blob: cebcfcc06a9318e66689eda2000b1b943d338cae [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Olaf Weber3e57ecf2006-06-09 14:48:12 +10002 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
Nathan Scott7b718762005-11-02 14:58:39 +11003 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110033#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110036#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110040#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include "xfs_rw.h"
46#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070050#include "xfs_acl.h"
David Chinner2a82b8b2007-07-11 11:09:12 +100051#include "xfs_filestream.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070052
Vignesh Babu16a087d2007-06-28 16:46:37 +100053#include <linux/log2.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070054
55kmem_zone_t *xfs_ifork_zone;
56kmem_zone_t *xfs_inode_zone;
57kmem_zone_t *xfs_chashlist_zone;
58
59/*
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
65STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69
Linus Torvalds1da177e2005-04-16 15:20:36 -070070#ifdef DEBUG
71/*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75STATIC void
76xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110077 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070078 int nrecs,
Linus Torvalds1da177e2005-04-16 15:20:36 -070079 xfs_exntfmt_t fmt)
80{
81 xfs_bmbt_irec_t irec;
Christoph Hellwiga6f64d42007-08-16 16:23:40 +100082 xfs_bmbt_rec_host_t rec;
Linus Torvalds1da177e2005-04-16 15:20:36 -070083 int i;
84
85 for (i = 0; i < nrecs; i++) {
Christoph Hellwiga6f64d42007-08-16 16:23:40 +100086 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
Linus Torvalds1da177e2005-04-16 15:20:36 -070090 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070092 }
93}
94#else /* DEBUG */
Christoph Hellwiga6f64d42007-08-16 16:23:40 +100095#define xfs_validate_extents(ifp, nrecs, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -070096#endif /* DEBUG */
97
98/*
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
101 */
102#if defined(DEBUG)
103void
104xfs_inobp_check(
105 xfs_mount_t *mp,
106 xfs_buf_t *bp)
107{
108 int i;
109 int j;
110 xfs_dinode_t *dip;
111
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 bp);
121 ASSERT(dip->di_next_unlinked);
122 }
123 }
124}
125#endif
126
127/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700128 * This routine is called to map an inode number within a file
129 * system to the buffer containing the on-disk version of the
130 * inode. It returns a pointer to the buffer containing the
131 * on-disk inode in the bpp parameter, and in the dip parameter
132 * it returns a pointer to the on-disk inode within that buffer.
133 *
134 * If a non-zero error is returned, then the contents of bpp and
135 * dipp are undefined.
136 *
137 * Use xfs_imap() to determine the size and location of the
138 * buffer to read from disk.
139 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000140STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700141xfs_inotobp(
142 xfs_mount_t *mp,
143 xfs_trans_t *tp,
144 xfs_ino_t ino,
145 xfs_dinode_t **dipp,
146 xfs_buf_t **bpp,
147 int *offset)
148{
149 int di_ok;
150 xfs_imap_t imap;
151 xfs_buf_t *bp;
152 int error;
153 xfs_dinode_t *dip;
154
155 /*
Nathan Scottc41564b2006-03-29 08:55:14 +1000156 * Call the space management code to find the location of the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700157 * inode on disk.
158 */
159 imap.im_blkno = 0;
160 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
161 if (error != 0) {
162 cmn_err(CE_WARN,
163 "xfs_inotobp: xfs_imap() returned an "
164 "error %d on %s. Returning error.", error, mp->m_fsname);
165 return error;
166 }
167
168 /*
169 * If the inode number maps to a block outside the bounds of the
170 * file system then return NULL rather than calling read_buf
171 * and panicing when we get an error from the driver.
172 */
173 if ((imap.im_blkno + imap.im_len) >
174 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
175 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100176 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100178 (unsigned long long)imap.im_blkno,
179 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180 return XFS_ERROR(EINVAL);
181 }
182
183 /*
184 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
185 * default to just a read_buf() call.
186 */
187 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
188 (int)imap.im_len, XFS_BUF_LOCK, &bp);
189
190 if (error) {
191 cmn_err(CE_WARN,
192 "xfs_inotobp: xfs_trans_read_buf() returned an "
193 "error %d on %s. Returning error.", error, mp->m_fsname);
194 return error;
195 }
196 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
197 di_ok =
198 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
199 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
200 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
201 XFS_RANDOM_ITOBP_INOTOBP))) {
202 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
203 xfs_trans_brelse(tp, bp);
204 cmn_err(CE_WARN,
205 "xfs_inotobp: XFS_TEST_ERROR() returned an "
206 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
207 return XFS_ERROR(EFSCORRUPTED);
208 }
209
210 xfs_inobp_check(mp, bp);
211
212 /*
213 * Set *dipp to point to the on-disk inode in the buffer.
214 */
215 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
216 *bpp = bp;
217 *offset = imap.im_boffset;
218 return 0;
219}
220
221
222/*
223 * This routine is called to map an inode to the buffer containing
224 * the on-disk version of the inode. It returns a pointer to the
225 * buffer containing the on-disk inode in the bpp parameter, and in
226 * the dip parameter it returns a pointer to the on-disk inode within
227 * that buffer.
228 *
229 * If a non-zero error is returned, then the contents of bpp and
230 * dipp are undefined.
231 *
232 * If the inode is new and has not yet been initialized, use xfs_imap()
233 * to determine the size and location of the buffer to read from disk.
234 * If the inode has already been mapped to its buffer and read in once,
235 * then use the mapping information stored in the inode rather than
236 * calling xfs_imap(). This allows us to avoid the overhead of looking
237 * at the inode btree for small block file systems (see xfs_dilocate()).
238 * We can tell whether the inode has been mapped in before by comparing
239 * its disk block address to 0. Only uninitialized inodes will have
240 * 0 for the disk block address.
241 */
242int
243xfs_itobp(
244 xfs_mount_t *mp,
245 xfs_trans_t *tp,
246 xfs_inode_t *ip,
247 xfs_dinode_t **dipp,
248 xfs_buf_t **bpp,
Nathan Scottb12dd342006-03-17 17:26:04 +1100249 xfs_daddr_t bno,
250 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700251{
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000252 xfs_imap_t imap;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 xfs_buf_t *bp;
254 int error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700255 int i;
256 int ni;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257
258 if (ip->i_blkno == (xfs_daddr_t)0) {
259 /*
260 * Call the space management code to find the location of the
261 * inode on disk.
262 */
263 imap.im_blkno = bno;
Nathan Scottb12dd342006-03-17 17:26:04 +1100264 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
265 XFS_IMAP_LOOKUP | imap_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700266 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267
268 /*
269 * If the inode number maps to a block outside the bounds
270 * of the file system then return NULL rather than calling
271 * read_buf and panicing when we get an error from the
272 * driver.
273 */
274 if ((imap.im_blkno + imap.im_len) >
275 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
276#ifdef DEBUG
277 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
278 "(imap.im_blkno (0x%llx) "
279 "+ imap.im_len (0x%llx)) > "
280 " XFS_FSB_TO_BB(mp, "
281 "mp->m_sb.sb_dblocks) (0x%llx)",
282 (unsigned long long) imap.im_blkno,
283 (unsigned long long) imap.im_len,
284 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
285#endif /* DEBUG */
286 return XFS_ERROR(EINVAL);
287 }
288
289 /*
290 * Fill in the fields in the inode that will be used to
291 * map the inode to its buffer from now on.
292 */
293 ip->i_blkno = imap.im_blkno;
294 ip->i_len = imap.im_len;
295 ip->i_boffset = imap.im_boffset;
296 } else {
297 /*
298 * We've already mapped the inode once, so just use the
299 * mapping that we saved the first time.
300 */
301 imap.im_blkno = ip->i_blkno;
302 imap.im_len = ip->i_len;
303 imap.im_boffset = ip->i_boffset;
304 }
305 ASSERT(bno == 0 || bno == imap.im_blkno);
306
307 /*
308 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
309 * default to just a read_buf() call.
310 */
311 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
312 (int)imap.im_len, XFS_BUF_LOCK, &bp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700313 if (error) {
314#ifdef DEBUG
315 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
316 "xfs_trans_read_buf() returned error %d, "
317 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
318 error, (unsigned long long) imap.im_blkno,
319 (unsigned long long) imap.im_len);
320#endif /* DEBUG */
321 return error;
322 }
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000323
Linus Torvalds1da177e2005-04-16 15:20:36 -0700324 /*
325 * Validate the magic number and version of every inode in the buffer
326 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000327 * No validation is done here in userspace (xfs_repair).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328 */
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000329#if !defined(__KERNEL__)
330 ni = 0;
331#elif defined(DEBUG)
Nathan Scott41ff7152006-07-28 17:05:51 +1000332 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000333#else /* usual case */
Nathan Scott41ff7152006-07-28 17:05:51 +1000334 ni = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700335#endif
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000336
Linus Torvalds1da177e2005-04-16 15:20:36 -0700337 for (i = 0; i < ni; i++) {
338 int di_ok;
339 xfs_dinode_t *dip;
340
341 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
342 (i << mp->m_sb.sb_inodelog));
343 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
344 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
Nathan Scott41ff7152006-07-28 17:05:51 +1000345 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
346 XFS_ERRTAG_ITOBP_INOTOBP,
347 XFS_RANDOM_ITOBP_INOTOBP))) {
348 if (imap_flags & XFS_IMAP_BULKSTAT) {
349 xfs_trans_brelse(tp, bp);
350 return XFS_ERROR(EINVAL);
351 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352#ifdef DEBUG
Nathan Scott41ff7152006-07-28 17:05:51 +1000353 cmn_err(CE_ALERT,
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000354 "Device %s - bad inode magic/vsn "
355 "daddr %lld #%d (magic=%x)",
Nathan Scottb6574522006-06-09 15:29:40 +1000356 XFS_BUFTARG_NAME(mp->m_ddev_targp),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700357 (unsigned long long)imap.im_blkno, i,
358 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
359#endif
360 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
361 mp, dip);
362 xfs_trans_brelse(tp, bp);
363 return XFS_ERROR(EFSCORRUPTED);
364 }
365 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366
367 xfs_inobp_check(mp, bp);
368
369 /*
370 * Mark the buffer as an inode buffer now that it looks good
371 */
372 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
373
374 /*
375 * Set *dipp to point to the on-disk inode in the buffer.
376 */
377 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
378 *bpp = bp;
379 return 0;
380}
381
382/*
383 * Move inode type and inode format specific information from the
384 * on-disk inode to the in-core inode. For fifos, devs, and sockets
385 * this means set if_rdev to the proper value. For files, directories,
386 * and symlinks this means to bring in the in-line data or extent
387 * pointers. For a file in B-tree format, only the root is immediately
388 * brought in-core. The rest will be in-lined in if_extents when it
389 * is first referenced (see xfs_iread_extents()).
390 */
391STATIC int
392xfs_iformat(
393 xfs_inode_t *ip,
394 xfs_dinode_t *dip)
395{
396 xfs_attr_shortform_t *atp;
397 int size;
398 int error;
399 xfs_fsize_t di_size;
400 ip->i_df.if_ext_max =
401 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
402 error = 0;
403
404 if (unlikely(
405 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
406 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
407 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100408 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
409 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410 (unsigned long long)ip->i_ino,
411 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
412 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
413 (unsigned long long)
414 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
415 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
416 ip->i_mount, dip);
417 return XFS_ERROR(EFSCORRUPTED);
418 }
419
420 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100421 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
422 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700423 (unsigned long long)ip->i_ino,
424 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
425 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
426 ip->i_mount, dip);
427 return XFS_ERROR(EFSCORRUPTED);
428 }
429
430 switch (ip->i_d.di_mode & S_IFMT) {
431 case S_IFIFO:
432 case S_IFCHR:
433 case S_IFBLK:
434 case S_IFSOCK:
435 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
436 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
437 ip->i_mount, dip);
438 return XFS_ERROR(EFSCORRUPTED);
439 }
440 ip->i_d.di_size = 0;
Lachlan McIlroyba87ea62007-05-08 13:49:46 +1000441 ip->i_size = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700442 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
443 break;
444
445 case S_IFREG:
446 case S_IFLNK:
447 case S_IFDIR:
448 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
449 case XFS_DINODE_FMT_LOCAL:
450 /*
451 * no local regular files yet
452 */
453 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100454 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
455 "corrupt inode %Lu "
456 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457 (unsigned long long) ip->i_ino);
458 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
459 XFS_ERRLEVEL_LOW,
460 ip->i_mount, dip);
461 return XFS_ERROR(EFSCORRUPTED);
462 }
463
464 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
465 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100466 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
467 "corrupt inode %Lu "
468 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469 (unsigned long long) ip->i_ino,
470 (long long) di_size);
471 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
472 XFS_ERRLEVEL_LOW,
473 ip->i_mount, dip);
474 return XFS_ERROR(EFSCORRUPTED);
475 }
476
477 size = (int)di_size;
478 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
479 break;
480 case XFS_DINODE_FMT_EXTENTS:
481 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
482 break;
483 case XFS_DINODE_FMT_BTREE:
484 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
485 break;
486 default:
487 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
488 ip->i_mount);
489 return XFS_ERROR(EFSCORRUPTED);
490 }
491 break;
492
493 default:
494 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
495 return XFS_ERROR(EFSCORRUPTED);
496 }
497 if (error) {
498 return error;
499 }
500 if (!XFS_DFORK_Q(dip))
501 return 0;
502 ASSERT(ip->i_afp == NULL);
503 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
504 ip->i_afp->if_ext_max =
505 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
506 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
507 case XFS_DINODE_FMT_LOCAL:
508 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
Nathan Scott3b244aa2006-03-17 17:29:25 +1100509 size = be16_to_cpu(atp->hdr.totsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
511 break;
512 case XFS_DINODE_FMT_EXTENTS:
513 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
514 break;
515 case XFS_DINODE_FMT_BTREE:
516 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
517 break;
518 default:
519 error = XFS_ERROR(EFSCORRUPTED);
520 break;
521 }
522 if (error) {
523 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
524 ip->i_afp = NULL;
525 xfs_idestroy_fork(ip, XFS_DATA_FORK);
526 }
527 return error;
528}
529
530/*
531 * The file is in-lined in the on-disk inode.
532 * If it fits into if_inline_data, then copy
533 * it there, otherwise allocate a buffer for it
534 * and copy the data there. Either way, set
535 * if_data to point at the data.
536 * If we allocate a buffer for the data, make
537 * sure that its size is a multiple of 4 and
538 * record the real size in i_real_bytes.
539 */
540STATIC int
541xfs_iformat_local(
542 xfs_inode_t *ip,
543 xfs_dinode_t *dip,
544 int whichfork,
545 int size)
546{
547 xfs_ifork_t *ifp;
548 int real_size;
549
550 /*
551 * If the size is unreasonable, then something
552 * is wrong and we just bail out rather than crash in
553 * kmem_alloc() or memcpy() below.
554 */
555 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100556 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
557 "corrupt inode %Lu "
558 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559 (unsigned long long) ip->i_ino, size,
560 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
561 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
562 ip->i_mount, dip);
563 return XFS_ERROR(EFSCORRUPTED);
564 }
565 ifp = XFS_IFORK_PTR(ip, whichfork);
566 real_size = 0;
567 if (size == 0)
568 ifp->if_u1.if_data = NULL;
569 else if (size <= sizeof(ifp->if_u2.if_inline_data))
570 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
571 else {
572 real_size = roundup(size, 4);
573 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
574 }
575 ifp->if_bytes = size;
576 ifp->if_real_bytes = real_size;
577 if (size)
578 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
579 ifp->if_flags &= ~XFS_IFEXTENTS;
580 ifp->if_flags |= XFS_IFINLINE;
581 return 0;
582}
583
584/*
585 * The file consists of a set of extents all
586 * of which fit into the on-disk inode.
