
| 84 | BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); |
| 85 | if (--nbd) |
| 86 | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); |
| 87 | } |
| 88 | |
| 89 | /* release skb */ |
| 90 | WARN_ON(!skb); |
| 91 | dev_kfree_skb(skb); |
| 92 | tx_buf->first_bd = 0; |
| 93 | tx_buf->skb = NULL; |
| 94 | |
| 95 | return new_cons; |
| 96 | } |
| 97 | |
| 98 | int bnx2x_tx_int(struct bnx2x_fastpath *fp) |
| 99 | { |
| 100 | struct bnx2x *bp = fp->bp; |
| 101 | struct netdev_queue *txq; |
| 102 | u16 hw_cons, sw_cons, bd_cons = fp->tx_bd_cons; |
| 103 | |
| 104 | #ifdef BNX2X_STOP_ON_ERROR |
| 105 | if (unlikely(bp->panic)) |
| 106 | return -1; |
| 107 | #endif |
| 108 | |
| 109 | txq = netdev_get_tx_queue(bp->dev, fp->index); |
| 110 | hw_cons = le16_to_cpu(*fp->tx_cons_sb); |
| 111 | sw_cons = fp->tx_pkt_cons; |
| 112 | |
| 113 | while (sw_cons != hw_cons) { |
| 114 | u16 pkt_cons; |
| 115 | |
| 116 | pkt_cons = TX_BD(sw_cons); |
| 117 | |
| 118 | /* prefetch(bp->tx_buf_ring[pkt_cons].skb); */ |
| 119 | |
| 120 | DP(NETIF_MSG_TX_DONE, "hw_cons %u sw_cons %u pkt_cons %u\n", |
| 121 | hw_cons, sw_cons, pkt_cons); |
| 122 | |
| 123 | /* if (NEXT_TX_IDX(sw_cons) != hw_cons) { |
| 124 | rmb(); |
| 125 | prefetch(fp->tx_buf_ring[NEXT_TX_IDX(sw_cons)].skb); |
| 126 | } |
| 127 | */ |
| 128 | bd_cons = bnx2x_free_tx_pkt(bp, fp, pkt_cons); |
| 129 | sw_cons++; |
| 130 | } |
| 131 | |
| 132 | fp->tx_pkt_cons = sw_cons; |
| 133 | fp->tx_bd_cons = bd_cons; |
| 134 | |
| 135 | /* Need to make the tx_bd_cons update visible to start_xmit() |
| 136 | * before checking for netif_tx_queue_stopped(). Without the |
| 137 | * memory barrier, there is a small possibility that |
| 138 | * start_xmit() will miss it and cause the queue to be stopped |
| 139 | * forever. |
| 140 | */ |
| 141 | smp_mb(); |
| 142 | |
| 143 | /* TBD need a thresh? */ |
| 144 | if (unlikely(netif_tx_queue_stopped(txq))) { |
| 145 | /* Taking tx_lock() is needed to prevent reenabling the queue |
| 146 | * while it's empty. This could have happen if rx_action() gets |
| 147 | * suspended in bnx2x_tx_int() after the condition before |
| 148 | * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): |
| 149 | * |
| 150 | * stops the queue->sees fresh tx_bd_cons->releases the queue-> |
| 151 | * sends some packets consuming the whole queue again-> |
| 152 | * stops the queue |
| 153 | */ |
| 154 | |
| 155 | __netif_tx_lock(txq, smp_processor_id()); |
| 156 | |
| 157 | if ((netif_tx_queue_stopped(txq)) && |
| 158 | (bp->state == BNX2X_STATE_OPEN) && |
| 159 | (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3)) |
| 160 | netif_tx_wake_queue(txq); |
| 161 | |
| 162 | __netif_tx_unlock(txq); |
| 163 | } |
| 164 | return 0; |
| 165 | } |
| 166 | |
| 167 | static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, |
| 168 | u16 idx) |
| 169 | { |
| 170 | u16 last_max = fp->last_max_sge; |
| 171 | |
| 172 | if (SUB_S16(idx, last_max) > 0) |
| 173 | fp->last_max_sge = idx; |
| 174 | } |
| 175 | |
| 176 | static void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, |
| 177 | struct eth_fast_path_rx_cqe *fp_cqe) |
| 178 | { |
| 179 | struct bnx2x *bp = fp->bp; |
| 180 | u16 sge_len = SGE_PAGE_ALIGN(le16_to_cpu(fp_cqe->pkt_len) - |
| 181 | le16_to_cpu(fp_cqe->len_on_bd)) >> |
| 182 | SGE_PAGE_SHIFT; |
| 183 | u16 last_max, last_elem, first_elem; |
| 184 | u16 delta = 0; |
| 185 | u16 i; |
| 186 | |
| 187 | if (!sge_len) |
| 188 | return; |
| 189 | |
| 190 | /* First mark all used pages */ |
| 191 | for (i = 0; i < sge_len; i++) |
| 192 | SGE_MASK_CLEAR_BIT(fp, RX_SGE(le16_to_cpu(fp_cqe->sgl[i]))); |
| 193 | |
| 194 | DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", |
| 195 | sge_len - 1, le16_to_cpu(fp_cqe->sgl[sge_len - 1])); |
| 196 | |
| 197 | /* Here we assume that the last SGE index is the biggest */ |
| 198 | prefetch((void *)(fp->sge_mask)); |
| 199 | bnx2x_update_last_max_sge(fp, le16_to_cpu(fp_cqe->sgl[sge_len - 1])); |
| 200 | |
| 201 | last_max = RX_SGE(fp->last_max_sge); |
| 202 | last_elem = last_max >> RX_SGE_MASK_ELEM_SHIFT; |
| 203 | first_elem = RX_SGE(fp->rx_sge_prod) >> RX_SGE_MASK_ELEM_SHIFT; |
| 204 | |
| 205 | /* If ring is not full */ |
| 206 | if (last_elem + 1 != first_elem) |
| 207 | last_elem++; |
| 208 | |
| 209 | /* Now update the prod */ |
| 210 | for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { |
| 211 | if (likely(fp->sge_mask[i])) |
| 212 | break; |
| 213 | |
| 214 | fp->sge_mask[i] = RX_SGE_MASK_ELEM_ONE_MASK; |
| 215 | delta += RX_SGE_MASK_ELEM_SZ; |
| 216 | } |
| 217 | |
| 218 | if (delta > 0) { |
| 219 | fp->rx_sge_prod += delta; |
| 220 | /* clear page-end entries */ |
| 221 | bnx2x_clear_sge_mask_next_elems(fp); |
| 222 | } |
| 223 | |
| 224 | DP(NETIF_MSG_RX_STATUS, |
| 225 | "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", |
| 226 | fp->last_max_sge, fp->rx_sge_prod); |
| 227 | } |
| 228 | |
| 229 | static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, |
| 230 | struct sk_buff *skb, u16 cons, u16 prod) |
| 231 | { |
| 232 | struct bnx2x *bp = fp->bp; |
| 233 | struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; |
| 234 | struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; |
| 235 | struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; |
| 236 | dma_addr_t mapping; |
| 237 | |
| 238 | /* move empty skb from pool to prod and map it */ |
| 239 | prod_rx_buf->skb = fp->tpa_pool[queue].skb; |
| 240 | mapping = dma_map_single(&bp->pdev->dev, fp->tpa_pool[queue].skb->data, |
| 241 | bp->rx_buf_size, DMA_FROM_DEVICE); |
| 242 | dma_unmap_addr_set(prod_rx_buf, mapping, mapping); |
| 243 | |
| 244 | /* move partial skb from cons to pool (don't unmap yet) */ |
| 245 | fp->tpa_pool[queue] = *cons_rx_buf; |
| 246 | |
| 247 | /* mark bin state as start - print error if current state != stop */ |
| 248 | if (fp->tpa_state[queue] != BNX2X_TPA_STOP) |
| 249 | BNX2X_ERR("start of bin not in stop [%d]\n", queue); |
| 250 | |
| 251 | fp->tpa_state[queue] = BNX2X_TPA_START; |
| 252 | |
| 253 | /* point prod_bd to new skb */ |
| 254 | prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| 255 | prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| 256 | |
| 257 | #ifdef BNX2X_STOP_ON_ERROR |
| 258 | fp->tpa_queue_used |= (1 << queue); |
| 259 | #ifdef _ASM_GENERIC_INT_L64_H |
| 260 | DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n", |
| 261 | #else |
| 262 | DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", |
| 263 | #endif |
| 264 | fp->tpa_queue_used); |
| 265 | #endif |
| 266 | } |
| 267 | |
| 268 | static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, |
| 269 | struct sk_buff *skb, |
| 270 | struct eth_fast_path_rx_cqe *fp_cqe, |
| 271 | u16 cqe_idx) |
| 272 | { |
| 273 | struct sw_rx_page *rx_pg, old_rx_pg; |
| 274 | u16 len_on_bd = le16_to_cpu(fp_cqe->len_on_bd); |
| 275 | u32 i, frag_len, frag_size, pages; |
| 276 | int err; |
| 277 | int j; |
| 278 | |
| 279 | frag_size = le16_to_cpu(fp_cqe->pkt_len) - len_on_bd; |
| 280 | pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; |
| 281 | |
| 282 | /* This is needed in order to enable forwarding support */ |
| 283 | if (frag_size) |
| 284 | skb_shinfo(skb)->gso_size = min((u32)SGE_PAGE_SIZE, |
| 285 | max(frag_size, (u32)len_on_bd)); |
| 286 | |
| 287 | #ifdef BNX2X_STOP_ON_ERROR |
| 288 | if (pages > min_t(u32, 8, MAX_SKB_FRAGS)*SGE_PAGE_SIZE*PAGES_PER_SGE) { |
| 289 | BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", |
| 290 | pages, cqe_idx); |
| 291 | BNX2X_ERR("fp_cqe->pkt_len = %d fp_cqe->len_on_bd = %d\n", |
| 292 | fp_cqe->pkt_len, len_on_bd); |
| 293 | bnx2x_panic(); |
| 294 | return -EINVAL; |
| 295 | } |
| 296 | #endif |
| 297 | |
| 298 | /* Run through the SGL and compose the fragmented skb */ |
| 299 | for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { |
| 300 | u16 sge_idx = RX_SGE(le16_to_cpu(fp_cqe->sgl[j])); |
| 301 | |
| 302 | /* FW gives the indices of the SGE as if the ring is an array |
| 303 | (meaning that "next" element will consume 2 indices) */ |
| 304 | frag_len = min(frag_size, (u32)(SGE_PAGE_SIZE*PAGES_PER_SGE)); |
| 305 | rx_pg = &fp->rx_page_ring[sge_idx]; |
| 306 | old_rx_pg = *rx_pg; |
| 307 | |
| 308 | /* If we fail to allocate a substitute page, we simply stop |
| 309 | where we are and drop the whole packet */ |
| 310 | err = bnx2x_alloc_rx_sge(bp, fp, sge_idx); |
| 311 | if (unlikely(err)) { |
| 312 | fp->eth_q_stats.rx_skb_alloc_failed++; |
| 313 | return err; |
| 314 | } |
| 315 | |
| 316 | /* Unmap the page as we r going to pass it to the stack */ |
| 317 | dma_unmap_page(&bp->pdev->dev, |
| 318 | dma_unmap_addr(&old_rx_pg, mapping), |
| 319 | SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE); |
| 320 | |
| 321 | /* Add one frag and update the appropriate fields in the skb */ |
| 322 | skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); |
| 323 | |
| 324 | skb->data_len += frag_len; |
| 325 | skb->truesize += frag_len; |
| 326 | skb->len += frag_len; |
| 327 | |
| 328 | frag_size -= frag_len; |
| 329 | } |
| 330 | |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, |
| 335 | u16 queue, int pad, int len, union eth_rx_cqe *cqe, |
| 336 | u16 cqe_idx) |
| 337 | { |
| 338 | struct sw_rx_bd *rx_buf = &fp->tpa_pool[queue]; |
| 339 | struct sk_buff *skb = rx_buf->skb; |
| 340 | /* alloc new skb */ |
| 341 | struct sk_buff *new_skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size); |
