blob: 0b9a79b2f48aaded2397762ce500b032f25f77e1 [file] [log] [blame]
Benjamin Herrenschmidt6cd32092012-04-29 15:42:27 +00001/*
2 * Windfarm PowerMac thermal control.
3 * Control loops for RackMack3,1 (Xserve G5)
4 *
5 * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
6 *
7 * Use and redistribute under the terms of the GNU GPL v2.
8 */
9#include <linux/types.h>
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/device.h>
13#include <linux/platform_device.h>
14#include <linux/reboot.h>
15#include <asm/prom.h>
16#include <asm/smu.h>
17
18#include "windfarm.h"
19#include "windfarm_pid.h"
20#include "windfarm_mpu.h"
21
22#define VERSION "1.0"
23
24#undef DEBUG
25#undef LOTSA_DEBUG
26
27#ifdef DEBUG
28#define DBG(args...) printk(args)
29#else
30#define DBG(args...) do { } while(0)
31#endif
32
33#ifdef LOTSA_DEBUG
34#define DBG_LOTS(args...) printk(args)
35#else
36#define DBG_LOTS(args...) do { } while(0)
37#endif
38
39/* define this to force CPU overtemp to 60 degree, useful for testing
40 * the overtemp code
41 */
42#undef HACKED_OVERTEMP
43
44/* We currently only handle 2 chips */
45#define NR_CHIPS 2
46#define NR_CPU_FANS 3 * NR_CHIPS
47
48/* Controls and sensors */
49static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
50static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
51static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
52static struct wf_sensor *backside_temp;
53static struct wf_sensor *slots_temp;
54static struct wf_sensor *dimms_temp;
55
56static struct wf_control *cpu_fans[NR_CHIPS][3];
57static struct wf_control *backside_fan;
58static struct wf_control *slots_fan;
59static struct wf_control *cpufreq_clamp;
60
61/* We keep a temperature history for average calculation of 180s */
62#define CPU_TEMP_HIST_SIZE 180
63
64/* PID loop state */
65static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
66static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
67static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
68static int cpu_thist_pt;
69static s64 cpu_thist_total;
70static s32 cpu_all_tmax = 100 << 16;
71static struct wf_pid_state backside_pid;
72static int backside_tick;
73static struct wf_pid_state slots_pid;
74static int slots_tick;
75static int slots_speed;
76static struct wf_pid_state dimms_pid;
77static int dimms_output_clamp;
78
79static int nr_chips;
80static bool have_all_controls;
81static bool have_all_sensors;
82static bool started;
83
84static int failure_state;
85#define FAILURE_SENSOR 1
86#define FAILURE_FAN 2
87#define FAILURE_PERM 4
88#define FAILURE_LOW_OVERTEMP 8
89#define FAILURE_HIGH_OVERTEMP 16
90
91/* Overtemp values */
92#define LOW_OVER_AVERAGE 0
93#define LOW_OVER_IMMEDIATE (10 << 16)
94#define LOW_OVER_CLEAR ((-10) << 16)
95#define HIGH_OVER_IMMEDIATE (14 << 16)
96#define HIGH_OVER_AVERAGE (10 << 16)
97#define HIGH_OVER_IMMEDIATE (14 << 16)
98
99
100static void cpu_max_all_fans(void)
101{
102 int i;
103
104 /* We max all CPU fans in case of a sensor error. We also do the
105 * cpufreq clamping now, even if it's supposedly done later by the
106 * generic code anyway, we do it earlier here to react faster
107 */
108 if (cpufreq_clamp)
109 wf_control_set_max(cpufreq_clamp);
110 for (i = 0; i < nr_chips; i++) {
111 if (cpu_fans[i][0])
112 wf_control_set_max(cpu_fans[i][0]);
113 if (cpu_fans[i][1])
114 wf_control_set_max(cpu_fans[i][1]);
115 if (cpu_fans[i][2])
116 wf_control_set_max(cpu_fans[i][2]);
117 }
118}
119
120static int cpu_check_overtemp(s32 temp)
121{
122 int new_state = 0;
123 s32 t_avg, t_old;
124 static bool first = true;
125
126 /* First check for immediate overtemps */
127 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
128 new_state |= FAILURE_LOW_OVERTEMP;
129 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
130 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
131 " temperature !\n");
132 }
133 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
134 new_state |= FAILURE_HIGH_OVERTEMP;
135 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
136 printk(KERN_ERR "windfarm: Critical overtemp due to"
137 " immediate CPU temperature !\n");
138 }
139
140 /*
141 * The first time around, initialize the array with the first
142 * temperature reading
143 */
144 if (first) {
145 int i;
146
147 cpu_thist_total = 0;
148 for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
149 cpu_thist[i] = temp;
150 cpu_thist_total += temp;
151 }
152 first = false;
153 }
154
155 /*
156 * We calculate a history of max temperatures and use that for the
157 * overtemp management
158 */
159 t_old = cpu_thist[cpu_thist_pt];
160 cpu_thist[cpu_thist_pt] = temp;
161 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
162 cpu_thist_total -= t_old;
163 cpu_thist_total += temp;
164 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
165
166 DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
167 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
168
169 /* Now check for average overtemps */
170 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
171 new_state |= FAILURE_LOW_OVERTEMP;
172 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
173 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
174 " temperature !\n");
175 }
176 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
177 new_state |= FAILURE_HIGH_OVERTEMP;
178 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
179 printk(KERN_ERR "windfarm: Critical overtemp due to"
180 " average CPU temperature !\n");
181 }
182
183 /* Now handle overtemp conditions. We don't currently use the windfarm
184 * overtemp handling core as it's not fully suited to the needs of those
185 * new machine. This will be fixed later.