587 * If there are few enough extents to fit into
588 * the if_inline_ext, then copy them there.
589 * Otherwise allocate a buffer for them and copy
590 * them into it. Either way, set if_extents
591 * to point at the extents.
592 */
593STATIC int
594xfs_iformat_extents(
595 xfs_inode_t *ip,
596 xfs_dinode_t *dip,
597 int whichfork)
598{
Christoph Hellwiga6f64d42007-08-16 16:23:40 +1000599 xfs_bmbt_rec_t *dp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600 xfs_ifork_t *ifp;
601 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602 int size;
603 int i;
604
605 ifp = XFS_IFORK_PTR(ip, whichfork);
606 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
607 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608
609 /*
610 * If the number of extents is unreasonable, then something
611 * is wrong and we just bail out rather than crash in
612 * kmem_alloc() or memcpy() below.
613 */
614 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100615 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
616 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700617 (unsigned long long) ip->i_ino, nex);
618 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
619 ip->i_mount, dip);
620 return XFS_ERROR(EFSCORRUPTED);
621 }
622
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100623 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624 if (nex == 0)
625 ifp->if_u1.if_extents = NULL;
626 else if (nex <= XFS_INLINE_EXTS)
627 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100628 else
629 xfs_iext_add(ifp, 0, nex);
630
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 if (size) {
633 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Christoph Hellwiga6f64d42007-08-16 16:23:40 +1000634 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100635 for (i = 0; i < nex; i++, dp++) {
Christoph Hellwiga6f64d42007-08-16 16:23:40 +1000636 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
Christoph Hellwigcd8b0a92007-08-16 16:24:15 +1000637 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
638 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639 }
Eric Sandeen3a59c942007-07-11 11:09:47 +1000640 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641 if (whichfork != XFS_DATA_FORK ||
642 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
643 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100644 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700645 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
646 XFS_ERRLEVEL_LOW,
647 ip->i_mount);
648 return XFS_ERROR(EFSCORRUPTED);
649 }
650 }
651 ifp->if_flags |= XFS_IFEXTENTS;
652 return 0;
653}
654
655/*
656 * The file has too many extents to fit into
657 * the inode, so they are in B-tree format.
658 * Allocate a buffer for the root of the B-tree
659 * and copy the root into it. The i_extents
660 * field will remain NULL until all of the
661 * extents are read in (when they are needed).
662 */
663STATIC int
664xfs_iformat_btree(
665 xfs_inode_t *ip,
666 xfs_dinode_t *dip,
667 int whichfork)
668{
669 xfs_bmdr_block_t *dfp;
670 xfs_ifork_t *ifp;
671 /* REFERENCED */
672 int nrecs;
673 int size;
674
675 ifp = XFS_IFORK_PTR(ip, whichfork);
676 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
677 size = XFS_BMAP_BROOT_SPACE(dfp);
678 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
679
680 /*
681 * blow out if -- fork has less extents than can fit in
682 * fork (fork shouldn't be a btree format), root btree
683 * block has more records than can fit into the fork,
684 * or the number of extents is greater than the number of
685 * blocks.
686 */
687 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
688 || XFS_BMDR_SPACE_CALC(nrecs) >
689 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
690 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100691 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
692 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700693 (unsigned long long) ip->i_ino);
694 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
695 ip->i_mount);
696 return XFS_ERROR(EFSCORRUPTED);
697 }
698
699 ifp->if_broot_bytes = size;
700 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
701 ASSERT(ifp->if_broot != NULL);
702 /*
703 * Copy and convert from the on-disk structure
704 * to the in-memory structure.
705 */
706 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
707 ifp->if_broot, size);
708 ifp->if_flags &= ~XFS_IFEXTENTS;
709 ifp->if_flags |= XFS_IFBROOT;
710
711 return 0;
712}
713
714/*
715 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
716 * and native format
717 *
718 * buf = on-disk representation
719 * dip = native representation
720 * dir = direction - +ve -> disk to native
721 * -ve -> native to disk
722 */
723void
724xfs_xlate_dinode_core(
725 xfs_caddr_t buf,
726 xfs_dinode_core_t *dip,
727 int dir)
728{
729 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
730 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
731 xfs_arch_t arch = ARCH_CONVERT;
732
733 ASSERT(dir);
734
735 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
736 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
737 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
738 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
739 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
740 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
741 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
742 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
743 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
744
745 if (dir > 0) {
746 memcpy(mem_core->di_pad, buf_core->di_pad,
747 sizeof(buf_core->di_pad));
748 } else {
749 memcpy(buf_core->di_pad, mem_core->di_pad,
750 sizeof(buf_core->di_pad));
751 }
752
753 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
754
755 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
756 dir, arch);
757 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
758 dir, arch);
759 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
760 dir, arch);
761 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
762 dir, arch);
763 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
764 dir, arch);
765 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
766 dir, arch);
767 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
768 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
769 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
770 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
771 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
772 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
773 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
774 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
775 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
776 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
777 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
778}
779
780STATIC uint
781_xfs_dic2xflags(
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782 __uint16_t di_flags)
783{
784 uint flags = 0;
785
786 if (di_flags & XFS_DIFLAG_ANY) {
787 if (di_flags & XFS_DIFLAG_REALTIME)
788 flags |= XFS_XFLAG_REALTIME;
789 if (di_flags & XFS_DIFLAG_PREALLOC)
790 flags |= XFS_XFLAG_PREALLOC;
791 if (di_flags & XFS_DIFLAG_IMMUTABLE)
792 flags |= XFS_XFLAG_IMMUTABLE;
793 if (di_flags & XFS_DIFLAG_APPEND)
794 flags |= XFS_XFLAG_APPEND;
795 if (di_flags & XFS_DIFLAG_SYNC)
796 flags |= XFS_XFLAG_SYNC;
797 if (di_flags & XFS_DIFLAG_NOATIME)
798 flags |= XFS_XFLAG_NOATIME;
799 if (di_flags & XFS_DIFLAG_NODUMP)
800 flags |= XFS_XFLAG_NODUMP;
801 if (di_flags & XFS_DIFLAG_RTINHERIT)
802 flags |= XFS_XFLAG_RTINHERIT;
803 if (di_flags & XFS_DIFLAG_PROJINHERIT)
804 flags |= XFS_XFLAG_PROJINHERIT;
805 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
806 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100807 if (di_flags & XFS_DIFLAG_EXTSIZE)
808 flags |= XFS_XFLAG_EXTSIZE;
809 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
810 flags |= XFS_XFLAG_EXTSZINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +1000811 if (di_flags & XFS_DIFLAG_NODEFRAG)
812 flags |= XFS_XFLAG_NODEFRAG;
David Chinner2a82b8b2007-07-11 11:09:12 +1000813 if (di_flags & XFS_DIFLAG_FILESTREAM)
814 flags |= XFS_XFLAG_FILESTREAM;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700815 }
816
817 return flags;
818}
819
820uint
821xfs_ip2xflags(
822 xfs_inode_t *ip)
823{
824 xfs_dinode_core_t *dic = &ip->i_d;
825
Nathan Scotta916e2b2006-06-09 17:12:17 +1000826 return _xfs_dic2xflags(dic->di_flags) |
827 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700828}
829
830uint
831xfs_dic2xflags(
832 xfs_dinode_core_t *dic)
833{
Nathan Scotta916e2b2006-06-09 17:12:17 +1000834 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
835 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700836}
837
838/*
839 * Given a mount structure and an inode number, return a pointer
Nathan Scottc41564b2006-03-29 08:55:14 +1000840 * to a newly allocated in-core inode corresponding to the given
Linus Torvalds1da177e2005-04-16 15:20:36 -0700841 * inode number.
842 *
843 * Initialize the inode's attributes and extent pointers if it
844 * already has them (it will not if the inode has no links).
845 */
846int
847xfs_iread(
848 xfs_mount_t *mp,
849 xfs_trans_t *tp,
850 xfs_ino_t ino,
851 xfs_inode_t **ipp,
Nathan Scott745b1f472006-09-28 11:02:23 +1000852 xfs_daddr_t bno,
853 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854{
855 xfs_buf_t *bp;
856 xfs_dinode_t *dip;
857 xfs_inode_t *ip;
858 int error;
859
860 ASSERT(xfs_inode_zone != NULL);
861
862 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
863 ip->i_ino = ino;
864 ip->i_mount = mp;
David Chinnerf273ab82006-09-28 11:06:03 +1000865 spin_lock_init(&ip->i_flags_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866
867 /*
868 * Get pointer's to the on-disk inode and the buffer containing it.
869 * If the inode number refers to a block outside the file system
870 * then xfs_itobp() will return NULL. In this case we should
871 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
872 * know that this is a new incore inode.
873 */
Nathan Scott745b1f472006-09-28 11:02:23 +1000874 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
Nathan Scottb12dd342006-03-17 17:26:04 +1100875 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876 kmem_zone_free(xfs_inode_zone, ip);
877 return error;
878 }
879
880 /*
881 * Initialize inode's trace buffers.
882 * Do this before xfs_iformat in case it adds entries.
883 */
884#ifdef XFS_BMAP_TRACE
885 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
886#endif
887#ifdef XFS_BMBT_TRACE
888 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
889#endif
890#ifdef XFS_RW_TRACE
891 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_ILOCK_TRACE
894 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_DIR2_TRACE
897 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
898#endif
899
900 /*
901 * If we got something that isn't an inode it means someone
902 * (nfs or dmi) has a stale handle.
903 */
904 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
905 kmem_zone_free(xfs_inode_zone, ip);
906 xfs_trans_brelse(tp, bp);
907#ifdef DEBUG
908 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
909 "dip->di_core.di_magic (0x%x) != "
910 "XFS_DINODE_MAGIC (0x%x)",
911 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
912 XFS_DINODE_MAGIC);
913#endif /* DEBUG */
914 return XFS_ERROR(EINVAL);
915 }
916
917 /*
918 * If the on-disk inode is already linked to a directory
919 * entry, copy all of the inode into the in-core inode.
920 * xfs_iformat() handles copying in the inode format
921 * specific information.
922 * Otherwise, just get the truly permanent information.
923 */
924 if (dip->di_core.di_mode) {
925 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
926 &(ip->i_d), 1);
927 error = xfs_iformat(ip, dip);
928 if (error) {
929 kmem_zone_free(xfs_inode_zone, ip);
930 xfs_trans_brelse(tp, bp);
931#ifdef DEBUG
932 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
933 "xfs_iformat() returned error %d",
934 error);
935#endif /* DEBUG */
936 return error;
937 }
938 } else {
939 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
940 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
941 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
942 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
943 /*
944 * Make sure to pull in the mode here as well in
945 * case the inode is released without being used.
946 * This ensures that xfs_inactive() will see that
947 * the inode is already free and not try to mess
948 * with the uninitialized part of it.
949 */
950 ip->i_d.di_mode = 0;
951 /*
952 * Initialize the per-fork minima and maxima for a new
953 * inode here. xfs_iformat will do it for old inodes.
954 */
955 ip->i_df.if_ext_max =
956 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
957 }
958
959 INIT_LIST_HEAD(&ip->i_reclaim);
960
961 /*
962 * The inode format changed when we moved the link count and
963 * made it 32 bits long. If this is an old format inode,
964 * convert it in memory to look like a new one. If it gets
965 * flushed to disk we will convert back before flushing or
966 * logging it. We zero out the new projid field and the old link
967 * count field. We'll handle clearing the pad field (the remains
968 * of the old uuid field) when we actually convert the inode to
969 * the new format. We don't change the version number so that we
970 * can distinguish this from a real new format inode.
971 */
972 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
973 ip->i_d.di_nlink = ip->i_d.di_onlink;
974 ip->i_d.di_onlink = 0;
975 ip->i_d.di_projid = 0;
976 }
977
978 ip->i_delayed_blks = 0;
Lachlan McIlroyba87ea62007-05-08 13:49:46 +1000979 ip->i_size = ip->i_d.di_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980
981 /*
982 * Mark the buffer containing the inode as something to keep
983 * around for a while. This helps to keep recently accessed
984 * meta-data in-core longer.
985 */
986 XFS_BUF_SET_REF(bp, XFS_INO_REF);
987
988 /*
989 * Use xfs_trans_brelse() to release the buffer containing the
990 * on-disk inode, because it was acquired with xfs_trans_read_buf()
991 * in xfs_itobp() above. If tp is NULL, this is just a normal
992 * brelse(). If we're within a transaction, then xfs_trans_brelse()
993 * will only release the buffer if it is not dirty within the
994 * transaction. It will be OK to release the buffer in this case,
995 * because inodes on disk are never destroyed and we will be
996 * locking the new in-core inode before putting it in the hash
997 * table where other processes can find it. Thus we don't have
998 * to worry about the inode being changed just because we released
999 * the buffer.
1000 */
1001 xfs_trans_brelse(tp, bp);
1002 *ipp = ip;
1003 return 0;
1004}
1005
1006/*
1007 * Read in extents from a btree-format inode.
1008 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1009 */
1010int
1011xfs_iread_extents(
1012 xfs_trans_t *tp,
1013 xfs_inode_t *ip,
1014 int whichfork)
1015{
1016 int error;
1017 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001018 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 size_t size;
1020
1021 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1022 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1023 ip->i_mount);
1024 return XFS_ERROR(EFSCORRUPTED);
1025 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001026 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1027 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001029
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 /*
1031 * We know that the size is valid (it's checked in iformat_btree)
1032 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001034 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001036 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 error = xfs_bmap_read_extents(tp, ip, whichfork);
1038 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001039 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040 ifp->if_flags &= ~XFS_IFEXTENTS;
1041 return error;
1042 }
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10001043 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044 return 0;
1045}
1046
1047/*
1048 * Allocate an inode on disk and return a copy of its in-core version.
1049 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1050 * appropriately within the inode. The uid and gid for the inode are
1051 * set according to the contents of the given cred structure.
1052 *
1053 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1054 * has a free inode available, call xfs_iget()
1055 * to obtain the in-core version of the allocated inode. Finally,
1056 * fill in the inode and log its initial contents. In this case,
1057 * ialloc_context would be set to NULL and call_again set to false.
1058 *
1059 * If xfs_dialloc() does not have an available inode,
1060 * it will replenish its supply by doing an allocation. Since we can
1061 * only do one allocation within a transaction without deadlocks, we
1062 * must commit the current transaction before returning the inode itself.
1063 * In this case, therefore, we will set call_again to true and return.
1064 * The caller should then commit the current transaction, start a new
1065 * transaction, and call xfs_ialloc() again to actually get the inode.
1066 *
1067 * To ensure that some other process does not grab the inode that
1068 * was allocated during the first call to xfs_ialloc(), this routine
1069 * also returns the [locked] bp pointing to the head of the freelist
1070 * as ialloc_context. The caller should hold this buffer across
1071 * the commit and pass it back into this routine on the second call.