| 342 | |
| 343 | /* Unmap skb in the pool anyway, as we are going to change |
| 344 | pool entry status to BNX2X_TPA_STOP even if new skb allocation |
| 345 | fails. */ |
| 346 | dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), |
| 347 | bp->rx_buf_size, DMA_FROM_DEVICE); |
| 348 | |
| 349 | if (likely(new_skb)) { |
| 350 | /* fix ip xsum and give it to the stack */ |
| 351 | /* (no need to map the new skb) */ |
| 352 | #ifdef BCM_VLAN |
| 353 | int is_vlan_cqe = |
| 354 | (le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) & |
| 355 | PARSING_FLAGS_VLAN); |
| 356 | int is_not_hwaccel_vlan_cqe = |
| 357 | (is_vlan_cqe && (!(bp->flags & HW_VLAN_RX_FLAG))); |
| 358 | #endif |
| 359 | |
| 360 | prefetch(skb); |
| 361 | prefetch(((char *)(skb)) + 128); |
| 362 | |
| 363 | #ifdef BNX2X_STOP_ON_ERROR |
| 364 | if (pad + len > bp->rx_buf_size) { |
| 365 | BNX2X_ERR("skb_put is about to fail... " |
| 366 | "pad %d len %d rx_buf_size %d\n", |
| 367 | pad, len, bp->rx_buf_size); |
| 368 | bnx2x_panic(); |
| 369 | return; |
| 370 | } |
| 371 | #endif |
| 372 | |
| 373 | skb_reserve(skb, pad); |
| 374 | skb_put(skb, len); |
| 375 | |
| 376 | skb->protocol = eth_type_trans(skb, bp->dev); |
| 377 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 378 | |
| 379 | { |
| 380 | struct iphdr *iph; |
| 381 | |
| 382 | iph = (struct iphdr *)skb->data; |
| 383 | #ifdef BCM_VLAN |
| 384 | /* If there is no Rx VLAN offloading - |
| 385 | take VLAN tag into an account */ |
| 386 | if (unlikely(is_not_hwaccel_vlan_cqe)) |
| 387 | iph = (struct iphdr *)((u8 *)iph + VLAN_HLEN); |
| 388 | #endif |
| 389 | iph->check = 0; |
| 390 | iph->check = ip_fast_csum((u8 *)iph, iph->ihl); |
| 391 | } |
| 392 | |
| 393 | if (!bnx2x_fill_frag_skb(bp, fp, skb, |
| 394 | &cqe->fast_path_cqe, cqe_idx)) { |
| 395 | #ifdef BCM_VLAN |
| 396 | if ((bp->vlgrp != NULL) && is_vlan_cqe && |
| 397 | (!is_not_hwaccel_vlan_cqe)) |
| 398 | vlan_gro_receive(&fp->napi, bp->vlgrp, |
| 399 | le16_to_cpu(cqe->fast_path_cqe. |
| 400 | vlan_tag), skb); |
| 401 | else |
| 402 | #endif |
| 403 | napi_gro_receive(&fp->napi, skb); |
| 404 | } else { |
| 405 | DP(NETIF_MSG_RX_STATUS, "Failed to allocate new pages" |
| 406 | " - dropping packet!\n"); |
| 407 | dev_kfree_skb(skb); |
| 408 | } |
| 409 | |
| 410 | |
| 411 | /* put new skb in bin */ |
| 412 | fp->tpa_pool[queue].skb = new_skb; |
| 413 | |
| 414 | } else { |
| 415 | /* else drop the packet and keep the buffer in the bin */ |
| 416 | DP(NETIF_MSG_RX_STATUS, |
| 417 | "Failed to allocate new skb - dropping packet!\n"); |
| 418 | fp->eth_q_stats.rx_skb_alloc_failed++; |
| 419 | } |
| 420 | |
| 421 | fp->tpa_state[queue] = BNX2X_TPA_STOP; |
| 422 | } |
| 423 | |
| 424 | /* Set Toeplitz hash value in the skb using the value from the |
| 425 | * CQE (calculated by HW). |
| 426 | */ |
| 427 | static inline void bnx2x_set_skb_rxhash(struct bnx2x *bp, union eth_rx_cqe *cqe, |
| 428 | struct sk_buff *skb) |
| 429 | { |
| 430 | /* Set Toeplitz hash from CQE */ |
| 431 | if ((bp->dev->features & NETIF_F_RXHASH) && |
| 432 | (cqe->fast_path_cqe.status_flags & |
| 433 | ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) |
| 434 | skb->rxhash = |
| 435 | le32_to_cpu(cqe->fast_path_cqe.rss_hash_result); |
| 436 | } |
| 437 | |
| 438 | int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) |
| 439 | { |
| 440 | struct bnx2x *bp = fp->bp; |
| 441 | u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; |
| 442 | u16 hw_comp_cons, sw_comp_cons, sw_comp_prod; |
| 443 | int rx_pkt = 0; |
| 444 | |
| 445 | #ifdef BNX2X_STOP_ON_ERROR |
| 446 | if (unlikely(bp->panic)) |
| 447 | return 0; |
| 448 | #endif |
| 449 | |
| 450 | /* CQ "next element" is of the size of the regular element, |
| 451 | that's why it's ok here */ |
| 452 | hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb); |
| 453 | if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT) |
| 454 | hw_comp_cons++; |
| 455 | |
| 456 | bd_cons = fp->rx_bd_cons; |
| 457 | bd_prod = fp->rx_bd_prod; |
| 458 | bd_prod_fw = bd_prod; |
| 459 | sw_comp_cons = fp->rx_comp_cons; |
| 460 | sw_comp_prod = fp->rx_comp_prod; |
| 461 | |
| 462 | /* Memory barrier necessary as speculative reads of the rx |
| 463 | * buffer can be ahead of the index in the status block |
| 464 | */ |
| 465 | rmb(); |
| 466 | |
| 467 | DP(NETIF_MSG_RX_STATUS, |
| 468 | "queue[%d]: hw_comp_cons %u sw_comp_cons %u\n", |
| 469 | fp->index, hw_comp_cons, sw_comp_cons); |
| 470 | |
| 471 | while (sw_comp_cons != hw_comp_cons) { |
| 472 | struct sw_rx_bd *rx_buf = NULL; |
| 473 | struct sk_buff *skb; |
| 474 | union eth_rx_cqe *cqe; |
| 475 | u8 cqe_fp_flags; |
| 476 | u16 len, pad; |
| 477 | |
| 478 | comp_ring_cons = RCQ_BD(sw_comp_cons); |
| 479 | bd_prod = RX_BD(bd_prod); |
| 480 | bd_cons = RX_BD(bd_cons); |
| 481 | |
| 482 | /* Prefetch the page containing the BD descriptor |
| 483 | at producer's index. It will be needed when new skb is |
| 484 | allocated */ |
| 485 | prefetch((void *)(PAGE_ALIGN((unsigned long) |
| 486 | (&fp->rx_desc_ring[bd_prod])) - |
| 487 | PAGE_SIZE + 1)); |
| 488 | |
| 489 | cqe = &fp->rx_comp_ring[comp_ring_cons]; |
| 490 | cqe_fp_flags = cqe->fast_path_cqe.type_error_flags; |
| 491 | |
| 492 | DP(NETIF_MSG_RX_STATUS, "CQE type %x err %x status %x" |
| 493 | " queue %x vlan %x len %u\n", CQE_TYPE(cqe_fp_flags), |
| 494 | cqe_fp_flags, cqe->fast_path_cqe.status_flags, |
| 495 | le32_to_cpu(cqe->fast_path_cqe.rss_hash_result), |
| 496 | le16_to_cpu(cqe->fast_path_cqe.vlan_tag), |
| 497 | le16_to_cpu(cqe->fast_path_cqe.pkt_len)); |
| 498 | |
| 499 | /* is this a slowpath msg? */ |
| 500 | if (unlikely(CQE_TYPE(cqe_fp_flags))) { |
| 501 | bnx2x_sp_event(fp, cqe); |
| 502 | goto next_cqe; |
| 503 | |
| 504 | /* this is an rx packet */ |
| 505 | } else { |
| 506 | rx_buf = &fp->rx_buf_ring[bd_cons]; |
| 507 | skb = rx_buf->skb; |
| 508 | prefetch(skb); |
| 509 | len = le16_to_cpu(cqe->fast_path_cqe.pkt_len); |
| 510 | pad = cqe->fast_path_cqe.placement_offset; |
| 511 | |
| 512 | /* If CQE is marked both TPA_START and TPA_END |
| 513 | it is a non-TPA CQE */ |
| 514 | if ((!fp->disable_tpa) && |
| 515 | (TPA_TYPE(cqe_fp_flags) != |
| 516 | (TPA_TYPE_START | TPA_TYPE_END))) { |
| 517 | u16 queue = cqe->fast_path_cqe.queue_index; |
| 518 | |
| 519 | if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_START) { |
| 520 | DP(NETIF_MSG_RX_STATUS, |
| 521 | "calling tpa_start on queue %d\n", |
| 522 | queue); |
| 523 | |
| 524 | bnx2x_tpa_start(fp, queue, skb, |
| 525 | bd_cons, bd_prod); |
| 526 | |
| 527 | /* Set Toeplitz hash for an LRO skb */ |
| 528 | bnx2x_set_skb_rxhash(bp, cqe, skb); |
| 529 | |
| 530 | goto next_rx; |
| 531 | } |
| 532 | |
| 533 | if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_END) { |
| 534 | DP(NETIF_MSG_RX_STATUS, |
| 535 | "calling tpa_stop on queue %d\n", |
| 536 | queue); |
| 537 | |
| 538 | if (!BNX2X_RX_SUM_FIX(cqe)) |
| 539 | BNX2X_ERR("STOP on none TCP " |
| 540 | "data\n"); |
| 541 | |
| 542 | /* This is a size of the linear data |
| 543 | on this skb */ |
| 544 | len = le16_to_cpu(cqe->fast_path_cqe. |
| 545 | len_on_bd); |
| 546 | bnx2x_tpa_stop(bp, fp, queue, pad, |
| 547 | len, cqe, comp_ring_cons); |
| 548 | #ifdef BNX2X_STOP_ON_ERROR |
| 549 | if (bp->panic) |
| 550 | return 0; |
| 551 | #endif |
| 552 | |
| 553 | bnx2x_update_sge_prod(fp, |
| 554 | &cqe->fast_path_cqe); |
| 555 | goto next_cqe; |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | dma_sync_single_for_device(&bp->pdev->dev, |
| 560 | dma_unmap_addr(rx_buf, mapping), |
| 561 | pad + RX_COPY_THRESH, |
| 562 | DMA_FROM_DEVICE); |
| 563 | prefetch(((char *)(skb)) + 128); |
| 564 | |
| 565 | /* is this an error packet? */ |
| 566 | if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { |
| 567 | DP(NETIF_MSG_RX_ERR, |
| 568 | "ERROR flags %x rx packet %u\n", |
| 569 | cqe_fp_flags, sw_comp_cons); |
| 570 | fp->eth_q_stats.rx_err_discard_pkt++; |
| 571 | goto reuse_rx; |
| 572 | } |
| 573 | |
| 574 | /* Since we don't have a jumbo ring |
| 575 | * copy small packets if mtu > 1500 |
| 576 | */ |
| 577 | if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && |
| 578 | (len <= RX_COPY_THRESH)) { |
| 579 | struct sk_buff *new_skb; |
| 580 | |
| 581 | new_skb = netdev_alloc_skb(bp->dev, |
| 582 | len + pad); |
| 583 | if (new_skb == NULL) { |
| 584 | DP(NETIF_MSG_RX_ERR, |
| 585 | "ERROR packet dropped " |
| 586 | "because of alloc failure\n"); |
| 587 | fp->eth_q_stats.rx_skb_alloc_failed++; |
| 588 | goto reuse_rx; |
| 589 | } |
| 590 | |
| 591 | /* aligned copy */ |
| 592 | skb_copy_from_linear_data_offset(skb, pad, |
| 593 | new_skb->data + pad, len); |
| 594 | skb_reserve(new_skb, pad); |
| 595 | skb_put(new_skb, len); |
| 596 | |
| 597 | bnx2x_reuse_rx_skb(fp, skb, bd_cons, bd_prod); |
| 598 | |
| 599 | skb = new_skb; |
| 600 | |
| 601 | } else |
| 602 | if (likely(bnx2x_alloc_rx_skb(bp, fp, bd_prod) == 0)) { |
| 603 | dma_unmap_single(&bp->pdev->dev, |
| 604 | dma_unmap_addr(rx_buf, mapping), |
| 605 | bp->rx_buf_size, |
| 606 | DMA_FROM_DEVICE); |
| 607 | skb_reserve(skb, pad); |
| 608 | skb_put(skb, len); |
| 609 | |
| 610 | } else { |
| 611 | DP(NETIF_MSG_RX_ERR, |
| 612 | "ERROR packet dropped because " |
| 613 | "of alloc failure\n"); |
| 614 | fp->eth_q_stats.rx_skb_alloc_failed++; |
| 615 | reuse_rx: |