186 */
187 if (new_state) {
188 /* High overtemp -> immediate shutdown */
189 if (new_state & FAILURE_HIGH_OVERTEMP)
190 machine_power_off();
191 if ((failure_state & new_state) != new_state)
192 cpu_max_all_fans();
193 failure_state |= new_state;
194 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
195 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
196 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
197 failure_state &= ~FAILURE_LOW_OVERTEMP;
198 }
199
200 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
201}
202
203static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
204{
205 s32 dtemp, volts, amps;
206 int rc;
207
208 /* Get diode temperature */
209 rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
210 if (rc) {
211 DBG(" CPU%d: temp reading error !\n", cpu);
212 return -EIO;
213 }
214 DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
215 *temp = dtemp;
216
217 /* Get voltage */
218 rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
219 if (rc) {
220 DBG(" CPU%d, volts reading error !\n", cpu);
221 return -EIO;
222 }
223 DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
224
225 /* Get current */
226 rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
227 if (rc) {
228 DBG(" CPU%d, current reading error !\n", cpu);
229 return -EIO;
230 }
231 DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
232
233 /* Calculate power */
234
235 /* Scale voltage and current raw sensor values according to fixed scales
236 * obtained in Darwin and calculate power from I and V
237 */
238 *power = (((u64)volts) * ((u64)amps)) >> 16;
239
240 DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
241
242 return 0;
243
244}
245
246static void cpu_fans_tick(void)
247{
248 int err, cpu, i;
249 s32 speed, temp, power, t_max = 0;
250
251 DBG_LOTS("* cpu fans_tick_split()\n");
252
253 for (cpu = 0; cpu < nr_chips; ++cpu) {
254 struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
255
256 /* Read current speed */
257 wf_control_get(cpu_fans[cpu][0], &sp->target);
258
259 err = read_one_cpu_vals(cpu, &temp, &power);
260 if (err) {
261 failure_state |= FAILURE_SENSOR;
262 cpu_max_all_fans();
263 return;
264 }
265
266 /* Keep track of highest temp */
267 t_max = max(t_max, temp);
268
269 /* Handle possible overtemps */
270 if (cpu_check_overtemp(t_max))
271 return;
272
273 /* Run PID */
274 wf_cpu_pid_run(sp, power, temp);
275
276 DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target);
277
278 /* Apply DIMMs clamp */
279 speed = max(sp->target, dimms_output_clamp);
280
281 /* Apply result to all cpu fans */
282 for (i = 0; i < 3; i++) {
283 err = wf_control_set(cpu_fans[cpu][i], speed);
284 if (err) {
285 pr_warning("wf_rm31: Fan %s reports error %d\n",
286 cpu_fans[cpu][i]->name, err);
287 failure_state |= FAILURE_FAN;
288 }
289 }
290 }
291}
292
293/* Implementation... */
294static int cpu_setup_pid(int cpu)
295{
296 struct wf_cpu_pid_param pid;
297 const struct mpu_data *mpu = cpu_mpu_data[cpu];
298 s32 tmax, ttarget, ptarget;
299 int fmin, fmax, hsize;
300
301 /* Get PID params from the appropriate MPU EEPROM */
302 tmax = mpu->tmax << 16;
303 ttarget = mpu->ttarget << 16;
304 ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
305
306 DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
307 cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
308
309 /* We keep a global tmax for overtemp calculations */
310 if (tmax < cpu_all_tmax)
311 cpu_all_tmax = tmax;
312
313 /* Set PID min/max by using the rear fan min/max */
314 fmin = wf_control_get_min(cpu_fans[cpu][0]);
315 fmax = wf_control_get_max(cpu_fans[cpu][0]);