David Chinnerb11f94d2007-07-11 11:09:33 +10001072 *
1073 * If we are allocating quota inodes, we do not have a parent inode
1074 * to attach to or associate with (i.e. pip == NULL) because they
1075 * are not linked into the directory structure - they are attached
1076 * directly to the superblock - and so have no parent.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077 */
1078int
1079xfs_ialloc(
1080 xfs_trans_t *tp,
1081 xfs_inode_t *pip,
1082 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001083 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001084 xfs_dev_t rdev,
1085 cred_t *cr,
1086 xfs_prid_t prid,
1087 int okalloc,
1088 xfs_buf_t **ialloc_context,
1089 boolean_t *call_again,
1090 xfs_inode_t **ipp)
1091{
1092 xfs_ino_t ino;
1093 xfs_inode_t *ip;
Nathan Scott67fcaa72006-06-09 17:00:52 +10001094 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001095 uint flags;
1096 int error;
1097
1098 /*
1099 * Call the space management code to pick
1100 * the on-disk inode to be allocated.
1101 */
David Chinnerb11f94d2007-07-11 11:09:33 +10001102 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001103 ialloc_context, call_again, &ino);
1104 if (error != 0) {
1105 return error;
1106 }
1107 if (*call_again || ino == NULLFSINO) {
1108 *ipp = NULL;
1109 return 0;
1110 }
1111 ASSERT(*ialloc_context == NULL);
1112
1113 /*
1114 * Get the in-core inode with the lock held exclusively.
1115 * This is because we're setting fields here we need
1116 * to prevent others from looking at until we're done.
1117 */
1118 error = xfs_trans_iget(tp->t_mountp, tp, ino,
Nathan Scott745b1f472006-09-28 11:02:23 +10001119 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120 if (error != 0) {
1121 return error;
1122 }
1123 ASSERT(ip != NULL);
1124
1125 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001126 ip->i_d.di_mode = (__uint16_t)mode;
1127 ip->i_d.di_onlink = 0;
1128 ip->i_d.di_nlink = nlink;
1129 ASSERT(ip->i_d.di_nlink == nlink);
1130 ip->i_d.di_uid = current_fsuid(cr);
1131 ip->i_d.di_gid = current_fsgid(cr);
1132 ip->i_d.di_projid = prid;
1133 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1134
1135 /*
1136 * If the superblock version is up to where we support new format
1137 * inodes and this is currently an old format inode, then change
1138 * the inode version number now. This way we only do the conversion
1139 * here rather than here and in the flush/logging code.
1140 */
1141 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1142 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1143 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1144 /*
1145 * We've already zeroed the old link count, the projid field,
1146 * and the pad field.
1147 */
1148 }
1149
1150 /*
1151 * Project ids won't be stored on disk if we are using a version 1 inode.
1152 */
David Chinner2a82b8b2007-07-11 11:09:12 +10001153 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154 xfs_bump_ino_vers2(tp, ip);
1155
David Chinnerb11f94d2007-07-11 11:09:33 +10001156 if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157 ip->i_d.di_gid = pip->i_d.di_gid;
1158 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1159 ip->i_d.di_mode |= S_ISGID;
1160 }
1161 }
1162
1163 /*
1164 * If the group ID of the new file does not match the effective group
1165 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1166 * (and only if the irix_sgid_inherit compatibility variable is set).
1167 */
1168 if ((irix_sgid_inherit) &&
1169 (ip->i_d.di_mode & S_ISGID) &&
1170 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1171 ip->i_d.di_mode &= ~S_ISGID;
1172 }
1173
1174 ip->i_d.di_size = 0;
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001175 ip->i_size = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 ip->i_d.di_nextents = 0;
1177 ASSERT(ip->i_d.di_nblocks == 0);
1178 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1179 /*
1180 * di_gen will have been taken care of in xfs_iread.
1181 */
1182 ip->i_d.di_extsize = 0;
1183 ip->i_d.di_dmevmask = 0;
1184 ip->i_d.di_dmstate = 0;
1185 ip->i_d.di_flags = 0;
1186 flags = XFS_ILOG_CORE;
1187 switch (mode & S_IFMT) {
1188 case S_IFIFO:
1189 case S_IFCHR:
1190 case S_IFBLK:
1191 case S_IFSOCK:
1192 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1193 ip->i_df.if_u2.if_rdev = rdev;
1194 ip->i_df.if_flags = 0;
1195 flags |= XFS_ILOG_DEV;
1196 break;
1197 case S_IFREG:
David Chinnerb11f94d2007-07-11 11:09:33 +10001198 if (pip && xfs_inode_is_filestream(pip)) {
David Chinner2a82b8b2007-07-11 11:09:12 +10001199 error = xfs_filestream_associate(pip, ip);
1200 if (error < 0)
1201 return -error;
1202 if (!error)
1203 xfs_iflags_set(ip, XFS_IFILESTREAM);
1204 }
1205 /* fall through */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206 case S_IFDIR:
David Chinnerb11f94d2007-07-11 11:09:33 +10001207 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001208 uint di_flags = 0;
1209
1210 if ((mode & S_IFMT) == S_IFDIR) {
1211 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1212 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001213 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1214 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1215 ip->i_d.di_extsize = pip->i_d.di_extsize;
1216 }
1217 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001218 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1219 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1221 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001222 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1223 di_flags |= XFS_DIFLAG_EXTSIZE;
1224 ip->i_d.di_extsize = pip->i_d.di_extsize;
1225 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226 }
1227 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1228 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001229 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1231 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001232 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001233 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1234 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001235 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001236 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1237 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001238 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1239 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1240 di_flags |= XFS_DIFLAG_PROJINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +10001241 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1242 xfs_inherit_nodefrag)
1243 di_flags |= XFS_DIFLAG_NODEFRAG;
David Chinner2a82b8b2007-07-11 11:09:12 +10001244 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1245 di_flags |= XFS_DIFLAG_FILESTREAM;
Nathan Scott365ca832005-06-21 15:39:12 +10001246 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001247 }
1248 /* FALLTHROUGH */
1249 case S_IFLNK:
1250 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1251 ip->i_df.if_flags = XFS_IFEXTENTS;
1252 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1253 ip->i_df.if_u1.if_extents = NULL;
1254 break;
1255 default:
1256 ASSERT(0);
1257 }
1258 /*
1259 * Attribute fork settings for new inode.
1260 */
1261 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1262 ip->i_d.di_anextents = 0;
1263
1264 /*
1265 * Log the new values stuffed into the inode.
1266 */
1267 xfs_trans_log_inode(tp, ip, flags);
1268
Nathan Scottb83bd132006-06-09 16:48:30 +10001269 /* now that we have an i_mode we can setup inode ops and unlock */
1270 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001271
1272 *ipp = ip;
1273 return 0;
1274}
1275
1276/*
1277 * Check to make sure that there are no blocks allocated to the
1278 * file beyond the size of the file. We don't check this for
1279 * files with fixed size extents or real time extents, but we
1280 * at least do it for regular files.
1281 */
1282#ifdef DEBUG
1283void
1284xfs_isize_check(
1285 xfs_mount_t *mp,
1286 xfs_inode_t *ip,
1287 xfs_fsize_t isize)
1288{
1289 xfs_fileoff_t map_first;
1290 int nimaps;
1291 xfs_bmbt_irec_t imaps[2];
1292
1293 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1294 return;
1295
Nathan Scottdd9f4382006-01-11 15:28:28 +11001296 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297 return;
1298
1299 nimaps = 2;
1300 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1301 /*
1302 * The filesystem could be shutting down, so bmapi may return
1303 * an error.
1304 */
1305 if (xfs_bmapi(NULL, ip, map_first,
1306 (XFS_B_TO_FSB(mp,
1307 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1308 map_first),
1309 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001310 NULL, NULL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001311 return;
1312 ASSERT(nimaps == 1);
1313 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1314}
1315#endif /* DEBUG */
1316
1317/*
1318 * Calculate the last possible buffered byte in a file. This must
1319 * include data that was buffered beyond the EOF by the write code.
1320 * This also needs to deal with overflowing the xfs_fsize_t type
1321 * which can happen for sizes near the limit.
1322 *
1323 * We also need to take into account any blocks beyond the EOF. It
1324 * may be the case that they were buffered by a write which failed.
1325 * In that case the pages will still be in memory, but the inode size
1326 * will never have been updated.
1327 */
1328xfs_fsize_t
1329xfs_file_last_byte(
1330 xfs_inode_t *ip)
1331{
1332 xfs_mount_t *mp;
1333 xfs_fsize_t last_byte;
1334 xfs_fileoff_t last_block;
1335 xfs_fileoff_t size_last_block;
1336 int error;
1337
1338 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1339
1340 mp = ip->i_mount;
1341 /*
1342 * Only check for blocks beyond the EOF if the extents have
1343 * been read in. This eliminates the need for the inode lock,
1344 * and it also saves us from looking when it really isn't
1345 * necessary.
1346 */
1347 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1348 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1349 XFS_DATA_FORK);
1350 if (error) {
1351 last_block = 0;
1352 }
1353 } else {
1354 last_block = 0;
1355 }
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001356 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001357 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1358
1359 last_byte = XFS_FSB_TO_B(mp, last_block);
1360 if (last_byte < 0) {
1361 return XFS_MAXIOFFSET(mp);
1362 }
1363 last_byte += (1 << mp->m_writeio_log);
1364 if (last_byte < 0) {
1365 return XFS_MAXIOFFSET(mp);
1366 }
1367 return last_byte;
1368}
1369
1370#if defined(XFS_RW_TRACE)
1371STATIC void
1372xfs_itrunc_trace(
1373 int tag,
1374 xfs_inode_t *ip,
1375 int flag,
1376 xfs_fsize_t new_size,
1377 xfs_off_t toss_start,
1378 xfs_off_t toss_finish)
1379{
1380 if (ip->i_rwtrace == NULL) {
1381 return;
1382 }
1383
1384 ktrace_enter(ip->i_rwtrace,
1385 (void*)((long)tag),
1386 (void*)ip,
1387 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1388 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1389 (void*)((long)flag),
1390 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1391 (void*)(unsigned long)(new_size & 0xffffffff),
1392 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(toss_start & 0xffffffff),
1394 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1395 (void*)(unsigned long)(toss_finish & 0xffffffff),
1396 (void*)(unsigned long)current_cpu(),
Yingping Luf1fdc842006-03-22 12:44:15 +11001397 (void*)(unsigned long)current_pid(),
1398 (void*)NULL,
1399 (void*)NULL,
1400 (void*)NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401}
1402#else
1403#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1404#endif
1405
1406/*
1407 * Start the truncation of the file to new_size. The new size
1408 * must be smaller than the current size. This routine will
1409 * clear the buffer and page caches of file data in the removed
1410 * range, and xfs_itruncate_finish() will remove the underlying
1411 * disk blocks.
1412 *
1413 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1414 * must NOT have the inode lock held at all. This is because we're
1415 * calling into the buffer/page cache code and we can't hold the
1416 * inode lock when we do so.
1417 *
David Chinner38e22992006-03-22 12:47:15 +11001418 * We need to wait for any direct I/Os in flight to complete before we
1419 * proceed with the truncate. This is needed to prevent the extents
1420 * being read or written by the direct I/Os from being removed while the
1421 * I/O is in flight as there is no other method of synchronising
1422 * direct I/O with the truncate operation. Also, because we hold
1423 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1424 * started until the truncate completes and drops the lock. Essentially,
1425 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1426 * between direct I/Os and the truncate operation.
1427 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001428 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1429 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1430 * in the case that the caller is locking things out of order and
1431 * may not be able to call xfs_itruncate_finish() with the inode lock
1432 * held without dropping the I/O lock. If the caller must drop the
1433 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1434 * must be called again with all the same restrictions as the initial
1435 * call.
1436 */
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001437int
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438xfs_itruncate_start(
1439 xfs_inode_t *ip,
1440 uint flags,
1441 xfs_fsize_t new_size)
1442{
1443 xfs_fsize_t last_byte;
1444 xfs_off_t toss_start;
1445 xfs_mount_t *mp;
Nathan Scott67fcaa72006-06-09 17:00:52 +10001446 bhv_vnode_t *vp;
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001447 int error = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448
1449 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001450 ASSERT((new_size == 0) || (new_size <= ip->i_size));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1452 (flags == XFS_ITRUNC_MAYBE));
1453
1454 mp = ip->i_mount;
1455 vp = XFS_ITOV(ip);
Yingping Lu9fa80462006-03-22 12:44:35 +11001456
1457 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1458
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459 /*
Nathan Scott67fcaa72006-06-09 17:00:52 +10001460 * Call toss_pages or flushinval_pages to get rid of pages
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 * overlapping the region being removed. We have to use
Nathan Scott67fcaa72006-06-09 17:00:52 +10001462 * the less efficient flushinval_pages in the case that the
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463 * caller may not be able to finish the truncate without
1464 * dropping the inode's I/O lock. Make sure
1465 * to catch any pages brought in by buffers overlapping
1466 * the EOF by searching out beyond the isize by our
1467 * block size. We round new_size up to a block boundary
1468 * so that we don't toss things on the same block as
1469 * new_size but before it.
1470 *
Nathan Scott67fcaa72006-06-09 17:00:52 +10001471 * Before calling toss_page or flushinval_pages, make sure to
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472 * call remapf() over the same region if the file is mapped.
1473 * This frees up mapped file references to the pages in the
Nathan Scott67fcaa72006-06-09 17:00:52 +10001474 * given range and for the flushinval_pages case it ensures
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475 * that we get the latest mapped changes flushed out.
1476 */
1477 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1478 toss_start = XFS_FSB_TO_B(mp, toss_start);
1479 if (toss_start < 0) {
1480 /*
1481 * The place to start tossing is beyond our maximum
1482 * file size, so there is no way that the data extended
1483 * out there.
1484 */
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001485 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001486 }
1487 last_byte = xfs_file_last_byte(ip);
1488 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1489 last_byte);
1490 if (last_byte > toss_start) {
1491 if (flags & XFS_ITRUNC_DEFINITE) {
Nathan Scott67fcaa72006-06-09 17:00:52 +10001492 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001493 } else {
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001494 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001495 }
1496 }
1497
1498#ifdef DEBUG
1499 if (new_size == 0) {
1500 ASSERT(VN_CACHED(vp) == 0);
1501 }
1502#endif
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001503 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001504}
1505
1506/*
1507 * Shrink the file to the given new_size. The new
1508 * size must be smaller than the current size.
1509 * This will free up the underlying blocks
1510 * in the removed range after a call to xfs_itruncate_start()
1511 * or xfs_atruncate_start().
1512 *
1513 * The transaction passed to this routine must have made
1514 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1515 * This routine may commit the given transaction and
1516 * start new ones, so make sure everything involved in
1517 * the transaction is tidy before calling here.
1518 * Some transaction will be returned to the caller to be
1519 * committed. The incoming transaction must already include
1520 * the inode, and both inode locks must be held exclusively.
1521 * The inode must also be "held" within the transaction. On
1522 * return the inode will be "held" within the returned transaction.
1523 * This routine does NOT require any disk space to be reserved
1524 * for it within the transaction.
1525 *
1526 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1527 * and it indicates the fork which is to be truncated. For the
1528 * attribute fork we only support truncation to size 0.
1529 *
1530 * We use the sync parameter to indicate whether or not the first
1531 * transaction we perform might have to be synchronous. For the attr fork,
1532 * it needs to be so if the unlink of the inode is not yet known to be
1533 * permanent in the log. This keeps us from freeing and reusing the
1534 * blocks of the attribute fork before the unlink of the inode becomes
1535 * permanent.
1536 *
1537 * For the data fork, we normally have to run synchronously if we're
1538 * being called out of the inactive path or we're being called
1539 * out of the create path where we're truncating an existing file.
1540 * Either way, the truncate needs to be sync so blocks don't reappear
1541 * in the file with altered data in case of a crash. wsync filesystems
1542 * can run the first case async because anything that shrinks the inode
1543 * has to run sync so by the time we're called here from inactive, the
1544 * inode size is permanently set to 0.
