blob: d2827864827fca74118f1e35b504b2b16a0d66bc [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
Jan Kiszka414fa982012-04-24 16:40:15 +020027
Wu Fengguang2044892d2009-12-24 09:04:16 +0800282. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020029-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030030
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080034handle will create a VM file descriptor which can be used to issue VM
Avi Kivity9c1b96e2009-06-09 12:37:58 +030035ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
Jan Kiszka414fa982012-04-24 16:40:15 +020047
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300483. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020049-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030050
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
Masanari Iidac9f3f2d2013-07-18 01:29:12 +090056The extension mechanism is not based on the Linux version number.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030057Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
Jan Kiszka414fa982012-04-24 16:40:15 +020061
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300624. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020063------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030064
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030071 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
Avi Kivity9c1b96e2009-06-09 12:37:58 +030072 means availability needs to be checked with KVM_CHECK_EXTENSION
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030073 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030077
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
Jan Kiszka414fa982012-04-24 16:40:15 +020088
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
Jan Kiszka414fa982012-04-24 16:40:15 +0200104
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100110Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
James Hogana8a3c422017-03-14 10:15:19 +0000118You probably want to use 0 as machine type.
Carsten Ottee08b9632012-01-04 10:25:20 +0100119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300123
James Hogana8a3c422017-03-14 10:15:19 +0000124To use hardware assisted virtualization on MIPS (VZ ASE) rather than
125the default trap & emulate implementation (which changes the virtual
126memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
127flag KVM_VM_MIPS_VZ.
128
Jan Kiszka414fa982012-04-24 16:40:15 +0200129
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001304.3 KVM_GET_MSR_INDEX_LIST
131
132Capability: basic
133Architectures: x86
134Type: system
135Parameters: struct kvm_msr_list (in/out)
136Returns: 0 on success; -1 on error
137Errors:
138 E2BIG: the msr index list is to be to fit in the array specified by
139 the user.
140
141struct kvm_msr_list {
142 __u32 nmsrs; /* number of msrs in entries */
143 __u32 indices[0];
144};
145
146This ioctl returns the guest msrs that are supported. The list varies
147by kvm version and host processor, but does not change otherwise. The
148user fills in the size of the indices array in nmsrs, and in return
149kvm adjusts nmsrs to reflect the actual number of msrs and fills in
150the indices array with their numbers.
151
Avi Kivity2e2602c2010-07-07 14:09:39 +0300152Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
153not returned in the MSR list, as different vcpus can have a different number
154of banks, as set via the KVM_X86_SETUP_MCE ioctl.
155
Jan Kiszka414fa982012-04-24 16:40:15 +0200156
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001574.4 KVM_CHECK_EXTENSION
158
Alexander Graf92b591a2014-07-14 18:33:08 +0200159Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300160Architectures: all
Alexander Graf92b591a2014-07-14 18:33:08 +0200161Type: system ioctl, vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300162Parameters: extension identifier (KVM_CAP_*)
163Returns: 0 if unsupported; 1 (or some other positive integer) if supported
164
165The API allows the application to query about extensions to the core
166kvm API. Userspace passes an extension identifier (an integer) and
167receives an integer that describes the extension availability.
168Generally 0 means no and 1 means yes, but some extensions may report
169additional information in the integer return value.
170
Alexander Graf92b591a2014-07-14 18:33:08 +0200171Based on their initialization different VMs may have different capabilities.
172It is thus encouraged to use the vm ioctl to query for capabilities (available
173with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
Jan Kiszka414fa982012-04-24 16:40:15 +0200174
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001754.5 KVM_GET_VCPU_MMAP_SIZE
176
177Capability: basic
178Architectures: all
179Type: system ioctl
180Parameters: none
181Returns: size of vcpu mmap area, in bytes
182
183The KVM_RUN ioctl (cf.) communicates with userspace via a shared
184memory region. This ioctl returns the size of that region. See the
185KVM_RUN documentation for details.
186
Jan Kiszka414fa982012-04-24 16:40:15 +0200187
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001884.6 KVM_SET_MEMORY_REGION
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: struct kvm_memory_region (in)
194Returns: 0 on success, -1 on error
195
Avi Kivityb74a07b2010-06-21 11:48:05 +0300196This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300197
Jan Kiszka414fa982012-04-24 16:40:15 +0200198
Paul Bolle68ba6972011-02-15 00:05:59 +01001994.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300200
201Capability: basic
202Architectures: all
203Type: vm ioctl
204Parameters: vcpu id (apic id on x86)
205Returns: vcpu fd on success, -1 on error
206
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200207This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
208The vcpu id is an integer in the range [0, max_vcpu_id).
Sasha Levin8c3ba332011-07-18 17:17:15 +0300209
210The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
211the KVM_CHECK_EXTENSION ioctl() at run-time.
212The maximum possible value for max_vcpus can be retrieved using the
213KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
214
Pekka Enberg76d25402011-05-09 22:48:54 +0300215If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
216cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300217If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
218same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300219
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200220The maximum possible value for max_vcpu_id can be retrieved using the
221KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
222
223If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
224is the same as the value returned from KVM_CAP_MAX_VCPUS.
225
Paul Mackerras371fefd2011-06-29 00:23:08 +0000226On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
227threads in one or more virtual CPU cores. (This is because the
228hardware requires all the hardware threads in a CPU core to be in the
229same partition.) The KVM_CAP_PPC_SMT capability indicates the number
230of vcpus per virtual core (vcore). The vcore id is obtained by
231dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
232given vcore will always be in the same physical core as each other
233(though that might be a different physical core from time to time).
234Userspace can control the threading (SMT) mode of the guest by its
235allocation of vcpu ids. For example, if userspace wants
236single-threaded guest vcpus, it should make all vcpu ids be a multiple
237of the number of vcpus per vcore.
238
Carsten Otte5b1c1492012-01-04 10:25:23 +0100239For virtual cpus that have been created with S390 user controlled virtual
240machines, the resulting vcpu fd can be memory mapped at page offset
241KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
242cpu's hardware control block.
243
Jan Kiszka414fa982012-04-24 16:40:15 +0200244
Paul Bolle68ba6972011-02-15 00:05:59 +01002454.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300246
247Capability: basic
248Architectures: x86
249Type: vm ioctl
250Parameters: struct kvm_dirty_log (in/out)
251Returns: 0 on success, -1 on error
252
253/* for KVM_GET_DIRTY_LOG */
254struct kvm_dirty_log {
255 __u32 slot;
256 __u32 padding;
257 union {
258 void __user *dirty_bitmap; /* one bit per page */
259 __u64 padding;
260 };
261};
262
263Given a memory slot, return a bitmap containing any pages dirtied
264since the last call to this ioctl. Bit 0 is the first page in the
265memory slot. Ensure the entire structure is cleared to avoid padding
266issues.
267
Paolo Bonzinif481b062015-05-17 17:30:37 +0200268If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
269the address space for which you want to return the dirty bitmap.
270They must be less than the value that KVM_CHECK_EXTENSION returns for
271the KVM_CAP_MULTI_ADDRESS_SPACE capability.
272
Jan Kiszka414fa982012-04-24 16:40:15 +0200273
Paul Bolle68ba6972011-02-15 00:05:59 +01002744.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300275
276Capability: basic
277Architectures: x86
278Type: vm ioctl
279Parameters: struct kvm_memory_alias (in)
280Returns: 0 (success), -1 (error)
281
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300282This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300283
Jan Kiszka414fa982012-04-24 16:40:15 +0200284
Paul Bolle68ba6972011-02-15 00:05:59 +01002854.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300286
287Capability: basic
288Architectures: all
289Type: vcpu ioctl
290Parameters: none
291Returns: 0 on success, -1 on error
292Errors:
293 EINTR: an unmasked signal is pending
294
295This ioctl is used to run a guest virtual cpu. While there are no
296explicit parameters, there is an implicit parameter block that can be
297obtained by mmap()ing the vcpu fd at offset 0, with the size given by
298KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
299kvm_run' (see below).
300
Jan Kiszka414fa982012-04-24 16:40:15 +0200301
Paul Bolle68ba6972011-02-15 00:05:59 +01003024.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300303
304Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +0100305Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300306Type: vcpu ioctl
307Parameters: struct kvm_regs (out)
308Returns: 0 on success, -1 on error
309
310Reads the general purpose registers from the vcpu.
311
312/* x86 */
313struct kvm_regs {
314 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
315 __u64 rax, rbx, rcx, rdx;
316 __u64 rsi, rdi, rsp, rbp;
317 __u64 r8, r9, r10, r11;
318 __u64 r12, r13, r14, r15;
319 __u64 rip, rflags;
320};
321
James Hoganc2d2c212014-07-04 15:11:35 +0100322/* mips */
323struct kvm_regs {
324 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
325 __u64 gpr[32];
326 __u64 hi;
327 __u64 lo;
328 __u64 pc;
329};
330
Jan Kiszka414fa982012-04-24 16:40:15 +0200331
Paul Bolle68ba6972011-02-15 00:05:59 +01003324.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300333
334Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +0100335Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300336Type: vcpu ioctl
337Parameters: struct kvm_regs (in)
338Returns: 0 on success, -1 on error
339
340Writes the general purpose registers into the vcpu.
341
342See KVM_GET_REGS for the data structure.
343
Jan Kiszka414fa982012-04-24 16:40:15 +0200344
Paul Bolle68ba6972011-02-15 00:05:59 +01003454.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300346
347Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500348Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300349Type: vcpu ioctl
350Parameters: struct kvm_sregs (out)
351Returns: 0 on success, -1 on error
352
353Reads special registers from the vcpu.
354
355/* x86 */
356struct kvm_sregs {
357 struct kvm_segment cs, ds, es, fs, gs, ss;
358 struct kvm_segment tr, ldt;
359 struct kvm_dtable gdt, idt;
360 __u64 cr0, cr2, cr3, cr4, cr8;
361 __u64 efer;
362 __u64 apic_base;
363 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
364};
365
Mihai Caraman68e2ffe2012-12-11 03:38:23 +0000366/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
Scott Wood5ce941e2011-04-27 17:24:21 -0500367
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300368interrupt_bitmap is a bitmap of pending external interrupts. At most
369one bit may be set. This interrupt has been acknowledged by the APIC
370but not yet injected into the cpu core.
371
Jan Kiszka414fa982012-04-24 16:40:15 +0200372
Paul Bolle68ba6972011-02-15 00:05:59 +01003734.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300374
375Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500376Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300377Type: vcpu ioctl
378Parameters: struct kvm_sregs (in)
379Returns: 0 on success, -1 on error
380
381Writes special registers into the vcpu. See KVM_GET_SREGS for the
382data structures.
383
Jan Kiszka414fa982012-04-24 16:40:15 +0200384
Paul Bolle68ba6972011-02-15 00:05:59 +01003854.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300386
387Capability: basic
388Architectures: x86
389Type: vcpu ioctl
390Parameters: struct kvm_translation (in/out)
391Returns: 0 on success, -1 on error
392
393Translates a virtual address according to the vcpu's current address
394translation mode.
395
396struct kvm_translation {
397 /* in */
398 __u64 linear_address;
399
400 /* out */
401 __u64 physical_address;
402 __u8 valid;
403 __u8 writeable;
404 __u8 usermode;
405 __u8 pad[5];
406};
407
Jan Kiszka414fa982012-04-24 16:40:15 +0200408
Paul Bolle68ba6972011-02-15 00:05:59 +01004094.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300410
411Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +0100412Architectures: x86, ppc, mips
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300413Type: vcpu ioctl
414Parameters: struct kvm_interrupt (in)
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200415Returns: 0 on success, negative on failure.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300416
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200417Queues a hardware interrupt vector to be injected.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300418
419/* for KVM_INTERRUPT */
420struct kvm_interrupt {
421 /* in */
422 __u32 irq;
423};
424
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200425X86:
426
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200427Returns: 0 on success,
428 -EEXIST if an interrupt is already enqueued
429 -EINVAL the the irq number is invalid
430 -ENXIO if the PIC is in the kernel
431 -EFAULT if the pointer is invalid
432
433Note 'irq' is an interrupt vector, not an interrupt pin or line. This
434ioctl is useful if the in-kernel PIC is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300435
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200436PPC:
437
438Queues an external interrupt to be injected. This ioctl is overleaded
439with 3 different irq values:
440
441a) KVM_INTERRUPT_SET
442
443 This injects an edge type external interrupt into the guest once it's ready
444 to receive interrupts. When injected, the interrupt is done.
445
446b) KVM_INTERRUPT_UNSET
447
448 This unsets any pending interrupt.
449
450 Only available with KVM_CAP_PPC_UNSET_IRQ.
451
452c) KVM_INTERRUPT_SET_LEVEL
453
454 This injects a level type external interrupt into the guest context. The
455 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
456 is triggered.
457
458 Only available with KVM_CAP_PPC_IRQ_LEVEL.
459
460Note that any value for 'irq' other than the ones stated above is invalid
461and incurs unexpected behavior.
462
James Hoganc2d2c212014-07-04 15:11:35 +0100463MIPS:
464
465Queues an external interrupt to be injected into the virtual CPU. A negative
466interrupt number dequeues the interrupt.
467
Jan Kiszka414fa982012-04-24 16:40:15 +0200468
Paul Bolle68ba6972011-02-15 00:05:59 +01004694.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300470
471Capability: basic
472Architectures: none
473Type: vcpu ioctl
474Parameters: none)
475Returns: -1 on error
476
477Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
478
Jan Kiszka414fa982012-04-24 16:40:15 +0200479
Paul Bolle68ba6972011-02-15 00:05:59 +01004804.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300481
482Capability: basic
483Architectures: x86
484Type: vcpu ioctl
485Parameters: struct kvm_msrs (in/out)
486Returns: 0 on success, -1 on error
487
488Reads model-specific registers from the vcpu. Supported msr indices can
489be obtained using KVM_GET_MSR_INDEX_LIST.
490
491struct kvm_msrs {
492 __u32 nmsrs; /* number of msrs in entries */
493 __u32 pad;
494
495 struct kvm_msr_entry entries[0];
496};
497
498struct kvm_msr_entry {
499 __u32 index;
500 __u32 reserved;
501 __u64 data;
502};
503
504Application code should set the 'nmsrs' member (which indicates the
505size of the entries array) and the 'index' member of each array entry.
506kvm will fill in the 'data' member.
507
Jan Kiszka414fa982012-04-24 16:40:15 +0200508
Paul Bolle68ba6972011-02-15 00:05:59 +01005094.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300510
511Capability: basic
512Architectures: x86
513Type: vcpu ioctl
514Parameters: struct kvm_msrs (in)
515Returns: 0 on success, -1 on error
516
517Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
518data structures.
519
520Application code should set the 'nmsrs' member (which indicates the
521size of the entries array), and the 'index' and 'data' members of each
522array entry.
523
Jan Kiszka414fa982012-04-24 16:40:15 +0200524
Paul Bolle68ba6972011-02-15 00:05:59 +01005254.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300526
527Capability: basic
528Architectures: x86
529Type: vcpu ioctl
530Parameters: struct kvm_cpuid (in)
531Returns: 0 on success, -1 on error
532
533Defines the vcpu responses to the cpuid instruction. Applications
534should use the KVM_SET_CPUID2 ioctl if available.
535
536
537struct kvm_cpuid_entry {
538 __u32 function;
539 __u32 eax;
540 __u32 ebx;
541 __u32 ecx;
542 __u32 edx;
543 __u32 padding;
544};
545
546/* for KVM_SET_CPUID */
547struct kvm_cpuid {
548 __u32 nent;
549 __u32 padding;
550 struct kvm_cpuid_entry entries[0];
551};
552
Jan Kiszka414fa982012-04-24 16:40:15 +0200553
Paul Bolle68ba6972011-02-15 00:05:59 +01005544.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300555
556Capability: basic
James Hogan572e0922014-07-04 15:11:33 +0100557Architectures: all
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300558Type: vcpu ioctl
559Parameters: struct kvm_signal_mask (in)
560Returns: 0 on success, -1 on error
561
562Defines which signals are blocked during execution of KVM_RUN. This
563signal mask temporarily overrides the threads signal mask. Any
564unblocked signal received (except SIGKILL and SIGSTOP, which retain
565their traditional behaviour) will cause KVM_RUN to return with -EINTR.
566
567Note the signal will only be delivered if not blocked by the original
568signal mask.
569
570/* for KVM_SET_SIGNAL_MASK */
571struct kvm_signal_mask {
572 __u32 len;
573 __u8 sigset[0];
574};
575
Jan Kiszka414fa982012-04-24 16:40:15 +0200576
Paul Bolle68ba6972011-02-15 00:05:59 +01005774.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300578
579Capability: basic
580Architectures: x86
581Type: vcpu ioctl
582Parameters: struct kvm_fpu (out)
583Returns: 0 on success, -1 on error
584
585Reads the floating point state from the vcpu.
586
587/* for KVM_GET_FPU and KVM_SET_FPU */
588struct kvm_fpu {
589 __u8 fpr[8][16];
590 __u16 fcw;
591 __u16 fsw;
592 __u8 ftwx; /* in fxsave format */
593 __u8 pad1;
594 __u16 last_opcode;
595 __u64 last_ip;
596 __u64 last_dp;
597 __u8 xmm[16][16];
598 __u32 mxcsr;
599 __u32 pad2;
600};
601
Jan Kiszka414fa982012-04-24 16:40:15 +0200602
Paul Bolle68ba6972011-02-15 00:05:59 +01006034.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300604
605Capability: basic
606Architectures: x86
607Type: vcpu ioctl
608Parameters: struct kvm_fpu (in)
609Returns: 0 on success, -1 on error
610
611Writes the floating point state to the vcpu.
612
613/* for KVM_GET_FPU and KVM_SET_FPU */
614struct kvm_fpu {
615 __u8 fpr[8][16];
616 __u16 fcw;
617 __u16 fsw;
618 __u8 ftwx; /* in fxsave format */
619 __u8 pad1;
620 __u16 last_opcode;
621 __u64 last_ip;
622 __u64 last_dp;
623 __u8 xmm[16][16];
624 __u32 mxcsr;
625 __u32 pad2;
626};
627
Jan Kiszka414fa982012-04-24 16:40:15 +0200628
Paul Bolle68ba6972011-02-15 00:05:59 +01006294.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300630
Cornelia Huck84223592013-07-15 13:36:01 +0200631Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
Tiejun Chenc32a4272014-11-20 11:07:18 +0100632Architectures: x86, ARM, arm64, s390
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300633Type: vm ioctl
634Parameters: none
635Returns: 0 on success, -1 on error
636
Andre Przywaraac3d3732014-06-03 10:26:30 +0200637Creates an interrupt controller model in the kernel.
638On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
639future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
640PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
641On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
642KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
643KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
644On s390, a dummy irq routing table is created.
Cornelia Huck84223592013-07-15 13:36:01 +0200645
646Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
647before KVM_CREATE_IRQCHIP can be used.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300648
Jan Kiszka414fa982012-04-24 16:40:15 +0200649
Paul Bolle68ba6972011-02-15 00:05:59 +01006504.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300651
652Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100653Architectures: x86, arm, arm64
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300654Type: vm ioctl
655Parameters: struct kvm_irq_level
656Returns: 0 on success, -1 on error
657
658Sets the level of a GSI input to the interrupt controller model in the kernel.
Christoffer Dall86ce8532013-01-20 18:28:08 -0500659On some architectures it is required that an interrupt controller model has
660been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
661interrupts require the level to be set to 1 and then back to 0.
662
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500663On real hardware, interrupt pins can be active-low or active-high. This
664does not matter for the level field of struct kvm_irq_level: 1 always
665means active (asserted), 0 means inactive (deasserted).
