Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995, Russell King. |
| 3 | * Various bits and pieces copyrights include: |
| 4 | * Linus Torvalds (test_bit). |
| 5 | * Big endian support: Copyright 2001, Nicolas Pitre |
| 6 | * reworked by rmk. |
| 7 | * |
| 8 | * bit 0 is the LSB of an "unsigned long" quantity. |
| 9 | * |
| 10 | * Please note that the code in this file should never be included |
| 11 | * from user space. Many of these are not implemented in assembler |
| 12 | * since they would be too costly. Also, they require privileged |
| 13 | * instructions (which are not available from user mode) to ensure |
| 14 | * that they are atomic. |
| 15 | */ |
| 16 | |
| 17 | #ifndef __ASM_ARM_BITOPS_H |
| 18 | #define __ASM_ARM_BITOPS_H |
| 19 | |
| 20 | #ifdef __KERNEL__ |
| 21 | |
| 22 | #include <asm/system.h> |
| 23 | |
| 24 | #define smp_mb__before_clear_bit() do { } while (0) |
| 25 | #define smp_mb__after_clear_bit() do { } while (0) |
| 26 | |
| 27 | /* |
| 28 | * These functions are the basis of our bit ops. |
| 29 | * |
| 30 | * First, the atomic bitops. These use native endian. |
| 31 | */ |
| 32 | static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) |
| 33 | { |
| 34 | unsigned long flags; |
| 35 | unsigned long mask = 1UL << (bit & 31); |
| 36 | |
| 37 | p += bit >> 5; |
| 38 | |
| 39 | local_irq_save(flags); |
| 40 | *p |= mask; |
| 41 | local_irq_restore(flags); |
| 42 | } |
| 43 | |
| 44 | static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) |
| 45 | { |
| 46 | unsigned long flags; |
| 47 | unsigned long mask = 1UL << (bit & 31); |
| 48 | |
| 49 | p += bit >> 5; |
| 50 | |
| 51 | local_irq_save(flags); |
| 52 | *p &= ~mask; |
| 53 | local_irq_restore(flags); |
| 54 | } |
| 55 | |
| 56 | static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) |
| 57 | { |
| 58 | unsigned long flags; |
| 59 | unsigned long mask = 1UL << (bit & 31); |
| 60 | |
| 61 | p += bit >> 5; |
| 62 | |
| 63 | local_irq_save(flags); |
| 64 | *p ^= mask; |
| 65 | local_irq_restore(flags); |
| 66 | } |
| 67 | |
| 68 | static inline int |
| 69 | ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) |
| 70 | { |
| 71 | unsigned long flags; |
| 72 | unsigned int res; |
| 73 | unsigned long mask = 1UL << (bit & 31); |
| 74 | |
| 75 | p += bit >> 5; |
| 76 | |
| 77 | local_irq_save(flags); |
| 78 | res = *p; |
| 79 | *p = res | mask; |
| 80 | local_irq_restore(flags); |
| 81 | |
| 82 | return res & mask; |
| 83 | } |
| 84 | |
| 85 | static inline int |
| 86 | ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) |
| 87 | { |
| 88 | unsigned long flags; |
| 89 | unsigned int res; |
| 90 | unsigned long mask = 1UL << (bit & 31); |
| 91 | |
| 92 | p += bit >> 5; |
| 93 | |
| 94 | local_irq_save(flags); |
| 95 | res = *p; |
| 96 | *p = res & ~mask; |
| 97 | local_irq_restore(flags); |
| 98 | |
| 99 | return res & mask; |
| 100 | } |
| 101 | |
| 102 | static inline int |
| 103 | ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) |
| 104 | { |
| 105 | unsigned long flags; |
| 106 | unsigned int res; |
| 107 | unsigned long mask = 1UL << (bit & 31); |
| 108 | |
| 109 | p += bit >> 5; |
| 110 | |
| 111 | local_irq_save(flags); |
| 112 | res = *p; |
| 113 | *p = res ^ mask; |
| 114 | local_irq_restore(flags); |
| 115 | |
| 116 | return res & mask; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * Now the non-atomic variants. We let the compiler handle all |
| 121 | * optimisations for these. These are all _native_ endian. |
| 122 | */ |
| 123 | static inline void __set_bit(int nr, volatile unsigned long *p) |
| 124 | { |
| 125 | p[nr >> 5] |= (1UL << (nr & 31)); |
| 126 | } |
| 127 | |
| 128 | static inline void __clear_bit(int nr, volatile unsigned long *p) |
| 129 | { |