1545 *
1546 * Calls from the truncate path always need to be sync unless we're
1547 * in a wsync filesystem and the file has already been unlinked.
1548 *
1549 * The caller is responsible for correctly setting the sync parameter.
1550 * It gets too hard for us to guess here which path we're being called
1551 * out of just based on inode state.
1552 */
1553int
1554xfs_itruncate_finish(
1555 xfs_trans_t **tp,
1556 xfs_inode_t *ip,
1557 xfs_fsize_t new_size,
1558 int fork,
1559 int sync)
1560{
1561 xfs_fsblock_t first_block;
1562 xfs_fileoff_t first_unmap_block;
1563 xfs_fileoff_t last_block;
1564 xfs_filblks_t unmap_len=0;
1565 xfs_mount_t *mp;
1566 xfs_trans_t *ntp;
1567 int done;
1568 int committed;
1569 xfs_bmap_free_t free_list;
1570 int error;
1571
1572 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1573 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001574 ASSERT((new_size == 0) || (new_size <= ip->i_size));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001575 ASSERT(*tp != NULL);
1576 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1577 ASSERT(ip->i_transp == *tp);
1578 ASSERT(ip->i_itemp != NULL);
1579 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1580
1581
1582 ntp = *tp;
1583 mp = (ntp)->t_mountp;
1584 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1585
1586 /*
1587 * We only support truncating the entire attribute fork.
1588 */
1589 if (fork == XFS_ATTR_FORK) {
1590 new_size = 0LL;
1591 }
1592 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1593 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1594 /*
1595 * The first thing we do is set the size to new_size permanently
1596 * on disk. This way we don't have to worry about anyone ever
1597 * being able to look at the data being freed even in the face
1598 * of a crash. What we're getting around here is the case where
1599 * we free a block, it is allocated to another file, it is written
1600 * to, and then we crash. If the new data gets written to the
1601 * file but the log buffers containing the free and reallocation
1602 * don't, then we'd end up with garbage in the blocks being freed.
1603 * As long as we make the new_size permanent before actually
1604 * freeing any blocks it doesn't matter if they get writtten to.
1605 *
1606 * The callers must signal into us whether or not the size
1607 * setting here must be synchronous. There are a few cases
1608 * where it doesn't have to be synchronous. Those cases
1609 * occur if the file is unlinked and we know the unlink is
1610 * permanent or if the blocks being truncated are guaranteed
1611 * to be beyond the inode eof (regardless of the link count)
1612 * and the eof value is permanent. Both of these cases occur
1613 * only on wsync-mounted filesystems. In those cases, we're
1614 * guaranteed that no user will ever see the data in the blocks
1615 * that are being truncated so the truncate can run async.
1616 * In the free beyond eof case, the file may wind up with
1617 * more blocks allocated to it than it needs if we crash
1618 * and that won't get fixed until the next time the file
1619 * is re-opened and closed but that's ok as that shouldn't
1620 * be too many blocks.
1621 *
1622 * However, we can't just make all wsync xactions run async
1623 * because there's one call out of the create path that needs
1624 * to run sync where it's truncating an existing file to size
1625 * 0 whose size is > 0.
1626 *
1627 * It's probably possible to come up with a test in this
1628 * routine that would correctly distinguish all the above
1629 * cases from the values of the function parameters and the
1630 * inode state but for sanity's sake, I've decided to let the
1631 * layers above just tell us. It's simpler to correctly figure
1632 * out in the layer above exactly under what conditions we
1633 * can run async and I think it's easier for others read and
1634 * follow the logic in case something has to be changed.
1635 * cscope is your friend -- rcc.
1636 *
1637 * The attribute fork is much simpler.
1638 *
1639 * For the attribute fork we allow the caller to tell us whether
1640 * the unlink of the inode that led to this call is yet permanent
1641 * in the on disk log. If it is not and we will be freeing extents
1642 * in this inode then we make the first transaction synchronous
1643 * to make sure that the unlink is permanent by the time we free
1644 * the blocks.
1645 */
1646 if (fork == XFS_DATA_FORK) {
1647 if (ip->i_d.di_nextents > 0) {
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001648 /*
1649 * If we are not changing the file size then do
1650 * not update the on-disk file size - we may be
1651 * called from xfs_inactive_free_eofblocks(). If we
1652 * update the on-disk file size and then the system
1653 * crashes before the contents of the file are
1654 * flushed to disk then the files may be full of
1655 * holes (ie NULL files bug).
1656 */
1657 if (ip->i_size != new_size) {
1658 ip->i_d.di_size = new_size;
1659 ip->i_size = new_size;
1660 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1661 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662 }
1663 } else if (sync) {
1664 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1665 if (ip->i_d.di_anextents > 0)
1666 xfs_trans_set_sync(ntp);
1667 }
1668 ASSERT(fork == XFS_DATA_FORK ||
1669 (fork == XFS_ATTR_FORK &&
1670 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1671 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1672
1673 /*
1674 * Since it is possible for space to become allocated beyond
1675 * the end of the file (in a crash where the space is allocated
1676 * but the inode size is not yet updated), simply remove any
1677 * blocks which show up between the new EOF and the maximum
1678 * possible file size. If the first block to be removed is
1679 * beyond the maximum file size (ie it is the same as last_block),
1680 * then there is nothing to do.
1681 */
1682 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1683 ASSERT(first_unmap_block <= last_block);
1684 done = 0;
1685 if (last_block == first_unmap_block) {
1686 done = 1;
1687 } else {
1688 unmap_len = last_block - first_unmap_block + 1;
1689 }
1690 while (!done) {
1691 /*
1692 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1693 * will tell us whether it freed the entire range or
1694 * not. If this is a synchronous mount (wsync),
1695 * then we can tell bunmapi to keep all the
1696 * transactions asynchronous since the unlink
1697 * transaction that made this inode inactive has
1698 * already hit the disk. There's no danger of
1699 * the freed blocks being reused, there being a
1700 * crash, and the reused blocks suddenly reappearing
1701 * in this file with garbage in them once recovery
1702 * runs.
1703 */
1704 XFS_BMAP_INIT(&free_list, &first_block);
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001705 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1706 first_unmap_block, unmap_len,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707 XFS_BMAPI_AFLAG(fork) |
1708 (sync ? 0 : XFS_BMAPI_ASYNC),
1709 XFS_ITRUNC_MAX_EXTENTS,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001710 &first_block, &free_list,
1711 NULL, &done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712 if (error) {
1713 /*
1714 * If the bunmapi call encounters an error,
1715 * return to the caller where the transaction
1716 * can be properly aborted. We just need to
1717 * make sure we're not holding any resources
1718 * that we were not when we came in.
1719 */
1720 xfs_bmap_cancel(&free_list);
1721 return error;
1722 }
1723
1724 /*
1725 * Duplicate the transaction that has the permanent
1726 * reservation and commit the old transaction.
1727 */
Eric Sandeenf7c99b62007-02-10 18:37:16 +11001728 error = xfs_bmap_finish(tp, &free_list, &committed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729 ntp = *tp;
1730 if (error) {
1731 /*
1732 * If the bmap finish call encounters an error,
1733 * return to the caller where the transaction
1734 * can be properly aborted. We just need to
1735 * make sure we're not holding any resources
1736 * that we were not when we came in.
1737 *
1738 * Aborting from this point might lose some
1739 * blocks in the file system, but oh well.
1740 */
1741 xfs_bmap_cancel(&free_list);
1742 if (committed) {
1743 /*
1744 * If the passed in transaction committed
1745 * in xfs_bmap_finish(), then we want to
1746 * add the inode to this one before returning.
1747 * This keeps things simple for the higher
1748 * level code, because it always knows that
1749 * the inode is locked and held in the
1750 * transaction that returns to it whether
1751 * errors occur or not. We don't mark the
1752 * inode dirty so that this transaction can
1753 * be easily aborted if possible.
1754 */
1755 xfs_trans_ijoin(ntp, ip,
1756 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1757 xfs_trans_ihold(ntp, ip);
1758 }
1759 return error;
1760 }
1761
1762 if (committed) {
1763 /*
1764 * The first xact was committed,
1765 * so add the inode to the new one.
1766 * Mark it dirty so it will be logged
1767 * and moved forward in the log as
1768 * part of every commit.
1769 */
1770 xfs_trans_ijoin(ntp, ip,
1771 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1772 xfs_trans_ihold(ntp, ip);
1773 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1774 }
1775 ntp = xfs_trans_dup(ntp);
Eric Sandeen1c72bf92007-05-08 13:48:42 +10001776 (void) xfs_trans_commit(*tp, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777 *tp = ntp;
1778 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1779 XFS_TRANS_PERM_LOG_RES,
1780 XFS_ITRUNCATE_LOG_COUNT);
1781 /*
1782 * Add the inode being truncated to the next chained
1783 * transaction.
1784 */
1785 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1786 xfs_trans_ihold(ntp, ip);
1787 if (error)
1788 return (error);
1789 }
1790 /*
1791 * Only update the size in the case of the data fork, but
1792 * always re-log the inode so that our permanent transaction
1793 * can keep on rolling it forward in the log.
1794 */
1795 if (fork == XFS_DATA_FORK) {
1796 xfs_isize_check(mp, ip, new_size);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001797 /*
1798 * If we are not changing the file size then do
1799 * not update the on-disk file size - we may be
1800 * called from xfs_inactive_free_eofblocks(). If we
1801 * update the on-disk file size and then the system
1802 * crashes before the contents of the file are
1803 * flushed to disk then the files may be full of
1804 * holes (ie NULL files bug).
1805 */
1806 if (ip->i_size != new_size) {
1807 ip->i_d.di_size = new_size;
1808 ip->i_size = new_size;
1809 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810 }
1811 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1812 ASSERT((new_size != 0) ||
1813 (fork == XFS_ATTR_FORK) ||
1814 (ip->i_delayed_blks == 0));
1815 ASSERT((new_size != 0) ||
1816 (fork == XFS_ATTR_FORK) ||
1817 (ip->i_d.di_nextents == 0));
1818 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1819 return 0;
1820}
1821
1822
1823/*
1824 * xfs_igrow_start
1825 *
1826 * Do the first part of growing a file: zero any data in the last
1827 * block that is beyond the old EOF. We need to do this before
1828 * the inode is joined to the transaction to modify the i_size.
1829 * That way we can drop the inode lock and call into the buffer
1830 * cache to get the buffer mapping the EOF.
1831 */
1832int
1833xfs_igrow_start(
1834 xfs_inode_t *ip,
1835 xfs_fsize_t new_size,
1836 cred_t *credp)
1837{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001838 int error;
1839
1840 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1841 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001842 ASSERT(new_size > ip->i_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001843
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844 /*
1845 * Zero any pages that may have been created by
1846 * xfs_write_file() beyond the end of the file
1847 * and any blocks between the old and new file sizes.
1848 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001849 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001850 ip->i_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 return error;
1852}
1853
1854/*
1855 * xfs_igrow_finish
1856 *
1857 * This routine is called to extend the size of a file.
1858 * The inode must have both the iolock and the ilock locked
1859 * for update and it must be a part of the current transaction.
1860 * The xfs_igrow_start() function must have been called previously.
1861 * If the change_flag is not zero, the inode change timestamp will
1862 * be updated.
1863 */
1864void
1865xfs_igrow_finish(
1866 xfs_trans_t *tp,
1867 xfs_inode_t *ip,
1868 xfs_fsize_t new_size,
1869 int change_flag)
1870{
1871 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1872 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1873 ASSERT(ip->i_transp == tp);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001874 ASSERT(new_size > ip->i_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875
1876 /*
1877 * Update the file size. Update the inode change timestamp
1878 * if change_flag set.
1879 */
1880 ip->i_d.di_size = new_size;
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001881 ip->i_size = new_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001882 if (change_flag)
1883 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1884 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1885
1886}
1887
1888
1889/*
1890 * This is called when the inode's link count goes to 0.
1891 * We place the on-disk inode on a list in the AGI. It
1892 * will be pulled from this list when the inode is freed.
1893 */
1894int
1895xfs_iunlink(
1896 xfs_trans_t *tp,
1897 xfs_inode_t *ip)
1898{
1899 xfs_mount_t *mp;
1900 xfs_agi_t *agi;
1901 xfs_dinode_t *dip;
1902 xfs_buf_t *agibp;
1903 xfs_buf_t *ibp;
1904 xfs_agnumber_t agno;
1905 xfs_daddr_t agdaddr;
1906 xfs_agino_t agino;
1907 short bucket_index;
1908 int offset;
1909 int error;
1910 int agi_ok;
1911
1912 ASSERT(ip->i_d.di_nlink == 0);
1913 ASSERT(ip->i_d.di_mode != 0);
1914 ASSERT(ip->i_transp == tp);
1915
1916 mp = tp->t_mountp;
1917
1918 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1919 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1920
1921 /*
1922 * Get the agi buffer first. It ensures lock ordering
1923 * on the list.
1924 */
1925 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1926 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1927 if (error) {
1928 return error;
1929 }
1930 /*
1931 * Validate the magic number of the agi block.
1932 */
1933 agi = XFS_BUF_TO_AGI(agibp);
1934 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001935 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1936 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001937 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1938 XFS_RANDOM_IUNLINK))) {
1939 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1940 xfs_trans_brelse(tp, agibp);
1941 return XFS_ERROR(EFSCORRUPTED);
1942 }
1943 /*
1944 * Get the index into the agi hash table for the
1945 * list this inode will go on.
1946 */
1947 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1948 ASSERT(agino != 0);
1949 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1950 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001951 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001952
Christoph Hellwig16259e72005-11-02 15:11:25 +11001953 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954 /*
1955 * There is already another inode in the bucket we need
1956 * to add ourselves to. Add us at the front of the list.
1957 * Here we put the head pointer into our next pointer,
1958 * and then we fall through to point the head at us.
1959 */
Nathan Scottb12dd342006-03-17 17:26:04 +11001960 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001961 if (error) {
1962 return error;
1963 }
1964 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1965 ASSERT(dip->di_next_unlinked);
1966 /* both on-disk, don't endian flip twice */
1967 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1968 offset = ip->i_boffset +
1969 offsetof(xfs_dinode_t, di_next_unlinked);
1970 xfs_trans_inode_buf(tp, ibp);
1971 xfs_trans_log_buf(tp, ibp, offset,
1972 (offset + sizeof(xfs_agino_t) - 1));
1973 xfs_inobp_check(mp, ibp);
1974 }
1975
1976 /*
1977 * Point the bucket head pointer at the inode being inserted.
1978 */
1979 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001980 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981 offset = offsetof(xfs_agi_t, agi_unlinked) +
1982 (sizeof(xfs_agino_t) * bucket_index);
1983 xfs_trans_log_buf(tp, agibp, offset,
1984 (offset + sizeof(xfs_agino_t) - 1));
1985 return 0;
1986}
1987
1988/*
1989 * Pull the on-disk inode from the AGI unlinked list.
1990 */
1991STATIC int
1992xfs_iunlink_remove(
1993 xfs_trans_t *tp,
1994 xfs_inode_t *ip)
1995{
1996 xfs_ino_t next_ino;
1997 xfs_mount_t *mp;
1998 xfs_agi_t *agi;
1999 xfs_dinode_t *dip;
2000 xfs_buf_t *agibp;
2001 xfs_buf_t *ibp;
2002 xfs_agnumber_t agno;
2003 xfs_daddr_t agdaddr;
2004 xfs_agino_t agino;
2005 xfs_agino_t next_agino;
2006 xfs_buf_t *last_ibp;
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10002007 xfs_dinode_t *last_dip = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002008 short bucket_index;
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10002009 int offset, last_offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002010 int error;
2011 int agi_ok;
2012
2013 /*
2014 * First pull the on-disk inode from the AGI unlinked list.