| 616 | bnx2x_reuse_rx_skb(fp, skb, bd_cons, bd_prod); |
| 617 | goto next_rx; |
| 618 | } |
| 619 | |
| 620 | skb->protocol = eth_type_trans(skb, bp->dev); |
| 621 | |
| 622 | /* Set Toeplitz hash for a none-LRO skb */ |
| 623 | bnx2x_set_skb_rxhash(bp, cqe, skb); |
| 624 | |
| 625 | skb->ip_summed = CHECKSUM_NONE; |
| 626 | if (bp->rx_csum) { |
| 627 | if (likely(BNX2X_RX_CSUM_OK(cqe))) |
| 628 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 629 | else |
| 630 | fp->eth_q_stats.hw_csum_err++; |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | skb_record_rx_queue(skb, fp->index); |
| 635 | |
| 636 | #ifdef BCM_VLAN |
| 637 | if ((bp->vlgrp != NULL) && (bp->flags & HW_VLAN_RX_FLAG) && |
| 638 | (le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) & |
| 639 | PARSING_FLAGS_VLAN)) |
| 640 | vlan_gro_receive(&fp->napi, bp->vlgrp, |
| 641 | le16_to_cpu(cqe->fast_path_cqe.vlan_tag), skb); |
| 642 | else |
| 643 | #endif |
| 644 | napi_gro_receive(&fp->napi, skb); |
| 645 | |
| 646 | |
| 647 | next_rx: |
| 648 | rx_buf->skb = NULL; |
| 649 | |
| 650 | bd_cons = NEXT_RX_IDX(bd_cons); |
| 651 | bd_prod = NEXT_RX_IDX(bd_prod); |
| 652 | bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); |
| 653 | rx_pkt++; |
| 654 | next_cqe: |
| 655 | sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); |
| 656 | sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); |
| 657 | |
| 658 | if (rx_pkt == budget) |
| 659 | break; |
| 660 | } /* while */ |
| 661 | |
| 662 | fp->rx_bd_cons = bd_cons; |
| 663 | fp->rx_bd_prod = bd_prod_fw; |
| 664 | fp->rx_comp_cons = sw_comp_cons; |
| 665 | fp->rx_comp_prod = sw_comp_prod; |
| 666 | |
| 667 | /* Update producers */ |
| 668 | bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, |
| 669 | fp->rx_sge_prod); |
| 670 | |
| 671 | fp->rx_pkt += rx_pkt; |
| 672 | fp->rx_calls++; |
| 673 | |
| 674 | return rx_pkt; |
| 675 | } |
| 676 | |
| 677 | static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) |
| 678 | { |
| 679 | struct bnx2x_fastpath *fp = fp_cookie; |
| 680 | struct bnx2x *bp = fp->bp; |
| 681 | |
| 682 | /* Return here if interrupt is disabled */ |
| 683 | if (unlikely(atomic_read(&bp->intr_sem) != 0)) { |
| 684 | DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n"); |
| 685 | return IRQ_HANDLED; |
| 686 | } |
| 687 | |
| 688 | DP(BNX2X_MSG_FP, "got an MSI-X interrupt on IDX:SB [%d:%d]\n", |
| 689 | fp->index, fp->sb_id); |
| 690 | bnx2x_ack_sb(bp, fp->sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); |
| 691 | |
| 692 | #ifdef BNX2X_STOP_ON_ERROR |
| 693 | if (unlikely(bp->panic)) |
| 694 | return IRQ_HANDLED; |
| 695 | #endif |
| 696 | |
| 697 | /* Handle Rx and Tx according to MSI-X vector */ |
| 698 | prefetch(fp->rx_cons_sb); |
| 699 | prefetch(fp->tx_cons_sb); |
| 700 | prefetch(&fp->status_blk->u_status_block.status_block_index); |
| 701 | prefetch(&fp->status_blk->c_status_block.status_block_index); |
| 702 | napi_schedule(&bnx2x_fp(bp, fp->index, napi)); |
| 703 | |
| 704 | return IRQ_HANDLED; |
| 705 | } |
| 706 | |
| 707 | |
| 708 | /* HW Lock for shared dual port PHYs */ |
| 709 | void bnx2x_acquire_phy_lock(struct bnx2x *bp) |
| 710 | { |
| 711 | mutex_lock(&bp->port.phy_mutex); |
| 712 | |
| 713 | if (bp->port.need_hw_lock) |
| 714 | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); |
| 715 | } |
| 716 | |
| 717 | void bnx2x_release_phy_lock(struct bnx2x *bp) |
| 718 | { |
| 719 | if (bp->port.need_hw_lock) |
| 720 | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); |
| 721 | |
| 722 | mutex_unlock(&bp->port.phy_mutex); |
| 723 | } |
| 724 | |
| 725 | void bnx2x_link_report(struct bnx2x *bp) |
| 726 | { |
| 727 | if (bp->flags & MF_FUNC_DIS) { |
| 728 | netif_carrier_off(bp->dev); |
| 729 | netdev_err(bp->dev, "NIC Link is Down\n"); |
| 730 | return; |
| 731 | } |
| 732 | |
| 733 | if (bp->link_vars.link_up) { |
| 734 | u16 line_speed; |
| 735 | |
| 736 | if (bp->state == BNX2X_STATE_OPEN) |
| 737 | netif_carrier_on(bp->dev); |
| 738 | netdev_info(bp->dev, "NIC Link is Up, "); |
| 739 | |
| 740 | line_speed = bp->link_vars.line_speed; |
| 741 | if (IS_E1HMF(bp)) { |
| 742 | u16 vn_max_rate; |
| 743 | |
| 744 | vn_max_rate = |
| 745 | ((bp->mf_config & FUNC_MF_CFG_MAX_BW_MASK) >> |
| 746 | FUNC_MF_CFG_MAX_BW_SHIFT) * 100; |
| 747 | if (vn_max_rate < line_speed) |
| 748 | line_speed = vn_max_rate; |
| 749 | } |
| 750 | pr_cont("%d Mbps ", line_speed); |
| 751 | |
| 752 | if (bp->link_vars.duplex == DUPLEX_FULL) |
| 753 | pr_cont("full duplex"); |
| 754 | else |
| 755 | pr_cont("half duplex"); |
| 756 | |
| 757 | if (bp->link_vars.flow_ctrl != BNX2X_FLOW_CTRL_NONE) { |
| 758 | if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) { |
| 759 | pr_cont(", receive "); |
| 760 | if (bp->link_vars.flow_ctrl & |
| 761 | BNX2X_FLOW_CTRL_TX) |
| 762 | pr_cont("& transmit "); |
| 763 | } else { |
| 764 | pr_cont(", transmit "); |
| 765 | } |
| 766 | pr_cont("flow control ON"); |
| 767 | } |
| 768 | pr_cont("\n"); |
| 769 | |
| 770 | } else { /* link_down */ |
| 771 | netif_carrier_off(bp->dev); |
| 772 | netdev_err(bp->dev, "NIC Link is Down\n"); |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | void bnx2x_init_rx_rings(struct bnx2x *bp) |
| 777 | { |
| 778 | int func = BP_FUNC(bp); |
| 779 | int max_agg_queues = CHIP_IS_E1(bp) ? ETH_MAX_AGGREGATION_QUEUES_E1 : |
| 780 | ETH_MAX_AGGREGATION_QUEUES_E1H; |
| 781 | u16 ring_prod, cqe_ring_prod; |
| 782 | int i, j; |
| 783 | |
| 784 | bp->rx_buf_size = bp->dev->mtu + ETH_OVREHEAD + BNX2X_RX_ALIGN; |
| 785 | DP(NETIF_MSG_IFUP, |
| 786 | "mtu %d rx_buf_size %d\n", bp->dev->mtu, bp->rx_buf_size); |
| 787 | |
| 788 | if (bp->flags & TPA_ENABLE_FLAG) { |
| 789 | |
| 790 | for_each_queue(bp, j) { |
| 791 | struct bnx2x_fastpath *fp = &bp->fp[j]; |
| 792 | |
| 793 | for (i = 0; i < max_agg_queues; i++) { |
| 794 | fp->tpa_pool[i].skb = |
| 795 | netdev_alloc_skb(bp->dev, bp->rx_buf_size); |
| 796 | if (!fp->tpa_pool[i].skb) { |
| 797 | BNX2X_ERR("Failed to allocate TPA " |
| 798 | "skb pool for queue[%d] - " |
| 799 | "disabling TPA on this " |
| 800 | "queue!\n", j); |
| 801 | bnx2x_free_tpa_pool(bp, fp, i); |
| 802 | fp->disable_tpa = 1; |
| 803 | break; |
| 804 | } |
| 805 | dma_unmap_addr_set((struct sw_rx_bd *) |
| 806 | &bp->fp->tpa_pool[i], |
| 807 | mapping, 0); |
| 808 | fp->tpa_state[i] = BNX2X_TPA_STOP; |
| 809 | } |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | for_each_queue(bp, j) { |
| 814 | struct bnx2x_fastpath *fp = &bp->fp[j]; |
| 815 | |
| 816 | fp->rx_bd_cons = 0; |
| 817 | fp->rx_cons_sb = BNX2X_RX_SB_INDEX; |
| 818 | fp->rx_bd_cons_sb = BNX2X_RX_SB_BD_INDEX; |
| 819 | |
| 820 | /* "next page" elements initialization */ |
| 821 | /* SGE ring */ |
| 822 | for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { |
| 823 | struct eth_rx_sge *sge; |
| 824 | |
| 825 | sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; |
| 826 | sge->addr_hi = |
| 827 | cpu_to_le32(U64_HI(fp->rx_sge_mapping + |
| 828 | BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); |
| 829 | sge->addr_lo = |
| 830 | cpu_to_le32(U64_LO(fp->rx_sge_mapping + |
| 831 | BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); |
| 832 | } |
| 833 | |
| 834 | bnx2x_init_sge_ring_bit_mask(fp); |
| 835 | |
| 836 | /* RX BD ring */ |
| 837 | for (i = 1; i <= NUM_RX_RINGS; i++) { |
| 838 | struct eth_rx_bd *rx_bd; |
| 839 | |
| 840 | rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2]; |
| 841 | rx_bd->addr_hi = |
| 842 | cpu_to_le32(U64_HI(fp->rx_desc_mapping + |
| 843 | BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); |
| 844 | rx_bd->addr_lo = |
| 845 | cpu_to_le32(U64_LO(fp->rx_desc_mapping + |
| 846 | BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); |
| 847 | } |
| 848 | |
| 849 | /* CQ ring */ |
| 850 | for (i = 1; i <= NUM_RCQ_RINGS; i++) { |
| 851 | struct eth_rx_cqe_next_page *nextpg; |
| 852 | |
| 853 | nextpg = (struct eth_rx_cqe_next_page *) |
| 854 | &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; |
| 855 | nextpg->addr_hi = |
| 856 | cpu_to_le32(U64_HI(fp->rx_comp_mapping + |
| 857 | BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); |
| 858 | nextpg->addr_lo = |
| 859 | cpu_to_le32(U64_LO(fp->rx_comp_mapping + |
| 860 | BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); |
| 861 | } |
| 862 | |
| 863 | /* Allocate SGEs and initialize the ring elements */ |
| 864 | for (i = 0, ring_prod = 0; |
| 865 | i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { |
| 866 | |
| 867 | if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) { |
| 868 | BNX2X_ERR("was only able to allocate " |
| 869 | "%d rx sges\n", i); |
| 870 | BNX2X_ERR("disabling TPA for queue[%d]\n", j); |
| 871 | /* Cleanup already allocated elements */ |
| 872 | bnx2x_free_rx_sge_range(bp, fp, ring_prod); |
| 873 | bnx2x_free_tpa_pool(bp, fp, max_agg_queues); |
| 874 | fp->disable_tpa = 1; |
| 875 | ring_prod = 0; |
| 876 | break; |
| 877 | } |
| 878 | ring_prod = NEXT_SGE_IDX(ring_prod); |
| 879 | } |
| 880 | fp->rx_sge_prod = ring_prod; |
| 881 | |
| 882 | /* Allocate BDs and initialize BD ring */ |
| 883 | fp->rx_comp_cons = 0; |
| 884 | cqe_ring_prod = ring_prod = 0; |
| 885 | for (i = 0; i < bp->rx_ring_size; i++) { |
| 886 | if (bnx2x_alloc_rx_skb(bp, fp, ring_prod) < 0) { |
| 887 | BNX2X_ERR("was only able to allocate " |
| 888 | "%d rx skbs on queue[%d]\n", i, j); |
| 889 | fp->eth_q_stats.rx_skb_alloc_failed++; |