316 DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
317
318 /* History size */
319 hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
320 DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
321
322 /* Initialize PID loop */
323 pid.interval = 1; /* seconds */
324 pid.history_len = hsize;
325 pid.gd = mpu->pid_gd;
326 pid.gp = mpu->pid_gp;
327 pid.gr = mpu->pid_gr;
328 pid.tmax = tmax;
329 pid.ttarget = ttarget;
330 pid.pmaxadj = ptarget;
331 pid.min = fmin;
332 pid.max = fmax;
333
334 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
335 cpu_pid[cpu].target = 4000;
336
337 return 0;
338}
339
340/* Backside/U3 fan */
341static struct wf_pid_param backside_param = {
342 .interval = 1,
343 .history_len = 2,
344 .gd = 0x00500000,
345 .gp = 0x0004cccc,
346 .gr = 0,
347 .itarget = 70 << 16,
348 .additive = 0,
349 .min = 20,
350 .max = 100,
351};
352
353/* DIMMs temperature (clamp the backside fan) */
354static struct wf_pid_param dimms_param = {
355 .interval = 1,
356 .history_len = 20,
357 .gd = 0,
358 .gp = 0,
359 .gr = 0x06553600,
360 .itarget = 50 << 16,
361 .additive = 0,
362 .min = 4000,
363 .max = 14000,
364};
365
366static void backside_fan_tick(void)
367{
368 s32 temp, dtemp;
369 int speed, dspeed, fan_min;
370 int err;
371
372 if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick)
373 return;
374 if (--backside_tick > 0)
375 return;
376 backside_tick = backside_pid.param.interval;
377
378 DBG_LOTS("* backside fans tick\n");
379
380 /* Update fan speed from actual fans */
381 err = wf_control_get(backside_fan, &speed);
382 if (!err)
383 backside_pid.target = speed;
384
385 err = wf_sensor_get(backside_temp, &temp);
386 if (err) {
387 printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n",
388 err);
389 failure_state |= FAILURE_SENSOR;
390 wf_control_set_max(backside_fan);
391 return;
392 }
393 speed = wf_pid_run(&backside_pid, temp);
394
395 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
396 FIX32TOPRINT(temp), speed);
397
398 err = wf_sensor_get(dimms_temp, &dtemp);
399 if (err) {
400 printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n",
401 err);
402 failure_state |= FAILURE_SENSOR;
403 wf_control_set_max(backside_fan);
404 return;
405 }
406 dspeed = wf_pid_run(&dimms_pid, dtemp);
407 dimms_output_clamp = dspeed;
408
409 fan_min = (dspeed * 100) / 14000;
410 fan_min = max(fan_min, backside_param.min);
411 speed = max(speed, fan_min);
412
413 err = wf_control_set(backside_fan, speed);
414 if (err) {
415 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
416 failure_state |= FAILURE_FAN;
417 }
418}
419
420static void backside_setup_pid(void)
421{
422 /* first time initialize things */
423 s32 fmin = wf_control_get_min(backside_fan);
424 s32 fmax = wf_control_get_max(backside_fan);
425 struct wf_pid_param param;
426
427 param = backside_param;
428 param.min = max(param.min, fmin);
429 param.max = min(param.max, fmax);
430 wf_pid_init(&backside_pid, &param);
431
432 param = dimms_param;
433 wf_pid_init(&dimms_pid, &param);
434
435 backside_tick = 1;
436
437 pr_info("wf_rm31: Backside control loop started.\n");
438}
439
440/* Slots fan */
441static const struct wf_pid_param slots_param = {
442 .interval = 5,
443 .history_len = 2,
444 .gd = 30 << 20,
445 .gp = 5 << 20,
446 .gr = 0,
447 .itarget = 40 << 16,
448 .additive = 1,
449 .min = 300,
450 .max = 4000,
451};
452
453static void slots_fan_tick(void)
454{
455 s32 temp;
456 int speed;
457 int err;
458
459 if (!slots_fan || !slots_temp || !slots_tick)
460 return;
461 if (--slots_tick > 0)
462 return;
463 slots_tick = slots_pid.param.interval;
464
465 DBG_LOTS("* slots fans tick\n");