2015 */
2016 mp = tp->t_mountp;
2017
2018 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2019 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2020
2021 /*
2022 * Get the agi buffer first. It ensures lock ordering
2023 * on the list.
2024 */
2025 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2026 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2027 if (error) {
2028 cmn_err(CE_WARN,
2029 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2030 error, mp->m_fsname);
2031 return error;
2032 }
2033 /*
2034 * Validate the magic number of the agi block.
2035 */
2036 agi = XFS_BUF_TO_AGI(agibp);
2037 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11002038 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2039 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2041 XFS_RANDOM_IUNLINK_REMOVE))) {
2042 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2043 mp, agi);
2044 xfs_trans_brelse(tp, agibp);
2045 cmn_err(CE_WARN,
2046 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2047 mp->m_fsname);
2048 return XFS_ERROR(EFSCORRUPTED);
2049 }
2050 /*
2051 * Get the index into the agi hash table for the
2052 * list this inode will go on.
2053 */
2054 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2055 ASSERT(agino != 0);
2056 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11002057 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002058 ASSERT(agi->agi_unlinked[bucket_index]);
2059
Christoph Hellwig16259e72005-11-02 15:11:25 +11002060 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061 /*
2062 * We're at the head of the list. Get the inode's
2063 * on-disk buffer to see if there is anyone after us
2064 * on the list. Only modify our next pointer if it
2065 * is not already NULLAGINO. This saves us the overhead
2066 * of dealing with the buffer when there is no need to
2067 * change it.
2068 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002069 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002070 if (error) {
2071 cmn_err(CE_WARN,
2072 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2073 error, mp->m_fsname);
2074 return error;
2075 }
2076 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2077 ASSERT(next_agino != 0);
2078 if (next_agino != NULLAGINO) {
2079 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2080 offset = ip->i_boffset +
2081 offsetof(xfs_dinode_t, di_next_unlinked);
2082 xfs_trans_inode_buf(tp, ibp);
2083 xfs_trans_log_buf(tp, ibp, offset,
2084 (offset + sizeof(xfs_agino_t) - 1));
2085 xfs_inobp_check(mp, ibp);
2086 } else {
2087 xfs_trans_brelse(tp, ibp);
2088 }
2089 /*
2090 * Point the bucket head pointer at the next inode.
2091 */
2092 ASSERT(next_agino != 0);
2093 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002094 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002095 offset = offsetof(xfs_agi_t, agi_unlinked) +
2096 (sizeof(xfs_agino_t) * bucket_index);
2097 xfs_trans_log_buf(tp, agibp, offset,
2098 (offset + sizeof(xfs_agino_t) - 1));
2099 } else {
2100 /*
2101 * We need to search the list for the inode being freed.
2102 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002103 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104 last_ibp = NULL;
2105 while (next_agino != agino) {
2106 /*
2107 * If the last inode wasn't the one pointing to
2108 * us, then release its buffer since we're not
2109 * going to do anything with it.
2110 */
2111 if (last_ibp != NULL) {
2112 xfs_trans_brelse(tp, last_ibp);
2113 }
2114 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2115 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2116 &last_ibp, &last_offset);
2117 if (error) {
2118 cmn_err(CE_WARN,
2119 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2120 error, mp->m_fsname);
2121 return error;
2122 }
2123 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2124 ASSERT(next_agino != NULLAGINO);
2125 ASSERT(next_agino != 0);
2126 }
2127 /*
2128 * Now last_ibp points to the buffer previous to us on
2129 * the unlinked list. Pull us from the list.
2130 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002131 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002132 if (error) {
2133 cmn_err(CE_WARN,
2134 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2135 error, mp->m_fsname);
2136 return error;
2137 }
2138 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2139 ASSERT(next_agino != 0);
2140 ASSERT(next_agino != agino);
2141 if (next_agino != NULLAGINO) {
2142 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2143 offset = ip->i_boffset +
2144 offsetof(xfs_dinode_t, di_next_unlinked);
2145 xfs_trans_inode_buf(tp, ibp);
2146 xfs_trans_log_buf(tp, ibp, offset,
2147 (offset + sizeof(xfs_agino_t) - 1));
2148 xfs_inobp_check(mp, ibp);
2149 } else {
2150 xfs_trans_brelse(tp, ibp);
2151 }
2152 /*
2153 * Point the previous inode on the list to the next inode.
2154 */
2155 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2156 ASSERT(next_agino != 0);
2157 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2158 xfs_trans_inode_buf(tp, last_ibp);
2159 xfs_trans_log_buf(tp, last_ibp, offset,
2160 (offset + sizeof(xfs_agino_t) - 1));
2161 xfs_inobp_check(mp, last_ibp);
2162 }
2163 return 0;
2164}
2165
David Chinner7989cb82007-02-10 18:34:56 +11002166STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167{
2168 return (((ip->i_itemp == NULL) ||
2169 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2170 (ip->i_update_core == 0));
2171}
2172
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002173STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002174xfs_ifree_cluster(
2175 xfs_inode_t *free_ip,
2176 xfs_trans_t *tp,
2177 xfs_ino_t inum)
2178{
2179 xfs_mount_t *mp = free_ip->i_mount;
2180 int blks_per_cluster;
2181 int nbufs;
2182 int ninodes;
2183 int i, j, found, pre_flushed;
2184 xfs_daddr_t blkno;
2185 xfs_buf_t *bp;
2186 xfs_ihash_t *ih;
2187 xfs_inode_t *ip, **ip_found;
2188 xfs_inode_log_item_t *iip;
2189 xfs_log_item_t *lip;
2190 SPLDECL(s);
2191
2192 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2193 blks_per_cluster = 1;
2194 ninodes = mp->m_sb.sb_inopblock;
2195 nbufs = XFS_IALLOC_BLOCKS(mp);
2196 } else {
2197 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2198 mp->m_sb.sb_blocksize;
2199 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2200 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2201 }
2202
2203 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2204
2205 for (j = 0; j < nbufs; j++, inum += ninodes) {
2206 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2207 XFS_INO_TO_AGBNO(mp, inum));
2208
2209
2210 /*
2211 * Look for each inode in memory and attempt to lock it,
2212 * we can be racing with flush and tail pushing here.
2213 * any inode we get the locks on, add to an array of
2214 * inode items to process later.
2215 *
2216 * The get the buffer lock, we could beat a flush
2217 * or tail pushing thread to the lock here, in which
2218 * case they will go looking for the inode buffer
2219 * and fail, we need some other form of interlock
2220 * here.
2221 */
2222 found = 0;
2223 for (i = 0; i < ninodes; i++) {
2224 ih = XFS_IHASH(mp, inum + i);
2225 read_lock(&ih->ih_lock);
2226 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2227 if (ip->i_ino == inum + i)
2228 break;
2229 }
2230
2231 /* Inode not in memory or we found it already,
2232 * nothing to do
2233 */
David Chinner7a18c382006-11-11 18:04:54 +11002234 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002235 read_unlock(&ih->ih_lock);
2236 continue;
2237 }
2238
2239 if (xfs_inode_clean(ip)) {
2240 read_unlock(&ih->ih_lock);
2241 continue;
2242 }
2243
2244 /* If we can get the locks then add it to the
2245 * list, otherwise by the time we get the bp lock
2246 * below it will already be attached to the
2247 * inode buffer.
2248 */
2249
2250 /* This inode will already be locked - by us, lets
2251 * keep it that way.
2252 */
2253
2254 if (ip == free_ip) {
2255 if (xfs_iflock_nowait(ip)) {
David Chinner7a18c382006-11-11 18:04:54 +11002256 xfs_iflags_set(ip, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002257 if (xfs_inode_clean(ip)) {
2258 xfs_ifunlock(ip);
2259 } else {
2260 ip_found[found++] = ip;
2261 }
2262 }
2263 read_unlock(&ih->ih_lock);
2264 continue;
2265 }
2266
2267 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2268 if (xfs_iflock_nowait(ip)) {
David Chinner7a18c382006-11-11 18:04:54 +11002269 xfs_iflags_set(ip, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002270
2271 if (xfs_inode_clean(ip)) {
2272 xfs_ifunlock(ip);
2273 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2274 } else {
2275 ip_found[found++] = ip;
2276 }
2277 } else {
2278 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2279 }
2280 }
2281
2282 read_unlock(&ih->ih_lock);
2283 }
2284
2285 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2286 mp->m_bsize * blks_per_cluster,
2287 XFS_BUF_LOCK);
2288
2289 pre_flushed = 0;
2290 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2291 while (lip) {
2292 if (lip->li_type == XFS_LI_INODE) {
2293 iip = (xfs_inode_log_item_t *)lip;
2294 ASSERT(iip->ili_logged == 1);
2295 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2296 AIL_LOCK(mp,s);
2297 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2298 AIL_UNLOCK(mp, s);
David Chinnere5ffd2b2006-11-21 18:55:33 +11002299 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002300 pre_flushed++;
2301 }
2302 lip = lip->li_bio_list;
2303 }
2304
2305 for (i = 0; i < found; i++) {
2306 ip = ip_found[i];
2307 iip = ip->i_itemp;
2308
2309 if (!iip) {
2310 ip->i_update_core = 0;
2311 xfs_ifunlock(ip);
2312 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2313 continue;
2314 }
2315
2316 iip->ili_last_fields = iip->ili_format.ilf_fields;
2317 iip->ili_format.ilf_fields = 0;
2318 iip->ili_logged = 1;
2319 AIL_LOCK(mp,s);
2320 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2321 AIL_UNLOCK(mp, s);
2322
2323 xfs_buf_attach_iodone(bp,
2324 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2325 xfs_istale_done, (xfs_log_item_t *)iip);
2326 if (ip != free_ip) {
2327 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2328 }
2329 }
2330
2331 if (found || pre_flushed)
2332 xfs_trans_stale_inode_buf(tp, bp);
2333 xfs_trans_binval(tp, bp);
2334 }
2335
2336 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2337}
2338
2339/*
2340 * This is called to return an inode to the inode free list.
2341 * The inode should already be truncated to 0 length and have
2342 * no pages associated with it. This routine also assumes that
2343 * the inode is already a part of the transaction.
2344 *
2345 * The on-disk copy of the inode will have been added to the list
2346 * of unlinked inodes in the AGI. We need to remove the inode from
2347 * that list atomically with respect to freeing it here.
2348 */
2349int
2350xfs_ifree(
2351 xfs_trans_t *tp,
2352 xfs_inode_t *ip,
2353 xfs_bmap_free_t *flist)
2354{
2355 int error;
2356 int delete;
2357 xfs_ino_t first_ino;
2358
2359 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2360 ASSERT(ip->i_transp == tp);
2361 ASSERT(ip->i_d.di_nlink == 0);
2362 ASSERT(ip->i_d.di_nextents == 0);
2363 ASSERT(ip->i_d.di_anextents == 0);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10002364 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07002365 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2366 ASSERT(ip->i_d.di_nblocks == 0);
2367
2368 /*
2369 * Pull the on-disk inode from the AGI unlinked list.
2370 */
2371 error = xfs_iunlink_remove(tp, ip);
2372 if (error != 0) {
2373 return error;
2374 }
2375
2376 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2377 if (error != 0) {
2378 return error;
2379 }
2380 ip->i_d.di_mode = 0; /* mark incore inode as free */
2381 ip->i_d.di_flags = 0;
2382 ip->i_d.di_dmevmask = 0;
2383 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2384 ip->i_df.if_ext_max =
2385 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2386 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2387 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2388 /*
2389 * Bump the generation count so no one will be confused
2390 * by reincarnations of this inode.
2391 */
2392 ip->i_d.di_gen++;
2393 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2394
2395 if (delete) {
2396 xfs_ifree_cluster(ip, tp, first_ino);
2397 }
2398
2399 return 0;
2400}
2401
2402/*
2403 * Reallocate the space for if_broot based on the number of records
2404 * being added or deleted as indicated in rec_diff. Move the records
2405 * and pointers in if_broot to fit the new size. When shrinking this
2406 * will eliminate holes between the records and pointers created by
2407 * the caller. When growing this will create holes to be filled in
2408 * by the caller.
2409 *
2410 * The caller must not request to add more records than would fit in
2411 * the on-disk inode root. If the if_broot is currently NULL, then
2412 * if we adding records one will be allocated. The caller must also
2413 * not request that the number of records go below zero, although
2414 * it can go to zero.
2415 *
2416 * ip -- the inode whose if_broot area is changing
2417 * ext_diff -- the change in the number of records, positive or negative,
2418 * requested for the if_broot array.
2419 */
2420void
2421xfs_iroot_realloc(
2422 xfs_inode_t *ip,
2423 int rec_diff,
2424 int whichfork)
2425{
2426 int cur_max;
2427 xfs_ifork_t *ifp;
2428 xfs_bmbt_block_t *new_broot;
2429 int new_max;
2430 size_t new_size;
2431 char *np;
2432 char *op;
2433
2434 /*
2435 * Handle the degenerate case quietly.
2436 */
2437 if (rec_diff == 0) {
2438 return;
2439 }
2440
2441 ifp = XFS_IFORK_PTR(ip, whichfork);
2442 if (rec_diff > 0) {
2443 /*
2444 * If there wasn't any memory allocated before, just
2445 * allocate it now and get out.
2446 */
2447 if (ifp->if_broot_bytes == 0) {
2448 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2449 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2450 KM_SLEEP);
2451 ifp->if_broot_bytes = (int)new_size;
2452 return;
2453 }
2454
2455 /*
2456 * If there is already an existing if_broot, then we need
2457 * to realloc() it and shift the pointers to their new
2458 * location. The records don't change location because
2459 * they are kept butted up against the btree block header.
2460 */
2461 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2462 new_max = cur_max + rec_diff;
2463 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2464 ifp->if_broot = (xfs_bmbt_block_t *)
2465 kmem_realloc(ifp->if_broot,
2466 new_size,
2467 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2468 KM_SLEEP);
2469 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2470 ifp->if_broot_bytes);
2471 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2472 (int)new_size);
2473 ifp->if_broot_bytes = (int)new_size;
2474 ASSERT(ifp->if_broot_bytes <=
2475 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2476 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2477 return;
2478 }
2479
2480 /*
2481 * rec_diff is less than 0. In this case, we are shrinking the
2482 * if_broot buffer. It must already exist. If we go to zero
2483 * records, just get rid of the root and clear the status bit.
2484 */
2485 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2486 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2487 new_max = cur_max + rec_diff;
2488 ASSERT(new_max >= 0);
2489 if (new_max > 0)
2490 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2491 else
2492 new_size = 0;
2493 if (new_size > 0) {
2494 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2495 /*
2496 * First copy over the btree block header.
2497 */
2498 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2499 } else {
2500 new_broot = NULL;
2501 ifp->if_flags &= ~XFS_IFBROOT;
2502 }
2503
2504 /*
2505 * Only copy the records and pointers if there are any.
2506 */
2507 if (new_max > 0) {
2508 /*
2509 * First copy the records.
2510 */
2511 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2512 ifp->if_broot_bytes);
2513 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2514 (int)new_size);
2515 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2516
2517 /*
2518 * Then copy the pointers.