| 890 | break; |
| 891 | } |
| 892 | ring_prod = NEXT_RX_IDX(ring_prod); |
| 893 | cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); |
| 894 | WARN_ON(ring_prod <= i); |
| 895 | } |
| 896 | |
| 897 | fp->rx_bd_prod = ring_prod; |
| 898 | /* must not have more available CQEs than BDs */ |
| 899 | fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, |
| 900 | cqe_ring_prod); |
| 901 | fp->rx_pkt = fp->rx_calls = 0; |
| 902 | |
| 903 | /* Warning! |
| 904 | * this will generate an interrupt (to the TSTORM) |
| 905 | * must only be done after chip is initialized |
| 906 | */ |
| 907 | bnx2x_update_rx_prod(bp, fp, ring_prod, fp->rx_comp_prod, |
| 908 | fp->rx_sge_prod); |
| 909 | if (j != 0) |
| 910 | continue; |
| 911 | |
| 912 | REG_WR(bp, BAR_USTRORM_INTMEM + |
| 913 | USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), |
| 914 | U64_LO(fp->rx_comp_mapping)); |
| 915 | REG_WR(bp, BAR_USTRORM_INTMEM + |
| 916 | USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, |
| 917 | U64_HI(fp->rx_comp_mapping)); |
| 918 | } |
| 919 | } |
| 920 | static void bnx2x_free_tx_skbs(struct bnx2x *bp) |
| 921 | { |
| 922 | int i; |
| 923 | |
| 924 | for_each_queue(bp, i) { |
| 925 | struct bnx2x_fastpath *fp = &bp->fp[i]; |
| 926 | |
| 927 | u16 bd_cons = fp->tx_bd_cons; |
| 928 | u16 sw_prod = fp->tx_pkt_prod; |
| 929 | u16 sw_cons = fp->tx_pkt_cons; |
| 930 | |
| 931 | while (sw_cons != sw_prod) { |
| 932 | bd_cons = bnx2x_free_tx_pkt(bp, fp, TX_BD(sw_cons)); |
| 933 | sw_cons++; |
| 934 | } |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | static void bnx2x_free_rx_skbs(struct bnx2x *bp) |
| 939 | { |
| 940 | int i, j; |
| 941 | |
| 942 | for_each_queue(bp, j) { |
| 943 | struct bnx2x_fastpath *fp = &bp->fp[j]; |
| 944 | |
| 945 | for (i = 0; i < NUM_RX_BD; i++) { |
| 946 | struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; |
| 947 | struct sk_buff *skb = rx_buf->skb; |
| 948 | |
| 949 | if (skb == NULL) |
| 950 | continue; |
| 951 | |
| 952 | dma_unmap_single(&bp->pdev->dev, |
| 953 | dma_unmap_addr(rx_buf, mapping), |
| 954 | bp->rx_buf_size, DMA_FROM_DEVICE); |
| 955 | |
| 956 | rx_buf->skb = NULL; |
| 957 | dev_kfree_skb(skb); |
| 958 | } |
| 959 | if (!fp->disable_tpa) |
| 960 | bnx2x_free_tpa_pool(bp, fp, CHIP_IS_E1(bp) ? |
| 961 | ETH_MAX_AGGREGATION_QUEUES_E1 : |
| 962 | ETH_MAX_AGGREGATION_QUEUES_E1H); |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | void bnx2x_free_skbs(struct bnx2x *bp) |
| 967 | { |
| 968 | bnx2x_free_tx_skbs(bp); |
| 969 | bnx2x_free_rx_skbs(bp); |
| 970 | } |
| 971 | |
| 972 | static void bnx2x_free_msix_irqs(struct bnx2x *bp) |
| 973 | { |
| 974 | int i, offset = 1; |
| 975 | |
| 976 | free_irq(bp->msix_table[0].vector, bp->dev); |
| 977 | DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", |
| 978 | bp->msix_table[0].vector); |
| 979 | |
| 980 | #ifdef BCM_CNIC |
| 981 | offset++; |
| 982 | #endif |
| 983 | for_each_queue(bp, i) { |
| 984 | DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq " |
| 985 | "state %x\n", i, bp->msix_table[i + offset].vector, |
| 986 | bnx2x_fp(bp, i, state)); |
| 987 | |
| 988 | free_irq(bp->msix_table[i + offset].vector, &bp->fp[i]); |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | void bnx2x_free_irq(struct bnx2x *bp, bool disable_only) |
| 993 | { |
| 994 | if (bp->flags & USING_MSIX_FLAG) { |
| 995 | if (!disable_only) |
| 996 | bnx2x_free_msix_irqs(bp); |
| 997 | pci_disable_msix(bp->pdev); |
| 998 | bp->flags &= ~USING_MSIX_FLAG; |
| 999 | |
| 1000 | } else if (bp->flags & USING_MSI_FLAG) { |
| 1001 | if (!disable_only) |
| 1002 | free_irq(bp->pdev->irq, bp->dev); |
| 1003 | pci_disable_msi(bp->pdev); |
| 1004 | bp->flags &= ~USING_MSI_FLAG; |
| 1005 | |
| 1006 | } else if (!disable_only) |
| 1007 | free_irq(bp->pdev->irq, bp->dev); |
| 1008 | } |
| 1009 | |
| 1010 | static int bnx2x_enable_msix(struct bnx2x *bp) |
| 1011 | { |
| 1012 | int i, rc, offset = 1; |
| 1013 | int igu_vec = 0; |
| 1014 | |
| 1015 | bp->msix_table[0].entry = igu_vec; |
| 1016 | DP(NETIF_MSG_IFUP, "msix_table[0].entry = %d (slowpath)\n", igu_vec); |
| 1017 | |
| 1018 | #ifdef BCM_CNIC |
| 1019 | igu_vec = BP_L_ID(bp) + offset; |
| 1020 | bp->msix_table[1].entry = igu_vec; |
| 1021 | DP(NETIF_MSG_IFUP, "msix_table[1].entry = %d (CNIC)\n", igu_vec); |
| 1022 | offset++; |
| 1023 | #endif |
| 1024 | for_each_queue(bp, i) { |
| 1025 | igu_vec = BP_L_ID(bp) + offset + i; |
| 1026 | bp->msix_table[i + offset].entry = igu_vec; |
| 1027 | DP(NETIF_MSG_IFUP, "msix_table[%d].entry = %d " |
| 1028 | "(fastpath #%u)\n", i + offset, igu_vec, i); |
| 1029 | } |
| 1030 | |
| 1031 | rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], |
| 1032 | BNX2X_NUM_QUEUES(bp) + offset); |
| 1033 | |
| 1034 | /* |
| 1035 | * reconfigure number of tx/rx queues according to available |
| 1036 | * MSI-X vectors |
| 1037 | */ |
| 1038 | if (rc >= BNX2X_MIN_MSIX_VEC_CNT) { |
| 1039 | /* vectors available for FP */ |
| 1040 | int fp_vec = rc - BNX2X_MSIX_VEC_FP_START; |
| 1041 | |
| 1042 | DP(NETIF_MSG_IFUP, |
| 1043 | "Trying to use less MSI-X vectors: %d\n", rc); |
| 1044 | |
| 1045 | rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc); |
| 1046 | |
| 1047 | if (rc) { |
| 1048 | DP(NETIF_MSG_IFUP, |
| 1049 | "MSI-X is not attainable rc %d\n", rc); |
| 1050 | return rc; |
| 1051 | } |
| 1052 | |
| 1053 | bp->num_queues = min(bp->num_queues, fp_vec); |
| 1054 | |
| 1055 | DP(NETIF_MSG_IFUP, "New queue configuration set: %d\n", |
| 1056 | bp->num_queues); |
| 1057 | } else if (rc) { |
| 1058 | DP(NETIF_MSG_IFUP, "MSI-X is not attainable rc %d\n", rc); |
| 1059 | return rc; |
| 1060 | } |
| 1061 | |
| 1062 | bp->flags |= USING_MSIX_FLAG; |
| 1063 | |
| 1064 | return 0; |
| 1065 | } |
| 1066 | |
| 1067 | static int bnx2x_req_msix_irqs(struct bnx2x *bp) |
| 1068 | { |
| 1069 | int i, rc, offset = 1; |
| 1070 | |
| 1071 | rc = request_irq(bp->msix_table[0].vector, bnx2x_msix_sp_int, 0, |
| 1072 | bp->dev->name, bp->dev); |
| 1073 | if (rc) { |
| 1074 | BNX2X_ERR("request sp irq failed\n"); |
| 1075 | return -EBUSY; |
| 1076 | } |
| 1077 | |
| 1078 | #ifdef BCM_CNIC |
| 1079 | offset++; |
| 1080 | #endif |
| 1081 | for_each_queue(bp, i) { |
| 1082 | struct bnx2x_fastpath *fp = &bp->fp[i]; |
| 1083 | snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", |
| 1084 | bp->dev->name, i); |
| 1085 | |
| 1086 | rc = request_irq(bp->msix_table[i + offset].vector, |
| 1087 | bnx2x_msix_fp_int, 0, fp->name, fp); |
| 1088 | if (rc) { |
| 1089 | BNX2X_ERR("request fp #%d irq failed rc %d\n", i, rc); |
| 1090 | bnx2x_free_msix_irqs(bp); |
| 1091 | return -EBUSY; |
| 1092 | } |
| 1093 | |
| 1094 | fp->state = BNX2X_FP_STATE_IRQ; |
| 1095 | } |
| 1096 | |
| 1097 | i = BNX2X_NUM_QUEUES(bp); |
| 1098 | netdev_info(bp->dev, "using MSI-X IRQs: sp %d fp[%d] %d" |
| 1099 | " ... fp[%d] %d\n", |
| 1100 | bp->msix_table[0].vector, |
| 1101 | 0, bp->msix_table[offset].vector, |
| 1102 | i - 1, bp->msix_table[offset + i - 1].vector); |
| 1103 | |
| 1104 | return 0; |
| 1105 | } |
| 1106 | |
| 1107 | static int bnx2x_enable_msi(struct bnx2x *bp) |
| 1108 | { |
| 1109 | int rc; |
| 1110 | |
| 1111 | rc = pci_enable_msi(bp->pdev); |
| 1112 | if (rc) { |
| 1113 | DP(NETIF_MSG_IFUP, "MSI is not attainable\n"); |
| 1114 | return -1; |
| 1115 | } |
| 1116 | bp->flags |= USING_MSI_FLAG; |
| 1117 | |
| 1118 | return 0; |
| 1119 | } |
| 1120 | |
| 1121 | static int bnx2x_req_irq(struct bnx2x *bp) |
| 1122 | { |
| 1123 | unsigned long flags; |
| 1124 | int rc; |
| 1125 | |
| 1126 | if (bp->flags & USING_MSI_FLAG) |
| 1127 | flags = 0; |
| 1128 | else |
| 1129 | flags = IRQF_SHARED; |
| 1130 | |
| 1131 | rc = request_irq(bp->pdev->irq, bnx2x_interrupt, flags, |
| 1132 | bp->dev->name, bp->dev); |
| 1133 | if (!rc) |
| 1134 | bnx2x_fp(bp, 0, state) = BNX2X_FP_STATE_IRQ; |
| 1135 | |
| 1136 | return rc; |
| 1137 | } |
| 1138 | |
| 1139 | static void bnx2x_napi_enable(struct bnx2x *bp) |
| 1140 | { |
| 1141 | int i; |
| 1142 | |
| 1143 | for_each_queue(bp, i) |
| 1144 | napi_enable(&bnx2x_fp(bp, i, napi)); |
| 1145 | } |
| 1146 | |
| 1147 | static void bnx2x_napi_disable(struct bnx2x *bp) |
| 1148 | { |
| 1149 | int i; |
| 1150 | |
| 1151 | for_each_queue(bp, i) |
| 1152 | napi_disable(&bnx2x_fp(bp, i, napi)); |
| 1153 | } |
| 1154 | |
| 1155 | void bnx2x_netif_start(struct bnx2x *bp) |
| 1156 | { |
| 1157 | int intr_sem; |
| 1158 | |
| 1159 | intr_sem = atomic_dec_and_test(&bp->intr_sem); |
| 1160 | smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */ |
| 1161 | |
| 1162 | if (intr_sem) { |
| 1163 | if (netif_running(bp->dev)) { |
| 1164 | bnx2x_napi_enable(bp); |
| 1165 | bnx2x_int_enable(bp); |
| 1166 | if (bp->state == BNX2X_STATE_OPEN) |
| 1167 | netif_tx_wake_all_queues(bp->dev); |
| 1168 | } |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) |
| 1173 | { |
| 1174 | bnx2x_int_disable_sync(bp, disable_hw); |
| 1175 | bnx2x_napi_disable(bp); |
| 1176 | netif_tx_disable(bp->dev); |
| 1177 | } |
| 1178 | static int bnx2x_set_num_queues(struct bnx2x *bp) |
| 1179 | { |
| 1180 | int rc = 0; |
| 1181 | |
| 1182 | switch (bp->int_mode) { |
| 1183 | case INT_MODE_INTx: |
| 1184 | case INT_MODE_MSI: |
| 1185 | bp->num_queues = 1; |
| 1186 | DP(NETIF_MSG_IFUP, "set number of queues to 1\n"); |
| 1187 | break; |
| 1188 | default: |
| 1189 | /* Set number of queues according to bp->multi_mode value */ |