666
667x86 allows the operating system to program the interrupt polarity
668(active-low/active-high) for level-triggered interrupts, and KVM used
669to consider the polarity. However, due to bitrot in the handling of
670active-low interrupts, the above convention is now valid on x86 too.
671This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
672should not present interrupts to the guest as active-low unless this
673capability is present (or unless it is not using the in-kernel irqchip,
674of course).
675
676
Marc Zyngier379e04c2013-04-02 17:46:31 +0100677ARM/arm64 can signal an interrupt either at the CPU level, or at the
678in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
679use PPIs designated for specific cpus. The irq field is interpreted
680like this:
Christoffer Dall86ce8532013-01-20 18:28:08 -0500681
682  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
683 field: | irq_type | vcpu_index | irq_id |
684
685The irq_type field has the following values:
686- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
687- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
688 (the vcpu_index field is ignored)
689- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
690
691(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
692
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500693In both cases, level is used to assert/deassert the line.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300694
695struct kvm_irq_level {
696 union {
697 __u32 irq; /* GSI */
698 __s32 status; /* not used for KVM_IRQ_LEVEL */
699 };
700 __u32 level; /* 0 or 1 */
701};
702
Jan Kiszka414fa982012-04-24 16:40:15 +0200703
Paul Bolle68ba6972011-02-15 00:05:59 +01007044.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300705
706Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100707Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300708Type: vm ioctl
709Parameters: struct kvm_irqchip (in/out)
710Returns: 0 on success, -1 on error
711
712Reads the state of a kernel interrupt controller created with
713KVM_CREATE_IRQCHIP into a buffer provided by the caller.
714
715struct kvm_irqchip {
716 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
717 __u32 pad;
718 union {
719 char dummy[512]; /* reserving space */
720 struct kvm_pic_state pic;
721 struct kvm_ioapic_state ioapic;
722 } chip;
723};
724
Jan Kiszka414fa982012-04-24 16:40:15 +0200725
Paul Bolle68ba6972011-02-15 00:05:59 +01007264.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300727
728Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100729Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300730Type: vm ioctl
731Parameters: struct kvm_irqchip (in)
732Returns: 0 on success, -1 on error
733
734Sets the state of a kernel interrupt controller created with
735KVM_CREATE_IRQCHIP from a buffer provided by the caller.
736
737struct kvm_irqchip {
738 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
739 __u32 pad;
740 union {
741 char dummy[512]; /* reserving space */
742 struct kvm_pic_state pic;
743 struct kvm_ioapic_state ioapic;
744 } chip;
745};
746
Jan Kiszka414fa982012-04-24 16:40:15 +0200747
Paul Bolle68ba6972011-02-15 00:05:59 +01007484.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700749
750Capability: KVM_CAP_XEN_HVM
751Architectures: x86
752Type: vm ioctl
753Parameters: struct kvm_xen_hvm_config (in)
754Returns: 0 on success, -1 on error
755
756Sets the MSR that the Xen HVM guest uses to initialize its hypercall
757page, and provides the starting address and size of the hypercall
758blobs in userspace. When the guest writes the MSR, kvm copies one
759page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
760memory.
761
762struct kvm_xen_hvm_config {
763 __u32 flags;
764 __u32 msr;
765 __u64 blob_addr_32;
766 __u64 blob_addr_64;
767 __u8 blob_size_32;
768 __u8 blob_size_64;
769 __u8 pad2[30];
770};
771
Jan Kiszka414fa982012-04-24 16:40:15 +0200772
Paul Bolle68ba6972011-02-15 00:05:59 +01007734.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400774
775Capability: KVM_CAP_ADJUST_CLOCK
776Architectures: x86
777Type: vm ioctl
778Parameters: struct kvm_clock_data (out)
779Returns: 0 on success, -1 on error
780
781Gets the current timestamp of kvmclock as seen by the current guest. In
782conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
783such as migration.
784
Paolo Bonzinie3fd9a92016-11-09 17:48:15 +0100785When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
786set of bits that KVM can return in struct kvm_clock_data's flag member.
787
788The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
789value is the exact kvmclock value seen by all VCPUs at the instant
790when KVM_GET_CLOCK was called. If clear, the returned value is simply
791CLOCK_MONOTONIC plus a constant offset; the offset can be modified
792with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
793but the exact value read by each VCPU could differ, because the host
794TSC is not stable.
795
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400796struct kvm_clock_data {
797 __u64 clock; /* kvmclock current value */
798 __u32 flags;
799 __u32 pad[9];
800};
801
Jan Kiszka414fa982012-04-24 16:40:15 +0200802
Paul Bolle68ba6972011-02-15 00:05:59 +01008034.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400804
805Capability: KVM_CAP_ADJUST_CLOCK
806Architectures: x86
807Type: vm ioctl
808Parameters: struct kvm_clock_data (in)
809Returns: 0 on success, -1 on error
810
Wu Fengguang2044892d2009-12-24 09:04:16 +0800811Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400812In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
813such as migration.
814
815struct kvm_clock_data {
816 __u64 clock; /* kvmclock current value */
817 __u32 flags;
818 __u32 pad[9];
819};
820
Jan Kiszka414fa982012-04-24 16:40:15 +0200821
Paul Bolle68ba6972011-02-15 00:05:59 +01008224.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100823
824Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100825Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100826Architectures: x86
827Type: vm ioctl
828Parameters: struct kvm_vcpu_event (out)
829Returns: 0 on success, -1 on error
830
831Gets currently pending exceptions, interrupts, and NMIs as well as related
832states of the vcpu.
833
834struct kvm_vcpu_events {
835 struct {
836 __u8 injected;
837 __u8 nr;
838 __u8 has_error_code;
839 __u8 pad;
840 __u32 error_code;
841 } exception;
842 struct {
843 __u8 injected;
844 __u8 nr;
845 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100846 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100847 } interrupt;
848 struct {
849 __u8 injected;
850 __u8 pending;
851 __u8 masked;
852 __u8 pad;
853 } nmi;
854 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100855 __u32 flags;
Paolo Bonzinif0778252015-04-01 15:06:40 +0200856 struct {
857 __u8 smm;
858 __u8 pending;
859 __u8 smm_inside_nmi;
860 __u8 latched_init;
861 } smi;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100862};
863
Paolo Bonzinif0778252015-04-01 15:06:40 +0200864Only two fields are defined in the flags field:
Jan Kiszka48005f62010-02-19 19:38:07 +0100865
Paolo Bonzinif0778252015-04-01 15:06:40 +0200866- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
867 interrupt.shadow contains a valid state.
868
869- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
870 smi contains a valid state.
Jan Kiszka414fa982012-04-24 16:40:15 +0200871
Paul Bolle68ba6972011-02-15 00:05:59 +01008724.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100873
874Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100875Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100876Architectures: x86
877Type: vm ioctl
878Parameters: struct kvm_vcpu_event (in)
879Returns: 0 on success, -1 on error
880
881Set pending exceptions, interrupts, and NMIs as well as related states of the
882vcpu.
883
884See KVM_GET_VCPU_EVENTS for the data structure.
885
Jan Kiszkadab4b912009-12-06 18:24:15 +0100886Fields that may be modified asynchronously by running VCPUs can be excluded
Paolo Bonzinif0778252015-04-01 15:06:40 +0200887from the update. These fields are nmi.pending, sipi_vector, smi.smm,
888smi.pending. Keep the corresponding bits in the flags field cleared to
889suppress overwriting the current in-kernel state. The bits are:
Jan Kiszkadab4b912009-12-06 18:24:15 +0100890
891KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
892KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
Paolo Bonzinif0778252015-04-01 15:06:40 +0200893KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
Jan Kiszkadab4b912009-12-06 18:24:15 +0100894
Jan Kiszka48005f62010-02-19 19:38:07 +0100895If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
896the flags field to signal that interrupt.shadow contains a valid state and
897shall be written into the VCPU.
898
Paolo Bonzinif0778252015-04-01 15:06:40 +0200899KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
900
Jan Kiszka414fa982012-04-24 16:40:15 +0200901
Paul Bolle68ba6972011-02-15 00:05:59 +01009024.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100903
904Capability: KVM_CAP_DEBUGREGS
905Architectures: x86
906Type: vm ioctl
907Parameters: struct kvm_debugregs (out)
908Returns: 0 on success, -1 on error
909
910Reads debug registers from the vcpu.
911
912struct kvm_debugregs {
913 __u64 db[4];
914 __u64 dr6;
915 __u64 dr7;
916 __u64 flags;
917 __u64 reserved[9];
918};
919
Jan Kiszka414fa982012-04-24 16:40:15 +0200920
Paul Bolle68ba6972011-02-15 00:05:59 +01009214.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100922
923Capability: KVM_CAP_DEBUGREGS
924Architectures: x86
925Type: vm ioctl
926Parameters: struct kvm_debugregs (in)
927Returns: 0 on success, -1 on error
928
929Writes debug registers into the vcpu.
930
931See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
932yet and must be cleared on entry.
933
Jan Kiszka414fa982012-04-24 16:40:15 +0200934
Paul Bolle68ba6972011-02-15 00:05:59 +01009354.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200936
937Capability: KVM_CAP_USER_MEM
938Architectures: all
939Type: vm ioctl
940Parameters: struct kvm_userspace_memory_region (in)
941Returns: 0 on success, -1 on error
942
943struct kvm_userspace_memory_region {
944 __u32 slot;
945 __u32 flags;
946 __u64 guest_phys_addr;
947 __u64 memory_size; /* bytes */
948 __u64 userspace_addr; /* start of the userspace allocated memory */
949};
950
951/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +0800952#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
953#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200954
955This ioctl allows the user to create or modify a guest physical memory
956slot. When changing an existing slot, it may be moved in the guest
957physical memory space, or its flags may be modified. It may not be
958resized. Slots may not overlap in guest physical address space.
Linu Cheriana677e702017-03-08 11:38:32 +0530959Bits 0-15 of "slot" specifies the slot id and this value should be
960less than the maximum number of user memory slots supported per VM.
961The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS,
962if this capability is supported by the architecture.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200963
Paolo Bonzinif481b062015-05-17 17:30:37 +0200964If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
965specifies the address space which is being modified. They must be
966less than the value that KVM_CHECK_EXTENSION returns for the
967KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
968are unrelated; the restriction on overlapping slots only applies within
969each address space.
970
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200971Memory for the region is taken starting at the address denoted by the
972field userspace_addr, which must point at user addressable memory for
973the entire memory slot size. Any object may back this memory, including
974anonymous memory, ordinary files, and hugetlbfs.
975
976It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
977be identical. This allows large pages in the guest to be backed by large
978pages in the host.
979
Takuya Yoshikawa75d61fb2013-01-30 19:40:41 +0900980The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
981KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
982writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
983use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
984to make a new slot read-only. In this case, writes to this memory will be
985posted to userspace as KVM_EXIT_MMIO exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200986
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200987When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
988the memory region are automatically reflected into the guest. For example, an
989mmap() that affects the region will be made visible immediately. Another
990example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200991
992It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
993The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
994allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100995
Jan Kiszka414fa982012-04-24 16:40:15 +0200996
Paul Bolle68ba6972011-02-15 00:05:59 +01009974.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +0200998
999Capability: KVM_CAP_SET_TSS_ADDR
1000Architectures: x86
1001Type: vm ioctl
1002Parameters: unsigned long tss_address (in)
1003Returns: 0 on success, -1 on error
1004
1005This ioctl defines the physical address of a three-page region in the guest
1006physical address space. The region must be within the first 4GB of the
1007guest physical address space and must not conflict with any memory slot
1008or any mmio address. The guest may malfunction if it accesses this memory
1009region.
1010
1011This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1012because of a quirk in the virtualization implementation (see the internals
1013documentation when it pops into existence).
1014
Jan Kiszka414fa982012-04-24 16:40:15 +02001015
Paul Bolle68ba6972011-02-15 00:05:59 +010010164.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +01001017
Cornelia Huckd938dc52013-10-23 18:26:34 +02001018Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
Nadav Amit90de4a12015-04-13 01:53:41 +03001019Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1020 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
Cornelia Huckd938dc52013-10-23 18:26:34 +02001021Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
Alexander Graf71fbfd52010-03-24 21:48:29 +01001022Parameters: struct kvm_enable_cap (in)
1023Returns: 0 on success; -1 on error
1024
1025+Not all extensions are enabled by default. Using this ioctl the application
1026can enable an extension, making it available to the guest.
1027
1028On systems that do not support this ioctl, it always fails. On systems that
1029do support it, it only works for extensions that are supported for enablement.
1030
1031To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1032be used.
1033
1034struct kvm_enable_cap {
1035 /* in */
1036 __u32 cap;
1037
1038The capability that is supposed to get enabled.
1039
1040 __u32 flags;
1041
1042A bitfield indicating future enhancements. Has to be 0 for now.
1043
1044 __u64 args[4];
1045
1046Arguments for enabling a feature. If a feature needs initial values to
1047function properly, this is the place to put them.
1048
1049 __u8 pad[64];
1050};
1051
Cornelia Huckd938dc52013-10-23 18:26:34 +02001052The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1053for vm-wide capabilities.
Jan Kiszka414fa982012-04-24 16:40:15 +02001054
Paul Bolle68ba6972011-02-15 00:05:59 +010010554.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001056
1057Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001058Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001059Type: vcpu ioctl
1060Parameters: struct kvm_mp_state (out)
1061Returns: 0 on success; -1 on error
1062
1063struct kvm_mp_state {
1064 __u32 mp_state;
1065};
1066
1067Returns the vcpu's current "multiprocessing state" (though also valid on
1068uniprocessor guests).
1069
1070Possible values are:
1071
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001072 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
Avi Kivityb843f062010-04-25 15:51:46 +03001073 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
Tiejun Chenc32a4272014-11-20 11:07:18 +01001074 which has not yet received an INIT signal [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001075 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
Tiejun Chenc32a4272014-11-20 11:07:18 +01001076 now ready for a SIPI [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001077 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
Tiejun Chenc32a4272014-11-20 11:07:18 +01001078 is waiting for an interrupt [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001079 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Tiejun Chenc32a4272014-11-20 11:07:18 +01001080 accessible via KVM_GET_VCPU_EVENTS) [x86]
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001081 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
David Hildenbrand6352e4d2014-04-10 17:35:00 +02001082 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1083 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1084 [s390]
1085 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1086 [s390]
Avi Kivityb843f062010-04-25 15:51:46 +03001087
Tiejun Chenc32a4272014-11-20 11:07:18 +01001088On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001089in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1090these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001091
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001092For arm/arm64:
1093
1094The only states that are valid are KVM_MP_STATE_STOPPED and
1095KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001096
Paul Bolle68ba6972011-02-15 00:05:59 +010010974.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001098
1099Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001100Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001101Type: vcpu ioctl
1102Parameters: struct kvm_mp_state (in)
1103Returns: 0 on success; -1 on error
1104
1105Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1106arguments.
1107
Tiejun Chenc32a4272014-11-20 11:07:18 +01001108On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001109in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1110these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001111
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001112For arm/arm64:
1113
1114The only states that are valid are KVM_MP_STATE_STOPPED and
1115KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001116
Paul Bolle68ba6972011-02-15 00:05:59 +010011174.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +03001118
1119Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1120Architectures: x86
1121Type: vm ioctl
1122Parameters: unsigned long identity (in)
1123Returns: 0 on success, -1 on error
1124
1125This ioctl defines the physical address of a one-page region in the guest
1126physical address space. The region must be within the first 4GB of the
1127guest physical address space and must not conflict with any memory slot
1128or any mmio address. The guest may malfunction if it accesses this memory
1129region.
1130
1131This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1132because of a quirk in the virtualization implementation (see the internals
1133documentation when it pops into existence).
1134
Jan Kiszka414fa982012-04-24 16:40:15 +02001135
Paul Bolle68ba6972011-02-15 00:05:59 +010011364.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001137
1138Capability: KVM_CAP_SET_BOOT_CPU_ID
Tiejun Chenc32a4272014-11-20 11:07:18 +01001139Architectures: x86
Avi Kivity57bc24c2010-04-29 12:12:57 +03001140Type: vm ioctl
1141Parameters: unsigned long vcpu_id
1142Returns: 0 on success, -1 on error
1143
1144Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1145as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1146is vcpu 0.
1147
Jan Kiszka414fa982012-04-24 16:40:15 +02001148
Paul Bolle68ba6972011-02-15 00:05:59 +010011494.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001150
1151Capability: KVM_CAP_XSAVE
1152Architectures: x86
1153Type: vcpu ioctl
1154Parameters: struct kvm_xsave (out)
1155Returns: 0 on success, -1 on error
1156
1157struct kvm_xsave {
1158 __u32 region[1024];
1159};
1160
1161This ioctl would copy current vcpu's xsave struct to the userspace.
1162
Jan Kiszka414fa982012-04-24 16:40:15 +02001163
Paul Bolle68ba6972011-02-15 00:05:59 +010011644.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001165
1166Capability: KVM_CAP_XSAVE
1167Architectures: x86
1168Type: vcpu ioctl
1169Parameters: struct kvm_xsave (in)
1170Returns: 0 on success, -1 on error
1171
1172struct kvm_xsave {
1173 __u32 region[1024];
1174};
1175
1176This ioctl would copy userspace's xsave struct to the kernel.
1177
Jan Kiszka414fa982012-04-24 16:40:15 +02001178
Paul Bolle68ba6972011-02-15 00:05:59 +010011794.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001180
1181Capability: KVM_CAP_XCRS
1182Architectures: x86
1183Type: vcpu ioctl
1184Parameters: struct kvm_xcrs (out)
1185Returns: 0 on success, -1 on error
1186
1187struct kvm_xcr {
1188 __u32 xcr;
1189 __u32 reserved;
1190 __u64 value;
1191};
1192
1193struct kvm_xcrs {
1194 __u32 nr_xcrs;
1195 __u32 flags;
1196 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1197 __u64 padding[16];
1198};
1199
1200This ioctl would copy current vcpu's xcrs to the userspace.
1201
Jan Kiszka414fa982012-04-24 16:40:15 +02001202
Paul Bolle68ba6972011-02-15 00:05:59 +010012034.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001204
1205Capability: KVM_CAP_XCRS
1206Architectures: x86
1207Type: vcpu ioctl
1208Parameters: struct kvm_xcrs (in)
1209Returns: 0 on success, -1 on error
1210
1211struct kvm_xcr {
1212 __u32 xcr;
1213 __u32 reserved;
1214 __u64 value;
1215};
1216
1217struct kvm_xcrs {
1218 __u32 nr_xcrs;
1219 __u32 flags;
1220 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1221 __u64 padding[16];
1222};
1223
1224This ioctl would set vcpu's xcr to the value userspace specified.
1225
Jan Kiszka414fa982012-04-24 16:40:15 +02001226
Paul Bolle68ba6972011-02-15 00:05:59 +010012274.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001228
1229Capability: KVM_CAP_EXT_CPUID
1230Architectures: x86
1231Type: system ioctl
1232Parameters: struct kvm_cpuid2 (in/out)
1233Returns: 0 on success, -1 on error
1234
1235struct kvm_cpuid2 {
1236 __u32 nent;
1237 __u32 padding;
1238 struct kvm_cpuid_entry2 entries[0];
1239};
1240
Borislav Petkov9c15bb12013-09-22 16:44:50 +02001241#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1242#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1243#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
Avi Kivityd1535132010-07-14 09:45:21 +03001244
1245struct kvm_cpuid_entry2 {
1246 __u32 function;
1247 __u32 index;
1248 __u32 flags;
1249 __u32 eax;
1250 __u32 ebx;
1251 __u32 ecx;
1252 __u32 edx;
1253 __u32 padding[3];
1254};
1255
1256This ioctl returns x86 cpuid features which are supported by both the hardware
1257and kvm. Userspace can use the information returned by this ioctl to
1258construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1259hardware, kernel, and userspace capabilities, and with user requirements (for
1260example, the user may wish to constrain cpuid to emulate older hardware,
1261or for feature consistency across a cluster).