2519 */
2520 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2521 ifp->if_broot_bytes);
2522 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2523 (int)new_size);
2524 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2525 }
2526 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2527 ifp->if_broot = new_broot;
2528 ifp->if_broot_bytes = (int)new_size;
2529 ASSERT(ifp->if_broot_bytes <=
2530 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2531 return;
2532}
2533
2534
2535/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536 * This is called when the amount of space needed for if_data
2537 * is increased or decreased. The change in size is indicated by
2538 * the number of bytes that need to be added or deleted in the
2539 * byte_diff parameter.
2540 *
2541 * If the amount of space needed has decreased below the size of the
2542 * inline buffer, then switch to using the inline buffer. Otherwise,
2543 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2544 * to what is needed.
2545 *
2546 * ip -- the inode whose if_data area is changing
2547 * byte_diff -- the change in the number of bytes, positive or negative,
2548 * requested for the if_data array.
2549 */
2550void
2551xfs_idata_realloc(
2552 xfs_inode_t *ip,
2553 int byte_diff,
2554 int whichfork)
2555{
2556 xfs_ifork_t *ifp;
2557 int new_size;
2558 int real_size;
2559
2560 if (byte_diff == 0) {
2561 return;
2562 }
2563
2564 ifp = XFS_IFORK_PTR(ip, whichfork);
2565 new_size = (int)ifp->if_bytes + byte_diff;
2566 ASSERT(new_size >= 0);
2567
2568 if (new_size == 0) {
2569 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2570 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2571 }
2572 ifp->if_u1.if_data = NULL;
2573 real_size = 0;
2574 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2575 /*
2576 * If the valid extents/data can fit in if_inline_ext/data,
2577 * copy them from the malloc'd vector and free it.
2578 */
2579 if (ifp->if_u1.if_data == NULL) {
2580 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2581 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2582 ASSERT(ifp->if_real_bytes != 0);
2583 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2584 new_size);
2585 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2586 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2587 }
2588 real_size = 0;
2589 } else {
2590 /*
2591 * Stuck with malloc/realloc.
2592 * For inline data, the underlying buffer must be
2593 * a multiple of 4 bytes in size so that it can be
2594 * logged and stay on word boundaries. We enforce
2595 * that here.
2596 */
2597 real_size = roundup(new_size, 4);
2598 if (ifp->if_u1.if_data == NULL) {
2599 ASSERT(ifp->if_real_bytes == 0);
2600 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2601 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2602 /*
2603 * Only do the realloc if the underlying size
2604 * is really changing.
2605 */
2606 if (ifp->if_real_bytes != real_size) {
2607 ifp->if_u1.if_data =
2608 kmem_realloc(ifp->if_u1.if_data,
2609 real_size,
2610 ifp->if_real_bytes,
2611 KM_SLEEP);
2612 }
2613 } else {
2614 ASSERT(ifp->if_real_bytes == 0);
2615 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2616 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2617 ifp->if_bytes);
2618 }
2619 }
2620 ifp->if_real_bytes = real_size;
2621 ifp->if_bytes = new_size;
2622 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2623}
2624
2625
2626
2627
2628/*
2629 * Map inode to disk block and offset.
2630 *
2631 * mp -- the mount point structure for the current file system
2632 * tp -- the current transaction
2633 * ino -- the inode number of the inode to be located
2634 * imap -- this structure is filled in with the information necessary
2635 * to retrieve the given inode from disk
2636 * flags -- flags to pass to xfs_dilocate indicating whether or not
2637 * lookups in the inode btree were OK or not
2638 */
2639int
2640xfs_imap(
2641 xfs_mount_t *mp,
2642 xfs_trans_t *tp,
2643 xfs_ino_t ino,
2644 xfs_imap_t *imap,
2645 uint flags)
2646{
2647 xfs_fsblock_t fsbno;
2648 int len;
2649 int off;
2650 int error;
2651
2652 fsbno = imap->im_blkno ?
2653 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2654 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2655 if (error != 0) {
2656 return error;
2657 }
2658 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2659 imap->im_len = XFS_FSB_TO_BB(mp, len);
2660 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2661 imap->im_ioffset = (ushort)off;
2662 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2663 return 0;
2664}
2665
2666void
2667xfs_idestroy_fork(
2668 xfs_inode_t *ip,
2669 int whichfork)
2670{
2671 xfs_ifork_t *ifp;
2672
2673 ifp = XFS_IFORK_PTR(ip, whichfork);
2674 if (ifp->if_broot != NULL) {
2675 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2676 ifp->if_broot = NULL;
2677 }
2678
2679 /*
2680 * If the format is local, then we can't have an extents
2681 * array so just look for an inline data array. If we're
2682 * not local then we may or may not have an extents list,
2683 * so check and free it up if we do.
2684 */
2685 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2686 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2687 (ifp->if_u1.if_data != NULL)) {
2688 ASSERT(ifp->if_real_bytes != 0);
2689 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2690 ifp->if_u1.if_data = NULL;
2691 ifp->if_real_bytes = 0;
2692 }
2693 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11002694 ((ifp->if_flags & XFS_IFEXTIREC) ||
2695 ((ifp->if_u1.if_extents != NULL) &&
2696 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002697 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002698 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002699 }
2700 ASSERT(ifp->if_u1.if_extents == NULL ||
2701 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2702 ASSERT(ifp->if_real_bytes == 0);
2703 if (whichfork == XFS_ATTR_FORK) {
2704 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2705 ip->i_afp = NULL;
2706 }
2707}
2708
2709/*
2710 * This is called free all the memory associated with an inode.
2711 * It must free the inode itself and any buffers allocated for
2712 * if_extents/if_data and if_broot. It must also free the lock
2713 * associated with the inode.
2714 */
2715void
2716xfs_idestroy(
2717 xfs_inode_t *ip)
2718{
2719
2720 switch (ip->i_d.di_mode & S_IFMT) {
2721 case S_IFREG:
2722 case S_IFDIR:
2723 case S_IFLNK:
2724 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2725 break;
2726 }
2727 if (ip->i_afp)
2728 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2729 mrfree(&ip->i_lock);
2730 mrfree(&ip->i_iolock);
2731 freesema(&ip->i_flock);
2732#ifdef XFS_BMAP_TRACE
2733 ktrace_free(ip->i_xtrace);
2734#endif
2735#ifdef XFS_BMBT_TRACE
2736 ktrace_free(ip->i_btrace);
2737#endif
2738#ifdef XFS_RW_TRACE
2739 ktrace_free(ip->i_rwtrace);
2740#endif
2741#ifdef XFS_ILOCK_TRACE
2742 ktrace_free(ip->i_lock_trace);
2743#endif
2744#ifdef XFS_DIR2_TRACE
2745 ktrace_free(ip->i_dir_trace);
2746#endif
2747 if (ip->i_itemp) {
David Chinnerf74eaf52007-02-10 18:36:04 +11002748 /*
2749 * Only if we are shutting down the fs will we see an
2750 * inode still in the AIL. If it is there, we should remove
2751 * it to prevent a use-after-free from occurring.
2752 */
2753 xfs_mount_t *mp = ip->i_mount;
2754 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2755 int s;
2756
2757 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2758 XFS_FORCED_SHUTDOWN(ip->i_mount));
2759 if (lip->li_flags & XFS_LI_IN_AIL) {
2760 AIL_LOCK(mp, s);
2761 if (lip->li_flags & XFS_LI_IN_AIL)
2762 xfs_trans_delete_ail(mp, lip, s);
2763 else
2764 AIL_UNLOCK(mp, s);
2765 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766 xfs_inode_item_destroy(ip);
2767 }
2768 kmem_zone_free(xfs_inode_zone, ip);
2769}
2770
2771
2772/*
2773 * Increment the pin count of the given buffer.
2774 * This value is protected by ipinlock spinlock in the mount structure.
2775 */
2776void
2777xfs_ipin(
2778 xfs_inode_t *ip)
2779{
2780 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2781
2782 atomic_inc(&ip->i_pincount);
2783}
2784
2785/*
2786 * Decrement the pin count of the given inode, and wake up
2787 * anyone in xfs_iwait_unpin() if the count goes to 0. The
Nathan Scottc41564b2006-03-29 08:55:14 +10002788 * inode must have been previously pinned with a call to xfs_ipin().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002789 */
2790void
2791xfs_iunpin(
2792 xfs_inode_t *ip)
2793{
2794 ASSERT(atomic_read(&ip->i_pincount) > 0);
2795
David Chinner4c606582006-11-11 18:05:00 +11002796 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
David Chinnerf273ab82006-09-28 11:06:03 +10002797
David Chinner4c606582006-11-11 18:05:00 +11002798 /*
2799 * If the inode is currently being reclaimed, the link between
2800 * the bhv_vnode and the xfs_inode will be broken after the
2801 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2802 * set, then we can move forward and mark the linux inode dirty
2803 * knowing that it is still valid as it won't freed until after
2804 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2805 * i_flags_lock is used to synchronise the setting of the
2806 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2807 * can execute atomically w.r.t to reclaim by holding this lock
2808 * here.
2809 *
2810 * However, we still need to issue the unpin wakeup call as the
2811 * inode reclaim may be blocked waiting for the inode to become
2812 * unpinned.
2813 */
2814
David Chinner7a18c382006-11-11 18:04:54 +11002815 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
Nathan Scott67fcaa72006-06-09 17:00:52 +10002816 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
David Chinner4c606582006-11-11 18:05:00 +11002817 struct inode *inode = NULL;
2818
2819 BUG_ON(vp == NULL);
2820 inode = vn_to_inode(vp);
2821 BUG_ON(inode->i_state & I_CLEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822
David Chinner58829e42006-04-11 15:11:20 +10002823 /* make sync come back and flush this inode */
David Chinner4c606582006-11-11 18:05:00 +11002824 if (!(inode->i_state & (I_NEW|I_FREEING)))
2825 mark_inode_dirty_sync(inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826 }
David Chinnerf273ab82006-09-28 11:06:03 +10002827 spin_unlock(&ip->i_flags_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002828 wake_up(&ip->i_ipin_wait);
2829 }
2830}
2831
2832/*
2833 * This is called to wait for the given inode to be unpinned.
2834 * It will sleep until this happens. The caller must have the
2835 * inode locked in at least shared mode so that the buffer cannot
2836 * be subsequently pinned once someone is waiting for it to be
2837 * unpinned.
2838 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002839STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002840xfs_iunpin_wait(
2841 xfs_inode_t *ip)
2842{
2843 xfs_inode_log_item_t *iip;
2844 xfs_lsn_t lsn;
2845
2846 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2847
2848 if (atomic_read(&ip->i_pincount) == 0) {
2849 return;
2850 }
2851
2852 iip = ip->i_itemp;
2853 if (iip && iip->ili_last_lsn) {
2854 lsn = iip->ili_last_lsn;
2855 } else {
2856 lsn = (xfs_lsn_t)0;
2857 }
2858
2859 /*
2860 * Give the log a push so we don't wait here too long.
2861 */
2862 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2863
2864 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2865}
2866
2867
2868/*
2869 * xfs_iextents_copy()
2870 *
2871 * This is called to copy the REAL extents (as opposed to the delayed
2872 * allocation extents) from the inode into the given buffer. It
2873 * returns the number of bytes copied into the buffer.
2874 *
2875 * If there are no delayed allocation extents, then we can just
2876 * memcpy() the extents into the buffer. Otherwise, we need to
2877 * examine each extent in turn and skip those which are delayed.
2878 */
2879int
2880xfs_iextents_copy(
2881 xfs_inode_t *ip,
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10002882 xfs_bmbt_rec_t *dp,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002883 int whichfork)
2884{
2885 int copied;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002886 int i;
2887 xfs_ifork_t *ifp;
2888 int nrecs;
2889 xfs_fsblock_t start_block;
2890
2891 ifp = XFS_IFORK_PTR(ip, whichfork);
2892 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2893 ASSERT(ifp->if_bytes > 0);
2894
2895 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
Eric Sandeen3a59c942007-07-11 11:09:47 +10002896 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002897 ASSERT(nrecs > 0);
2898
2899 /*
2900 * There are some delayed allocation extents in the
2901 * inode, so copy the extents one at a time and skip
2902 * the delayed ones. There must be at least one
2903 * non-delayed extent.
2904 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002905 copied = 0;
2906 for (i = 0; i < nrecs; i++) {
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10002907 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908 start_block = xfs_bmbt_get_startblock(ep);
2909 if (ISNULLSTARTBLOCK(start_block)) {
2910 /*
2911 * It's a delayed allocation extent, so skip it.
2912 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913 continue;
2914 }
2915
2916 /* Translate to on disk format */
Christoph Hellwigcd8b0a92007-08-16 16:24:15 +10002917 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2918 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10002919 dp++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002920 copied++;
2921 }
2922 ASSERT(copied != 0);
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10002923 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002924
2925 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2926}
2927
2928/*
2929 * Each of the following cases stores data into the same region
2930 * of the on-disk inode, so only one of them can be valid at
2931 * any given time. While it is possible to have conflicting formats
2932 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2933 * in EXTENTS format, this can only happen when the fork has
2934 * changed formats after being modified but before being flushed.
2935 * In these cases, the format always takes precedence, because the
2936 * format indicates the current state of the fork.
2937 */
2938/*ARGSUSED*/
2939STATIC int
2940xfs_iflush_fork(
2941 xfs_inode_t *ip,
2942 xfs_dinode_t *dip,
2943 xfs_inode_log_item_t *iip,
2944 int whichfork,
2945 xfs_buf_t *bp)
2946{
2947 char *cp;
2948 xfs_ifork_t *ifp;
2949 xfs_mount_t *mp;
2950#ifdef XFS_TRANS_DEBUG
2951 int first;
2952#endif
2953 static const short brootflag[2] =
2954 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2955 static const short dataflag[2] =
2956 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2957 static const short extflag[2] =
2958 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2959
2960 if (iip == NULL)
2961 return 0;
2962 ifp = XFS_IFORK_PTR(ip, whichfork);
2963 /*
2964 * This can happen if we gave up in iformat in an error path,
2965 * for the attribute fork.
2966 */
2967 if (ifp == NULL) {
2968 ASSERT(whichfork == XFS_ATTR_FORK);
2969 return 0;
2970 }
2971 cp = XFS_DFORK_PTR(dip, whichfork);
2972 mp = ip->i_mount;
2973 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2974 case XFS_DINODE_FMT_LOCAL:
2975 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2976 (ifp->if_bytes > 0)) {
2977 ASSERT(ifp->if_u1.if_data != NULL);
2978 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2979 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2980 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002981 break;
2982
2983 case XFS_DINODE_FMT_EXTENTS:
2984 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2985 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002986 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2987 (ifp->if_bytes == 0));
2988 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2989 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002990 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2991 (ifp->if_bytes > 0)) {
2992 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2993 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2994 whichfork);
2995 }
2996 break;
2997
2998 case XFS_DINODE_FMT_BTREE:
2999 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3000 (ifp->if_broot_bytes > 0)) {
3001 ASSERT(ifp->if_broot != NULL);
3002 ASSERT(ifp->if_broot_bytes <=
3003 (XFS_IFORK_SIZE(ip, whichfork) +
3004 XFS_BROOT_SIZE_ADJ));
3005 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3006 (xfs_bmdr_block_t *)cp,
3007 XFS_DFORK_SIZE(dip, mp, whichfork));
3008 }
3009 break;
3010
3011 case XFS_DINODE_FMT_DEV:
3012 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3013 ASSERT(whichfork == XFS_DATA_FORK);
3014 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3015 }
3016 break;
3017
3018 case XFS_DINODE_FMT_UUID:
3019 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3020 ASSERT(whichfork == XFS_DATA_FORK);
3021 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3022 sizeof(uuid_t));
3023 }
3024 break;
3025
3026 default:
3027 ASSERT(0);
3028 break;
3029 }
3030
3031 return 0;
3032}
3033
3034/*
3035 * xfs_iflush() will write a modified inode's changes out to the
3036 * inode's on disk home. The caller must have the inode lock held
3037 * in at least shared mode and the inode flush semaphore must be
3038 * held as well. The inode lock will still be held upon return from
3039 * the call and the caller is free to unlock it.