| 130 | p[nr >> 5] &= ~(1UL << (nr & 31)); |
| 131 | } |
| 132 | |
| 133 | static inline void __change_bit(int nr, volatile unsigned long *p) |
| 134 | { |
| 135 | p[nr >> 5] ^= (1UL << (nr & 31)); |
| 136 | } |
| 137 | |
| 138 | static inline int __test_and_set_bit(int nr, volatile unsigned long *p) |
| 139 | { |
| 140 | unsigned long oldval, mask = 1UL << (nr & 31); |
| 141 | |
| 142 | p += nr >> 5; |
| 143 | |
| 144 | oldval = *p; |
| 145 | *p = oldval | mask; |
| 146 | return oldval & mask; |
| 147 | } |
| 148 | |
| 149 | static inline int __test_and_clear_bit(int nr, volatile unsigned long *p) |
| 150 | { |
| 151 | unsigned long oldval, mask = 1UL << (nr & 31); |
| 152 | |
| 153 | p += nr >> 5; |
| 154 | |
| 155 | oldval = *p; |
| 156 | *p = oldval & ~mask; |
| 157 | return oldval & mask; |
| 158 | } |
| 159 | |
| 160 | static inline int __test_and_change_bit(int nr, volatile unsigned long *p) |
| 161 | { |
| 162 | unsigned long oldval, mask = 1UL << (nr & 31); |
| 163 | |
| 164 | p += nr >> 5; |
| 165 | |
| 166 | oldval = *p; |
| 167 | *p = oldval ^ mask; |
| 168 | return oldval & mask; |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * This routine doesn't need to be atomic. |
| 173 | */ |
| 174 | static inline int __test_bit(int nr, const volatile unsigned long * p) |
| 175 | { |
| 176 | return (p[nr >> 5] >> (nr & 31)) & 1UL; |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * A note about Endian-ness. |
| 181 | * ------------------------- |
| 182 | * |
| 183 | * When the ARM is put into big endian mode via CR15, the processor |
| 184 | * merely swaps the order of bytes within words, thus: |
| 185 | * |
| 186 | * ------------ physical data bus bits ----------- |
| 187 | * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0 |
| 188 | * little byte 3 byte 2 byte 1 byte 0 |
| 189 | * big byte 0 byte 1 byte 2 byte 3 |
| 190 | * |
| 191 | * This means that reading a 32-bit word at address 0 returns the same |
| 192 | * value irrespective of the endian mode bit. |
| 193 | * |
| 194 | * Peripheral devices should be connected with the data bus reversed in |
| 195 | * "Big Endian" mode. ARM Application Note 61 is applicable, and is |
| 196 | * available from http://www.arm.com/. |
| 197 | * |
| 198 | * The following assumes that the data bus connectivity for big endian |
| 199 | * mode has been followed. |
| 200 | * |
| 201 | * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0. |
| 202 | */ |
| 203 | |
| 204 | /* |
| 205 | * Little endian assembly bitops. nr = 0 -> byte 0 bit 0. |
| 206 | */ |
| 207 | extern void _set_bit_le(int nr, volatile unsigned long * p); |
| 208 | extern void _clear_bit_le(int nr, volatile unsigned long * p); |
| 209 | extern void _change_bit_le(int nr, volatile unsigned long * p); |
| 210 | extern int _test_and_set_bit_le(int nr, volatile unsigned long * p); |
| 211 | extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p); |
| 212 | extern int _test_and_change_bit_le(int nr, volatile unsigned long * p); |
| 213 | extern int _find_first_zero_bit_le(const void * p, unsigned size); |
| 214 | extern int _find_next_zero_bit_le(const void * p, int size, int offset); |
| 215 | extern int _find_first_bit_le(const unsigned long *p, unsigned size); |
| 216 | extern int _find_next_bit_le(const unsigned long *p, int size, int offset); |
| 217 | |
| 218 | /* |
| 219 | * Big endian assembly bitops. nr = 0 -> byte 3 bit 0. |
| 220 | */ |
| 221 | extern void _set_bit_be(int nr, volatile unsigned long * p); |
| 222 | extern void _clear_bit_be(int nr, volatile unsigned long * p); |
| 223 | extern void _change_bit_be(int nr, volatile unsigned long * p); |
| 224 | extern int _test_and_set_bit_be(int nr, volatile unsigned long * p); |
| 225 | extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p); |