1262
1263Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1264with the 'nent' field indicating the number of entries in the variable-size
1265array 'entries'. If the number of entries is too low to describe the cpu
1266capabilities, an error (E2BIG) is returned. If the number is too high,
1267the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1268number is just right, the 'nent' field is adjusted to the number of valid
1269entries in the 'entries' array, which is then filled.
1270
1271The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001272with unknown or unsupported features masked out. Some features (for example,
1273x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1274emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001275
1276 function: the eax value used to obtain the entry
1277 index: the ecx value used to obtain the entry (for entries that are
1278 affected by ecx)
1279 flags: an OR of zero or more of the following:
1280 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1281 if the index field is valid
1282 KVM_CPUID_FLAG_STATEFUL_FUNC:
1283 if cpuid for this function returns different values for successive
1284 invocations; there will be several entries with the same function,
1285 all with this flag set
1286 KVM_CPUID_FLAG_STATE_READ_NEXT:
1287 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1288 the first entry to be read by a cpu
1289 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1290 this function/index combination
1291
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001292The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1293as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1294support. Instead it is reported via
1295
1296 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1297
1298if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1299feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1300
Jan Kiszka414fa982012-04-24 16:40:15 +02001301
Paul Bolle68ba6972011-02-15 00:05:59 +010013024.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001303
1304Capability: KVM_CAP_PPC_GET_PVINFO
1305Architectures: ppc
1306Type: vm ioctl
1307Parameters: struct kvm_ppc_pvinfo (out)
1308Returns: 0 on success, !0 on error
1309
1310struct kvm_ppc_pvinfo {
1311 __u32 flags;
1312 __u32 hcall[4];
1313 __u8 pad[108];
1314};
1315
1316This ioctl fetches PV specific information that need to be passed to the guest
1317using the device tree or other means from vm context.
1318
Liu Yu-B132019202e072012-07-03 05:48:52 +00001319The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001320
1321If any additional field gets added to this structure later on, a bit for that
1322additional piece of information will be set in the flags bitmap.
1323
Liu Yu-B132019202e072012-07-03 05:48:52 +00001324The flags bitmap is defined as:
1325
1326 /* the host supports the ePAPR idle hcall
1327 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001328
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020013294.48 KVM_ASSIGN_PCI_DEVICE (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001330
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001331Capability: none
Tiejun Chenc32a4272014-11-20 11:07:18 +01001332Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001333Type: vm ioctl
1334Parameters: struct kvm_assigned_pci_dev (in)
1335Returns: 0 on success, -1 on error
1336
1337Assigns a host PCI device to the VM.
1338
1339struct kvm_assigned_pci_dev {
1340 __u32 assigned_dev_id;
1341 __u32 busnr;
1342 __u32 devfn;
1343 __u32 flags;
1344 __u32 segnr;
1345 union {
1346 __u32 reserved[11];
1347 };
1348};
1349
1350The PCI device is specified by the triple segnr, busnr, and devfn.
1351Identification in succeeding service requests is done via assigned_dev_id. The
1352following flags are specified:
1353
1354/* Depends on KVM_CAP_IOMMU */
1355#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
Jan Kiszka07700a92012-02-28 14:19:54 +01001356/* The following two depend on KVM_CAP_PCI_2_3 */
1357#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1358#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1359
1360If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1361via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1362assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1363guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
Jan Kiszka49f48172010-11-16 22:30:07 +01001364
Alex Williamson42387372011-12-20 21:59:03 -07001365The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1366isolation of the device. Usages not specifying this flag are deprecated.
1367
Alex Williamson3d27e232011-12-20 21:59:09 -07001368Only PCI header type 0 devices with PCI BAR resources are supported by
1369device assignment. The user requesting this ioctl must have read/write
1370access to the PCI sysfs resource files associated with the device.
1371
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001372Errors:
1373 ENOTTY: kernel does not support this ioctl
1374
1375 Other error conditions may be defined by individual device types or
1376 have their standard meanings.
1377
Jan Kiszka414fa982012-04-24 16:40:15 +02001378
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020013794.49 KVM_DEASSIGN_PCI_DEVICE (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001380
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001381Capability: none
Tiejun Chenc32a4272014-11-20 11:07:18 +01001382Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001383Type: vm ioctl
1384Parameters: struct kvm_assigned_pci_dev (in)
1385Returns: 0 on success, -1 on error
1386
1387Ends PCI device assignment, releasing all associated resources.
1388
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001389See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
Jan Kiszka49f48172010-11-16 22:30:07 +01001390used in kvm_assigned_pci_dev to identify the device.
1391
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001392Errors:
1393 ENOTTY: kernel does not support this ioctl
1394
1395 Other error conditions may be defined by individual device types or
1396 have their standard meanings.
Jan Kiszka414fa982012-04-24 16:40:15 +02001397
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020013984.50 KVM_ASSIGN_DEV_IRQ (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001399
1400Capability: KVM_CAP_ASSIGN_DEV_IRQ
Tiejun Chenc32a4272014-11-20 11:07:18 +01001401Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001402Type: vm ioctl
1403Parameters: struct kvm_assigned_irq (in)
1404Returns: 0 on success, -1 on error
1405
1406Assigns an IRQ to a passed-through device.
1407
1408struct kvm_assigned_irq {
1409 __u32 assigned_dev_id;
Jan Kiszka91e3d712011-06-03 08:51:05 +02001410 __u32 host_irq; /* ignored (legacy field) */
Jan Kiszka49f48172010-11-16 22:30:07 +01001411 __u32 guest_irq;
1412 __u32 flags;
1413 union {
Jan Kiszka49f48172010-11-16 22:30:07 +01001414 __u32 reserved[12];
1415 };
1416};
1417
1418The following flags are defined:
1419
1420#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1421#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1422#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1423
1424#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1425#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1426#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1427
1428It is not valid to specify multiple types per host or guest IRQ. However, the
1429IRQ type of host and guest can differ or can even be null.
1430
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001431Errors:
1432 ENOTTY: kernel does not support this ioctl
1433
1434 Other error conditions may be defined by individual device types or
1435 have their standard meanings.
1436
Jan Kiszka414fa982012-04-24 16:40:15 +02001437
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020014384.51 KVM_DEASSIGN_DEV_IRQ (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001439
1440Capability: KVM_CAP_ASSIGN_DEV_IRQ
Tiejun Chenc32a4272014-11-20 11:07:18 +01001441Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001442Type: vm ioctl
1443Parameters: struct kvm_assigned_irq (in)
1444Returns: 0 on success, -1 on error
1445
1446Ends an IRQ assignment to a passed-through device.
1447
1448See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1449by assigned_dev_id, flags must correspond to the IRQ type specified on
1450KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1451
Jan Kiszka414fa982012-04-24 16:40:15 +02001452
Paul Bolle68ba6972011-02-15 00:05:59 +010014534.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001454
1455Capability: KVM_CAP_IRQ_ROUTING
Eric Auger180ae7b2016-07-22 16:20:41 +00001456Architectures: x86 s390 arm arm64
Jan Kiszka49f48172010-11-16 22:30:07 +01001457Type: vm ioctl
1458Parameters: struct kvm_irq_routing (in)
1459Returns: 0 on success, -1 on error
1460
1461Sets the GSI routing table entries, overwriting any previously set entries.
1462
Eric Auger180ae7b2016-07-22 16:20:41 +00001463On arm/arm64, GSI routing has the following limitation:
1464- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1465
Jan Kiszka49f48172010-11-16 22:30:07 +01001466struct kvm_irq_routing {
1467 __u32 nr;
1468 __u32 flags;
1469 struct kvm_irq_routing_entry entries[0];
1470};
1471
1472No flags are specified so far, the corresponding field must be set to zero.
1473
1474struct kvm_irq_routing_entry {
1475 __u32 gsi;
1476 __u32 type;
1477 __u32 flags;
1478 __u32 pad;
1479 union {
1480 struct kvm_irq_routing_irqchip irqchip;
1481 struct kvm_irq_routing_msi msi;
Cornelia Huck84223592013-07-15 13:36:01 +02001482 struct kvm_irq_routing_s390_adapter adapter;
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001483 struct kvm_irq_routing_hv_sint hv_sint;
Jan Kiszka49f48172010-11-16 22:30:07 +01001484 __u32 pad[8];
1485 } u;
1486};
1487
1488/* gsi routing entry types */
1489#define KVM_IRQ_ROUTING_IRQCHIP 1
1490#define KVM_IRQ_ROUTING_MSI 2
Cornelia Huck84223592013-07-15 13:36:01 +02001491#define KVM_IRQ_ROUTING_S390_ADAPTER 3
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001492#define KVM_IRQ_ROUTING_HV_SINT 4
Jan Kiszka49f48172010-11-16 22:30:07 +01001493
Eric Auger76a10b82016-07-22 16:20:37 +00001494flags:
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001495- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1496 type, specifies that the devid field contains a valid value. The per-VM
1497 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1498 the device ID. If this capability is not available, userspace should
1499 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Eric Auger76a10b82016-07-22 16:20:37 +00001500- zero otherwise
Jan Kiszka49f48172010-11-16 22:30:07 +01001501
1502struct kvm_irq_routing_irqchip {
1503 __u32 irqchip;
1504 __u32 pin;
1505};
1506
1507struct kvm_irq_routing_msi {
1508 __u32 address_lo;
1509 __u32 address_hi;
1510 __u32 data;
Eric Auger76a10b82016-07-22 16:20:37 +00001511 union {
1512 __u32 pad;
1513 __u32 devid;
1514 };
Jan Kiszka49f48172010-11-16 22:30:07 +01001515};
1516
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001517If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1518for the device that wrote the MSI message. For PCI, this is usually a
1519BFD identifier in the lower 16 bits.
Eric Auger76a10b82016-07-22 16:20:37 +00001520
Radim Krčmář371313132016-07-12 22:09:27 +02001521On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1522feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1523address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1524address_hi must be zero.
1525
Cornelia Huck84223592013-07-15 13:36:01 +02001526struct kvm_irq_routing_s390_adapter {
1527 __u64 ind_addr;
1528 __u64 summary_addr;
1529 __u64 ind_offset;
1530 __u32 summary_offset;
1531 __u32 adapter_id;
1532};
1533
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001534struct kvm_irq_routing_hv_sint {
1535 __u32 vcpu;
1536 __u32 sint;
1537};
Jan Kiszka414fa982012-04-24 16:40:15 +02001538
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020015394.53 KVM_ASSIGN_SET_MSIX_NR (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001540
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001541Capability: none
Tiejun Chenc32a4272014-11-20 11:07:18 +01001542Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001543Type: vm ioctl
1544Parameters: struct kvm_assigned_msix_nr (in)
1545Returns: 0 on success, -1 on error
1546
Jan Kiszka58f09642011-06-11 12:24:24 +02001547Set the number of MSI-X interrupts for an assigned device. The number is
1548reset again by terminating the MSI-X assignment of the device via
1549KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1550point will fail.
Jan Kiszka49f48172010-11-16 22:30:07 +01001551
1552struct kvm_assigned_msix_nr {
1553 __u32 assigned_dev_id;
1554 __u16 entry_nr;
1555 __u16 padding;
1556};
1557
1558#define KVM_MAX_MSIX_PER_DEV 256
1559
Jan Kiszka414fa982012-04-24 16:40:15 +02001560
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020015614.54 KVM_ASSIGN_SET_MSIX_ENTRY (deprecated)
Jan Kiszka49f48172010-11-16 22:30:07 +01001562
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001563Capability: none
Tiejun Chenc32a4272014-11-20 11:07:18 +01001564Architectures: x86
Jan Kiszka49f48172010-11-16 22:30:07 +01001565Type: vm ioctl
1566Parameters: struct kvm_assigned_msix_entry (in)
1567Returns: 0 on success, -1 on error
1568
1569Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1570the GSI vector to zero means disabling the interrupt.
1571
1572struct kvm_assigned_msix_entry {
1573 __u32 assigned_dev_id;
1574 __u32 gsi;
1575 __u16 entry; /* The index of entry in the MSI-X table */
1576 __u16 padding[3];
1577};
1578
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +03001579Errors:
1580 ENOTTY: kernel does not support this ioctl
1581
1582 Other error conditions may be defined by individual device types or
1583 have their standard meanings.
1584
Jan Kiszka414fa982012-04-24 16:40:15 +02001585
15864.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001587
1588Capability: KVM_CAP_TSC_CONTROL
1589Architectures: x86
1590Type: vcpu ioctl
1591Parameters: virtual tsc_khz
1592Returns: 0 on success, -1 on error
1593
1594Specifies the tsc frequency for the virtual machine. The unit of the
1595frequency is KHz.
1596
Jan Kiszka414fa982012-04-24 16:40:15 +02001597
15984.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001599
1600Capability: KVM_CAP_GET_TSC_KHZ
1601Architectures: x86
1602Type: vcpu ioctl
1603Parameters: none
1604Returns: virtual tsc-khz on success, negative value on error
1605
1606Returns the tsc frequency of the guest. The unit of the return value is
1607KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1608error.
1609
Jan Kiszka414fa982012-04-24 16:40:15 +02001610
16114.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001612
1613Capability: KVM_CAP_IRQCHIP
1614Architectures: x86
1615Type: vcpu ioctl
1616Parameters: struct kvm_lapic_state (out)
1617Returns: 0 on success, -1 on error
1618
1619#define KVM_APIC_REG_SIZE 0x400
1620struct kvm_lapic_state {
1621 char regs[KVM_APIC_REG_SIZE];
1622};
1623
1624Reads the Local APIC registers and copies them into the input argument. The
1625data format and layout are the same as documented in the architecture manual.
1626
Radim Krčmář371313132016-07-12 22:09:27 +02001627If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1628enabled, then the format of APIC_ID register depends on the APIC mode
1629(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1630the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1631which is stored in bits 31-24 of the APIC register, or equivalently in
1632byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1633be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1634
1635If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1636always uses xAPIC format.
1637
Jan Kiszka414fa982012-04-24 16:40:15 +02001638
16394.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001640
1641Capability: KVM_CAP_IRQCHIP
1642Architectures: x86
1643Type: vcpu ioctl
1644Parameters: struct kvm_lapic_state (in)
1645Returns: 0 on success, -1 on error
1646
1647#define KVM_APIC_REG_SIZE 0x400
1648struct kvm_lapic_state {
1649 char regs[KVM_APIC_REG_SIZE];
1650};
1651
Masanari Iidadf5cbb22014-03-21 10:04:30 +09001652Copies the input argument into the Local APIC registers. The data format
Avi Kivitye7677932011-05-11 08:30:51 -04001653and layout are the same as documented in the architecture manual.
1654
Radim Krčmář371313132016-07-12 22:09:27 +02001655The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1656regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1657See the note in KVM_GET_LAPIC.
1658
Jan Kiszka414fa982012-04-24 16:40:15 +02001659
16604.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001661
1662Capability: KVM_CAP_IOEVENTFD
1663Architectures: all
1664Type: vm ioctl
1665Parameters: struct kvm_ioeventfd (in)
1666Returns: 0 on success, !0 on error
1667
1668This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1669within the guest. A guest write in the registered address will signal the
1670provided event instead of triggering an exit.
1671
1672struct kvm_ioeventfd {
1673 __u64 datamatch;
1674 __u64 addr; /* legal pio/mmio address */
Jason Wange9ea5062015-09-15 14:41:59 +08001675 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
Sasha Levin55399a02011-05-28 14:12:30 +03001676 __s32 fd;
1677 __u32 flags;
1678 __u8 pad[36];
1679};
1680
Cornelia Huck2b834512013-02-28 12:33:20 +01001681For the special case of virtio-ccw devices on s390, the ioevent is matched
1682to a subchannel/virtqueue tuple instead.
1683
Sasha Levin55399a02011-05-28 14:12:30 +03001684The following flags are defined:
1685
1686#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1687#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1688#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
Cornelia Huck2b834512013-02-28 12:33:20 +01001689#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1690 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
Sasha Levin55399a02011-05-28 14:12:30 +03001691
1692If datamatch flag is set, the event will be signaled only if the written value
1693to the registered address is equal to datamatch in struct kvm_ioeventfd.
1694
Cornelia Huck2b834512013-02-28 12:33:20 +01001695For virtio-ccw devices, addr contains the subchannel id and datamatch the
1696virtqueue index.
1697
Jason Wange9ea5062015-09-15 14:41:59 +08001698With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1699the kernel will ignore the length of guest write and may get a faster vmexit.
1700The speedup may only apply to specific architectures, but the ioeventfd will
1701work anyway.
Jan Kiszka414fa982012-04-24 16:40:15 +02001702
17034.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001704
1705Capability: KVM_CAP_SW_TLB
1706Architectures: ppc
1707Type: vcpu ioctl
1708Parameters: struct kvm_dirty_tlb (in)
1709Returns: 0 on success, -1 on error
1710
1711struct kvm_dirty_tlb {
1712 __u64 bitmap;
1713 __u32 num_dirty;
1714};
1715
1716This must be called whenever userspace has changed an entry in the shared
1717TLB, prior to calling KVM_RUN on the associated vcpu.
1718
1719The "bitmap" field is the userspace address of an array. This array
1720consists of a number of bits, equal to the total number of TLB entries as
1721determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1722nearest multiple of 64.
1723
1724Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1725array.
1726
1727The array is little-endian: the bit 0 is the least significant bit of the
1728first byte, bit 8 is the least significant bit of the second byte, etc.
1729This avoids any complications with differing word sizes.
1730
1731The "num_dirty" field is a performance hint for KVM to determine whether it
1732should skip processing the bitmap and just invalidate everything. It must
1733be set to the number of set bits in the bitmap.
1734
Jan Kiszka414fa982012-04-24 16:40:15 +02001735
Paolo Bonzinie80a4a92015-06-04 16:32:48 +020017364.61 KVM_ASSIGN_SET_INTX_MASK (deprecated)
Jan Kiszka07700a92012-02-28 14:19:54 +01001737
1738Capability: KVM_CAP_PCI_2_3
1739Architectures: x86
1740Type: vm ioctl
1741Parameters: struct kvm_assigned_pci_dev (in)
1742Returns: 0 on success, -1 on error
1743
1744Allows userspace to mask PCI INTx interrupts from the assigned device. The
1745kernel will not deliver INTx interrupts to the guest between setting and
1746clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1747and emulation of PCI 2.3 INTx disable command register behavior.
1748
1749This may be used for both PCI 2.3 devices supporting INTx disable natively and
1750older devices lacking this support. Userspace is responsible for emulating the
1751read value of the INTx disable bit in the guest visible PCI command register.
1752When modifying the INTx disable state, userspace should precede updating the
1753physical device command register by calling this ioctl to inform the kernel of
1754the new intended INTx mask state.
1755
1756Note that the kernel uses the device INTx disable bit to internally manage the
1757device interrupt state for PCI 2.3 devices. Reads of this register may
1758therefore not match the expected value. Writes should always use the guest
1759intended INTx disable value rather than attempting to read-copy-update the
1760current physical device state. Races between user and kernel updates to the
1761INTx disable bit are handled lazily in the kernel. It's possible the device
1762may generate unintended interrupts, but they will not be injected into the
1763guest.
1764
1765See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1766by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1767evaluated.