3040 * The inode flush lock will be unlocked when the inode reaches the disk.
3041 * The flags indicate how the inode's buffer should be written out.
3042 */
3043int
3044xfs_iflush(
3045 xfs_inode_t *ip,
3046 uint flags)
3047{
3048 xfs_inode_log_item_t *iip;
3049 xfs_buf_t *bp;
3050 xfs_dinode_t *dip;
3051 xfs_mount_t *mp;
3052 int error;
3053 /* REFERENCED */
3054 xfs_chash_t *ch;
3055 xfs_inode_t *iq;
3056 int clcount; /* count of inodes clustered */
3057 int bufwasdelwri;
3058 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3059 SPLDECL(s);
3060
3061 XFS_STATS_INC(xs_iflush_count);
3062
3063 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
Al Viro0d8fee32006-06-19 08:41:30 +10003064 ASSERT(issemalocked(&(ip->i_flock)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003065 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3066 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3067
3068 iip = ip->i_itemp;
3069 mp = ip->i_mount;
3070
3071 /*
3072 * If the inode isn't dirty, then just release the inode
3073 * flush lock and do nothing.
3074 */
3075 if ((ip->i_update_core == 0) &&
3076 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3077 ASSERT((iip != NULL) ?
3078 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3079 xfs_ifunlock(ip);
3080 return 0;
3081 }
3082
3083 /*
3084 * We can't flush the inode until it is unpinned, so
3085 * wait for it. We know noone new can pin it, because
3086 * we are holding the inode lock shared and you need
3087 * to hold it exclusively to pin the inode.
3088 */
3089 xfs_iunpin_wait(ip);
3090
3091 /*
3092 * This may have been unpinned because the filesystem is shutting
3093 * down forcibly. If that's the case we must not write this inode
3094 * to disk, because the log record didn't make it to disk!
3095 */
3096 if (XFS_FORCED_SHUTDOWN(mp)) {
3097 ip->i_update_core = 0;
3098 if (iip)
3099 iip->ili_format.ilf_fields = 0;
3100 xfs_ifunlock(ip);
3101 return XFS_ERROR(EIO);
3102 }
3103
3104 /*
3105 * Get the buffer containing the on-disk inode.
3106 */
Nathan Scottb12dd342006-03-17 17:26:04 +11003107 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3108 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003109 xfs_ifunlock(ip);
3110 return error;
3111 }
3112
3113 /*
3114 * Decide how buffer will be flushed out. This is done before
3115 * the call to xfs_iflush_int because this field is zeroed by it.
3116 */
3117 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3118 /*
3119 * Flush out the inode buffer according to the directions
3120 * of the caller. In the cases where the caller has given
3121 * us a choice choose the non-delwri case. This is because
3122 * the inode is in the AIL and we need to get it out soon.
3123 */
3124 switch (flags) {
3125 case XFS_IFLUSH_SYNC:
3126 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3127 flags = 0;
3128 break;
3129 case XFS_IFLUSH_ASYNC:
3130 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3131 flags = INT_ASYNC;
3132 break;
3133 case XFS_IFLUSH_DELWRI:
3134 flags = INT_DELWRI;
3135 break;
3136 default:
3137 ASSERT(0);
3138 flags = 0;
3139 break;
3140 }
3141 } else {
3142 switch (flags) {
3143 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3144 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3145 case XFS_IFLUSH_DELWRI:
3146 flags = INT_DELWRI;
3147 break;
3148 case XFS_IFLUSH_ASYNC:
3149 flags = INT_ASYNC;
3150 break;
3151 case XFS_IFLUSH_SYNC:
3152 flags = 0;
3153 break;
3154 default:
3155 ASSERT(0);
3156 flags = 0;
3157 break;
3158 }
3159 }
3160
3161 /*
3162 * First flush out the inode that xfs_iflush was called with.
3163 */
3164 error = xfs_iflush_int(ip, bp);
3165 if (error) {
3166 goto corrupt_out;
3167 }
3168
3169 /*
3170 * inode clustering:
3171 * see if other inodes can be gathered into this write
3172 */
3173
3174 ip->i_chash->chl_buf = bp;
3175
3176 ch = XFS_CHASH(mp, ip->i_blkno);
3177 s = mutex_spinlock(&ch->ch_lock);
3178
3179 clcount = 0;
3180 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3181 /*
3182 * Do an un-protected check to see if the inode is dirty and
3183 * is a candidate for flushing. These checks will be repeated
3184 * later after the appropriate locks are acquired.
3185 */
3186 iip = iq->i_itemp;
3187 if ((iq->i_update_core == 0) &&
3188 ((iip == NULL) ||
3189 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3190 xfs_ipincount(iq) == 0) {
3191 continue;
3192 }
3193
3194 /*
3195 * Try to get locks. If any are unavailable,
3196 * then this inode cannot be flushed and is skipped.
3197 */
3198
3199 /* get inode locks (just i_lock) */
3200 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3201 /* get inode flush lock */
3202 if (xfs_iflock_nowait(iq)) {
3203 /* check if pinned */
3204 if (xfs_ipincount(iq) == 0) {
3205 /* arriving here means that
3206 * this inode can be flushed.
3207 * first re-check that it's
3208 * dirty
3209 */
3210 iip = iq->i_itemp;
3211 if ((iq->i_update_core != 0)||
3212 ((iip != NULL) &&
3213 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3214 clcount++;
3215 error = xfs_iflush_int(iq, bp);
3216 if (error) {
3217 xfs_iunlock(iq,
3218 XFS_ILOCK_SHARED);
3219 goto cluster_corrupt_out;
3220 }
3221 } else {
3222 xfs_ifunlock(iq);
3223 }
3224 } else {
3225 xfs_ifunlock(iq);
3226 }
3227 }
3228 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3229 }
3230 }
3231 mutex_spinunlock(&ch->ch_lock, s);
3232
3233 if (clcount) {
3234 XFS_STATS_INC(xs_icluster_flushcnt);
3235 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3236 }
3237
3238 /*
3239 * If the buffer is pinned then push on the log so we won't
3240 * get stuck waiting in the write for too long.
3241 */
3242 if (XFS_BUF_ISPINNED(bp)){
3243 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3244 }
3245
3246 if (flags & INT_DELWRI) {
3247 xfs_bdwrite(mp, bp);
3248 } else if (flags & INT_ASYNC) {
3249 xfs_bawrite(mp, bp);
3250 } else {
3251 error = xfs_bwrite(mp, bp);
3252 }
3253 return error;
3254
3255corrupt_out:
3256 xfs_buf_relse(bp);
Nathan Scott7d04a332006-06-09 14:58:38 +10003257 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003258 xfs_iflush_abort(ip);
3259 /*
3260 * Unlocks the flush lock
3261 */
3262 return XFS_ERROR(EFSCORRUPTED);
3263
3264cluster_corrupt_out:
3265 /* Corruption detected in the clustering loop. Invalidate the
3266 * inode buffer and shut down the filesystem.
3267 */
3268 mutex_spinunlock(&ch->ch_lock, s);
3269
3270 /*
3271 * Clean up the buffer. If it was B_DELWRI, just release it --
3272 * brelse can handle it with no problems. If not, shut down the
3273 * filesystem before releasing the buffer.
3274 */
3275 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3276 xfs_buf_relse(bp);
3277 }
3278
Nathan Scott7d04a332006-06-09 14:58:38 +10003279 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003280
3281 if(!bufwasdelwri) {
3282 /*
3283 * Just like incore_relse: if we have b_iodone functions,
3284 * mark the buffer as an error and call them. Otherwise
3285 * mark it as stale and brelse.
3286 */
3287 if (XFS_BUF_IODONE_FUNC(bp)) {
3288 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3289 XFS_BUF_UNDONE(bp);
3290 XFS_BUF_STALE(bp);
3291 XFS_BUF_SHUT(bp);
3292 XFS_BUF_ERROR(bp,EIO);
3293 xfs_biodone(bp);
3294 } else {
3295 XFS_BUF_STALE(bp);
3296 xfs_buf_relse(bp);
3297 }
3298 }
3299
3300 xfs_iflush_abort(iq);
3301 /*
3302 * Unlocks the flush lock
3303 */
3304 return XFS_ERROR(EFSCORRUPTED);
3305}
3306
3307
3308STATIC int
3309xfs_iflush_int(
3310 xfs_inode_t *ip,
3311 xfs_buf_t *bp)
3312{
3313 xfs_inode_log_item_t *iip;
3314 xfs_dinode_t *dip;
3315 xfs_mount_t *mp;
3316#ifdef XFS_TRANS_DEBUG
3317 int first;
3318#endif
3319 SPLDECL(s);
3320
3321 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
Al Viro0d8fee32006-06-19 08:41:30 +10003322 ASSERT(issemalocked(&(ip->i_flock)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003323 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3324 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3325
3326 iip = ip->i_itemp;
3327 mp = ip->i_mount;
3328
3329
3330 /*
3331 * If the inode isn't dirty, then just release the inode
3332 * flush lock and do nothing.
3333 */
3334 if ((ip->i_update_core == 0) &&
3335 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3336 xfs_ifunlock(ip);
3337 return 0;
3338 }
3339
3340 /* set *dip = inode's place in the buffer */
3341 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3342
3343 /*
3344 * Clear i_update_core before copying out the data.
3345 * This is for coordination with our timestamp updates
3346 * that don't hold the inode lock. They will always
3347 * update the timestamps BEFORE setting i_update_core,
3348 * so if we clear i_update_core after they set it we
3349 * are guaranteed to see their updates to the timestamps.
3350 * I believe that this depends on strongly ordered memory
3351 * semantics, but we have that. We use the SYNCHRONIZE
3352 * macro to make sure that the compiler does not reorder
3353 * the i_update_core access below the data copy below.
3354 */
3355 ip->i_update_core = 0;
3356 SYNCHRONIZE();
3357
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003358 /*
3359 * Make sure to get the latest atime from the Linux inode.
3360 */
3361 xfs_synchronize_atime(ip);
3362
Linus Torvalds1da177e2005-04-16 15:20:36 -07003363 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3364 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3365 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3366 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3367 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3368 goto corrupt_out;
3369 }
3370 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3371 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3372 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3373 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3374 ip->i_ino, ip, ip->i_d.di_magic);
3375 goto corrupt_out;
3376 }
3377 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3378 if (XFS_TEST_ERROR(
3379 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3380 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3381 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3382 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3383 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3384 ip->i_ino, ip);
3385 goto corrupt_out;
3386 }
3387 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3388 if (XFS_TEST_ERROR(
3389 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3390 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3391 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3392 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3393 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3394 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3395 ip->i_ino, ip);
3396 goto corrupt_out;
3397 }
3398 }
3399 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3400 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3401 XFS_RANDOM_IFLUSH_5)) {
3402 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3403 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3404 ip->i_ino,
3405 ip->i_d.di_nextents + ip->i_d.di_anextents,
3406 ip->i_d.di_nblocks,
3407 ip);
3408 goto corrupt_out;
3409 }
3410 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3411 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3412 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3413 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3414 ip->i_ino, ip->i_d.di_forkoff, ip);
3415 goto corrupt_out;
3416 }
3417 /*
3418 * bump the flush iteration count, used to detect flushes which
3419 * postdate a log record during recovery.
3420 */
3421
3422 ip->i_d.di_flushiter++;
3423
3424 /*
3425 * Copy the dirty parts of the inode into the on-disk
3426 * inode. We always copy out the core of the inode,
3427 * because if the inode is dirty at all the core must
3428 * be.
3429 */
3430 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3431
3432 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3433 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3434 ip->i_d.di_flushiter = 0;
3435
3436 /*
3437 * If this is really an old format inode and the superblock version
3438 * has not been updated to support only new format inodes, then
3439 * convert back to the old inode format. If the superblock version
3440 * has been updated, then make the conversion permanent.
3441 */
3442 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3443 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3444 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3445 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3446 /*
3447 * Convert it back.
3448 */
3449 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3450 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3451 } else {
3452 /*
3453 * The superblock version has already been bumped,
3454 * so just make the conversion to the new inode
3455 * format permanent.
3456 */
3457 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3458 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3459 ip->i_d.di_onlink = 0;
3460 dip->di_core.di_onlink = 0;
3461 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3462 memset(&(dip->di_core.di_pad[0]), 0,
3463 sizeof(dip->di_core.di_pad));
3464 ASSERT(ip->i_d.di_projid == 0);
3465 }
3466 }
3467
3468 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3469 goto corrupt_out;
3470 }
3471
3472 if (XFS_IFORK_Q(ip)) {
3473 /*
3474 * The only error from xfs_iflush_fork is on the data fork.
3475 */
3476 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3477 }
3478 xfs_inobp_check(mp, bp);
3479
3480 /*
3481 * We've recorded everything logged in the inode, so we'd
3482 * like to clear the ilf_fields bits so we don't log and
3483 * flush things unnecessarily. However, we can't stop
3484 * logging all this information until the data we've copied
3485 * into the disk buffer is written to disk. If we did we might
3486 * overwrite the copy of the inode in the log with all the
3487 * data after re-logging only part of it, and in the face of
3488 * a crash we wouldn't have all the data we need to recover.
3489 *
3490 * What we do is move the bits to the ili_last_fields field.
3491 * When logging the inode, these bits are moved back to the
3492 * ilf_fields field. In the xfs_iflush_done() routine we
3493 * clear ili_last_fields, since we know that the information
3494 * those bits represent is permanently on disk. As long as
3495 * the flush completes before the inode is logged again, then
3496 * both ilf_fields and ili_last_fields will be cleared.
3497 *
3498 * We can play with the ilf_fields bits here, because the inode
3499 * lock must be held exclusively in order to set bits there
3500 * and the flush lock protects the ili_last_fields bits.
3501 * Set ili_logged so the flush done
3502 * routine can tell whether or not to look in the AIL.
3503 * Also, store the current LSN of the inode so that we can tell
3504 * whether the item has moved in the AIL from xfs_iflush_done().
3505 * In order to read the lsn we need the AIL lock, because
3506 * it is a 64 bit value that cannot be read atomically.
3507 */
3508 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3509 iip->ili_last_fields = iip->ili_format.ilf_fields;
3510 iip->ili_format.ilf_fields = 0;
3511 iip->ili_logged = 1;
3512
3513 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3514 AIL_LOCK(mp,s);
3515 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3516 AIL_UNLOCK(mp, s);
3517
3518 /*
3519 * Attach the function xfs_iflush_done to the inode's
3520 * buffer. This will remove the inode from the AIL
3521 * and unlock the inode's flush lock when the inode is
3522 * completely written to disk.
3523 */
3524 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3525 xfs_iflush_done, (xfs_log_item_t *)iip);
3526
3527 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3528 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3529 } else {
3530 /*
3531 * We're flushing an inode which is not in the AIL and has
3532 * not been logged but has i_update_core set. For this
3533 * case we can use a B_DELWRI flush and immediately drop
3534 * the inode flush lock because we can avoid the whole
3535 * AIL state thing. It's OK to drop the flush lock now,
3536 * because we've already locked the buffer and to do anything
3537 * you really need both.