| 226 | extern int _test_and_change_bit_be(int nr, volatile unsigned long * p); |
| 227 | extern int _find_first_zero_bit_be(const void * p, unsigned size); |
| 228 | extern int _find_next_zero_bit_be(const void * p, int size, int offset); |
| 229 | extern int _find_first_bit_be(const unsigned long *p, unsigned size); |
| 230 | extern int _find_next_bit_be(const unsigned long *p, int size, int offset); |
| 231 | |
| 232 | /* |
| 233 | * The __* form of bitops are non-atomic and may be reordered. |
| 234 | */ |
| 235 | #define ATOMIC_BITOP_LE(name,nr,p) \ |
| 236 | (__builtin_constant_p(nr) ? \ |
| 237 | ____atomic_##name(nr, p) : \ |
| 238 | _##name##_le(nr,p)) |
| 239 | |
| 240 | #define ATOMIC_BITOP_BE(name,nr,p) \ |
| 241 | (__builtin_constant_p(nr) ? \ |
| 242 | ____atomic_##name(nr, p) : \ |
| 243 | _##name##_be(nr,p)) |
| 244 | |
| 245 | #define NONATOMIC_BITOP(name,nr,p) \ |
| 246 | (____nonatomic_##name(nr, p)) |
| 247 | |
| 248 | #ifndef __ARMEB__ |
| 249 | /* |
| 250 | * These are the little endian, atomic definitions. |
| 251 | */ |
| 252 | #define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p) |
| 253 | #define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p) |
| 254 | #define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p) |
| 255 | #define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p) |
| 256 | #define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p) |
| 257 | #define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p) |
| 258 | #define test_bit(nr,p) __test_bit(nr,p) |
| 259 | #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz) |
| 260 | #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off) |
| 261 | #define find_first_bit(p,sz) _find_first_bit_le(p,sz) |
| 262 | #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off) |
| 263 | |
| 264 | #define WORD_BITOFF_TO_LE(x) ((x)) |
| 265 | |
| 266 | #else |
| 267 | |
| 268 | /* |
| 269 | * These are the big endian, atomic definitions. |
| 270 | */ |
| 271 | #define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p) |
| 272 | #define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p) |
| 273 | #define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p) |
| 274 | #define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p) |
| 275 | #define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p) |
| 276 | #define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p) |
| 277 | #define test_bit(nr,p) __test_bit(nr,p) |
| 278 | #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz) |
| 279 | #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off) |
| 280 | #define find_first_bit(p,sz) _find_first_bit_be(p,sz) |
| 281 | #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off) |
| 282 | |
| 283 | #define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18) |
| 284 | |
| 285 | #endif |
| 286 | |
| 287 | #if __LINUX_ARM_ARCH__ < 5 |
| 288 | |
| 289 | /* |
| 290 | * ffz = Find First Zero in word. Undefined if no zero exists, |
| 291 | * so code should check against ~0UL first.. |
| 292 | */ |
| 293 | static inline unsigned long ffz(unsigned long word) |
| 294 | { |
| 295 | int k; |
| 296 | |
| 297 | word = ~word; |
| 298 | k = 31; |
| 299 | if (word & 0x0000ffff) { k -= 16; word <<= 16; } |
| 300 | if (word & 0x00ff0000) { k -= 8; word <<= 8; } |
| 301 | if (word & 0x0f000000) { k -= 4; word <<= 4; } |
| 302 | if (word & 0x30000000) { k -= 2; word <<= 2; } |
| 303 | if (word & 0x40000000) { k -= 1; } |
| 304 | return k; |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * ffz = Find First Zero in word. Undefined if no zero exists, |
| 309 | * so code should check against ~0UL first.. |
| 310 | */ |
| 311 | static inline unsigned long __ffs(unsigned long word) |