| 1190 | bnx2x_set_num_queues_msix(bp); |
| 1191 | |
| 1192 | DP(NETIF_MSG_IFUP, "set number of queues to %d\n", |
| 1193 | bp->num_queues); |
| 1194 | |
| 1195 | /* if we can't use MSI-X we only need one fp, |
| 1196 | * so try to enable MSI-X with the requested number of fp's |
| 1197 | * and fallback to MSI or legacy INTx with one fp |
| 1198 | */ |
| 1199 | rc = bnx2x_enable_msix(bp); |
| 1200 | if (rc) |
| 1201 | /* failed to enable MSI-X */ |
| 1202 | bp->num_queues = 1; |
| 1203 | break; |
| 1204 | } |
| 1205 | bp->dev->real_num_tx_queues = bp->num_queues; |
| 1206 | return rc; |
| 1207 | } |
| 1208 | |
| 1209 | /* must be called with rtnl_lock */ |
| 1210 | int bnx2x_nic_load(struct bnx2x *bp, int load_mode) |
| 1211 | { |
| 1212 | u32 load_code; |
| 1213 | int i, rc; |
| 1214 | |
| 1215 | #ifdef BNX2X_STOP_ON_ERROR |
| 1216 | if (unlikely(bp->panic)) |
| 1217 | return -EPERM; |
| 1218 | #endif |
| 1219 | |
| 1220 | bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; |
| 1221 | |
| 1222 | rc = bnx2x_set_num_queues(bp); |
| 1223 | |
| 1224 | if (bnx2x_alloc_mem(bp)) { |
| 1225 | bnx2x_free_irq(bp, true); |
| 1226 | return -ENOMEM; |
| 1227 | } |
| 1228 | |
| 1229 | for_each_queue(bp, i) |
| 1230 | bnx2x_fp(bp, i, disable_tpa) = |
| 1231 | ((bp->flags & TPA_ENABLE_FLAG) == 0); |
| 1232 | |
| 1233 | for_each_queue(bp, i) |
| 1234 | netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), |
| 1235 | bnx2x_poll, 128); |
| 1236 | |
| 1237 | bnx2x_napi_enable(bp); |
| 1238 | |
| 1239 | if (bp->flags & USING_MSIX_FLAG) { |
| 1240 | rc = bnx2x_req_msix_irqs(bp); |
| 1241 | if (rc) { |
| 1242 | bnx2x_free_irq(bp, true); |
| 1243 | goto load_error1; |
| 1244 | } |
| 1245 | } else { |
| 1246 | /* Fall to INTx if failed to enable MSI-X due to lack of |
| 1247 | memory (in bnx2x_set_num_queues()) */ |
| 1248 | if ((rc != -ENOMEM) && (bp->int_mode != INT_MODE_INTx)) |
| 1249 | bnx2x_enable_msi(bp); |
| 1250 | bnx2x_ack_int(bp); |
| 1251 | rc = bnx2x_req_irq(bp); |
| 1252 | if (rc) { |
| 1253 | BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); |
| 1254 | bnx2x_free_irq(bp, true); |
| 1255 | goto load_error1; |
| 1256 | } |
| 1257 | if (bp->flags & USING_MSI_FLAG) { |
| 1258 | bp->dev->irq = bp->pdev->irq; |
| 1259 | netdev_info(bp->dev, "using MSI IRQ %d\n", |
| 1260 | bp->pdev->irq); |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | /* Send LOAD_REQUEST command to MCP |
| 1265 | Returns the type of LOAD command: |
| 1266 | if it is the first port to be initialized |
| 1267 | common blocks should be initialized, otherwise - not |
| 1268 | */ |
| 1269 | if (!BP_NOMCP(bp)) { |
| 1270 | load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ); |
| 1271 | if (!load_code) { |
| 1272 | BNX2X_ERR("MCP response failure, aborting\n"); |
| 1273 | rc = -EBUSY; |
| 1274 | goto load_error2; |
| 1275 | } |
| 1276 | if (load_code == FW_MSG_CODE_DRV_LOAD_REFUSED) { |
| 1277 | rc = -EBUSY; /* other port in diagnostic mode */ |
| 1278 | goto load_error2; |
| 1279 | } |
| 1280 | |
| 1281 | } else { |
| 1282 | int port = BP_PORT(bp); |
| 1283 | |
| 1284 | DP(NETIF_MSG_IFUP, "NO MCP - load counts %d, %d, %d\n", |
| 1285 | load_count[0], load_count[1], load_count[2]); |
| 1286 | load_count[0]++; |
| 1287 | load_count[1 + port]++; |
| 1288 | DP(NETIF_MSG_IFUP, "NO MCP - new load counts %d, %d, %d\n", |
| 1289 | load_count[0], load_count[1], load_count[2]); |
| 1290 | if (load_count[0] == 1) |
| 1291 | load_code = FW_MSG_CODE_DRV_LOAD_COMMON; |
| 1292 | else if (load_count[1 + port] == 1) |
| 1293 | load_code = FW_MSG_CODE_DRV_LOAD_PORT; |
| 1294 | else |
| 1295 | load_code = FW_MSG_CODE_DRV_LOAD_FUNCTION; |
| 1296 | } |
| 1297 | |
| 1298 | if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || |
| 1299 | (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) |
| 1300 | bp->port.pmf = 1; |
| 1301 | else |
| 1302 | bp->port.pmf = 0; |
| 1303 | DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); |
| 1304 | |
| 1305 | /* Initialize HW */ |
| 1306 | rc = bnx2x_init_hw(bp, load_code); |
| 1307 | if (rc) { |
| 1308 | BNX2X_ERR("HW init failed, aborting\n"); |
| 1309 | bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE); |
| 1310 | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP); |
| 1311 | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE); |
| 1312 | goto load_error2; |
| 1313 | } |
| 1314 | |
| 1315 | /* Setup NIC internals and enable interrupts */ |
| 1316 | bnx2x_nic_init(bp, load_code); |
| 1317 | |
| 1318 | if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) && |
| 1319 | (bp->common.shmem2_base)) |
| 1320 | SHMEM2_WR(bp, dcc_support, |
| 1321 | (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | |
| 1322 | SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); |
| 1323 | |
| 1324 | /* Send LOAD_DONE command to MCP */ |
| 1325 | if (!BP_NOMCP(bp)) { |
| 1326 | load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE); |
| 1327 | if (!load_code) { |
| 1328 | BNX2X_ERR("MCP response failure, aborting\n"); |
| 1329 | rc = -EBUSY; |
| 1330 | goto load_error3; |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; |
| 1335 | |
| 1336 | rc = bnx2x_setup_leading(bp); |
| 1337 | if (rc) { |
| 1338 | BNX2X_ERR("Setup leading failed!\n"); |
| 1339 | #ifndef BNX2X_STOP_ON_ERROR |
| 1340 | goto load_error3; |
| 1341 | #else |
| 1342 | bp->panic = 1; |
| 1343 | return -EBUSY; |
| 1344 | #endif |
| 1345 | } |
| 1346 | |
| 1347 | if (CHIP_IS_E1H(bp)) |
| 1348 | if (bp->mf_config & FUNC_MF_CFG_FUNC_DISABLED) { |
| 1349 | DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); |
| 1350 | bp->flags |= MF_FUNC_DIS; |
| 1351 | } |
| 1352 | |
| 1353 | if (bp->state == BNX2X_STATE_OPEN) { |
| 1354 | #ifdef BCM_CNIC |
| 1355 | /* Enable Timer scan */ |
| 1356 | REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 1); |
| 1357 | #endif |
| 1358 | for_each_nondefault_queue(bp, i) { |
| 1359 | rc = bnx2x_setup_multi(bp, i); |
| 1360 | if (rc) |
| 1361 | #ifdef BCM_CNIC |
| 1362 | goto load_error4; |
| 1363 | #else |
| 1364 | goto load_error3; |
| 1365 | #endif |
| 1366 | } |
| 1367 | |
| 1368 | if (CHIP_IS_E1(bp)) |
| 1369 | bnx2x_set_eth_mac_addr_e1(bp, 1); |
| 1370 | else |
| 1371 | bnx2x_set_eth_mac_addr_e1h(bp, 1); |
| 1372 | #ifdef BCM_CNIC |
| 1373 | /* Set iSCSI L2 MAC */ |
| 1374 | mutex_lock(&bp->cnic_mutex); |
| 1375 | if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD) { |
| 1376 | bnx2x_set_iscsi_eth_mac_addr(bp, 1); |
| 1377 | bp->cnic_flags |= BNX2X_CNIC_FLAG_MAC_SET; |
| 1378 | bnx2x_init_sb(bp, bp->cnic_sb, bp->cnic_sb_mapping, |
| 1379 | CNIC_SB_ID(bp)); |
| 1380 | } |
| 1381 | mutex_unlock(&bp->cnic_mutex); |
| 1382 | #endif |
| 1383 | } |
| 1384 | |
| 1385 | if (bp->port.pmf) |
| 1386 | bnx2x_initial_phy_init(bp, load_mode); |
| 1387 | |
| 1388 | /* Start fast path */ |
| 1389 | switch (load_mode) { |
| 1390 | case LOAD_NORMAL: |
| 1391 | if (bp->state == BNX2X_STATE_OPEN) { |
| 1392 | /* Tx queue should be only reenabled */ |
| 1393 | netif_tx_wake_all_queues(bp->dev); |
| 1394 | } |
| 1395 | /* Initialize the receive filter. */ |
| 1396 | bnx2x_set_rx_mode(bp->dev); |
| 1397 | break; |
| 1398 | |
| 1399 | case LOAD_OPEN: |
| 1400 | netif_tx_start_all_queues(bp->dev); |
| 1401 | if (bp->state != BNX2X_STATE_OPEN) |
| 1402 | netif_tx_disable(bp->dev); |
| 1403 | /* Initialize the receive filter. */ |
| 1404 | bnx2x_set_rx_mode(bp->dev); |
| 1405 | break; |
| 1406 | |
| 1407 | case LOAD_DIAG: |
| 1408 | /* Initialize the receive filter. */ |
| 1409 | bnx2x_set_rx_mode(bp->dev); |
| 1410 | bp->state = BNX2X_STATE_DIAG; |
| 1411 | break; |
| 1412 | |
| 1413 | default: |
| 1414 | break; |
| 1415 | } |
| 1416 | |
| 1417 | if (!bp->port.pmf) |
| 1418 | bnx2x__link_status_update(bp); |
| 1419 | |
| 1420 | /* start the timer */ |
| 1421 | mod_timer(&bp->timer, jiffies + bp->current_interval); |
| 1422 | |
| 1423 | #ifdef BCM_CNIC |
| 1424 | bnx2x_setup_cnic_irq_info(bp); |
| 1425 | if (bp->state == BNX2X_STATE_OPEN) |
| 1426 | bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); |
| 1427 | #endif |
| 1428 | bnx2x_inc_load_cnt(bp); |
| 1429 | |
| 1430 | return 0; |
| 1431 | |
| 1432 | #ifdef BCM_CNIC |
| 1433 | load_error4: |
| 1434 | /* Disable Timer scan */ |
| 1435 | REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 0); |
| 1436 | #endif |
| 1437 | load_error3: |
| 1438 | bnx2x_int_disable_sync(bp, 1); |
| 1439 | if (!BP_NOMCP(bp)) { |
| 1440 | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP); |
| 1441 | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE); |
| 1442 | } |
| 1443 | bp->port.pmf = 0; |
| 1444 | /* Free SKBs, SGEs, TPA pool and driver internals */ |
| 1445 | bnx2x_free_skbs(bp); |
| 1446 | for_each_queue(bp, i) |
| 1447 | bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); |
| 1448 | load_error2: |
| 1449 | /* Release IRQs */ |
| 1450 | bnx2x_free_irq(bp, false); |
| 1451 | load_error1: |
| 1452 | bnx2x_napi_disable(bp); |
| 1453 | for_each_queue(bp, i) |
| 1454 | netif_napi_del(&bnx2x_fp(bp, i, napi)); |
| 1455 | bnx2x_free_mem(bp); |
| 1456 | |
| 1457 | return rc; |
| 1458 | } |
| 1459 | |
| 1460 | /* must be called with rtnl_lock */ |
| 1461 | int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode) |
| 1462 | { |
| 1463 | int i; |
| 1464 | |
| 1465 | if (bp->state == BNX2X_STATE_CLOSED) { |
| 1466 | /* Interface has been removed - nothing to recover */ |