1768
Jan Kiszka414fa982012-04-24 16:40:15 +02001769
David Gibson54738c02011-06-29 00:22:41 +000017704.62 KVM_CREATE_SPAPR_TCE
1771
1772Capability: KVM_CAP_SPAPR_TCE
1773Architectures: powerpc
1774Type: vm ioctl
1775Parameters: struct kvm_create_spapr_tce (in)
1776Returns: file descriptor for manipulating the created TCE table
1777
1778This creates a virtual TCE (translation control entry) table, which
1779is an IOMMU for PAPR-style virtual I/O. It is used to translate
1780logical addresses used in virtual I/O into guest physical addresses,
1781and provides a scatter/gather capability for PAPR virtual I/O.
1782
1783/* for KVM_CAP_SPAPR_TCE */
1784struct kvm_create_spapr_tce {
1785 __u64 liobn;
1786 __u32 window_size;
1787};
1788
1789The liobn field gives the logical IO bus number for which to create a
1790TCE table. The window_size field specifies the size of the DMA window
1791which this TCE table will translate - the table will contain one 64
1792bit TCE entry for every 4kiB of the DMA window.
1793
1794When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1795table has been created using this ioctl(), the kernel will handle it
1796in real mode, updating the TCE table. H_PUT_TCE calls for other
1797liobns will cause a vm exit and must be handled by userspace.
1798
1799The return value is a file descriptor which can be passed to mmap(2)
1800to map the created TCE table into userspace. This lets userspace read
1801the entries written by kernel-handled H_PUT_TCE calls, and also lets
1802userspace update the TCE table directly which is useful in some
1803circumstances.
1804
Jan Kiszka414fa982012-04-24 16:40:15 +02001805
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000018064.63 KVM_ALLOCATE_RMA
1807
1808Capability: KVM_CAP_PPC_RMA
1809Architectures: powerpc
1810Type: vm ioctl
1811Parameters: struct kvm_allocate_rma (out)
1812Returns: file descriptor for mapping the allocated RMA
1813
1814This allocates a Real Mode Area (RMA) from the pool allocated at boot
1815time by the kernel. An RMA is a physically-contiguous, aligned region
1816of memory used on older POWER processors to provide the memory which
1817will be accessed by real-mode (MMU off) accesses in a KVM guest.
1818POWER processors support a set of sizes for the RMA that usually
1819includes 64MB, 128MB, 256MB and some larger powers of two.
1820
1821/* for KVM_ALLOCATE_RMA */
1822struct kvm_allocate_rma {
1823 __u64 rma_size;
1824};
1825
1826The return value is a file descriptor which can be passed to mmap(2)
1827to map the allocated RMA into userspace. The mapped area can then be
1828passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1829RMA for a virtual machine. The size of the RMA in bytes (which is
1830fixed at host kernel boot time) is returned in the rma_size field of
1831the argument structure.
1832
1833The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1834is supported; 2 if the processor requires all virtual machines to have
1835an RMA, or 1 if the processor can use an RMA but doesn't require it,
1836because it supports the Virtual RMA (VRMA) facility.
1837
Jan Kiszka414fa982012-04-24 16:40:15 +02001838
Avi Kivity3f745f12011-12-07 12:42:47 +020018394.64 KVM_NMI
1840
1841Capability: KVM_CAP_USER_NMI
1842Architectures: x86
1843Type: vcpu ioctl
1844Parameters: none
1845Returns: 0 on success, -1 on error
1846
1847Queues an NMI on the thread's vcpu. Note this is well defined only
1848when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1849between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1850has been called, this interface is completely emulated within the kernel.
1851
1852To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1853following algorithm:
1854
Masanari Iida5d4f6f32015-10-04 00:46:21 +09001855 - pause the vcpu
Avi Kivity3f745f12011-12-07 12:42:47 +02001856 - read the local APIC's state (KVM_GET_LAPIC)
1857 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1858 - if so, issue KVM_NMI
1859 - resume the vcpu
1860
1861Some guests configure the LINT1 NMI input to cause a panic, aiding in
1862debugging.
1863
Jan Kiszka414fa982012-04-24 16:40:15 +02001864
Alexander Grafe24ed812011-09-14 10:02:41 +020018654.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001866
1867Capability: KVM_CAP_S390_UCONTROL
1868Architectures: s390
1869Type: vcpu ioctl
1870Parameters: struct kvm_s390_ucas_mapping (in)
1871Returns: 0 in case of success
1872
1873The parameter is defined like this:
1874 struct kvm_s390_ucas_mapping {
1875 __u64 user_addr;
1876 __u64 vcpu_addr;
1877 __u64 length;
1878 };
1879
1880This ioctl maps the memory at "user_addr" with the length "length" to
1881the vcpu's address space starting at "vcpu_addr". All parameters need to
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001882be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001883
Jan Kiszka414fa982012-04-24 16:40:15 +02001884
Alexander Grafe24ed812011-09-14 10:02:41 +020018854.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001886
1887Capability: KVM_CAP_S390_UCONTROL
1888Architectures: s390
1889Type: vcpu ioctl
1890Parameters: struct kvm_s390_ucas_mapping (in)
1891Returns: 0 in case of success
1892
1893The parameter is defined like this:
1894 struct kvm_s390_ucas_mapping {
1895 __u64 user_addr;
1896 __u64 vcpu_addr;
1897 __u64 length;
1898 };
1899
1900This ioctl unmaps the memory in the vcpu's address space starting at
1901"vcpu_addr" with the length "length". The field "user_addr" is ignored.
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001902All parameters need to be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001903
Jan Kiszka414fa982012-04-24 16:40:15 +02001904
Alexander Grafe24ed812011-09-14 10:02:41 +020019054.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001906
1907Capability: KVM_CAP_S390_UCONTROL
1908Architectures: s390
1909Type: vcpu ioctl
1910Parameters: vcpu absolute address (in)
1911Returns: 0 in case of success
1912
1913This call creates a page table entry on the virtual cpu's address space
1914(for user controlled virtual machines) or the virtual machine's address
1915space (for regular virtual machines). This only works for minor faults,
1916thus it's recommended to access subject memory page via the user page
1917table upfront. This is useful to handle validity intercepts for user
1918controlled virtual machines to fault in the virtual cpu's lowcore pages
1919prior to calling the KVM_RUN ioctl.
1920
Jan Kiszka414fa982012-04-24 16:40:15 +02001921
Alexander Grafe24ed812011-09-14 10:02:41 +020019224.68 KVM_SET_ONE_REG
1923
1924Capability: KVM_CAP_ONE_REG
1925Architectures: all
1926Type: vcpu ioctl
1927Parameters: struct kvm_one_reg (in)
1928Returns: 0 on success, negative value on failure
1929
1930struct kvm_one_reg {
1931 __u64 id;
1932 __u64 addr;
1933};
1934
1935Using this ioctl, a single vcpu register can be set to a specific value
1936defined by user space with the passed in struct kvm_one_reg, where id
1937refers to the register identifier as described below and addr is a pointer
1938to a variable with the respective size. There can be architecture agnostic
1939and architecture specific registers. Each have their own range of operation
1940and their own constants and width. To keep track of the implemented
1941registers, find a list below:
1942
James Hoganbf5590f2014-07-04 15:11:34 +01001943 Arch | Register | Width (bits)
1944 | |
1945 PPC | KVM_REG_PPC_HIOR | 64
1946 PPC | KVM_REG_PPC_IAC1 | 64
1947 PPC | KVM_REG_PPC_IAC2 | 64
1948 PPC | KVM_REG_PPC_IAC3 | 64
1949 PPC | KVM_REG_PPC_IAC4 | 64
1950 PPC | KVM_REG_PPC_DAC1 | 64
1951 PPC | KVM_REG_PPC_DAC2 | 64
1952 PPC | KVM_REG_PPC_DABR | 64
1953 PPC | KVM_REG_PPC_DSCR | 64
1954 PPC | KVM_REG_PPC_PURR | 64
1955 PPC | KVM_REG_PPC_SPURR | 64
1956 PPC | KVM_REG_PPC_DAR | 64
1957 PPC | KVM_REG_PPC_DSISR | 32
1958 PPC | KVM_REG_PPC_AMR | 64
1959 PPC | KVM_REG_PPC_UAMOR | 64
1960 PPC | KVM_REG_PPC_MMCR0 | 64
1961 PPC | KVM_REG_PPC_MMCR1 | 64
1962 PPC | KVM_REG_PPC_MMCRA | 64
1963 PPC | KVM_REG_PPC_MMCR2 | 64
1964 PPC | KVM_REG_PPC_MMCRS | 64
1965 PPC | KVM_REG_PPC_SIAR | 64
1966 PPC | KVM_REG_PPC_SDAR | 64
1967 PPC | KVM_REG_PPC_SIER | 64
1968 PPC | KVM_REG_PPC_PMC1 | 32
1969 PPC | KVM_REG_PPC_PMC2 | 32
1970 PPC | KVM_REG_PPC_PMC3 | 32
1971 PPC | KVM_REG_PPC_PMC4 | 32
1972 PPC | KVM_REG_PPC_PMC5 | 32
1973 PPC | KVM_REG_PPC_PMC6 | 32
1974 PPC | KVM_REG_PPC_PMC7 | 32
1975 PPC | KVM_REG_PPC_PMC8 | 32
1976 PPC | KVM_REG_PPC_FPR0 | 64
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001977 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001978 PPC | KVM_REG_PPC_FPR31 | 64
1979 PPC | KVM_REG_PPC_VR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001980 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001981 PPC | KVM_REG_PPC_VR31 | 128
1982 PPC | KVM_REG_PPC_VSR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001983 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001984 PPC | KVM_REG_PPC_VSR31 | 128
1985 PPC | KVM_REG_PPC_FPSCR | 64
1986 PPC | KVM_REG_PPC_VSCR | 32
1987 PPC | KVM_REG_PPC_VPA_ADDR | 64
1988 PPC | KVM_REG_PPC_VPA_SLB | 128
1989 PPC | KVM_REG_PPC_VPA_DTL | 128
1990 PPC | KVM_REG_PPC_EPCR | 32
1991 PPC | KVM_REG_PPC_EPR | 32
1992 PPC | KVM_REG_PPC_TCR | 32
1993 PPC | KVM_REG_PPC_TSR | 32
1994 PPC | KVM_REG_PPC_OR_TSR | 32
1995 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1996 PPC | KVM_REG_PPC_MAS0 | 32
1997 PPC | KVM_REG_PPC_MAS1 | 32
1998 PPC | KVM_REG_PPC_MAS2 | 64
1999 PPC | KVM_REG_PPC_MAS7_3 | 64
2000 PPC | KVM_REG_PPC_MAS4 | 32
2001 PPC | KVM_REG_PPC_MAS6 | 32
2002 PPC | KVM_REG_PPC_MMUCFG | 32
2003 PPC | KVM_REG_PPC_TLB0CFG | 32
2004 PPC | KVM_REG_PPC_TLB1CFG | 32
2005 PPC | KVM_REG_PPC_TLB2CFG | 32
2006 PPC | KVM_REG_PPC_TLB3CFG | 32
2007 PPC | KVM_REG_PPC_TLB0PS | 32
2008 PPC | KVM_REG_PPC_TLB1PS | 32
2009 PPC | KVM_REG_PPC_TLB2PS | 32
2010 PPC | KVM_REG_PPC_TLB3PS | 32
2011 PPC | KVM_REG_PPC_EPTCFG | 32
2012 PPC | KVM_REG_PPC_ICP_STATE | 64
2013 PPC | KVM_REG_PPC_TB_OFFSET | 64
2014 PPC | KVM_REG_PPC_SPMC1 | 32
2015 PPC | KVM_REG_PPC_SPMC2 | 32
2016 PPC | KVM_REG_PPC_IAMR | 64
2017 PPC | KVM_REG_PPC_TFHAR | 64
2018 PPC | KVM_REG_PPC_TFIAR | 64
2019 PPC | KVM_REG_PPC_TEXASR | 64
2020 PPC | KVM_REG_PPC_FSCR | 64
2021 PPC | KVM_REG_PPC_PSPB | 32
2022 PPC | KVM_REG_PPC_EBBHR | 64
2023 PPC | KVM_REG_PPC_EBBRR | 64
2024 PPC | KVM_REG_PPC_BESCR | 64
2025 PPC | KVM_REG_PPC_TAR | 64
2026 PPC | KVM_REG_PPC_DPDES | 64
2027 PPC | KVM_REG_PPC_DAWR | 64
2028 PPC | KVM_REG_PPC_DAWRX | 64
2029 PPC | KVM_REG_PPC_CIABR | 64
2030 PPC | KVM_REG_PPC_IC | 64
2031 PPC | KVM_REG_PPC_VTB | 64
2032 PPC | KVM_REG_PPC_CSIGR | 64
2033 PPC | KVM_REG_PPC_TACR | 64
2034 PPC | KVM_REG_PPC_TCSCR | 64
2035 PPC | KVM_REG_PPC_PID | 64
2036 PPC | KVM_REG_PPC_ACOP | 64
2037 PPC | KVM_REG_PPC_VRSAVE | 32
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02002038 PPC | KVM_REG_PPC_LPCR | 32
2039 PPC | KVM_REG_PPC_LPCR_64 | 64
James Hoganbf5590f2014-07-04 15:11:34 +01002040 PPC | KVM_REG_PPC_PPR | 64
2041 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
2042 PPC | KVM_REG_PPC_DABRX | 32
2043 PPC | KVM_REG_PPC_WORT | 64
Bharat Bhushanbc8a4e52014-08-13 14:40:06 +05302044 PPC | KVM_REG_PPC_SPRG9 | 64
2045 PPC | KVM_REG_PPC_DBSR | 32
Paul Mackerrase9cf1e02016-11-18 13:11:42 +11002046 PPC | KVM_REG_PPC_TIDR | 64
2047 PPC | KVM_REG_PPC_PSSCR | 64
James Hoganbf5590f2014-07-04 15:11:34 +01002048 PPC | KVM_REG_PPC_TM_GPR0 | 64
Michael Neuling3b783472013-09-03 11:13:12 +10002049 ...
James Hoganbf5590f2014-07-04 15:11:34 +01002050 PPC | KVM_REG_PPC_TM_GPR31 | 64
2051 PPC | KVM_REG_PPC_TM_VSR0 | 128
Michael Neuling3b783472013-09-03 11:13:12 +10002052 ...
James Hoganbf5590f2014-07-04 15:11:34 +01002053 PPC | KVM_REG_PPC_TM_VSR63 | 128
2054 PPC | KVM_REG_PPC_TM_CR | 64
2055 PPC | KVM_REG_PPC_TM_LR | 64
2056 PPC | KVM_REG_PPC_TM_CTR | 64
2057 PPC | KVM_REG_PPC_TM_FPSCR | 64
2058 PPC | KVM_REG_PPC_TM_AMR | 64
2059 PPC | KVM_REG_PPC_TM_PPR | 64
2060 PPC | KVM_REG_PPC_TM_VRSAVE | 64
2061 PPC | KVM_REG_PPC_TM_VSCR | 32
2062 PPC | KVM_REG_PPC_TM_DSCR | 64
2063 PPC | KVM_REG_PPC_TM_TAR | 64
Paul Mackerras0d808df2016-11-07 15:09:58 +11002064 PPC | KVM_REG_PPC_TM_XER | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002065 | |
2066 MIPS | KVM_REG_MIPS_R0 | 64
2067 ...
2068 MIPS | KVM_REG_MIPS_R31 | 64
2069 MIPS | KVM_REG_MIPS_HI | 64
2070 MIPS | KVM_REG_MIPS_LO | 64
2071 MIPS | KVM_REG_MIPS_PC | 64
2072 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
James Hogan013044c2016-12-07 17:16:37 +00002073 MIPS | KVM_REG_MIPS_CP0_ENTRYLO0 | 64
2074 MIPS | KVM_REG_MIPS_CP0_ENTRYLO1 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002075 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
2076 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
2077 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
James Hoganc992a4f2017-03-14 10:15:31 +00002078 MIPS | KVM_REG_MIPS_CP0_PAGEGRAIN | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002079 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
2080 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
2081 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
2082 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
2083 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2084 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2085 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
James Hoganad58d4d2015-02-02 22:55:17 +00002086 MIPS | KVM_REG_MIPS_CP0_INTCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002087 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2088 MIPS | KVM_REG_MIPS_CP0_EPC | 64
James Hogan1068eaa2014-06-26 13:56:52 +01002089 MIPS | KVM_REG_MIPS_CP0_PRID | 32
James Hogan7801bbe2016-11-14 23:59:27 +00002090 MIPS | KVM_REG_MIPS_CP0_EBASE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002091 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2092 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2093 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2094 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
James Hoganc7716072014-06-26 15:11:29 +01002095 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2096 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002097 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
James Hoganc992a4f2017-03-14 10:15:31 +00002098 MIPS | KVM_REG_MIPS_CP0_XCONTEXT | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002099 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
James Hogan05108702016-06-15 19:29:56 +01002100 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
2101 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
2102 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
2103 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
2104 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
2105 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002106 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2107 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2108 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
James Hogan379245c2014-12-02 15:48:24 +00002109 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2110 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
James Hoganab86bd62014-12-02 15:48:24 +00002111 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
James Hogan379245c2014-12-02 15:48:24 +00002112 MIPS | KVM_REG_MIPS_FCR_IR | 32
2113 MIPS | KVM_REG_MIPS_FCR_CSR | 32
James Hoganab86bd62014-12-02 15:48:24 +00002114 MIPS | KVM_REG_MIPS_MSA_IR | 32
2115 MIPS | KVM_REG_MIPS_MSA_CSR | 32
Jan Kiszka414fa982012-04-24 16:40:15 +02002116
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002117ARM registers are mapped using the lower 32 bits. The upper 16 of that
2118is the register group type, or coprocessor number:
2119
2120ARM core registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002121 0x4020 0000 0010 <index into the kvm_regs struct:16>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002122
Christoffer Dall11382452013-01-20 18:28:10 -05002123ARM 32-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002124 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
Christoffer Dall11382452013-01-20 18:28:10 -05002125
2126ARM 64-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002127 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002128
Christoffer Dallc27581e2013-01-20 18:28:10 -05002129ARM CCSIDR registers are demultiplexed by CSSELR value:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002130 0x4020 0000 0011 00 <csselr:8>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002131
Rusty Russell4fe21e42013-01-20 18:28:11 -05002132ARM 32-bit VFP control registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002133 0x4020 0000 0012 1 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05002134
2135ARM 64-bit FP registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002136 0x4030 0000 0012 0 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05002137
Marc Zyngier379e04c2013-04-02 17:46:31 +01002138
2139arm64 registers are mapped using the lower 32 bits. The upper 16 of
2140that is the register group type, or coprocessor number:
2141
2142arm64 core/FP-SIMD registers have the following id bit patterns. Note
2143that the size of the access is variable, as the kvm_regs structure
2144contains elements ranging from 32 to 128 bits. The index is a 32bit
2145value in the kvm_regs structure seen as a 32bit array.
2146 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2147
2148arm64 CCSIDR registers are demultiplexed by CSSELR value:
2149 0x6020 0000 0011 00 <csselr:8>
2150
2151arm64 system registers have the following id bit patterns:
2152 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2153
James Hoganc2d2c212014-07-04 15:11:35 +01002154
2155MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2156the register group type:
2157
2158MIPS core registers (see above) have the following id bit patterns:
2159 0x7030 0000 0000 <reg:16>
2160
2161MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2162patterns depending on whether they're 32-bit or 64-bit registers:
2163 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2164 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2165
James Hogan013044c2016-12-07 17:16:37 +00002166Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
2167versions of the EntryLo registers regardless of the word size of the host
2168hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
2169with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
2170the PFNX field starting at bit 30.