| 312 | { |
| 313 | int k; |
| 314 | |
| 315 | k = 31; |
| 316 | if (word & 0x0000ffff) { k -= 16; word <<= 16; } |
| 317 | if (word & 0x00ff0000) { k -= 8; word <<= 8; } |
| 318 | if (word & 0x0f000000) { k -= 4; word <<= 4; } |
| 319 | if (word & 0x30000000) { k -= 2; word <<= 2; } |
| 320 | if (word & 0x40000000) { k -= 1; } |
| 321 | return k; |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * fls: find last bit set. |
| 326 | */ |
| 327 | |
| 328 | #define fls(x) generic_fls(x) |
| 329 | |
| 330 | /* |
| 331 | * ffs: find first bit set. This is defined the same way as |
| 332 | * the libc and compiler builtin ffs routines, therefore |
| 333 | * differs in spirit from the above ffz (man ffs). |
| 334 | */ |
| 335 | |
| 336 | #define ffs(x) generic_ffs(x) |
| 337 | |
| 338 | #else |
| 339 | |
| 340 | /* |
| 341 | * On ARMv5 and above those functions can be implemented around |
| 342 | * the clz instruction for much better code efficiency. |
| 343 | */ |
| 344 | |
| 345 | static __inline__ int generic_fls(int x); |
| 346 | #define fls(x) \ |
| 347 | ( __builtin_constant_p(x) ? generic_fls(x) : \ |
| 348 | ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) ) |
| 349 | #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); }) |
| 350 | #define __ffs(x) (ffs(x) - 1) |
| 351 | #define ffz(x) __ffs( ~(x) ) |
| 352 | |
| 353 | #endif |
| 354 | |
| 355 | /* |
| 356 | * Find first bit set in a 168-bit bitmap, where the first |
| 357 | * 128 bits are unlikely to be set. |
| 358 | */ |
| 359 | static inline int sched_find_first_bit(const unsigned long *b) |
| 360 | { |
| 361 | unsigned long v; |
| 362 | unsigned int off; |
| 363 | |
| 364 | for (off = 0; v = b[off], off < 4; off++) { |
| 365 | if (unlikely(v)) |
| 366 | break; |
| 367 | } |
| 368 | return __ffs(v) + off * 32; |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * hweightN: returns the hamming weight (i.e. the number |
| 373 | * of bits set) of a N-bit word |
| 374 | */ |
| 375 | |
| 376 | #define hweight32(x) generic_hweight32(x) |
| 377 | #define hweight16(x) generic_hweight16(x) |
| 378 | #define hweight8(x) generic_hweight8(x) |
| 379 | |
| 380 | /* |
| 381 | * Ext2 is defined to use little-endian byte ordering. |
| 382 | * These do not need to be atomic. |
| 383 | */ |
| 384 | #define ext2_set_bit(nr,p) \ |
| 385 | __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 386 | #define ext2_set_bit_atomic(lock,nr,p) \ |
| 387 | test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 388 | #define ext2_clear_bit(nr,p) \ |
| 389 | __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 390 | #define ext2_clear_bit_atomic(lock,nr,p) \ |
| 391 | test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 392 | #define ext2_test_bit(nr,p) \ |
| 393 | __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 394 | #define ext2_find_first_zero_bit(p,sz) \ |
| 395 | _find_first_zero_bit_le(p,sz) |
| 396 | #define ext2_find_next_zero_bit(p,sz,off) \ |
| 397 | _find_next_zero_bit_le(p,sz,off) |
| 398 | |
| 399 | /* |
| 400 | * Minix is defined to use little-endian byte ordering. |
| 401 | * These do not need to be atomic. |
| 402 | */ |
| 403 | #define minix_set_bit(nr,p) \ |
| 404 | __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 405 | #define minix_test_bit(nr,p) \ |
| 406 | __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 407 | #define minix_test_and_set_bit(nr,p) \ |
| 408 | __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 409 | #define minix_test_and_clear_bit(nr,p) \ |
| 410 | __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 411 | #define minix_find_first_zero_bit(p,sz) \ |
| 412 | _find_first_zero_bit_le(p,sz) |
| 413 | |
| 414 | #endif /* __KERNEL__ */ |
| 415 | |
| 416 | #endif /* _ARM_BITOPS_H */ |