| 1467 | bp->recovery_state = BNX2X_RECOVERY_DONE; |
| 1468 | bp->is_leader = 0; |
| 1469 | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESERVED_08); |
| 1470 | smp_wmb(); |
| 1471 | |
| 1472 | return -EINVAL; |
| 1473 | } |
| 1474 | |
| 1475 | #ifdef BCM_CNIC |
| 1476 | bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); |
| 1477 | #endif |
| 1478 | bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; |
| 1479 | |
| 1480 | /* Set "drop all" */ |
| 1481 | bp->rx_mode = BNX2X_RX_MODE_NONE; |
| 1482 | bnx2x_set_storm_rx_mode(bp); |
| 1483 | |
| 1484 | /* Disable HW interrupts, NAPI and Tx */ |
| 1485 | bnx2x_netif_stop(bp, 1); |
| 1486 | netif_carrier_off(bp->dev); |
| 1487 | |
| 1488 | del_timer_sync(&bp->timer); |
| 1489 | SHMEM_WR(bp, func_mb[BP_FUNC(bp)].drv_pulse_mb, |
| 1490 | (DRV_PULSE_ALWAYS_ALIVE | bp->fw_drv_pulse_wr_seq)); |
| 1491 | bnx2x_stats_handle(bp, STATS_EVENT_STOP); |
| 1492 | |
| 1493 | /* Release IRQs */ |
| 1494 | bnx2x_free_irq(bp, false); |
| 1495 | |
| 1496 | /* Cleanup the chip if needed */ |
| 1497 | if (unload_mode != UNLOAD_RECOVERY) |
| 1498 | bnx2x_chip_cleanup(bp, unload_mode); |
| 1499 | |
| 1500 | bp->port.pmf = 0; |
| 1501 | |
| 1502 | /* Free SKBs, SGEs, TPA pool and driver internals */ |
| 1503 | bnx2x_free_skbs(bp); |
| 1504 | for_each_queue(bp, i) |
| 1505 | bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); |
| 1506 | for_each_queue(bp, i) |
| 1507 | netif_napi_del(&bnx2x_fp(bp, i, napi)); |
| 1508 | bnx2x_free_mem(bp); |
| 1509 | |
| 1510 | bp->state = BNX2X_STATE_CLOSED; |
| 1511 | |
| 1512 | /* The last driver must disable a "close the gate" if there is no |
| 1513 | * parity attention or "process kill" pending. |
| 1514 | */ |
| 1515 | if ((!bnx2x_dec_load_cnt(bp)) && (!bnx2x_chk_parity_attn(bp)) && |
| 1516 | bnx2x_reset_is_done(bp)) |
| 1517 | bnx2x_disable_close_the_gate(bp); |
| 1518 | |
| 1519 | /* Reset MCP mail box sequence if there is on going recovery */ |
| 1520 | if (unload_mode == UNLOAD_RECOVERY) |
| 1521 | bp->fw_seq = 0; |
| 1522 | |
| 1523 | return 0; |
| 1524 | } |
| 1525 | int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) |
| 1526 | { |
| 1527 | u16 pmcsr; |
| 1528 | |
| 1529 | pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); |
| 1530 | |
| 1531 | switch (state) { |
| 1532 | case PCI_D0: |
| 1533 | pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, |
| 1534 | ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | |
| 1535 | PCI_PM_CTRL_PME_STATUS)); |
| 1536 | |
| 1537 | if (pmcsr & PCI_PM_CTRL_STATE_MASK) |
| 1538 | /* delay required during transition out of D3hot */ |
| 1539 | msleep(20); |
| 1540 | break; |
| 1541 | |
| 1542 | case PCI_D3hot: |
| 1543 | /* If there are other clients above don't |
| 1544 | shut down the power */ |
| 1545 | if (atomic_read(&bp->pdev->enable_cnt) != 1) |
| 1546 | return 0; |
| 1547 | /* Don't shut down the power for emulation and FPGA */ |
| 1548 | if (CHIP_REV_IS_SLOW(bp)) |
| 1549 | return 0; |
| 1550 | |
| 1551 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| 1552 | pmcsr |= 3; |
| 1553 | |
| 1554 | if (bp->wol) |
| 1555 | pmcsr |= PCI_PM_CTRL_PME_ENABLE; |
| 1556 | |
| 1557 | pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, |
| 1558 | pmcsr); |
| 1559 | |
| 1560 | /* No more memory access after this point until |
| 1561 | * device is brought back to D0. |
| 1562 | */ |
| 1563 | break; |
| 1564 | |
| 1565 | default: |
| 1566 | return -EINVAL; |
| 1567 | } |
| 1568 | return 0; |
| 1569 | } |
| 1570 | |
| 1571 | |
| 1572 | |
| 1573 | /* |
| 1574 | * net_device service functions |
| 1575 | */ |
| 1576 | |
| 1577 | static int bnx2x_poll(struct napi_struct *napi, int budget) |
| 1578 | { |
| 1579 | int work_done = 0; |
| 1580 | struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, |
| 1581 | napi); |
| 1582 | struct bnx2x *bp = fp->bp; |
| 1583 | |
| 1584 | while (1) { |
| 1585 | #ifdef BNX2X_STOP_ON_ERROR |
| 1586 | if (unlikely(bp->panic)) { |
| 1587 | napi_complete(napi); |
| 1588 | return 0; |
| 1589 | } |
| 1590 | #endif |
| 1591 | |
| 1592 | if (bnx2x_has_tx_work(fp)) |
| 1593 | bnx2x_tx_int(fp); |
| 1594 | |
| 1595 | if (bnx2x_has_rx_work(fp)) { |
| 1596 | work_done += bnx2x_rx_int(fp, budget - work_done); |
| 1597 | |
| 1598 | /* must not complete if we consumed full budget */ |
| 1599 | if (work_done >= budget) |
| 1600 | break; |
| 1601 | } |
| 1602 | |
| 1603 | /* Fall out from the NAPI loop if needed */ |
| 1604 | if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { |
| 1605 | bnx2x_update_fpsb_idx(fp); |
| 1606 | /* bnx2x_has_rx_work() reads the status block, thus we need |
| 1607 | * to ensure that status block indices have been actually read |
| 1608 | * (bnx2x_update_fpsb_idx) prior to this check |
| 1609 | * (bnx2x_has_rx_work) so that we won't write the "newer" |
| 1610 | * value of the status block to IGU (if there was a DMA right |
| 1611 | * after bnx2x_has_rx_work and if there is no rmb, the memory |
| 1612 | * reading (bnx2x_update_fpsb_idx) may be postponed to right |
| 1613 | * before bnx2x_ack_sb). In this case there will never be |
| 1614 | * another interrupt until there is another update of the |
| 1615 | * status block, while there is still unhandled work. |
| 1616 | */ |
| 1617 | rmb(); |
| 1618 | |
| 1619 | if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { |
| 1620 | napi_complete(napi); |
| 1621 | /* Re-enable interrupts */ |
| 1622 | bnx2x_ack_sb(bp, fp->sb_id, CSTORM_ID, |
| 1623 | le16_to_cpu(fp->fp_c_idx), |
| 1624 | IGU_INT_NOP, 1); |
| 1625 | bnx2x_ack_sb(bp, fp->sb_id, USTORM_ID, |
| 1626 | le16_to_cpu(fp->fp_u_idx), |
| 1627 | IGU_INT_ENABLE, 1); |
| 1628 | break; |
| 1629 | } |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | return work_done; |
| 1634 | } |
| 1635 | |
| 1636 | |
| 1637 | /* we split the first BD into headers and data BDs |
| 1638 | * to ease the pain of our fellow microcode engineers |
| 1639 | * we use one mapping for both BDs |
| 1640 | * So far this has only been observed to happen |
| 1641 | * in Other Operating Systems(TM) |
| 1642 | */ |
| 1643 | static noinline u16 bnx2x_tx_split(struct bnx2x *bp, |
| 1644 | struct bnx2x_fastpath *fp, |
| 1645 | struct sw_tx_bd *tx_buf, |
| 1646 | struct eth_tx_start_bd **tx_bd, u16 hlen, |
| 1647 | u16 bd_prod, int nbd) |
| 1648 | { |
| 1649 | struct eth_tx_start_bd *h_tx_bd = *tx_bd; |
| 1650 | struct eth_tx_bd *d_tx_bd; |
| 1651 | dma_addr_t mapping; |
| 1652 | int old_len = le16_to_cpu(h_tx_bd->nbytes); |
| 1653 | |
| 1654 | /* first fix first BD */ |
| 1655 | h_tx_bd->nbd = cpu_to_le16(nbd); |
| 1656 | h_tx_bd->nbytes = cpu_to_le16(hlen); |
| 1657 | |
| 1658 | DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d " |
| 1659 | "(%x:%x) nbd %d\n", h_tx_bd->nbytes, h_tx_bd->addr_hi, |
| 1660 | h_tx_bd->addr_lo, h_tx_bd->nbd); |
| 1661 | |
| 1662 | /* now get a new data BD |
| 1663 | * (after the pbd) and fill it */ |
| 1664 | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| 1665 | d_tx_bd = &fp->tx_desc_ring[bd_prod].reg_bd; |
| 1666 | |
| 1667 | mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), |
| 1668 | le32_to_cpu(h_tx_bd->addr_lo)) + hlen; |
| 1669 | |
| 1670 | d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| 1671 | d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| 1672 | d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); |
| 1673 | |
| 1674 | /* this marks the BD as one that has no individual mapping */ |
| 1675 | tx_buf->flags |= BNX2X_TSO_SPLIT_BD; |
| 1676 | |
| 1677 | DP(NETIF_MSG_TX_QUEUED, |
| 1678 | "TSO split data size is %d (%x:%x)\n", |
| 1679 | d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); |
| 1680 | |
| 1681 | /* update tx_bd */ |
| 1682 | *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; |
| 1683 | |
| 1684 | return bd_prod; |
| 1685 | } |
| 1686 | |
| 1687 | static inline u16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) |
| 1688 | { |
| 1689 | if (fix > 0) |
| 1690 | csum = (u16) ~csum_fold(csum_sub(csum, |
| 1691 | csum_partial(t_header - fix, fix, 0))); |
| 1692 | |
| 1693 | else if (fix < 0) |
| 1694 | csum = (u16) ~csum_fold(csum_add(csum, |
| 1695 | csum_partial(t_header, -fix, 0))); |
| 1696 | |
| 1697 | return swab16(csum); |
| 1698 | } |
| 1699 | |
| 1700 | static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) |
| 1701 | { |
| 1702 | u32 rc; |
| 1703 | |
| 1704 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 1705 | rc = XMIT_PLAIN; |
| 1706 | |
| 1707 | else { |
| 1708 | if (skb->protocol == htons(ETH_P_IPV6)) { |
| 1709 | rc = XMIT_CSUM_V6; |
| 1710 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
| 1711 | rc |= XMIT_CSUM_TCP; |
| 1712 | |
| 1713 | } else { |
| 1714 | rc = XMIT_CSUM_V4; |
| 1715 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
| 1716 | rc |= XMIT_CSUM_TCP; |
| 1717 | } |
| 1718 | } |
| 1719 | |
| 1720 | if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) |
| 1721 | rc |= (XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP); |
| 1722 | |
| 1723 | else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) |
| 1724 | rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6); |
| 1725 | |
| 1726 | return rc; |
| 1727 | } |
| 1728 | |
| 1729 | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) |
| 1730 | /* check if packet requires linearization (packet is too fragmented) |