2171
James Hoganc2d2c212014-07-04 15:11:35 +01002172MIPS KVM control registers (see above) have the following id bit patterns:
2173 0x7030 0000 0002 <reg:16>
2174
James Hogan379245c2014-12-02 15:48:24 +00002175MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2176id bit patterns depending on the size of the register being accessed. They are
2177always accessed according to the current guest FPU mode (Status.FR and
2178Config5.FRE), i.e. as the guest would see them, and they become unpredictable
James Hoganab86bd62014-12-02 15:48:24 +00002179if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2180registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2181overlap the FPU registers:
James Hogan379245c2014-12-02 15:48:24 +00002182 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2183 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
James Hoganab86bd62014-12-02 15:48:24 +00002184 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
James Hogan379245c2014-12-02 15:48:24 +00002185
2186MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2187following id bit patterns:
2188 0x7020 0000 0003 01 <0:3> <reg:5>
2189
James Hoganab86bd62014-12-02 15:48:24 +00002190MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2191following id bit patterns:
2192 0x7020 0000 0003 02 <0:3> <reg:5>
2193
James Hoganc2d2c212014-07-04 15:11:35 +01002194
Alexander Grafe24ed812011-09-14 10:02:41 +020021954.69 KVM_GET_ONE_REG
2196
2197Capability: KVM_CAP_ONE_REG
2198Architectures: all
2199Type: vcpu ioctl
2200Parameters: struct kvm_one_reg (in and out)
2201Returns: 0 on success, negative value on failure
2202
2203This ioctl allows to receive the value of a single register implemented
2204in a vcpu. The register to read is indicated by the "id" field of the
2205kvm_one_reg struct passed in. On success, the register value can be found
2206at the memory location pointed to by "addr".
2207
2208The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00002209list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02002210
Jan Kiszka414fa982012-04-24 16:40:15 +02002211
Eric B Munson1c0b28c2012-03-10 14:37:27 -050022124.70 KVM_KVMCLOCK_CTRL
2213
2214Capability: KVM_CAP_KVMCLOCK_CTRL
2215Architectures: Any that implement pvclocks (currently x86 only)
2216Type: vcpu ioctl
2217Parameters: None
2218Returns: 0 on success, -1 on error
2219
2220This signals to the host kernel that the specified guest is being paused by
2221userspace. The host will set a flag in the pvclock structure that is checked
2222from the soft lockup watchdog. The flag is part of the pvclock structure that
2223is shared between guest and host, specifically the second bit of the flags
2224field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2225the host and read/cleared exclusively by the guest. The guest operation of
2226checking and clearing the flag must an atomic operation so
2227load-link/store-conditional, or equivalent must be used. There are two cases
2228where the guest will clear the flag: when the soft lockup watchdog timer resets
2229itself or when a soft lockup is detected. This ioctl can be called any time
2230after pausing the vcpu, but before it is resumed.
2231
Jan Kiszka414fa982012-04-24 16:40:15 +02002232
Jan Kiszka07975ad2012-03-29 21:14:12 +020022334.71 KVM_SIGNAL_MSI
2234
2235Capability: KVM_CAP_SIGNAL_MSI
Vladimir Murzin29885092016-11-02 11:55:34 +00002236Architectures: x86 arm arm64
Jan Kiszka07975ad2012-03-29 21:14:12 +02002237Type: vm ioctl
2238Parameters: struct kvm_msi (in)
2239Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2240
2241Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2242MSI messages.
2243
2244struct kvm_msi {
2245 __u32 address_lo;
2246 __u32 address_hi;
2247 __u32 data;
2248 __u32 flags;
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002249 __u32 devid;
2250 __u8 pad[12];
Jan Kiszka07975ad2012-03-29 21:14:12 +02002251};
2252
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002253flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
2254 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2255 the device ID. If this capability is not available, userspace
2256 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002257
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002258If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2259for the device that wrote the MSI message. For PCI, this is usually a
2260BFD identifier in the lower 16 bits.
Jan Kiszka07975ad2012-03-29 21:14:12 +02002261
Paolo Bonzini055b6ae2016-08-04 14:01:05 +02002262On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2263feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2264address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2265address_hi must be zero.
Radim Krčmář371313132016-07-12 22:09:27 +02002266
Jan Kiszka414fa982012-04-24 16:40:15 +02002267
Jan Kiszka0589ff62012-04-24 16:40:16 +020022684.71 KVM_CREATE_PIT2
2269
2270Capability: KVM_CAP_PIT2
2271Architectures: x86
2272Type: vm ioctl
2273Parameters: struct kvm_pit_config (in)
2274Returns: 0 on success, -1 on error
2275
2276Creates an in-kernel device model for the i8254 PIT. This call is only valid
2277after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2278parameters have to be passed:
2279
2280struct kvm_pit_config {
2281 __u32 flags;
2282 __u32 pad[15];
2283};
2284
2285Valid flags are:
2286
2287#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2288
Jan Kiszkab6ddf052012-04-24 16:40:17 +02002289PIT timer interrupts may use a per-VM kernel thread for injection. If it
2290exists, this thread will have a name of the following pattern:
2291
2292kvm-pit/<owner-process-pid>
2293
2294When running a guest with elevated priorities, the scheduling parameters of
2295this thread may have to be adjusted accordingly.
2296
Jan Kiszka0589ff62012-04-24 16:40:16 +02002297This IOCTL replaces the obsolete KVM_CREATE_PIT.
2298
2299
23004.72 KVM_GET_PIT2
2301
2302Capability: KVM_CAP_PIT_STATE2
2303Architectures: x86
2304Type: vm ioctl
2305Parameters: struct kvm_pit_state2 (out)
2306Returns: 0 on success, -1 on error
2307
2308Retrieves the state of the in-kernel PIT model. Only valid after
2309KVM_CREATE_PIT2. The state is returned in the following structure:
2310
2311struct kvm_pit_state2 {
2312 struct kvm_pit_channel_state channels[3];
2313 __u32 flags;
2314 __u32 reserved[9];
2315};
2316
2317Valid flags are:
2318
2319/* disable PIT in HPET legacy mode */
2320#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2321
2322This IOCTL replaces the obsolete KVM_GET_PIT.
2323
2324
23254.73 KVM_SET_PIT2
2326
2327Capability: KVM_CAP_PIT_STATE2
2328Architectures: x86
2329Type: vm ioctl
2330Parameters: struct kvm_pit_state2 (in)
2331Returns: 0 on success, -1 on error
2332
2333Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2334See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2335
2336This IOCTL replaces the obsolete KVM_SET_PIT.
2337
2338
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000023394.74 KVM_PPC_GET_SMMU_INFO
2340
2341Capability: KVM_CAP_PPC_GET_SMMU_INFO
2342Architectures: powerpc
2343Type: vm ioctl
2344Parameters: None
2345Returns: 0 on success, -1 on error
2346
2347This populates and returns a structure describing the features of
2348the "Server" class MMU emulation supported by KVM.
Stefan Hubercc22c352013-06-05 12:24:37 +02002349This can in turn be used by userspace to generate the appropriate
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002350device-tree properties for the guest operating system.
2351
Carlos Garciac98be0c2014-04-04 22:31:00 -04002352The structure contains some global information, followed by an
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002353array of supported segment page sizes:
2354
2355 struct kvm_ppc_smmu_info {
2356 __u64 flags;
2357 __u32 slb_size;
2358 __u32 pad;
2359 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2360 };
2361
2362The supported flags are:
2363
2364 - KVM_PPC_PAGE_SIZES_REAL:
2365 When that flag is set, guest page sizes must "fit" the backing
2366 store page sizes. When not set, any page size in the list can
2367 be used regardless of how they are backed by userspace.
2368
2369 - KVM_PPC_1T_SEGMENTS
2370 The emulated MMU supports 1T segments in addition to the
2371 standard 256M ones.
2372
2373The "slb_size" field indicates how many SLB entries are supported
2374
2375The "sps" array contains 8 entries indicating the supported base
2376page sizes for a segment in increasing order. Each entry is defined
2377as follow:
2378
2379 struct kvm_ppc_one_seg_page_size {
2380 __u32 page_shift; /* Base page shift of segment (or 0) */
2381 __u32 slb_enc; /* SLB encoding for BookS */
2382 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2383 };
2384
2385An entry with a "page_shift" of 0 is unused. Because the array is
2386organized in increasing order, a lookup can stop when encoutering
2387such an entry.
2388
2389The "slb_enc" field provides the encoding to use in the SLB for the
2390page size. The bits are in positions such as the value can directly
2391be OR'ed into the "vsid" argument of the slbmte instruction.
2392
2393The "enc" array is a list which for each of those segment base page
2394size provides the list of supported actual page sizes (which can be
2395only larger or equal to the base page size), along with the
Anatol Pomozovf884ab12013-05-08 16:56:16 -07002396corresponding encoding in the hash PTE. Similarly, the array is
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000023978 entries sorted by increasing sizes and an entry with a "0" shift
2398is an empty entry and a terminator:
2399
2400 struct kvm_ppc_one_page_size {
2401 __u32 page_shift; /* Page shift (or 0) */
2402 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2403 };
2404
2405The "pte_enc" field provides a value that can OR'ed into the hash
2406PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2407into the hash PTE second double word).
2408
Alex Williamsonf36992e2012-06-29 09:56:16 -060024094.75 KVM_IRQFD
2410
2411Capability: KVM_CAP_IRQFD
Eric Auger174178f2015-03-04 11:14:36 +01002412Architectures: x86 s390 arm arm64
Alex Williamsonf36992e2012-06-29 09:56:16 -06002413Type: vm ioctl
2414Parameters: struct kvm_irqfd (in)
2415Returns: 0 on success, -1 on error
2416
2417Allows setting an eventfd to directly trigger a guest interrupt.
2418kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2419kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
Masanari Iida17180032013-12-22 01:21:23 +09002420an event is triggered on the eventfd, an interrupt is injected into
Alex Williamsonf36992e2012-06-29 09:56:16 -06002421the guest using the specified gsi pin. The irqfd is removed using
2422the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2423and kvm_irqfd.gsi.
2424
Alex Williamson7a844282012-09-21 11:58:03 -06002425With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2426mechanism allowing emulation of level-triggered, irqfd-based
2427interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2428additional eventfd in the kvm_irqfd.resamplefd field. When operating
2429in resample mode, posting of an interrupt through kvm_irq.fd asserts
2430the specified gsi in the irqchip. When the irqchip is resampled, such
Masanari Iida17180032013-12-22 01:21:23 +09002431as from an EOI, the gsi is de-asserted and the user is notified via
Alex Williamson7a844282012-09-21 11:58:03 -06002432kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2433the interrupt if the device making use of it still requires service.
2434Note that closing the resamplefd is not sufficient to disable the
2435irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2436and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2437
Eric Auger180ae7b2016-07-22 16:20:41 +00002438On arm/arm64, gsi routing being supported, the following can happen:
2439- in case no routing entry is associated to this gsi, injection fails
2440- in case the gsi is associated to an irqchip routing entry,
2441 irqchip.pin + 32 corresponds to the injected SPI ID.
Eric Auger995a0ee2016-07-22 16:20:42 +00002442- in case the gsi is associated to an MSI routing entry, the MSI
2443 message and device ID are translated into an LPI (support restricted
2444 to GICv3 ITS in-kernel emulation).
Eric Auger174178f2015-03-04 11:14:36 +01002445
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070024464.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002447
2448Capability: KVM_CAP_PPC_ALLOC_HTAB
2449Architectures: powerpc
2450Type: vm ioctl
2451Parameters: Pointer to u32 containing hash table order (in/out)
2452Returns: 0 on success, -1 on error
2453
2454This requests the host kernel to allocate an MMU hash table for a
2455guest using the PAPR paravirtualization interface. This only does
2456anything if the kernel is configured to use the Book 3S HV style of
2457virtualization. Otherwise the capability doesn't exist and the ioctl
2458returns an ENOTTY error. The rest of this description assumes Book 3S
2459HV.
2460
2461There must be no vcpus running when this ioctl is called; if there
2462are, it will do nothing and return an EBUSY error.
2463
2464The parameter is a pointer to a 32-bit unsigned integer variable
2465containing the order (log base 2) of the desired size of the hash
2466table, which must be between 18 and 46. On successful return from the
David Gibsonf98a8bf2016-12-20 16:49:03 +11002467ioctl, the value will not be changed by the kernel.
Paul Mackerras32fad282012-05-04 02:32:53 +00002468
2469If no hash table has been allocated when any vcpu is asked to run
2470(with the KVM_RUN ioctl), the host kernel will allocate a
2471default-sized hash table (16 MB).
2472
2473If this ioctl is called when a hash table has already been allocated,
David Gibsonf98a8bf2016-12-20 16:49:03 +11002474with a different order from the existing hash table, the existing hash
2475table will be freed and a new one allocated. If this is ioctl is
2476called when a hash table has already been allocated of the same order
2477as specified, the kernel will clear out the existing hash table (zero
2478all HPTEs). In either case, if the guest is using the virtualized
2479real-mode area (VRMA) facility, the kernel will re-create the VMRA
2480HPTEs on the next KVM_RUN of any vcpu.
Paul Mackerras32fad282012-05-04 02:32:53 +00002481
Cornelia Huck416ad652012-10-02 16:25:37 +020024824.77 KVM_S390_INTERRUPT
2483
2484Capability: basic
2485Architectures: s390
2486Type: vm ioctl, vcpu ioctl
2487Parameters: struct kvm_s390_interrupt (in)
2488Returns: 0 on success, -1 on error
2489
2490Allows to inject an interrupt to the guest. Interrupts can be floating
2491(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2492
2493Interrupt parameters are passed via kvm_s390_interrupt:
2494
2495struct kvm_s390_interrupt {
2496 __u32 type;
2497 __u32 parm;
2498 __u64 parm64;
2499};
2500
2501type can be one of the following:
2502
David Hildenbrand28225452014-10-15 16:48:16 +02002503KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
Cornelia Huck416ad652012-10-02 16:25:37 +02002504KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2505KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2506KVM_S390_RESTART (vcpu) - restart
Thomas Huthe029ae52014-03-26 16:11:54 +01002507KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2508KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
Cornelia Huck416ad652012-10-02 16:25:37 +02002509KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2510 parameters in parm and parm64
2511KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2512KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2513KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
Cornelia Huckd8346b72012-12-20 15:32:08 +01002514KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2515 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2516 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2517 interruption subclass)
Cornelia Huck48a3e952012-12-20 15:32:09 +01002518KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2519 machine check interrupt code in parm64 (note that
2520 machine checks needing further payload are not
2521 supported by this ioctl)
Cornelia Huck416ad652012-10-02 16:25:37 +02002522
2523Note that the vcpu ioctl is asynchronous to vcpu execution.
2524
Paul Mackerrasa2932922012-11-19 22:57:20 +000025254.78 KVM_PPC_GET_HTAB_FD
2526
2527Capability: KVM_CAP_PPC_HTAB_FD
2528Architectures: powerpc
2529Type: vm ioctl
2530Parameters: Pointer to struct kvm_get_htab_fd (in)
2531Returns: file descriptor number (>= 0) on success, -1 on error
2532
2533This returns a file descriptor that can be used either to read out the
2534entries in the guest's hashed page table (HPT), or to write entries to
2535initialize the HPT. The returned fd can only be written to if the
2536KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2537can only be read if that bit is clear. The argument struct looks like
2538this:
2539
2540/* For KVM_PPC_GET_HTAB_FD */
2541struct kvm_get_htab_fd {
2542 __u64 flags;
2543 __u64 start_index;
2544 __u64 reserved[2];
2545};
2546
2547/* Values for kvm_get_htab_fd.flags */
2548#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2549#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2550
2551The `start_index' field gives the index in the HPT of the entry at
2552which to start reading. It is ignored when writing.
2553
2554Reads on the fd will initially supply information about all
2555"interesting" HPT entries. Interesting entries are those with the
2556bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2557all entries. When the end of the HPT is reached, the read() will
2558return. If read() is called again on the fd, it will start again from
2559the beginning of the HPT, but will only return HPT entries that have
2560changed since they were last read.
2561
2562Data read or written is structured as a header (8 bytes) followed by a
2563series of valid HPT entries (16 bytes) each. The header indicates how
2564many valid HPT entries there are and how many invalid entries follow
2565the valid entries. The invalid entries are not represented explicitly
2566in the stream. The header format is:
2567
2568struct kvm_get_htab_header {
2569 __u32 index;
2570 __u16 n_valid;
2571 __u16 n_invalid;
2572};
2573
2574Writes to the fd create HPT entries starting at the index given in the
2575header; first `n_valid' valid entries with contents from the data
2576written, then `n_invalid' invalid entries, invalidating any previously
2577valid entries found.
2578
Scott Wood852b6d52013-04-12 14:08:42 +000025794.79 KVM_CREATE_DEVICE
2580
2581Capability: KVM_CAP_DEVICE_CTRL
2582Type: vm ioctl
2583Parameters: struct kvm_create_device (in/out)
2584Returns: 0 on success, -1 on error
2585Errors:
2586 ENODEV: The device type is unknown or unsupported
2587 EEXIST: Device already created, and this type of device may not
2588 be instantiated multiple times
2589
2590 Other error conditions may be defined by individual device types or
2591 have their standard meanings.
2592
2593Creates an emulated device in the kernel. The file descriptor returned
2594in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2595
2596If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2597device type is supported (not necessarily whether it can be created
2598in the current vm).
2599
2600Individual devices should not define flags. Attributes should be used
2601for specifying any behavior that is not implied by the device type
2602number.
2603
2604struct kvm_create_device {
2605 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2606 __u32 fd; /* out: device handle */
2607 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2608};
2609
26104.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2611
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002612Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2613 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2614Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002615Parameters: struct kvm_device_attr
2616Returns: 0 on success, -1 on error
2617Errors:
2618 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002619 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002620 EPERM: The attribute cannot (currently) be accessed this way
2621 (e.g. read-only attribute, or attribute that only makes
2622 sense when the device is in a different state)
2623
2624 Other error conditions may be defined by individual device types.
2625
2626Gets/sets a specified piece of device configuration and/or state. The
2627semantics are device-specific. See individual device documentation in
2628the "devices" directory. As with ONE_REG, the size of the data
2629transferred is defined by the particular attribute.
2630
2631struct kvm_device_attr {
2632 __u32 flags; /* no flags currently defined */
2633 __u32 group; /* device-defined */
2634 __u64 attr; /* group-defined */
2635 __u64 addr; /* userspace address of attr data */
2636};
2637
26384.81 KVM_HAS_DEVICE_ATTR
2639
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002640Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2641 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2642Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002643Parameters: struct kvm_device_attr
2644Returns: 0 on success, -1 on error
2645Errors:
2646 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002647 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002648
2649Tests whether a device supports a particular attribute. A successful
2650return indicates the attribute is implemented. It does not necessarily
2651indicate that the attribute can be read or written in the device's
2652current state. "addr" is ignored.
Alex Williamsonf36992e2012-06-29 09:56:16 -06002653
Alexey Kardashevskiyd8968f12013-06-19 11:42:07 +100026544.82 KVM_ARM_VCPU_INIT
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002655
2656Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +01002657Architectures: arm, arm64
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002658Type: vcpu ioctl
Anup Patelbeb11fc2013-12-12 21:42:24 +05302659Parameters: struct kvm_vcpu_init (in)
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002660Returns: 0 on success; -1 on error
2661Errors:
2662  EINVAL:    the target is unknown, or the combination of features is invalid.
2663  ENOENT:    a features bit specified is unknown.
2664
2665This tells KVM what type of CPU to present to the guest, and what
2666optional features it should have.  This will cause a reset of the cpu
2667registers to their initial values.  If this is not called, KVM_RUN will
2668return ENOEXEC for that vcpu.