466
467 err = wf_sensor_get(slots_temp, &temp);
468 if (err) {
469 pr_warning("wf_rm31: slots temp sensor error %d\n", err);
470 failure_state |= FAILURE_SENSOR;
471 wf_control_set_max(slots_fan);
472 return;
473 }
474 speed = wf_pid_run(&slots_pid, temp);
475
476 DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n",
477 FIX32TOPRINT(temp), speed);
478
479 slots_speed = speed;
480 err = wf_control_set(slots_fan, speed);
481 if (err) {
482 printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err);
483 failure_state |= FAILURE_FAN;
484 }
485}
486
487static void slots_setup_pid(void)
488{
489 /* first time initialize things */
490 s32 fmin = wf_control_get_min(slots_fan);
491 s32 fmax = wf_control_get_max(slots_fan);
492 struct wf_pid_param param = slots_param;
493
494 param.min = max(param.min, fmin);
495 param.max = min(param.max, fmax);
496 wf_pid_init(&slots_pid, &param);
497 slots_tick = 1;
498
499 pr_info("wf_rm31: Slots control loop started.\n");
500}
501
502static void set_fail_state(void)
503{
504 cpu_max_all_fans();
505
506 if (backside_fan)
507 wf_control_set_max(backside_fan);
508 if (slots_fan)
509 wf_control_set_max(slots_fan);
510}
511
512static void rm31_tick(void)
513{
514 int i, last_failure;
515
516 if (!started) {
517 started = 1;
518 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
519 for (i = 0; i < nr_chips; ++i) {
520 if (cpu_setup_pid(i) < 0) {
521 failure_state = FAILURE_PERM;
522 set_fail_state();
523 break;
524 }
525 }
526 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
527
528 backside_setup_pid();
529 slots_setup_pid();
530
531#ifdef HACKED_OVERTEMP
532 cpu_all_tmax = 60 << 16;
533#endif
534 }
535
536 /* Permanent failure, bail out */
537 if (failure_state & FAILURE_PERM)
538 return;
539
540 /*
541 * Clear all failure bits except low overtemp which will be eventually
542 * cleared by the control loop itself
543 */
544 last_failure = failure_state;
545 failure_state &= FAILURE_LOW_OVERTEMP;
546 backside_fan_tick();
547 slots_fan_tick();
548
549 /* We do CPUs last because they can be clamped high by
550 * DIMM temperature
551 */
552 cpu_fans_tick();
553
554 DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n",
555 last_failure, failure_state);
556
557 /* Check for failures. Any failure causes cpufreq clamping */
558 if (failure_state && last_failure == 0 && cpufreq_clamp)
559 wf_control_set_max(cpufreq_clamp);
560 if (failure_state == 0 && last_failure && cpufreq_clamp)
561 wf_control_set_min(cpufreq_clamp);
562
563 /* That's it for now, we might want to deal with other failures
564 * differently in the future though
565 */
566}
567
568static void rm31_new_control(struct wf_control *ct)
569{
570 bool all_controls;
571
572 if (!strcmp(ct->name, "cpu-fan-a-0"))
573 cpu_fans[0][0] = ct;
574 else if (!strcmp(ct->name, "cpu-fan-b-0"))
575 cpu_fans[0][1] = ct;
576 else if (!strcmp(ct->name, "cpu-fan-c-0"))
577 cpu_fans[0][2] = ct;
578 else if (!strcmp(ct->name, "cpu-fan-a-1"))
579 cpu_fans[1][0] = ct;
580 else if (!strcmp(ct->name, "cpu-fan-b-1"))
581 cpu_fans[1][1] = ct;
582 else if (!strcmp(ct->name, "cpu-fan-c-1"))
583 cpu_fans[1][2] = ct;
584 else if (!strcmp(ct->name, "backside-fan"))
585 backside_fan = ct;
586 else if (!strcmp(ct->name, "slots-fan"))
587 slots_fan = ct;
588 else if (!strcmp(ct->name, "cpufreq-clamp"))
589 cpufreq_clamp = ct;
590
591 all_controls =
592 cpu_fans[0][0] &&
593 cpu_fans[0][1] &&
594 cpu_fans[0][2] &&
595 backside_fan &&
596 slots_fan;
597 if (nr_chips > 1)
598 all_controls &=
599 cpu_fans[1][0] &&
600 cpu_fans[1][1] &&
601 cpu_fans[1][2];
602 have_all_controls = all_controls;