| 1731 | no need to check fragmentation if page size > 8K (there will be no |
| 1732 | violation to FW restrictions) */ |
| 1733 | static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, |
| 1734 | u32 xmit_type) |
| 1735 | { |
| 1736 | int to_copy = 0; |
| 1737 | int hlen = 0; |
| 1738 | int first_bd_sz = 0; |
| 1739 | |
| 1740 | /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ |
| 1741 | if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { |
| 1742 | |
| 1743 | if (xmit_type & XMIT_GSO) { |
| 1744 | unsigned short lso_mss = skb_shinfo(skb)->gso_size; |
| 1745 | /* Check if LSO packet needs to be copied: |
| 1746 | 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ |
| 1747 | int wnd_size = MAX_FETCH_BD - 3; |
| 1748 | /* Number of windows to check */ |
| 1749 | int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; |
| 1750 | int wnd_idx = 0; |
| 1751 | int frag_idx = 0; |
| 1752 | u32 wnd_sum = 0; |
| 1753 | |
| 1754 | /* Headers length */ |
| 1755 | hlen = (int)(skb_transport_header(skb) - skb->data) + |
| 1756 | tcp_hdrlen(skb); |
| 1757 | |
| 1758 | /* Amount of data (w/o headers) on linear part of SKB*/ |
| 1759 | first_bd_sz = skb_headlen(skb) - hlen; |
| 1760 | |
| 1761 | wnd_sum = first_bd_sz; |
| 1762 | |
| 1763 | /* Calculate the first sum - it's special */ |
| 1764 | for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) |
| 1765 | wnd_sum += |
| 1766 | skb_shinfo(skb)->frags[frag_idx].size; |
| 1767 | |
| 1768 | /* If there was data on linear skb data - check it */ |
| 1769 | if (first_bd_sz > 0) { |
| 1770 | if (unlikely(wnd_sum < lso_mss)) { |
| 1771 | to_copy = 1; |
| 1772 | goto exit_lbl; |
| 1773 | } |
| 1774 | |
| 1775 | wnd_sum -= first_bd_sz; |
| 1776 | } |
| 1777 | |
| 1778 | /* Others are easier: run through the frag list and |
| 1779 | check all windows */ |
| 1780 | for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { |
| 1781 | wnd_sum += |
| 1782 | skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1].size; |
| 1783 | |
| 1784 | if (unlikely(wnd_sum < lso_mss)) { |
| 1785 | to_copy = 1; |
| 1786 | break; |
| 1787 | } |
| 1788 | wnd_sum -= |
| 1789 | skb_shinfo(skb)->frags[wnd_idx].size; |
| 1790 | } |
| 1791 | } else { |
| 1792 | /* in non-LSO too fragmented packet should always |
| 1793 | be linearized */ |
| 1794 | to_copy = 1; |
| 1795 | } |
| 1796 | } |
| 1797 | |
| 1798 | exit_lbl: |
| 1799 | if (unlikely(to_copy)) |
| 1800 | DP(NETIF_MSG_TX_QUEUED, |
| 1801 | "Linearization IS REQUIRED for %s packet. " |
| 1802 | "num_frags %d hlen %d first_bd_sz %d\n", |
| 1803 | (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", |
| 1804 | skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); |
| 1805 | |
| 1806 | return to_copy; |
| 1807 | } |
| 1808 | #endif |
| 1809 | |
| 1810 | /* called with netif_tx_lock |
| 1811 | * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call |
| 1812 | * netif_wake_queue() |
| 1813 | */ |
| 1814 | netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 1815 | { |
| 1816 | struct bnx2x *bp = netdev_priv(dev); |
| 1817 | struct bnx2x_fastpath *fp; |
| 1818 | struct netdev_queue *txq; |
| 1819 | struct sw_tx_bd *tx_buf; |
| 1820 | struct eth_tx_start_bd *tx_start_bd; |
| 1821 | struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; |
| 1822 | struct eth_tx_parse_bd *pbd = NULL; |
| 1823 | u16 pkt_prod, bd_prod; |
| 1824 | int nbd, fp_index; |
| 1825 | dma_addr_t mapping; |
| 1826 | u32 xmit_type = bnx2x_xmit_type(bp, skb); |
| 1827 | int i; |
| 1828 | u8 hlen = 0; |
| 1829 | __le16 pkt_size = 0; |
| 1830 | struct ethhdr *eth; |
| 1831 | u8 mac_type = UNICAST_ADDRESS; |
| 1832 | |
| 1833 | #ifdef BNX2X_STOP_ON_ERROR |
| 1834 | if (unlikely(bp->panic)) |
| 1835 | return NETDEV_TX_BUSY; |
| 1836 | #endif |
| 1837 | |
| 1838 | fp_index = skb_get_queue_mapping(skb); |
| 1839 | txq = netdev_get_tx_queue(dev, fp_index); |
| 1840 | |
| 1841 | fp = &bp->fp[fp_index]; |
| 1842 | |
| 1843 | if (unlikely(bnx2x_tx_avail(fp) < (skb_shinfo(skb)->nr_frags + 3))) { |
| 1844 | fp->eth_q_stats.driver_xoff++; |
| 1845 | netif_tx_stop_queue(txq); |
| 1846 | BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); |
| 1847 | return NETDEV_TX_BUSY; |
| 1848 | } |
| 1849 | |
| 1850 | DP(NETIF_MSG_TX_QUEUED, "SKB: summed %x protocol %x protocol(%x,%x)" |
| 1851 | " gso type %x xmit_type %x\n", |
| 1852 | skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, |
| 1853 | ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type); |
| 1854 | |
| 1855 | eth = (struct ethhdr *)skb->data; |
| 1856 | |
| 1857 | /* set flag according to packet type (UNICAST_ADDRESS is default)*/ |
| 1858 | if (unlikely(is_multicast_ether_addr(eth->h_dest))) { |
| 1859 | if (is_broadcast_ether_addr(eth->h_dest)) |
| 1860 | mac_type = BROADCAST_ADDRESS; |
| 1861 | else |
| 1862 | mac_type = MULTICAST_ADDRESS; |
| 1863 | } |
| 1864 | |
| 1865 | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) |
| 1866 | /* First, check if we need to linearize the skb (due to FW |
| 1867 | restrictions). No need to check fragmentation if page size > 8K |
| 1868 | (there will be no violation to FW restrictions) */ |
| 1869 | if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { |
| 1870 | /* Statistics of linearization */ |
| 1871 | bp->lin_cnt++; |
| 1872 | if (skb_linearize(skb) != 0) { |
| 1873 | DP(NETIF_MSG_TX_QUEUED, "SKB linearization failed - " |
| 1874 | "silently dropping this SKB\n"); |
| 1875 | dev_kfree_skb_any(skb); |
| 1876 | return NETDEV_TX_OK; |
| 1877 | } |
| 1878 | } |
| 1879 | #endif |
| 1880 | |
| 1881 | /* |
| 1882 | Please read carefully. First we use one BD which we mark as start, |
| 1883 | then we have a parsing info BD (used for TSO or xsum), |
| 1884 | and only then we have the rest of the TSO BDs. |
| 1885 | (don't forget to mark the last one as last, |
| 1886 | and to unmap only AFTER you write to the BD ...) |
| 1887 | And above all, all pdb sizes are in words - NOT DWORDS! |
| 1888 | */ |
| 1889 | |
| 1890 | pkt_prod = fp->tx_pkt_prod++; |
| 1891 | bd_prod = TX_BD(fp->tx_bd_prod); |
| 1892 | |
| 1893 | /* get a tx_buf and first BD */ |
| 1894 | tx_buf = &fp->tx_buf_ring[TX_BD(pkt_prod)]; |
| 1895 | tx_start_bd = &fp->tx_desc_ring[bd_prod].start_bd; |
| 1896 | |
| 1897 | tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; |
| 1898 | tx_start_bd->general_data = (mac_type << |
| 1899 | ETH_TX_START_BD_ETH_ADDR_TYPE_SHIFT); |
| 1900 | /* header nbd */ |
| 1901 | tx_start_bd->general_data |= (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); |
| 1902 | |
| 1903 | /* remember the first BD of the packet */ |
| 1904 | tx_buf->first_bd = fp->tx_bd_prod; |
| 1905 | tx_buf->skb = skb; |
| 1906 | tx_buf->flags = 0; |
| 1907 | |
| 1908 | DP(NETIF_MSG_TX_QUEUED, |
| 1909 | "sending pkt %u @%p next_idx %u bd %u @%p\n", |
| 1910 | pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); |
| 1911 | |
| 1912 | #ifdef BCM_VLAN |
| 1913 | if ((bp->vlgrp != NULL) && vlan_tx_tag_present(skb) && |
| 1914 | (bp->flags & HW_VLAN_TX_FLAG)) { |
| 1915 | tx_start_bd->vlan = cpu_to_le16(vlan_tx_tag_get(skb)); |
| 1916 | tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_VLAN_TAG; |
| 1917 | } else |
| 1918 | #endif |
| 1919 | tx_start_bd->vlan = cpu_to_le16(pkt_prod); |
| 1920 | |
| 1921 | /* turn on parsing and get a BD */ |
| 1922 | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| 1923 | pbd = &fp->tx_desc_ring[bd_prod].parse_bd; |
| 1924 | |
| 1925 | memset(pbd, 0, sizeof(struct eth_tx_parse_bd)); |
| 1926 | |
| 1927 | if (xmit_type & XMIT_CSUM) { |
| 1928 | hlen = (skb_network_header(skb) - skb->data) / 2; |
| 1929 | |
| 1930 | /* for now NS flag is not used in Linux */ |
| 1931 | pbd->global_data = |
| 1932 | (hlen | ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << |
| 1933 | ETH_TX_PARSE_BD_LLC_SNAP_EN_SHIFT)); |
| 1934 | |
| 1935 | pbd->ip_hlen = (skb_transport_header(skb) - |
| 1936 | skb_network_header(skb)) / 2; |
| 1937 | |
| 1938 | hlen += pbd->ip_hlen + tcp_hdrlen(skb) / 2; |
| 1939 | |
| 1940 | pbd->total_hlen = cpu_to_le16(hlen); |
| 1941 | hlen = hlen*2; |
| 1942 | |
| 1943 | tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; |
| 1944 | |
| 1945 | if (xmit_type & XMIT_CSUM_V4) |
| 1946 | tx_start_bd->bd_flags.as_bitfield |= |
| 1947 | ETH_TX_BD_FLAGS_IP_CSUM; |
| 1948 | else |
| 1949 | tx_start_bd->bd_flags.as_bitfield |= |
| 1950 | ETH_TX_BD_FLAGS_IPV6; |
| 1951 | |
| 1952 | if (xmit_type & XMIT_CSUM_TCP) { |
| 1953 | pbd->tcp_pseudo_csum = swab16(tcp_hdr(skb)->check); |
| 1954 | |
| 1955 | } else { |
| 1956 | s8 fix = SKB_CS_OFF(skb); /* signed! */ |
| 1957 | |
| 1958 | pbd->global_data |= ETH_TX_PARSE_BD_UDP_CS_FLG; |
| 1959 | |
| 1960 | DP(NETIF_MSG_TX_QUEUED, |
| 1961 | "hlen %d fix %d csum before fix %x\n", |
| 1962 | le16_to_cpu(pbd->total_hlen), fix, SKB_CS(skb)); |
| 1963 | |
| 1964 | /* HW bug: fixup the CSUM */ |
| 1965 | pbd->tcp_pseudo_csum = |
| 1966 | bnx2x_csum_fix(skb_transport_header(skb), |
| 1967 | SKB_CS(skb), fix); |
| 1968 | |
| 1969 | DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", |
| 1970 | pbd->tcp_pseudo_csum); |
| 1971 | } |
| 1972 | } |
| 1973 | |
| 1974 | mapping = dma_map_single(&bp->pdev->dev, skb->data, |
| 1975 | skb_headlen(skb), DMA_TO_DEVICE); |
| 1976 | |
| 1977 | tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| 1978 | tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| 1979 | nbd = skb_shinfo(skb)->nr_frags + 2; /* start_bd + pbd + frags */ |