2669
2670Note that because some registers reflect machine topology, all vcpus
2671should be created before this ioctl is invoked.
2672
Christoffer Dallf7fa034d2014-10-16 16:40:53 +02002673Userspace can call this function multiple times for a given vcpu, including
2674after the vcpu has been run. This will reset the vcpu to its initial
2675state. All calls to this function after the initial call must use the same
2676target and same set of feature flags, otherwise EINVAL will be returned.
2677
Marc Zyngieraa024c22013-01-20 18:28:13 -05002678Possible features:
2679 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
Christoffer Dall3ad8b3d2014-10-16 16:14:43 +02002680 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2681 and execute guest code when KVM_RUN is called.
Marc Zyngier379e04c2013-04-02 17:46:31 +01002682 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2683 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
Anup Patel50bb0c92014-04-29 11:24:17 +05302684 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2685 Depends on KVM_CAP_ARM_PSCI_0_2.
Shannon Zhao808e7382016-01-11 22:46:15 +08002686 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2687 Depends on KVM_CAP_ARM_PMU_V3.
Marc Zyngieraa024c22013-01-20 18:28:13 -05002688
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002689
Anup Patel740edfc2013-09-30 14:20:08 +053026904.83 KVM_ARM_PREFERRED_TARGET
2691
2692Capability: basic
2693Architectures: arm, arm64
2694Type: vm ioctl
2695Parameters: struct struct kvm_vcpu_init (out)
2696Returns: 0 on success; -1 on error
2697Errors:
Christoffer Dalla7265fb2013-10-15 17:43:00 -07002698 ENODEV: no preferred target available for the host
Anup Patel740edfc2013-09-30 14:20:08 +05302699
2700This queries KVM for preferred CPU target type which can be emulated
2701by KVM on underlying host.
2702
2703The ioctl returns struct kvm_vcpu_init instance containing information
2704about preferred CPU target type and recommended features for it. The
2705kvm_vcpu_init->features bitmap returned will have feature bits set if
2706the preferred target recommends setting these features, but this is
2707not mandatory.
2708
2709The information returned by this ioctl can be used to prepare an instance
2710of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2711in VCPU matching underlying host.
2712
2713
27144.84 KVM_GET_REG_LIST
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002715
2716Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +01002717Architectures: arm, arm64, mips
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002718Type: vcpu ioctl
2719Parameters: struct kvm_reg_list (in/out)
2720Returns: 0 on success; -1 on error
2721Errors:
2722  E2BIG:     the reg index list is too big to fit in the array specified by
2723             the user (the number required will be written into n).
2724
2725struct kvm_reg_list {
2726 __u64 n; /* number of registers in reg[] */
2727 __u64 reg[0];
2728};
2729
2730This ioctl returns the guest registers that are supported for the
2731KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2732
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002733
27344.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
Christoffer Dall3401d5462013-01-23 13:18:04 -05002735
2736Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
Marc Zyngier379e04c2013-04-02 17:46:31 +01002737Architectures: arm, arm64
Christoffer Dall3401d5462013-01-23 13:18:04 -05002738Type: vm ioctl
2739Parameters: struct kvm_arm_device_address (in)
2740Returns: 0 on success, -1 on error
2741Errors:
2742 ENODEV: The device id is unknown
2743 ENXIO: Device not supported on current system
2744 EEXIST: Address already set
2745 E2BIG: Address outside guest physical address space
Christoffer Dall330690c2013-01-21 19:36:13 -05002746 EBUSY: Address overlaps with other device range
Christoffer Dall3401d5462013-01-23 13:18:04 -05002747
2748struct kvm_arm_device_addr {
2749 __u64 id;
2750 __u64 addr;
2751};
2752
2753Specify a device address in the guest's physical address space where guests
2754can access emulated or directly exposed devices, which the host kernel needs
2755to know about. The id field is an architecture specific identifier for a
2756specific device.
2757
Marc Zyngier379e04c2013-04-02 17:46:31 +01002758ARM/arm64 divides the id field into two parts, a device id and an
2759address type id specific to the individual device.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002760
2761  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2762 field: | 0x00000000 | device id | addr type id |
2763
Marc Zyngier379e04c2013-04-02 17:46:31 +01002764ARM/arm64 currently only require this when using the in-kernel GIC
2765support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2766as the device id. When setting the base address for the guest's
2767mapping of the VGIC virtual CPU and distributor interface, the ioctl
2768must be called after calling KVM_CREATE_IRQCHIP, but before calling
2769KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2770base addresses will return -EEXIST.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002771
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002772Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2773should be used instead.
2774
2775
Anup Patel740edfc2013-09-30 14:20:08 +053027764.86 KVM_PPC_RTAS_DEFINE_TOKEN
Michael Ellerman8e591cb2013-04-17 20:30:00 +00002777
2778Capability: KVM_CAP_PPC_RTAS
2779Architectures: ppc
2780Type: vm ioctl
2781Parameters: struct kvm_rtas_token_args
2782Returns: 0 on success, -1 on error
2783
2784Defines a token value for a RTAS (Run Time Abstraction Services)
2785service in order to allow it to be handled in the kernel. The
2786argument struct gives the name of the service, which must be the name
2787of a service that has a kernel-side implementation. If the token
2788value is non-zero, it will be associated with that service, and
2789subsequent RTAS calls by the guest specifying that token will be
2790handled by the kernel. If the token value is 0, then any token
2791associated with the service will be forgotten, and subsequent RTAS
2792calls by the guest for that service will be passed to userspace to be
2793handled.
2794
Alex Bennée4bd9d342014-09-09 17:27:18 +010027954.87 KVM_SET_GUEST_DEBUG
2796
2797Capability: KVM_CAP_SET_GUEST_DEBUG
Alex Bennée0e6f07f2015-07-07 17:29:55 +01002798Architectures: x86, s390, ppc, arm64
Alex Bennée4bd9d342014-09-09 17:27:18 +01002799Type: vcpu ioctl
2800Parameters: struct kvm_guest_debug (in)
2801Returns: 0 on success; -1 on error
2802
2803struct kvm_guest_debug {
2804 __u32 control;
2805 __u32 pad;
2806 struct kvm_guest_debug_arch arch;
2807};
2808
2809Set up the processor specific debug registers and configure vcpu for
2810handling guest debug events. There are two parts to the structure, the
2811first a control bitfield indicates the type of debug events to handle
2812when running. Common control bits are:
2813
2814 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2815 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2816
2817The top 16 bits of the control field are architecture specific control
2818flags which can include the following:
2819
Alex Bennée4bd611c2015-07-07 17:29:57 +01002820 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
Alex Bennée834bf882015-07-07 17:30:02 +01002821 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
Alex Bennée4bd9d342014-09-09 17:27:18 +01002822 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2823 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2824 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2825
2826For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2827are enabled in memory so we need to ensure breakpoint exceptions are
2828correctly trapped and the KVM run loop exits at the breakpoint and not
2829running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2830we need to ensure the guest vCPUs architecture specific registers are
2831updated to the correct (supplied) values.
2832
2833The second part of the structure is architecture specific and
2834typically contains a set of debug registers.
2835
Alex Bennée834bf882015-07-07 17:30:02 +01002836For arm64 the number of debug registers is implementation defined and
2837can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2838KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2839indicating the number of supported registers.
2840
Alex Bennée4bd9d342014-09-09 17:27:18 +01002841When debug events exit the main run loop with the reason
2842KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2843structure containing architecture specific debug information.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002844
Alex Bennée209cf192014-09-09 17:27:19 +010028454.88 KVM_GET_EMULATED_CPUID
2846
2847Capability: KVM_CAP_EXT_EMUL_CPUID
2848Architectures: x86
2849Type: system ioctl
2850Parameters: struct kvm_cpuid2 (in/out)
2851Returns: 0 on success, -1 on error
2852
2853struct kvm_cpuid2 {
2854 __u32 nent;
2855 __u32 flags;
2856 struct kvm_cpuid_entry2 entries[0];
2857};
2858
2859The member 'flags' is used for passing flags from userspace.
2860
2861#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2862#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2863#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2864
2865struct kvm_cpuid_entry2 {
2866 __u32 function;
2867 __u32 index;
2868 __u32 flags;
2869 __u32 eax;
2870 __u32 ebx;
2871 __u32 ecx;
2872 __u32 edx;
2873 __u32 padding[3];
2874};
2875
2876This ioctl returns x86 cpuid features which are emulated by
2877kvm.Userspace can use the information returned by this ioctl to query
2878which features are emulated by kvm instead of being present natively.
2879
2880Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2881structure with the 'nent' field indicating the number of entries in
2882the variable-size array 'entries'. If the number of entries is too low
2883to describe the cpu capabilities, an error (E2BIG) is returned. If the
2884number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2885is returned. If the number is just right, the 'nent' field is adjusted
2886to the number of valid entries in the 'entries' array, which is then
2887filled.
2888
2889The entries returned are the set CPUID bits of the respective features
2890which kvm emulates, as returned by the CPUID instruction, with unknown
2891or unsupported feature bits cleared.
2892
2893Features like x2apic, for example, may not be present in the host cpu
2894but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2895emulated efficiently and thus not included here.
2896
2897The fields in each entry are defined as follows:
2898
2899 function: the eax value used to obtain the entry
2900 index: the ecx value used to obtain the entry (for entries that are
2901 affected by ecx)
2902 flags: an OR of zero or more of the following:
2903 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2904 if the index field is valid
2905 KVM_CPUID_FLAG_STATEFUL_FUNC:
2906 if cpuid for this function returns different values for successive
2907 invocations; there will be several entries with the same function,
2908 all with this flag set
2909 KVM_CPUID_FLAG_STATE_READ_NEXT:
2910 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2911 the first entry to be read by a cpu
2912 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2913 this function/index combination
2914
Thomas Huth41408c22015-02-06 15:01:21 +010029154.89 KVM_S390_MEM_OP
2916
2917Capability: KVM_CAP_S390_MEM_OP
2918Architectures: s390
2919Type: vcpu ioctl
2920Parameters: struct kvm_s390_mem_op (in)
2921Returns: = 0 on success,
2922 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2923 > 0 if an exception occurred while walking the page tables
2924
Masanari Iida5d4f6f32015-10-04 00:46:21 +09002925Read or write data from/to the logical (virtual) memory of a VCPU.
Thomas Huth41408c22015-02-06 15:01:21 +01002926
2927Parameters are specified via the following structure:
2928
2929struct kvm_s390_mem_op {
2930 __u64 gaddr; /* the guest address */
2931 __u64 flags; /* flags */
2932 __u32 size; /* amount of bytes */
2933 __u32 op; /* type of operation */
2934 __u64 buf; /* buffer in userspace */
2935 __u8 ar; /* the access register number */
2936 __u8 reserved[31]; /* should be set to 0 */
2937};
2938
2939The type of operation is specified in the "op" field. It is either
2940KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2941KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2942KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2943whether the corresponding memory access would create an access exception
2944(without touching the data in the memory at the destination). In case an
2945access exception occurred while walking the MMU tables of the guest, the
2946ioctl returns a positive error number to indicate the type of exception.
2947This exception is also raised directly at the corresponding VCPU if the
2948flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2949
2950The start address of the memory region has to be specified in the "gaddr"
2951field, and the length of the region in the "size" field. "buf" is the buffer
2952supplied by the userspace application where the read data should be written
2953to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2954is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2955when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2956register number to be used.
2957
2958The "reserved" field is meant for future extensions. It is not used by
2959KVM with the currently defined set of flags.
2960
Jason J. Herne30ee2a92014-09-23 09:23:01 -040029614.90 KVM_S390_GET_SKEYS
2962
2963Capability: KVM_CAP_S390_SKEYS
2964Architectures: s390
2965Type: vm ioctl
2966Parameters: struct kvm_s390_skeys
2967Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2968 keys, negative value on error
2969
2970This ioctl is used to get guest storage key values on the s390
2971architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2972
2973struct kvm_s390_skeys {
2974 __u64 start_gfn;
2975 __u64 count;
2976 __u64 skeydata_addr;
2977 __u32 flags;
2978 __u32 reserved[9];
2979};
2980
2981The start_gfn field is the number of the first guest frame whose storage keys
2982you want to get.
2983
2984The count field is the number of consecutive frames (starting from start_gfn)
2985whose storage keys to get. The count field must be at least 1 and the maximum
2986allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2987will cause the ioctl to return -EINVAL.
2988
2989The skeydata_addr field is the address to a buffer large enough to hold count
2990bytes. This buffer will be filled with storage key data by the ioctl.
2991
29924.91 KVM_S390_SET_SKEYS
2993
2994Capability: KVM_CAP_S390_SKEYS
2995Architectures: s390
2996Type: vm ioctl
2997Parameters: struct kvm_s390_skeys
2998Returns: 0 on success, negative value on error
2999
3000This ioctl is used to set guest storage key values on the s390
3001architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
3002See section on KVM_S390_GET_SKEYS for struct definition.
3003
3004The start_gfn field is the number of the first guest frame whose storage keys
3005you want to set.
3006
3007The count field is the number of consecutive frames (starting from start_gfn)
3008whose storage keys to get. The count field must be at least 1 and the maximum
3009allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
3010will cause the ioctl to return -EINVAL.
3011
3012The skeydata_addr field is the address to a buffer containing count bytes of
3013storage keys. Each byte in the buffer will be set as the storage key for a
3014single frame starting at start_gfn for count frames.
3015
3016Note: If any architecturally invalid key value is found in the given data then
3017the ioctl will return -EINVAL.
3018
Jens Freimann47b43c52014-11-11 20:57:06 +010030194.92 KVM_S390_IRQ
3020
3021Capability: KVM_CAP_S390_INJECT_IRQ
3022Architectures: s390
3023Type: vcpu ioctl
3024Parameters: struct kvm_s390_irq (in)
3025Returns: 0 on success, -1 on error
3026Errors:
3027 EINVAL: interrupt type is invalid
3028 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
3029 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
3030 than the maximum of VCPUs
3031 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
3032 type is KVM_S390_SIGP_STOP and a stop irq is already pending
3033 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
3034 is already pending
3035
3036Allows to inject an interrupt to the guest.
3037
3038Using struct kvm_s390_irq as a parameter allows
3039to inject additional payload which is not
3040possible via KVM_S390_INTERRUPT.
3041
3042Interrupt parameters are passed via kvm_s390_irq:
3043
3044struct kvm_s390_irq {
3045 __u64 type;
3046 union {
3047 struct kvm_s390_io_info io;
3048 struct kvm_s390_ext_info ext;
3049 struct kvm_s390_pgm_info pgm;
3050 struct kvm_s390_emerg_info emerg;
3051 struct kvm_s390_extcall_info extcall;
3052 struct kvm_s390_prefix_info prefix;
3053 struct kvm_s390_stop_info stop;
3054 struct kvm_s390_mchk_info mchk;
3055 char reserved[64];
3056 } u;
3057};
3058
3059type can be one of the following:
3060
3061KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
3062KVM_S390_PROGRAM_INT - program check; parameters in .pgm
3063KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
3064KVM_S390_RESTART - restart; no parameters
3065KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
3066KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
3067KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
3068KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
3069KVM_S390_MCHK - machine check interrupt; parameters in .mchk
3070
3071
3072Note that the vcpu ioctl is asynchronous to vcpu execution.
3073
Jens Freimann816c7662014-11-24 17:13:46 +010030744.94 KVM_S390_GET_IRQ_STATE
3075
3076Capability: KVM_CAP_S390_IRQ_STATE
3077Architectures: s390
3078Type: vcpu ioctl
3079Parameters: struct kvm_s390_irq_state (out)
3080Returns: >= number of bytes copied into buffer,
3081 -EINVAL if buffer size is 0,
3082 -ENOBUFS if buffer size is too small to fit all pending interrupts,
3083 -EFAULT if the buffer address was invalid
3084
3085This ioctl allows userspace to retrieve the complete state of all currently
3086pending interrupts in a single buffer. Use cases include migration
3087and introspection. The parameter structure contains the address of a
3088userspace buffer and its length:
3089
3090struct kvm_s390_irq_state {
3091 __u64 buf;
3092 __u32 flags;
3093 __u32 len;
3094 __u32 reserved[4];
3095};
3096
3097Userspace passes in the above struct and for each pending interrupt a
3098struct kvm_s390_irq is copied to the provided buffer.
3099
3100If -ENOBUFS is returned the buffer provided was too small and userspace
3101may retry with a bigger buffer.
3102
31034.95 KVM_S390_SET_IRQ_STATE
3104
3105Capability: KVM_CAP_S390_IRQ_STATE
3106Architectures: s390
3107Type: vcpu ioctl
3108Parameters: struct kvm_s390_irq_state (in)
3109Returns: 0 on success,
3110 -EFAULT if the buffer address was invalid,
3111 -EINVAL for an invalid buffer length (see below),
3112 -EBUSY if there were already interrupts pending,
3113 errors occurring when actually injecting the
3114 interrupt. See KVM_S390_IRQ.
3115
3116This ioctl allows userspace to set the complete state of all cpu-local
3117interrupts currently pending for the vcpu. It is intended for restoring
3118interrupt state after a migration. The input parameter is a userspace buffer
3119containing a struct kvm_s390_irq_state:
3120
3121struct kvm_s390_irq_state {
3122 __u64 buf;
3123 __u32 len;
3124 __u32 pad;
3125};
3126
3127The userspace memory referenced by buf contains a struct kvm_s390_irq
3128for each interrupt to be injected into the guest.
3129If one of the interrupts could not be injected for some reason the
3130ioctl aborts.
3131
3132len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3133and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3134which is the maximum number of possibly pending cpu-local interrupts.
Jens Freimann47b43c52014-11-11 20:57:06 +01003135
Alexey Kardashevskiyed8e5a22016-01-19 16:12:28 +110031364.96 KVM_SMI
Paolo Bonzinif0778252015-04-01 15:06:40 +02003137
3138Capability: KVM_CAP_X86_SMM
3139Architectures: x86
3140Type: vcpu ioctl
3141Parameters: none
3142Returns: 0 on success, -1 on error
3143
3144Queues an SMI on the thread's vcpu.
3145
Alexey Kardashevskiyd3695aa2016-02-15 12:55:09 +110031464.97 KVM_CAP_PPC_MULTITCE
3147
3148Capability: KVM_CAP_PPC_MULTITCE
3149Architectures: ppc
3150Type: vm
3151
3152This capability means the kernel is capable of handling hypercalls
3153H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3154space. This significantly accelerates DMA operations for PPC KVM guests.
3155User space should expect that its handlers for these hypercalls
3156are not going to be called if user space previously registered LIOBN
3157in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3158
3159In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3160user space might have to advertise it for the guest. For example,
3161IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3162present in the "ibm,hypertas-functions" device-tree property.
3163
3164The hypercalls mentioned above may or may not be processed successfully
3165in the kernel based fast path. If they can not be handled by the kernel,
3166they will get passed on to user space. So user space still has to have
3167an implementation for these despite the in kernel acceleration.
3168
3169This capability is always enabled.
3170
Alexey Kardashevskiy58ded422016-03-01 17:54:40 +110031714.98 KVM_CREATE_SPAPR_TCE_64
3172
3173Capability: KVM_CAP_SPAPR_TCE_64
3174Architectures: powerpc
3175Type: vm ioctl
3176Parameters: struct kvm_create_spapr_tce_64 (in)
3177Returns: file descriptor for manipulating the created TCE table
3178
3179This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3180windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3181
3182This capability uses extended struct in ioctl interface:
3183
3184/* for KVM_CAP_SPAPR_TCE_64 */
3185struct kvm_create_spapr_tce_64 {
3186 __u64 liobn;
3187 __u32 page_shift;
3188 __u32 flags;
3189 __u64 offset; /* in pages */
3190 __u64 size; /* in pages */
3191};
3192
3193The aim of extension is to support an additional bigger DMA window with
3194a variable page size.