603}
604
605
606static void rm31_new_sensor(struct wf_sensor *sr)
607{
608 bool all_sensors;
609
610 if (!strcmp(sr->name, "cpu-diode-temp-0"))
611 sens_cpu_temp[0] = sr;
612 else if (!strcmp(sr->name, "cpu-diode-temp-1"))
613 sens_cpu_temp[1] = sr;
614 else if (!strcmp(sr->name, "cpu-voltage-0"))
615 sens_cpu_volts[0] = sr;
616 else if (!strcmp(sr->name, "cpu-voltage-1"))
617 sens_cpu_volts[1] = sr;
618 else if (!strcmp(sr->name, "cpu-current-0"))
619 sens_cpu_amps[0] = sr;
620 else if (!strcmp(sr->name, "cpu-current-1"))
621 sens_cpu_amps[1] = sr;
622 else if (!strcmp(sr->name, "backside-temp"))
623 backside_temp = sr;
624 else if (!strcmp(sr->name, "slots-temp"))
625 slots_temp = sr;
626 else if (!strcmp(sr->name, "dimms-temp"))
627 dimms_temp = sr;
628
629 all_sensors =
630 sens_cpu_temp[0] &&
631 sens_cpu_volts[0] &&
632 sens_cpu_amps[0] &&
633 backside_temp &&
634 slots_temp &&
635 dimms_temp;
636 if (nr_chips > 1)
637 all_sensors &=
638 sens_cpu_temp[1] &&
639 sens_cpu_volts[1] &&
640 sens_cpu_amps[1];
641
642 have_all_sensors = all_sensors;
643}
644
645static int rm31_wf_notify(struct notifier_block *self,
646 unsigned long event, void *data)
647{
648 switch (event) {
649 case WF_EVENT_NEW_SENSOR:
650 rm31_new_sensor(data);
651 break;
652 case WF_EVENT_NEW_CONTROL:
653 rm31_new_control(data);
654 break;
655 case WF_EVENT_TICK:
656 if (have_all_controls && have_all_sensors)
657 rm31_tick();
658 }
659 return 0;
660}
661
662static struct notifier_block rm31_events = {
663 .notifier_call = rm31_wf_notify,
664};
665
666static int wf_rm31_probe(struct platform_device *dev)
667{
668 wf_register_client(&rm31_events);
669 return 0;
670}
671
Greg Kroah-Hartman1da42fb2012-12-21 15:03:50 -0800672static int wf_rm31_remove(struct platform_device *dev)
Benjamin Herrenschmidt6cd32092012-04-29 15:42:27 +0000673{
674 wf_unregister_client(&rm31_events);
675
676 /* should release all sensors and controls */
677 return 0;
678}
679
680static struct platform_driver wf_rm31_driver = {
681 .probe = wf_rm31_probe,
682 .remove = wf_rm31_remove,
683 .driver = {
684 .name = "windfarm",
685 .owner = THIS_MODULE,
686 },
687};
688
689static int __init wf_rm31_init(void)
690{
691 struct device_node *cpu;
692 int i;
693
694 if (!of_machine_is_compatible("RackMac3,1"))
695 return -ENODEV;
696
697 /* Count the number of CPU cores */
698 nr_chips = 0;
Wei Yongjunc7c360e2012-12-02 03:00:09 +0000699 for_each_node_by_type(cpu, "cpu")
Benjamin Herrenschmidt6cd32092012-04-29 15:42:27 +0000700 ++nr_chips;
701 if (nr_chips > NR_CHIPS)
702 nr_chips = NR_CHIPS;
703
704 pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
705 nr_chips);
706
707 /* Get MPU data for each CPU */
708 for (i = 0; i < nr_chips; i++) {
709 cpu_mpu_data[i] = wf_get_mpu(i);
710 if (!cpu_mpu_data[i]) {
711 pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i);
712 return -ENXIO;
713 }
714 }
715
716#ifdef MODULE
717 request_module("windfarm_fcu_controls");
718 request_module("windfarm_lm75_sensor");
719 request_module("windfarm_lm87_sensor");
720 request_module("windfarm_ad7417_sensor");
721 request_module("windfarm_max6690_sensor");
722 request_module("windfarm_cpufreq_clamp");
723#endif /* MODULE */
724
725 platform_driver_register(&wf_rm31_driver);
726 return 0;
727}
728
729static void __exit wf_rm31_exit(void)
730{
731 platform_driver_unregister(&wf_rm31_driver);
732}
733
734module_init(wf_rm31_init);
735module_exit(wf_rm31_exit);
736
737MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
738MODULE_DESCRIPTION("Thermal control for Xserve G5");
739MODULE_LICENSE("GPL");
740MODULE_ALIAS("platform:windfarm");