| 1980 | tx_start_bd->nbd = cpu_to_le16(nbd); |
| 1981 | tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); |
| 1982 | pkt_size = tx_start_bd->nbytes; |
| 1983 | |
| 1984 | DP(NETIF_MSG_TX_QUEUED, "first bd @%p addr (%x:%x) nbd %d" |
| 1985 | " nbytes %d flags %x vlan %x\n", |
| 1986 | tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, |
| 1987 | le16_to_cpu(tx_start_bd->nbd), le16_to_cpu(tx_start_bd->nbytes), |
| 1988 | tx_start_bd->bd_flags.as_bitfield, le16_to_cpu(tx_start_bd->vlan)); |
| 1989 | |
| 1990 | if (xmit_type & XMIT_GSO) { |
| 1991 | |
| 1992 | DP(NETIF_MSG_TX_QUEUED, |
| 1993 | "TSO packet len %d hlen %d total len %d tso size %d\n", |
| 1994 | skb->len, hlen, skb_headlen(skb), |
| 1995 | skb_shinfo(skb)->gso_size); |
| 1996 | |
| 1997 | tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; |
| 1998 | |
| 1999 | if (unlikely(skb_headlen(skb) > hlen)) |
| 2000 | bd_prod = bnx2x_tx_split(bp, fp, tx_buf, &tx_start_bd, |
| 2001 | hlen, bd_prod, ++nbd); |
| 2002 | |
| 2003 | pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); |
| 2004 | pbd->tcp_send_seq = swab32(tcp_hdr(skb)->seq); |
| 2005 | pbd->tcp_flags = pbd_tcp_flags(skb); |
| 2006 | |
| 2007 | if (xmit_type & XMIT_GSO_V4) { |
| 2008 | pbd->ip_id = swab16(ip_hdr(skb)->id); |
| 2009 | pbd->tcp_pseudo_csum = |
| 2010 | swab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, |
| 2011 | ip_hdr(skb)->daddr, |
| 2012 | 0, IPPROTO_TCP, 0)); |
| 2013 | |
| 2014 | } else |
| 2015 | pbd->tcp_pseudo_csum = |
| 2016 | swab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| 2017 | &ipv6_hdr(skb)->daddr, |
| 2018 | 0, IPPROTO_TCP, 0)); |
| 2019 | |
| 2020 | pbd->global_data |= ETH_TX_PARSE_BD_PSEUDO_CS_WITHOUT_LEN; |
| 2021 | } |
| 2022 | tx_data_bd = (struct eth_tx_bd *)tx_start_bd; |
| 2023 | |
| 2024 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| 2025 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| 2026 | |
| 2027 | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| 2028 | tx_data_bd = &fp->tx_desc_ring[bd_prod].reg_bd; |
| 2029 | if (total_pkt_bd == NULL) |
| 2030 | total_pkt_bd = &fp->tx_desc_ring[bd_prod].reg_bd; |
| 2031 | |
| 2032 | mapping = dma_map_page(&bp->pdev->dev, frag->page, |
| 2033 | frag->page_offset, |
| 2034 | frag->size, DMA_TO_DEVICE); |
| 2035 | |
| 2036 | tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); |
| 2037 | tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); |
| 2038 | tx_data_bd->nbytes = cpu_to_le16(frag->size); |
| 2039 | le16_add_cpu(&pkt_size, frag->size); |
| 2040 | |
| 2041 | DP(NETIF_MSG_TX_QUEUED, |
| 2042 | "frag %d bd @%p addr (%x:%x) nbytes %d\n", |
| 2043 | i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, |
| 2044 | le16_to_cpu(tx_data_bd->nbytes)); |
| 2045 | } |
| 2046 | |
| 2047 | DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); |
| 2048 | |
| 2049 | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); |
| 2050 | |
| 2051 | /* now send a tx doorbell, counting the next BD |
| 2052 | * if the packet contains or ends with it |
| 2053 | */ |
| 2054 | if (TX_BD_POFF(bd_prod) < nbd) |
| 2055 | nbd++; |
| 2056 | |
| 2057 | if (total_pkt_bd != NULL) |
| 2058 | total_pkt_bd->total_pkt_bytes = pkt_size; |
| 2059 | |
| 2060 | if (pbd) |
| 2061 | DP(NETIF_MSG_TX_QUEUED, |
| 2062 | "PBD @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u" |
| 2063 | " tcp_flags %x xsum %x seq %u hlen %u\n", |
| 2064 | pbd, pbd->global_data, pbd->ip_hlen, pbd->ip_id, |
| 2065 | pbd->lso_mss, pbd->tcp_flags, pbd->tcp_pseudo_csum, |
| 2066 | pbd->tcp_send_seq, le16_to_cpu(pbd->total_hlen)); |
| 2067 | |
| 2068 | DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); |
| 2069 | |
| 2070 | /* |
| 2071 | * Make sure that the BD data is updated before updating the producer |
| 2072 | * since FW might read the BD right after the producer is updated. |
| 2073 | * This is only applicable for weak-ordered memory model archs such |
| 2074 | * as IA-64. The following barrier is also mandatory since FW will |
| 2075 | * assumes packets must have BDs. |
| 2076 | */ |
| 2077 | wmb(); |
| 2078 | |
| 2079 | fp->tx_db.data.prod += nbd; |
| 2080 | barrier(); |
| 2081 | DOORBELL(bp, fp->index, fp->tx_db.raw); |
| 2082 | |
| 2083 | mmiowb(); |
| 2084 | |
| 2085 | fp->tx_bd_prod += nbd; |
| 2086 | |
| 2087 | if (unlikely(bnx2x_tx_avail(fp) < MAX_SKB_FRAGS + 3)) { |
| 2088 | netif_tx_stop_queue(txq); |
| 2089 | |
| 2090 | /* paired memory barrier is in bnx2x_tx_int(), we have to keep |
| 2091 | * ordering of set_bit() in netif_tx_stop_queue() and read of |
| 2092 | * fp->bd_tx_cons */ |
| 2093 | smp_mb(); |
| 2094 | |
| 2095 | fp->eth_q_stats.driver_xoff++; |
| 2096 | if (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3) |
| 2097 | netif_tx_wake_queue(txq); |
| 2098 | } |
| 2099 | fp->tx_pkt++; |
| 2100 | |
| 2101 | return NETDEV_TX_OK; |
| 2102 | } |
| 2103 | /* called with rtnl_lock */ |
| 2104 | int bnx2x_change_mac_addr(struct net_device *dev, void *p) |
| 2105 | { |
| 2106 | struct sockaddr *addr = p; |
| 2107 | struct bnx2x *bp = netdev_priv(dev); |
| 2108 | |
| 2109 | if (!is_valid_ether_addr((u8 *)(addr->sa_data))) |
| 2110 | return -EINVAL; |
| 2111 | |
| 2112 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| 2113 | if (netif_running(dev)) { |
| 2114 | if (CHIP_IS_E1(bp)) |
| 2115 | bnx2x_set_eth_mac_addr_e1(bp, 1); |
| 2116 | else |
| 2117 | bnx2x_set_eth_mac_addr_e1h(bp, 1); |
| 2118 | } |
| 2119 | |
| 2120 | return 0; |
| 2121 | } |
| 2122 | |
| 2123 | /* called with rtnl_lock */ |
| 2124 | int bnx2x_change_mtu(struct net_device *dev, int new_mtu) |
| 2125 | { |
| 2126 | struct bnx2x *bp = netdev_priv(dev); |
| 2127 | int rc = 0; |
| 2128 | |
| 2129 | if (bp->recovery_state != BNX2X_RECOVERY_DONE) { |
| 2130 | printk(KERN_ERR "Handling parity error recovery. Try again later\n"); |
| 2131 | return -EAGAIN; |
| 2132 | } |
| 2133 | |
| 2134 | if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || |
| 2135 | ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) |
| 2136 | return -EINVAL; |
| 2137 | |
| 2138 | /* This does not race with packet allocation |
| 2139 | * because the actual alloc size is |
| 2140 | * only updated as part of load |
| 2141 | */ |
| 2142 | dev->mtu = new_mtu; |
| 2143 | |
| 2144 | if (netif_running(dev)) { |
| 2145 | bnx2x_nic_unload(bp, UNLOAD_NORMAL); |
| 2146 | rc = bnx2x_nic_load(bp, LOAD_NORMAL); |
| 2147 | } |
| 2148 | |
| 2149 | return rc; |
| 2150 | } |
| 2151 | |
| 2152 | void bnx2x_tx_timeout(struct net_device *dev) |
| 2153 | { |
| 2154 | struct bnx2x *bp = netdev_priv(dev); |
| 2155 | |
| 2156 | #ifdef BNX2X_STOP_ON_ERROR |
| 2157 | if (!bp->panic) |
| 2158 | bnx2x_panic(); |
| 2159 | #endif |
| 2160 | /* This allows the netif to be shutdown gracefully before resetting */ |
| 2161 | schedule_delayed_work(&bp->reset_task, 0); |
| 2162 | } |
| 2163 | |
| 2164 | #ifdef BCM_VLAN |
| 2165 | /* called with rtnl_lock */ |
| 2166 | void bnx2x_vlan_rx_register(struct net_device *dev, |
| 2167 | struct vlan_group *vlgrp) |
| 2168 | { |
| 2169 | struct bnx2x *bp = netdev_priv(dev); |
| 2170 | |
| 2171 | bp->vlgrp = vlgrp; |
| 2172 | |
| 2173 | /* Set flags according to the required capabilities */ |
| 2174 | bp->flags &= ~(HW_VLAN_RX_FLAG | HW_VLAN_TX_FLAG); |
| 2175 | |
| 2176 | if (dev->features & NETIF_F_HW_VLAN_TX) |
| 2177 | bp->flags |= HW_VLAN_TX_FLAG; |
| 2178 | |
| 2179 | if (dev->features & NETIF_F_HW_VLAN_RX) |
| 2180 | bp->flags |= HW_VLAN_RX_FLAG; |
| 2181 | |
| 2182 | if (netif_running(dev)) |
| 2183 | bnx2x_set_client_config(bp); |
| 2184 | } |
| 2185 | |
| 2186 | #endif |
| 2187 | int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) |
| 2188 | { |
| 2189 | struct net_device *dev = pci_get_drvdata(pdev); |
| 2190 | struct bnx2x *bp; |
| 2191 | |
| 2192 | if (!dev) { |
| 2193 | dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); |
| 2194 | return -ENODEV; |
| 2195 | } |
| 2196 | bp = netdev_priv(dev); |
| 2197 | |
| 2198 | rtnl_lock(); |
| 2199 | |
| 2200 | pci_save_state(pdev); |
| 2201 | |
| 2202 | if (!netif_running(dev)) { |
| 2203 | rtnl_unlock(); |
| 2204 | return 0; |
| 2205 | } |
| 2206 | |
| 2207 | netif_device_detach(dev); |
| 2208 | |
| 2209 | bnx2x_nic_unload(bp, UNLOAD_CLOSE); |
| 2210 | |
| 2211 | bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); |
| 2212 | |
| 2213 | rtnl_unlock(); |
| 2214 | |
| 2215 | return 0; |
| 2216 | } |
| 2217 | |
| 2218 | int bnx2x_resume(struct pci_dev *pdev) |
| 2219 | { |
| 2220 | struct net_device *dev = pci_get_drvdata(pdev); |
| 2221 | struct bnx2x *bp; |
| 2222 | int rc; |
| 2223 | |
| 2224 | if (!dev) { |
| 2225 | dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); |
| 2226 | return -ENODEV; |
| 2227 | } |
| 2228 | bp = netdev_priv(dev); |
| 2229 | |
| 2230 | if (bp->recovery_state != BNX2X_RECOVERY_DONE) { |
| 2231 | printk(KERN_ERR "Handling parity error recovery. Try again later\n"); |
| 2232 | return -EAGAIN; |
| 2233 | } |
| 2234 | |
| 2235 | rtnl_lock(); |
| 2236 | |
| 2237 | pci_restore_state(pdev); |
| 2238 | |
| 2239 | if (!netif_running(dev)) { |
| 2240 | rtnl_unlock(); |
| 2241 | return 0; |
| 2242 | } |
| 2243 | |
| 2244 | bnx2x_set_power_state(bp, PCI_D0); |
| 2245 | netif_device_attach(dev); |
| 2246 | |
| 2247 | rc = bnx2x_nic_load(bp, LOAD_OPEN); |
| 2248 | |
| 2249 | rtnl_unlock(); |
| 2250 | |
| 2251 | return rc; |
| 2252 | } |