3195KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3196a bus offset of the corresponding DMA window, @size and @offset are numbers
3197of IOMMU pages.
3198
3199@flags are not used at the moment.
3200
3201The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3202
David Gibsonccc4df42016-12-20 16:48:57 +110032034.99 KVM_REINJECT_CONTROL
Radim Krčmář107d44a22016-03-02 22:56:53 +01003204
3205Capability: KVM_CAP_REINJECT_CONTROL
3206Architectures: x86
3207Type: vm ioctl
3208Parameters: struct kvm_reinject_control (in)
3209Returns: 0 on success,
3210 -EFAULT if struct kvm_reinject_control cannot be read,
3211 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3212
3213i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3214where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3215vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3216interrupt whenever there isn't a pending interrupt from i8254.
3217!reinject mode injects an interrupt as soon as a tick arrives.
3218
3219struct kvm_reinject_control {
3220 __u8 pit_reinject;
3221 __u8 reserved[31];
3222};
3223
3224pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3225operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3226
David Gibsonccc4df42016-12-20 16:48:57 +110032274.100 KVM_PPC_CONFIGURE_V3_MMU
Paul Mackerrasc9270132017-01-30 21:21:41 +11003228
3229Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3230Architectures: ppc
3231Type: vm ioctl
3232Parameters: struct kvm_ppc_mmuv3_cfg (in)
3233Returns: 0 on success,
3234 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3235 -EINVAL if the configuration is invalid
3236
3237This ioctl controls whether the guest will use radix or HPT (hashed
3238page table) translation, and sets the pointer to the process table for
3239the guest.
3240
3241struct kvm_ppc_mmuv3_cfg {
3242 __u64 flags;
3243 __u64 process_table;
3244};
3245
3246There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3247KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3248to use radix tree translation, and if clear, to use HPT translation.
3249KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3250to be able to use the global TLB and SLB invalidation instructions;
3251if clear, the guest may not use these instructions.
3252
3253The process_table field specifies the address and size of the guest
3254process table, which is in the guest's space. This field is formatted
3255as the second doubleword of the partition table entry, as defined in
3256the Power ISA V3.00, Book III section 5.7.6.1.
3257
David Gibsonccc4df42016-12-20 16:48:57 +110032584.101 KVM_PPC_GET_RMMU_INFO
Paul Mackerrasc9270132017-01-30 21:21:41 +11003259
3260Capability: KVM_CAP_PPC_RADIX_MMU
3261Architectures: ppc
3262Type: vm ioctl
3263Parameters: struct kvm_ppc_rmmu_info (out)
3264Returns: 0 on success,
3265 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3266 -EINVAL if no useful information can be returned
3267
3268This ioctl returns a structure containing two things: (a) a list
3269containing supported radix tree geometries, and (b) a list that maps
3270page sizes to put in the "AP" (actual page size) field for the tlbie
3271(TLB invalidate entry) instruction.
3272
3273struct kvm_ppc_rmmu_info {
3274 struct kvm_ppc_radix_geom {
3275 __u8 page_shift;
3276 __u8 level_bits[4];
3277 __u8 pad[3];
3278 } geometries[8];
3279 __u32 ap_encodings[8];
3280};
3281
3282The geometries[] field gives up to 8 supported geometries for the
3283radix page table, in terms of the log base 2 of the smallest page
3284size, and the number of bits indexed at each level of the tree, from
3285the PTE level up to the PGD level in that order. Any unused entries
3286will have 0 in the page_shift field.
3287
3288The ap_encodings gives the supported page sizes and their AP field
3289encodings, encoded with the AP value in the top 3 bits and the log
3290base 2 of the page size in the bottom 6 bits.
3291
David Gibsonef1ead02016-12-20 16:48:58 +110032924.102 KVM_PPC_RESIZE_HPT_PREPARE
3293
3294Capability: KVM_CAP_SPAPR_RESIZE_HPT
3295Architectures: powerpc
3296Type: vm ioctl
3297Parameters: struct kvm_ppc_resize_hpt (in)
3298Returns: 0 on successful completion,
3299 >0 if a new HPT is being prepared, the value is an estimated
3300 number of milliseconds until preparation is complete
3301 -EFAULT if struct kvm_reinject_control cannot be read,
3302 -EINVAL if the supplied shift or flags are invalid
3303 -ENOMEM if unable to allocate the new HPT
3304 -ENOSPC if there was a hash collision when moving existing
3305 HPT entries to the new HPT
3306 -EIO on other error conditions
3307
3308Used to implement the PAPR extension for runtime resizing of a guest's
3309Hashed Page Table (HPT). Specifically this starts, stops or monitors
3310the preparation of a new potential HPT for the guest, essentially
3311implementing the H_RESIZE_HPT_PREPARE hypercall.
3312
3313If called with shift > 0 when there is no pending HPT for the guest,
3314this begins preparation of a new pending HPT of size 2^(shift) bytes.
3315It then returns a positive integer with the estimated number of
3316milliseconds until preparation is complete.
3317
3318If called when there is a pending HPT whose size does not match that
3319requested in the parameters, discards the existing pending HPT and
3320creates a new one as above.
3321
3322If called when there is a pending HPT of the size requested, will:
3323 * If preparation of the pending HPT is already complete, return 0
3324 * If preparation of the pending HPT has failed, return an error
3325 code, then discard the pending HPT.
3326 * If preparation of the pending HPT is still in progress, return an
3327 estimated number of milliseconds until preparation is complete.
3328
3329If called with shift == 0, discards any currently pending HPT and
3330returns 0 (i.e. cancels any in-progress preparation).
3331
3332flags is reserved for future expansion, currently setting any bits in
3333flags will result in an -EINVAL.
3334
3335Normally this will be called repeatedly with the same parameters until
3336it returns <= 0. The first call will initiate preparation, subsequent
3337ones will monitor preparation until it completes or fails.
3338
3339struct kvm_ppc_resize_hpt {
3340 __u64 flags;
3341 __u32 shift;
3342 __u32 pad;
3343};
3344
33454.103 KVM_PPC_RESIZE_HPT_COMMIT
3346
3347Capability: KVM_CAP_SPAPR_RESIZE_HPT
3348Architectures: powerpc
3349Type: vm ioctl
3350Parameters: struct kvm_ppc_resize_hpt (in)
3351Returns: 0 on successful completion,
3352 -EFAULT if struct kvm_reinject_control cannot be read,
3353 -EINVAL if the supplied shift or flags are invalid
3354 -ENXIO is there is no pending HPT, or the pending HPT doesn't
3355 have the requested size
3356 -EBUSY if the pending HPT is not fully prepared
3357 -ENOSPC if there was a hash collision when moving existing
3358 HPT entries to the new HPT
3359 -EIO on other error conditions
3360
3361Used to implement the PAPR extension for runtime resizing of a guest's
3362Hashed Page Table (HPT). Specifically this requests that the guest be
3363transferred to working with the new HPT, essentially implementing the
3364H_RESIZE_HPT_COMMIT hypercall.
3365
3366This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3367returned 0 with the same parameters. In other cases
3368KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3369-EBUSY, though others may be possible if the preparation was started,
3370but failed).
3371
3372This will have undefined effects on the guest if it has not already
3373placed itself in a quiescent state where no vcpu will make MMU enabled
3374memory accesses.
3375
3376On succsful completion, the pending HPT will become the guest's active
3377HPT and the previous HPT will be discarded.
3378
3379On failure, the guest will still be operating on its previous HPT.
3380
3381struct kvm_ppc_resize_hpt {
3382 __u64 flags;
3383 __u32 shift;
3384 __u32 pad;
3385};
3386
Avi Kivity9c1b96e2009-06-09 12:37:58 +030033875. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02003388------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003389
3390Application code obtains a pointer to the kvm_run structure by
3391mmap()ing a vcpu fd. From that point, application code can control
3392execution by changing fields in kvm_run prior to calling the KVM_RUN
3393ioctl, and obtain information about the reason KVM_RUN returned by
3394looking up structure members.
3395
3396struct kvm_run {
3397 /* in */
3398 __u8 request_interrupt_window;
3399
3400Request that KVM_RUN return when it becomes possible to inject external
3401interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3402
Paolo Bonzini460df4c2017-02-08 11:50:15 +01003403 __u8 immediate_exit;
3404
3405This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
3406exits immediately, returning -EINTR. In the common scenario where a
3407signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
3408to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
3409Rather than blocking the signal outside KVM_RUN, userspace can set up
3410a signal handler that sets run->immediate_exit to a non-zero value.
3411
3412This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
3413
3414 __u8 padding1[6];
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003415
3416 /* out */
3417 __u32 exit_reason;
3418
3419When KVM_RUN has returned successfully (return value 0), this informs
3420application code why KVM_RUN has returned. Allowable values for this
3421field are detailed below.
3422
3423 __u8 ready_for_interrupt_injection;
3424
3425If request_interrupt_window has been specified, this field indicates
3426an interrupt can be injected now with KVM_INTERRUPT.
3427
3428 __u8 if_flag;
3429
3430The value of the current interrupt flag. Only valid if in-kernel
3431local APIC is not used.
3432
Paolo Bonzinif0778252015-04-01 15:06:40 +02003433 __u16 flags;
3434
3435More architecture-specific flags detailing state of the VCPU that may
3436affect the device's behavior. The only currently defined flag is
3437KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3438VCPU is in system management mode.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003439
3440 /* in (pre_kvm_run), out (post_kvm_run) */
3441 __u64 cr8;
3442
3443The value of the cr8 register. Only valid if in-kernel local APIC is
3444not used. Both input and output.
3445
3446 __u64 apic_base;
3447
3448The value of the APIC BASE msr. Only valid if in-kernel local
3449APIC is not used. Both input and output.
3450
3451 union {
3452 /* KVM_EXIT_UNKNOWN */
3453 struct {
3454 __u64 hardware_exit_reason;
3455 } hw;
3456
3457If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3458reasons. Further architecture-specific information is available in
3459hardware_exit_reason.
3460
3461 /* KVM_EXIT_FAIL_ENTRY */
3462 struct {
3463 __u64 hardware_entry_failure_reason;
3464 } fail_entry;
3465
3466If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3467to unknown reasons. Further architecture-specific information is
3468available in hardware_entry_failure_reason.
3469
3470 /* KVM_EXIT_EXCEPTION */
3471 struct {
3472 __u32 exception;
3473 __u32 error_code;
3474 } ex;
3475
3476Unused.
3477
3478 /* KVM_EXIT_IO */
3479 struct {
3480#define KVM_EXIT_IO_IN 0
3481#define KVM_EXIT_IO_OUT 1
3482 __u8 direction;
3483 __u8 size; /* bytes */
3484 __u16 port;
3485 __u32 count;
3486 __u64 data_offset; /* relative to kvm_run start */
3487 } io;
3488
Wu Fengguang2044892d2009-12-24 09:04:16 +08003489If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003490executed a port I/O instruction which could not be satisfied by kvm.
3491data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3492where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08003493KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003494
Alex Bennée8ab30c12015-07-07 17:29:53 +01003495 /* KVM_EXIT_DEBUG */
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003496 struct {
3497 struct kvm_debug_exit_arch arch;
3498 } debug;
3499
Alex Bennée8ab30c12015-07-07 17:29:53 +01003500If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3501for which architecture specific information is returned.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003502
3503 /* KVM_EXIT_MMIO */
3504 struct {
3505 __u64 phys_addr;
3506 __u8 data[8];
3507 __u32 len;
3508 __u8 is_write;
3509 } mmio;
3510
Wu Fengguang2044892d2009-12-24 09:04:16 +08003511If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003512executed a memory-mapped I/O instruction which could not be satisfied
3513by kvm. The 'data' member contains the written data if 'is_write' is
3514true, and should be filled by application code otherwise.
3515
Christoffer Dall6acdb162014-01-28 08:28:42 -08003516The 'data' member contains, in its first 'len' bytes, the value as it would
3517appear if the VCPU performed a load or store of the appropriate width directly
3518to the byte array.
3519
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02003520NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
Alexander Grafce91ddc2014-07-28 19:29:13 +02003521 KVM_EXIT_EPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01003522operations are complete (and guest state is consistent) only after userspace
3523has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02003524incomplete operations and then check for pending signals. Userspace
3525can re-enter the guest with an unmasked signal pending to complete
3526pending operations.
3527
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003528 /* KVM_EXIT_HYPERCALL */
3529 struct {
3530 __u64 nr;
3531 __u64 args[6];
3532 __u64 ret;
3533 __u32 longmode;
3534 __u32 pad;
3535 } hypercall;
3536
Avi Kivity647dc492010-04-01 14:39:21 +03003537Unused. This was once used for 'hypercall to userspace'. To implement
3538such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3539Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003540
3541 /* KVM_EXIT_TPR_ACCESS */
3542 struct {
3543 __u64 rip;
3544 __u32 is_write;
3545 __u32 pad;
3546 } tpr_access;
3547
3548To be documented (KVM_TPR_ACCESS_REPORTING).
3549
3550 /* KVM_EXIT_S390_SIEIC */
3551 struct {
3552 __u8 icptcode;
3553 __u64 mask; /* psw upper half */
3554 __u64 addr; /* psw lower half */
3555 __u16 ipa;
3556 __u32 ipb;
3557 } s390_sieic;
3558
3559s390 specific.
3560
3561 /* KVM_EXIT_S390_RESET */
3562#define KVM_S390_RESET_POR 1
3563#define KVM_S390_RESET_CLEAR 2
3564#define KVM_S390_RESET_SUBSYSTEM 4
3565#define KVM_S390_RESET_CPU_INIT 8
3566#define KVM_S390_RESET_IPL 16
3567 __u64 s390_reset_flags;
3568
3569s390 specific.
3570
Carsten Ottee168bf82012-01-04 10:25:22 +01003571 /* KVM_EXIT_S390_UCONTROL */
3572 struct {
3573 __u64 trans_exc_code;
3574 __u32 pgm_code;
3575 } s390_ucontrol;
3576
3577s390 specific. A page fault has occurred for a user controlled virtual
3578machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3579resolved by the kernel.
3580The program code and the translation exception code that were placed
3581in the cpu's lowcore are presented here as defined by the z Architecture
3582Principles of Operation Book in the Chapter for Dynamic Address Translation
3583(DAT)
3584
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003585 /* KVM_EXIT_DCR */
3586 struct {
3587 __u32 dcrn;
3588 __u32 data;
3589 __u8 is_write;
3590 } dcr;
3591
Alexander Grafce91ddc2014-07-28 19:29:13 +02003592Deprecated - was used for 440 KVM.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003593
Alexander Grafad0a0482010-03-24 21:48:30 +01003594 /* KVM_EXIT_OSI */
3595 struct {
3596 __u64 gprs[32];
3597 } osi;
3598
3599MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3600hypercalls and exit with this exit struct that contains all the guest gprs.
3601
3602If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3603Userspace can now handle the hypercall and when it's done modify the gprs as
3604necessary. Upon guest entry all guest GPRs will then be replaced by the values
3605in this struct.
3606
Paul Mackerrasde56a942011-06-29 00:21:34 +00003607 /* KVM_EXIT_PAPR_HCALL */
3608 struct {
3609 __u64 nr;
3610 __u64 ret;
3611 __u64 args[9];
3612 } papr_hcall;
3613
3614This is used on 64-bit PowerPC when emulating a pSeries partition,
3615e.g. with the 'pseries' machine type in qemu. It occurs when the
3616guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3617contains the hypercall number (from the guest R3), and 'args' contains
3618the arguments (from the guest R4 - R12). Userspace should put the
3619return code in 'ret' and any extra returned values in args[].
3620The possible hypercalls are defined in the Power Architecture Platform
3621Requirements (PAPR) document available from www.power.org (free
3622developer registration required to access it).
3623
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003624 /* KVM_EXIT_S390_TSCH */
3625 struct {
3626 __u16 subchannel_id;
3627 __u16 subchannel_nr;
3628 __u32 io_int_parm;
3629 __u32 io_int_word;
3630 __u32 ipb;
3631 __u8 dequeued;
3632 } s390_tsch;
3633
3634s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3635and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3636interrupt for the target subchannel has been dequeued and subchannel_id,
3637subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3638interrupt. ipb is needed for instruction parameter decoding.
3639
Alexander Graf1c810632013-01-04 18:12:48 +01003640 /* KVM_EXIT_EPR */
3641 struct {
3642 __u32 epr;
3643 } epr;
3644
3645On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3646interrupt acknowledge path to the core. When the core successfully
3647delivers an interrupt, it automatically populates the EPR register with
3648the interrupt vector number and acknowledges the interrupt inside
3649the interrupt controller.
3650
3651In case the interrupt controller lives in user space, we need to do
3652the interrupt acknowledge cycle through it to fetch the next to be
3653delivered interrupt vector using this exit.
3654
3655It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3656external interrupt has just been delivered into the guest. User space
3657should put the acknowledged interrupt vector into the 'epr' field.
3658
Anup Patel8ad6b632014-04-29 11:24:19 +05303659 /* KVM_EXIT_SYSTEM_EVENT */
3660 struct {
3661#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3662#define KVM_SYSTEM_EVENT_RESET 2
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003663#define KVM_SYSTEM_EVENT_CRASH 3
Anup Patel8ad6b632014-04-29 11:24:19 +05303664 __u32 type;
3665 __u64 flags;
3666 } system_event;
3667
3668If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3669a system-level event using some architecture specific mechanism (hypercall
3670or some special instruction). In case of ARM/ARM64, this is triggered using
3671HVC instruction based PSCI call from the vcpu. The 'type' field describes
3672the system-level event type. The 'flags' field describes architecture
3673specific flags for the system-level event.
3674
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003675Valid values for 'type' are:
3676 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3677 VM. Userspace is not obliged to honour this, and if it does honour
3678 this does not need to destroy the VM synchronously (ie it may call
3679 KVM_RUN again before shutdown finally occurs).
3680 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3681 As with SHUTDOWN, userspace can choose to ignore the request, or
3682 to schedule the reset to occur in the future and may call KVM_RUN again.
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003683 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3684 has requested a crash condition maintenance. Userspace can choose
3685 to ignore the request, or to gather VM memory core dump and/or
3686 reset/shutdown of the VM.
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003687
Steve Rutherford7543a632015-07-29 23:21:41 -07003688 /* KVM_EXIT_IOAPIC_EOI */
3689 struct {
3690 __u8 vector;
3691 } eoi;
3692
3693Indicates that the VCPU's in-kernel local APIC received an EOI for a
3694level-triggered IOAPIC interrupt. This exit only triggers when the
3695IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3696the userspace IOAPIC should process the EOI and retrigger the interrupt if
3697it is still asserted. Vector is the LAPIC interrupt vector for which the
3698EOI was received.
3699
Andrey Smetanindb3975712015-11-10 15:36:35 +03003700 struct kvm_hyperv_exit {
3701#define KVM_EXIT_HYPERV_SYNIC 1
Andrey Smetanin83326e42016-02-11 16:45:01 +03003702#define KVM_EXIT_HYPERV_HCALL 2
Andrey Smetanindb3975712015-11-10 15:36:35 +03003703 __u32 type;
3704 union {
3705 struct {
3706 __u32 msr;
3707 __u64 control;
3708 __u64 evt_page;
3709 __u64 msg_page;
3710 } synic;
Andrey Smetanin83326e42016-02-11 16:45:01 +03003711 struct {
3712 __u64 input;
3713 __u64 result;
3714 __u64 params[2];
3715 } hcall;
Andrey Smetanindb3975712015-11-10 15:36:35 +03003716 } u;
3717 };
3718 /* KVM_EXIT_HYPERV */
3719 struct kvm_hyperv_exit hyperv;
3720Indicates that the VCPU exits into userspace to process some tasks
3721related to Hyper-V emulation.
3722Valid values for 'type' are:
3723 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3724Hyper-V SynIC state change. Notification is used to remap SynIC
3725event/message pages and to enable/disable SynIC messages/events processing
3726in userspace.
3727
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003728 /* Fix the size of the union. */
3729 char padding[256];
3730 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01003731
3732 /*
3733 * shared registers between kvm and userspace.
3734 * kvm_valid_regs specifies the register classes set by the host
3735 * kvm_dirty_regs specified the register classes dirtied by userspace
3736 * struct kvm_sync_regs is architecture specific, as well as the
3737 * bits for kvm_valid_regs and kvm_dirty_regs
3738 */
3739 __u64 kvm_valid_regs;
3740 __u64 kvm_dirty_regs;
3741 union {
3742 struct kvm_sync_regs regs;
3743 char padding[1024];
3744 } s;
3745
3746If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3747certain guest registers without having to call SET/GET_*REGS. Thus we can
3748avoid some system call overhead if userspace has to handle the exit.
3749Userspace can query the validity of the structure by checking
3750kvm_valid_regs for specific bits. These bits are architecture specific
3751and usually define the validity of a groups of registers. (e.g. one bit
3752 for general purpose registers)
3753
David Hildenbrandd8482c02014-07-29 08:19:26 +02003754Please note that the kernel is allowed to use the kvm_run structure as the
3755primary storage for certain register types. Therefore, the kernel may use the
3756values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3757
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003758};
Alexander Graf821246a2011-08-31 10:58:55 +02003759
Jan Kiszka414fa982012-04-24 16:40:15 +02003760
Borislav Petkov9c15bb12013-09-22 16:44:50 +02003761
Paul Mackerras699a0ea2014-06-02 11:02:59 +100037626. Capabilities that can be enabled on vCPUs
3763--------------------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02003764
Cornelia Huck0907c852014-06-27 09:29:26 +02003765There are certain capabilities that change the behavior of the virtual CPU or
3766the virtual machine when enabled. To enable them, please see section 4.37.
3767Below you can find a list of capabilities and what their effect on the vCPU or
3768the virtual machine is when enabling them.
Alexander Graf821246a2011-08-31 10:58:55 +02003769
3770The following information is provided along with the description:
3771
3772 Architectures: which instruction set architectures provide this ioctl.
3773 x86 includes both i386 and x86_64.
3774
Cornelia Huck0907c852014-06-27 09:29:26 +02003775 Target: whether this is a per-vcpu or per-vm capability.
3776
Alexander Graf821246a2011-08-31 10:58:55 +02003777 Parameters: what parameters are accepted by the capability.
3778
3779 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3780 are not detailed, but errors with specific meanings are.
3781
Jan Kiszka414fa982012-04-24 16:40:15 +02003782
Alexander Graf821246a2011-08-31 10:58:55 +020037836.1 KVM_CAP_PPC_OSI
3784
3785Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003786Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003787Parameters: none
3788Returns: 0 on success; -1 on error
3789
3790This capability enables interception of OSI hypercalls that otherwise would
3791be treated as normal system calls to be injected into the guest. OSI hypercalls
3792were invented by Mac-on-Linux to have a standardized communication mechanism
3793between the guest and the host.
3794
3795When this capability is enabled, KVM_EXIT_OSI can occur.
3796
Jan Kiszka414fa982012-04-24 16:40:15 +02003797
Alexander Graf821246a2011-08-31 10:58:55 +020037986.2 KVM_CAP_PPC_PAPR
3799
3800Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003801Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003802Parameters: none
3803Returns: 0 on success; -1 on error
3804
3805This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3806done using the hypercall instruction "sc 1".
3807
3808It also sets the guest privilege level to "supervisor" mode. Usually the guest
3809runs in "hypervisor" privilege mode with a few missing features.
3810
3811In addition to the above, it changes the semantics of SDR1. In this mode, the
3812HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3813HTAB invisible to the guest.
3814
3815When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05003816
Jan Kiszka414fa982012-04-24 16:40:15 +02003817
Scott Wooddc83b8b2011-08-18 15:25:21 -050038186.3 KVM_CAP_SW_TLB
3819
3820Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003821Target: vcpu
Scott Wooddc83b8b2011-08-18 15:25:21 -05003822Parameters: args[0] is the address of a struct kvm_config_tlb
3823Returns: 0 on success; -1 on error
3824
3825struct kvm_config_tlb {
3826 __u64 params;
3827 __u64 array;
3828 __u32 mmu_type;
3829 __u32 array_len;
3830};
3831
3832Configures the virtual CPU's TLB array, establishing a shared memory area
3833between userspace and KVM. The "params" and "array" fields are userspace
3834addresses of mmu-type-specific data structures. The "array_len" field is an
3835safety mechanism, and should be set to the size in bytes of the memory that
3836userspace has reserved for the array. It must be at least the size dictated
3837by "mmu_type" and "params".
3838
3839While KVM_RUN is active, the shared region is under control of KVM. Its
3840contents are undefined, and any modification by userspace results in
3841boundedly undefined behavior.
3842
3843On return from KVM_RUN, the shared region will reflect the current state of
3844the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3845to tell KVM which entries have been changed, prior to calling KVM_RUN again
3846on this vcpu.
3847
3848For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3849 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3850 - The "array" field points to an array of type "struct
3851 kvm_book3e_206_tlb_entry".
3852 - The array consists of all entries in the first TLB, followed by all
3853 entries in the second TLB.
3854 - Within a TLB, entries are ordered first by increasing set number. Within a
3855 set, entries are ordered by way (increasing ESEL).
3856 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3857 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3858 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3859 hardware ignores this value for TLB0.
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003860
38616.4 KVM_CAP_S390_CSS_SUPPORT
3862
3863Architectures: s390
Cornelia Huck0907c852014-06-27 09:29:26 +02003864Target: vcpu
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003865Parameters: none
3866Returns: 0 on success; -1 on error
3867
3868This capability enables support for handling of channel I/O instructions.
3869
3870TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3871handled in-kernel, while the other I/O instructions are passed to userspace.
3872
3873When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3874SUBCHANNEL intercepts.
Alexander Graf1c810632013-01-04 18:12:48 +01003875
Cornelia Huck0907c852014-06-27 09:29:26 +02003876Note that even though this capability is enabled per-vcpu, the complete
3877virtual machine is affected.
3878
Alexander Graf1c810632013-01-04 18:12:48 +010038796.5 KVM_CAP_PPC_EPR
3880
3881Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003882Target: vcpu
Alexander Graf1c810632013-01-04 18:12:48 +01003883Parameters: args[0] defines whether the proxy facility is active
3884Returns: 0 on success; -1 on error
3885
3886This capability enables or disables the delivery of interrupts through the
3887external proxy facility.
3888
3889When enabled (args[0] != 0), every time the guest gets an external interrupt
3890delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3891to receive the topmost interrupt vector.
3892
3893When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3894
3895When this capability is enabled, KVM_EXIT_EPR can occur.
Scott Woodeb1e4f42013-04-12 14:08:47 +00003896
38976.6 KVM_CAP_IRQ_MPIC
3898
3899Architectures: ppc
3900Parameters: args[0] is the MPIC device fd
3901 args[1] is the MPIC CPU number for this vcpu
3902
3903This capability connects the vcpu to an in-kernel MPIC device.
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003904
39056.7 KVM_CAP_IRQ_XICS
3906
3907Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003908Target: vcpu
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003909Parameters: args[0] is the XICS device fd
3910 args[1] is the XICS CPU number (server ID) for this vcpu
3911
3912This capability connects the vcpu to an in-kernel XICS device.
Cornelia Huck8a366a42014-06-27 11:06:25 +02003913
39146.8 KVM_CAP_S390_IRQCHIP
3915
3916Architectures: s390
3917Target: vm
3918Parameters: none
3919
3920This capability enables the in-kernel irqchip for s390. Please refer to
3921"4.24 KVM_CREATE_IRQCHIP" for details.
Paul Mackerras699a0ea2014-06-02 11:02:59 +10003922
James Hogan5fafd8742014-12-08 23:07:56 +000039236.9 KVM_CAP_MIPS_FPU
3924
3925Architectures: mips
3926Target: vcpu
3927Parameters: args[0] is reserved for future use (should be 0).
3928
3929This capability allows the use of the host Floating Point Unit by the guest. It
3930allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3931done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3932(depending on the current guest FPU register mode), and the Status.FR,
3933Config5.FRE bits are accessible via the KVM API and also from the guest,
3934depending on them being supported by the FPU.
3935
James Hogand952bd02014-12-08 23:07:56 +000039366.10 KVM_CAP_MIPS_MSA
3937
3938Architectures: mips
3939Target: vcpu
3940Parameters: args[0] is reserved for future use (should be 0).
3941
3942This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3943It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3944Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3945accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3946the guest.
3947
Paul Mackerras699a0ea2014-06-02 11:02:59 +100039487. Capabilities that can be enabled on VMs
3949------------------------------------------
3950
3951There are certain capabilities that change the behavior of the virtual
3952machine when enabled. To enable them, please see section 4.37. Below
3953you can find a list of capabilities and what their effect on the VM
3954is when enabling them.
3955
3956The following information is provided along with the description:
3957
3958 Architectures: which instruction set architectures provide this ioctl.
3959 x86 includes both i386 and x86_64.
3960
3961 Parameters: what parameters are accepted by the capability.
3962
3963 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3964 are not detailed, but errors with specific meanings are.
3965
3966
39677.1 KVM_CAP_PPC_ENABLE_HCALL
3968
3969Architectures: ppc
3970Parameters: args[0] is the sPAPR hcall number
3971 args[1] is 0 to disable, 1 to enable in-kernel handling
3972
3973This capability controls whether individual sPAPR hypercalls (hcalls)
3974get handled by the kernel or not. Enabling or disabling in-kernel
3975handling of an hcall is effective across the VM. On creation, an
3976initial set of hcalls are enabled for in-kernel handling, which
3977consists of those hcalls for which in-kernel handlers were implemented
3978before this capability was implemented. If disabled, the kernel will
3979not to attempt to handle the hcall, but will always exit to userspace
3980to handle it. Note that it may not make sense to enable some and
3981disable others of a group of related hcalls, but KVM does not prevent
3982userspace from doing that.
Paul Mackerrasae2113a2014-06-02 11:03:00 +10003983
3984If the hcall number specified is not one that has an in-kernel
3985implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3986error.
David Hildenbrand2444b352014-10-09 14:10:13 +02003987
39887.2 KVM_CAP_S390_USER_SIGP
3989
3990Architectures: s390
3991Parameters: none
3992
3993This capability controls which SIGP orders will be handled completely in user
3994space. With this capability enabled, all fast orders will be handled completely
3995in the kernel:
3996- SENSE
3997- SENSE RUNNING
3998- EXTERNAL CALL
3999- EMERGENCY SIGNAL
4000- CONDITIONAL EMERGENCY SIGNAL
4001
4002All other orders will be handled completely in user space.
4003
4004Only privileged operation exceptions will be checked for in the kernel (or even
4005in the hardware prior to interception). If this capability is not enabled, the
4006old way of handling SIGP orders is used (partially in kernel and user space).
Eric Farman68c55752014-06-09 10:57:26 -04004007
40087.3 KVM_CAP_S390_VECTOR_REGISTERS
4009
4010Architectures: s390
4011Parameters: none
4012Returns: 0 on success, negative value on error
4013
4014Allows use of the vector registers introduced with z13 processor, and
4015provides for the synchronization between host and user space. Will
4016return -EINVAL if the machine does not support vectors.
Ekaterina Tumanovae44fc8c2015-01-30 16:55:56 +01004017
40187.4 KVM_CAP_S390_USER_STSI
4019
4020Architectures: s390
4021Parameters: none
4022
4023This capability allows post-handlers for the STSI instruction. After
4024initial handling in the kernel, KVM exits to user space with
4025KVM_EXIT_S390_STSI to allow user space to insert further data.
4026
4027Before exiting to userspace, kvm handlers should fill in s390_stsi field of
4028vcpu->run:
4029struct {
4030 __u64 addr;
4031 __u8 ar;
4032 __u8 reserved;
4033 __u8 fc;
4034 __u8 sel1;
4035 __u16 sel2;
4036} s390_stsi;
4037
4038@addr - guest address of STSI SYSIB
4039@fc - function code
4040@sel1 - selector 1
4041@sel2 - selector 2
4042@ar - access register number
4043
4044KVM handlers should exit to userspace with rc = -EREMOTE.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004045
Steve Rutherford49df6392015-07-29 23:21:40 -070040467.5 KVM_CAP_SPLIT_IRQCHIP
4047
4048Architectures: x86
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004049Parameters: args[0] - number of routes reserved for userspace IOAPICs
Steve Rutherford49df6392015-07-29 23:21:40 -07004050Returns: 0 on success, -1 on error
4051
4052Create a local apic for each processor in the kernel. This can be used
4053instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
4054IOAPIC and PIC (and also the PIT, even though this has to be enabled
4055separately).
4056
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004057This capability also enables in kernel routing of interrupt requests;
4058when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
4059used in the IRQ routing table. The first args[0] MSI routes are reserved
4060for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
4061a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
Steve Rutherford49df6392015-07-29 23:21:40 -07004062
4063Fails if VCPU has already been created, or if the irqchip is already in the
4064kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
4065
David Hildenbrand051c87f2016-04-19 13:13:40 +020040667.6 KVM_CAP_S390_RI
4067
4068Architectures: s390
4069Parameters: none
4070
4071Allows use of runtime-instrumentation introduced with zEC12 processor.
4072Will return -EINVAL if the machine does not support runtime-instrumentation.
4073Will return -EBUSY if a VCPU has already been created.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004074
Radim Krčmář371313132016-07-12 22:09:27 +020040757.7 KVM_CAP_X2APIC_API
4076
4077Architectures: x86
4078Parameters: args[0] - features that should be enabled
4079Returns: 0 on success, -EINVAL when args[0] contains invalid features
4080
4081Valid feature flags in args[0] are
4082
4083#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
Radim Krčmářc5192652016-07-12 22:09:28 +02004084#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
Radim Krčmář371313132016-07-12 22:09:27 +02004085
4086Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
4087KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
4088allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
4089respective sections.
4090
Radim Krčmářc5192652016-07-12 22:09:28 +02004091KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
4092in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
4093as a broadcast even in x2APIC mode in order to support physical x2APIC
4094without interrupt remapping. This is undesirable in logical mode,
4095where 0xff represents CPUs 0-7 in cluster 0.
Radim Krčmář371313132016-07-12 22:09:27 +02004096
David Hildenbrand6502a342016-06-21 14:19:51 +020040977.8 KVM_CAP_S390_USER_INSTR0
4098
4099Architectures: s390
4100Parameters: none
4101
4102With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
4103be intercepted and forwarded to user space. User space can use this
4104mechanism e.g. to realize 2-byte software breakpoints. The kernel will
4105not inject an operating exception for these instructions, user space has
4106to take care of that.
4107
4108This capability can be enabled dynamically even if VCPUs were already
4109created and are running.
Radim Krčmář371313132016-07-12 22:09:27 +02004110
Michael Ellermane928e9c2015-03-20 20:39:41 +110041118. Other capabilities.
4112----------------------
4113
4114This section lists capabilities that give information about other
4115features of the KVM implementation.
4116
41178.1 KVM_CAP_PPC_HWRNG
4118
4119Architectures: ppc
4120
4121This capability, if KVM_CHECK_EXTENSION indicates that it is
4122available, means that that the kernel has an implementation of the
4123H_RANDOM hypercall backed by a hardware random-number generator.
4124If present, the kernel H_RANDOM handler can be enabled for guest use
4125with the KVM_CAP_PPC_ENABLE_HCALL capability.
Andrey Smetanin5c9194122015-11-10 15:36:34 +03004126
41278.2 KVM_CAP_HYPERV_SYNIC
4128
4129Architectures: x86
4130This capability, if KVM_CHECK_EXTENSION indicates that it is
4131available, means that that the kernel has an implementation of the
4132Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
4133used to support Windows Hyper-V based guest paravirt drivers(VMBus).
4134
4135In order to use SynIC, it has to be activated by setting this
4136capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
4137will disable the use of APIC hardware virtualization even if supported
4138by the CPU, as it's incompatible with SynIC auto-EOI behavior.
Paul Mackerrasc9270132017-01-30 21:21:41 +11004139
41408.3 KVM_CAP_PPC_RADIX_MMU
4141
4142Architectures: ppc
4143
4144This capability, if KVM_CHECK_EXTENSION indicates that it is
4145available, means that that the kernel can support guests using the
4146radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
4147processor).
4148
41498.4 KVM_CAP_PPC_HASH_MMU_V3
4150
4151Architectures: ppc
4152
4153This capability, if KVM_CHECK_EXTENSION indicates that it is
4154available, means that that the kernel can support guests using the
4155hashed page table MMU defined in Power ISA V3.00 (as implemented in
4156the POWER9 processor), including in-memory segment tables.
James Hogana8a3c422017-03-14 10:15:19 +00004157
41588.5 KVM_CAP_MIPS_VZ
4159
4160Architectures: mips
4161
4162This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4163it is available, means that full hardware assisted virtualization capabilities
4164of the hardware are available for use through KVM. An appropriate
4165KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
4166utilises it.
4167
4168If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4169available, it means that the VM is using full hardware assisted virtualization
4170capabilities of the hardware. This is useful to check after creating a VM with
4171KVM_VM_MIPS_DEFAULT.
4172
4173The value returned by KVM_CHECK_EXTENSION should be compared against known
4174values (see below). All other values are reserved. This is to allow for the
4175possibility of other hardware assisted virtualization implementations which
4176may be incompatible with the MIPS VZ ASE.
4177
4178 0: The trap & emulate implementation is in use to run guest code in user
4179 mode. Guest virtual memory segments are rearranged to fit the guest in the
4180 user mode address space.
4181
4182 1: The MIPS VZ ASE is in use, providing full hardware assisted
4183 virtualization, including standard guest virtual memory segments.
4184
41858.6 KVM_CAP_MIPS_TE
4186
4187Architectures: mips
4188
4189This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4190it is available, means that the trap & emulate implementation is available to
4191run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
4192assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
4193to KVM_CREATE_VM to create a VM which utilises it.
4194
4195If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4196available, it means that the VM is using trap & emulate.
James Hogan578fd612017-03-14 10:15:20 +00004197
41988.7 KVM_CAP_MIPS_64BIT
4199
4200Architectures: mips
4201
4202This capability indicates the supported architecture type of the guest, i.e. the
4203supported register and address width.
4204
4205The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
4206kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
4207be checked specifically against known values (see below). All other values are
4208reserved.
4209
4210 0: MIPS32 or microMIPS32.
4211 Both registers and addresses are 32-bits wide.
4212 It will only be possible to run 32-bit guest code.
4213
4214 1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
4215 Registers are 64-bits wide, but addresses are 32-bits wide.
4216 64-bit guest code may run but cannot access MIPS64 memory segments.
4217 It will also be possible to run 32-bit guest code.
4218
4219 2: MIPS64 or microMIPS64 with access to all address segments.
4220 Both registers and addresses are 64-bits wide.
4221 It will be possible to run 64-bit or 32-bit guest code.