3538 */
3539 if (iip != NULL) {
3540 ASSERT(iip->ili_logged == 0);
3541 ASSERT(iip->ili_last_fields == 0);
3542 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3543 }
3544 xfs_ifunlock(ip);
3545 }
3546
3547 return 0;
3548
3549corrupt_out:
3550 return XFS_ERROR(EFSCORRUPTED);
3551}
3552
3553
3554/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003555 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003556 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003557void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003558xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003559 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003560{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003561 xfs_inode_t *ip;
Nathan Scott67fcaa72006-06-09 17:00:52 +10003562 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003563
Christoph Hellwigefa80272005-06-21 15:37:17 +10003564 again:
3565 XFS_MOUNT_ILOCK(mp);
3566 ip = mp->m_inodes;
3567 if (ip == NULL)
3568 goto out;
3569
3570 do {
3571 /* Make sure we skip markers inserted by sync */
3572 if (ip->i_mount == NULL) {
3573 ip = ip->i_mnext;
3574 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003575 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576
Christoph Hellwigefa80272005-06-21 15:37:17 +10003577 vp = XFS_ITOV_NULL(ip);
3578 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003579 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003580 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3581 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003582 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583
Christoph Hellwigefa80272005-06-21 15:37:17 +10003584 ASSERT(vn_count(vp) == 0);
3585
3586 ip = ip->i_mnext;
3587 } while (ip != mp->m_inodes);
3588 out:
3589 XFS_MOUNT_IUNLOCK(mp);
3590}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003591
3592/*
3593 * xfs_iaccess: check accessibility of inode for mode.
3594 */
3595int
3596xfs_iaccess(
3597 xfs_inode_t *ip,
3598 mode_t mode,
3599 cred_t *cr)
3600{
3601 int error;
3602 mode_t orgmode = mode;
Nathan Scottec86dc02006-03-17 17:25:36 +11003603 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003604
3605 if (mode & S_IWUSR) {
3606 umode_t imode = inode->i_mode;
3607
3608 if (IS_RDONLY(inode) &&
3609 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3610 return XFS_ERROR(EROFS);
3611
3612 if (IS_IMMUTABLE(inode))
3613 return XFS_ERROR(EACCES);
3614 }
3615
3616 /*
3617 * If there's an Access Control List it's used instead of
3618 * the mode bits.
3619 */
3620 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3621 return error ? XFS_ERROR(error) : 0;
3622
3623 if (current_fsuid(cr) != ip->i_d.di_uid) {
3624 mode >>= 3;
3625 if (!in_group_p((gid_t)ip->i_d.di_gid))
3626 mode >>= 3;
3627 }
3628
3629 /*
3630 * If the DACs are ok we don't need any capability check.
3631 */
3632 if ((ip->i_d.di_mode & mode) == mode)
3633 return 0;
3634 /*
3635 * Read/write DACs are always overridable.
3636 * Executable DACs are overridable if at least one exec bit is set.
3637 */
3638 if (!(orgmode & S_IXUSR) ||
3639 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3640 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3641 return 0;
3642
3643 if ((orgmode == S_IRUSR) ||
3644 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3645 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3646 return 0;
3647#ifdef NOISE
3648 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3649#endif /* NOISE */
3650 return XFS_ERROR(EACCES);
3651 }
3652 return XFS_ERROR(EACCES);
3653}
3654
3655/*
3656 * xfs_iroundup: round up argument to next power of two
3657 */
3658uint
3659xfs_iroundup(
3660 uint v)
3661{
3662 int i;
3663 uint m;
3664
3665 if ((v & (v - 1)) == 0)
3666 return v;
3667 ASSERT((v & 0x80000000) == 0);
3668 if ((v & (v + 1)) == 0)
3669 return v + 1;
3670 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3671 if (v & m)
3672 continue;
3673 v |= m;
3674 if ((v & (v + 1)) == 0)
3675 return v + 1;
3676 }
3677 ASSERT(0);
3678 return( 0 );
3679}
3680
Linus Torvalds1da177e2005-04-16 15:20:36 -07003681#ifdef XFS_ILOCK_TRACE
3682ktrace_t *xfs_ilock_trace_buf;
3683
3684void
3685xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3686{
3687 ktrace_enter(ip->i_lock_trace,
3688 (void *)ip,
3689 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3690 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3691 (void *)ra, /* caller of ilock */
3692 (void *)(unsigned long)current_cpu(),
3693 (void *)(unsigned long)current_pid(),
3694 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3695}
3696#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003697
3698/*
3699 * Return a pointer to the extent record at file index idx.
3700 */
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10003701xfs_bmbt_rec_host_t *
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003702xfs_iext_get_ext(
3703 xfs_ifork_t *ifp, /* inode fork pointer */
3704 xfs_extnum_t idx) /* index of target extent */
3705{
3706 ASSERT(idx >= 0);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003707 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3708 return ifp->if_u1.if_ext_irec->er_extbuf;
3709 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3710 xfs_ext_irec_t *erp; /* irec pointer */
3711 int erp_idx = 0; /* irec index */
3712 xfs_extnum_t page_idx = idx; /* ext index in target list */
3713
3714 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3715 return &erp->er_extbuf[page_idx];
3716 } else if (ifp->if_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003717 return &ifp->if_u1.if_extents[idx];
3718 } else {
3719 return NULL;
3720 }
3721}
3722
3723/*
3724 * Insert new item(s) into the extent records for incore inode
3725 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3726 */
3727void
3728xfs_iext_insert(
3729 xfs_ifork_t *ifp, /* inode fork pointer */
3730 xfs_extnum_t idx, /* starting index of new items */
3731 xfs_extnum_t count, /* number of inserted items */
3732 xfs_bmbt_irec_t *new) /* items to insert */
3733{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003734 xfs_extnum_t i; /* extent record index */
3735
3736 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3737 xfs_iext_add(ifp, idx, count);
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10003738 for (i = idx; i < idx + count; i++, new++)
3739 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003740}
3741
3742/*
3743 * This is called when the amount of space required for incore file
3744 * extents needs to be increased. The ext_diff parameter stores the
3745 * number of new extents being added and the idx parameter contains
3746 * the extent index where the new extents will be added. If the new
3747 * extents are being appended, then we just need to (re)allocate and
3748 * initialize the space. Otherwise, if the new extents are being
3749 * inserted into the middle of the existing entries, a bit more work
3750 * is required to make room for the new extents to be inserted. The
3751 * caller is responsible for filling in the new extent entries upon
3752 * return.
3753 */
3754void
3755xfs_iext_add(
3756 xfs_ifork_t *ifp, /* inode fork pointer */
3757 xfs_extnum_t idx, /* index to begin adding exts */
Nathan Scottc41564b2006-03-29 08:55:14 +10003758 int ext_diff) /* number of extents to add */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003759{
3760 int byte_diff; /* new bytes being added */
3761 int new_size; /* size of extents after adding */
3762 xfs_extnum_t nextents; /* number of extents in file */
3763
3764 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3765 ASSERT((idx >= 0) && (idx <= nextents));
3766 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3767 new_size = ifp->if_bytes + byte_diff;
3768 /*
3769 * If the new number of extents (nextents + ext_diff)
3770 * fits inside the inode, then continue to use the inline
3771 * extent buffer.
3772 */
3773 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3774 if (idx < nextents) {
3775 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3776 &ifp->if_u2.if_inline_ext[idx],
3777 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3778 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3779 }
3780 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3781 ifp->if_real_bytes = 0;
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003782 ifp->if_lastex = nextents + ext_diff;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003783 }
3784 /*
3785 * Otherwise use a linear (direct) extent list.
3786 * If the extents are currently inside the inode,
3787 * xfs_iext_realloc_direct will switch us from
3788 * inline to direct extent allocation mode.
3789 */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003790 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003791 xfs_iext_realloc_direct(ifp, new_size);
3792 if (idx < nextents) {
3793 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3794 &ifp->if_u1.if_extents[idx],
3795 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3796 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3797 }
3798 }
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003799 /* Indirection array */
3800 else {
3801 xfs_ext_irec_t *erp;
3802 int erp_idx = 0;
3803 int page_idx = idx;
3804
3805 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3806 if (ifp->if_flags & XFS_IFEXTIREC) {
3807 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3808 } else {
3809 xfs_iext_irec_init(ifp);
3810 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3811 erp = ifp->if_u1.if_ext_irec;
3812 }
3813 /* Extents fit in target extent page */
3814 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3815 if (page_idx < erp->er_extcount) {
3816 memmove(&erp->er_extbuf[page_idx + ext_diff],
3817 &erp->er_extbuf[page_idx],
3818 (erp->er_extcount - page_idx) *
3819 sizeof(xfs_bmbt_rec_t));
3820 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3821 }
3822 erp->er_extcount += ext_diff;
3823 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3824 }
3825 /* Insert a new extent page */
3826 else if (erp) {
3827 xfs_iext_add_indirect_multi(ifp,
3828 erp_idx, page_idx, ext_diff);
3829 }
3830 /*
3831 * If extent(s) are being appended to the last page in
3832 * the indirection array and the new extent(s) don't fit
3833 * in the page, then erp is NULL and erp_idx is set to
3834 * the next index needed in the indirection array.
3835 */
3836 else {
3837 int count = ext_diff;
3838
3839 while (count) {
3840 erp = xfs_iext_irec_new(ifp, erp_idx);
3841 erp->er_extcount = count;
3842 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3843 if (count) {
3844 erp_idx++;
3845 }
3846 }
3847 }
3848 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003849 ifp->if_bytes = new_size;
3850}
3851
3852/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003853 * This is called when incore extents are being added to the indirection
3854 * array and the new extents do not fit in the target extent list. The
3855 * erp_idx parameter contains the irec index for the target extent list
3856 * in the indirection array, and the idx parameter contains the extent
3857 * index within the list. The number of extents being added is stored
3858 * in the count parameter.
3859 *
3860 * |-------| |-------|
3861 * | | | | idx - number of extents before idx
3862 * | idx | | count |
3863 * | | | | count - number of extents being inserted at idx
3864 * |-------| |-------|
3865 * | count | | nex2 | nex2 - number of extents after idx + count
3866 * |-------| |-------|
3867 */
3868void
3869xfs_iext_add_indirect_multi(
3870 xfs_ifork_t *ifp, /* inode fork pointer */
3871 int erp_idx, /* target extent irec index */
3872 xfs_extnum_t idx, /* index within target list */
3873 int count) /* new extents being added */
3874{
3875 int byte_diff; /* new bytes being added */
3876 xfs_ext_irec_t *erp; /* pointer to irec entry */
3877 xfs_extnum_t ext_diff; /* number of extents to add */
3878 xfs_extnum_t ext_cnt; /* new extents still needed */
3879 xfs_extnum_t nex2; /* extents after idx + count */
3880 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3881 int nlists; /* number of irec's (lists) */
3882
3883 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3884 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3885 nex2 = erp->er_extcount - idx;
3886 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3887
3888 /*
3889 * Save second part of target extent list
3890 * (all extents past */
3891 if (nex2) {
3892 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3893 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3894 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3895 erp->er_extcount -= nex2;
3896 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3897 memset(&erp->er_extbuf[idx], 0, byte_diff);
3898 }
3899
3900 /*
3901 * Add the new extents to the end of the target
3902 * list, then allocate new irec record(s) and
3903 * extent buffer(s) as needed to store the rest
3904 * of the new extents.
3905 */
3906 ext_cnt = count;
3907 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3908 if (ext_diff) {
3909 erp->er_extcount += ext_diff;
3910 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3911 ext_cnt -= ext_diff;
3912 }
3913 while (ext_cnt) {
3914 erp_idx++;
3915 erp = xfs_iext_irec_new(ifp, erp_idx);
3916 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3917 erp->er_extcount = ext_diff;
3918 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3919 ext_cnt -= ext_diff;
3920 }
3921
3922 /* Add nex2 extents back to indirection array */
3923 if (nex2) {
3924 xfs_extnum_t ext_avail;
3925 int i;
3926
3927 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3928 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3929 i = 0;
3930 /*
3931 * If nex2 extents fit in the current page, append
3932 * nex2_ep after the new extents.
3933 */
3934 if (nex2 <= ext_avail) {
3935 i = erp->er_extcount;
3936 }
3937 /*
3938 * Otherwise, check if space is available in the
3939 * next page.
3940 */
3941 else if ((erp_idx < nlists - 1) &&
3942 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3943 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3944 erp_idx++;
3945 erp++;
3946 /* Create a hole for nex2 extents */
3947 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3948 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3949 }
3950 /*
3951 * Final choice, create a new extent page for
3952 * nex2 extents.
3953 */
3954 else {
3955 erp_idx++;
3956 erp = xfs_iext_irec_new(ifp, erp_idx);
3957 }
3958 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3959 kmem_free(nex2_ep, byte_diff);
3960 erp->er_extcount += nex2;
3961 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3962 }
3963}
3964
3965/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003966 * This is called when the amount of space required for incore file
3967 * extents needs to be decreased. The ext_diff parameter stores the
3968 * number of extents to be removed and the idx parameter contains
3969 * the extent index where the extents will be removed from.
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003970 *
3971 * If the amount of space needed has decreased below the linear
3972 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3973 * extent array. Otherwise, use kmem_realloc() to adjust the
3974 * size to what is needed.
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003975 */
3976void
3977xfs_iext_remove(
3978 xfs_ifork_t *ifp, /* inode fork pointer */
3979 xfs_extnum_t idx, /* index to begin removing exts */
3980 int ext_diff) /* number of extents to remove */
3981{
3982 xfs_extnum_t nextents; /* number of extents in file */
3983 int new_size; /* size of extents after removal */
3984
3985 ASSERT(ext_diff > 0);
3986 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3987 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3988
3989 if (new_size == 0) {
3990 xfs_iext_destroy(ifp);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003991 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3992 xfs_iext_remove_indirect(ifp, idx, ext_diff);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003993 } else if (ifp->if_real_bytes) {
3994 xfs_iext_remove_direct(ifp, idx, ext_diff);
3995 } else {
3996 xfs_iext_remove_inline(ifp, idx, ext_diff);
3997 }
3998 ifp->if_bytes = new_size;
3999}
4000
4001/*
4002 * This removes ext_diff extents from the inline buffer, beginning
4003 * at extent index idx.
4004 */
4005void
4006xfs_iext_remove_inline(
4007 xfs_ifork_t *ifp, /* inode fork pointer */
4008 xfs_extnum_t idx, /* index to begin removing exts */
4009 int ext_diff) /* number of extents to remove */
4010{
4011 int nextents; /* number of extents in file */
4012
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004013 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004014 ASSERT(idx < XFS_INLINE_EXTS);
4015 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4016 ASSERT(((nextents - ext_diff) > 0) &&
4017 (nextents - ext_diff) < XFS_INLINE_EXTS);
4018
4019 if (idx + ext_diff < nextents) {
4020 memmove(&ifp->if_u2.if_inline_ext[idx],
4021 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4022 (nextents - (idx + ext_diff)) *
4023 sizeof(xfs_bmbt_rec_t));
4024 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4025 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4026 } else {
4027 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4028 ext_diff * sizeof(xfs_bmbt_rec_t));
4029 }
4030}
4031
4032/*
4033 * This removes ext_diff extents from a linear (direct) extent list,
4034 * beginning at extent index idx. If the extents are being removed
4035 * from the end of the list (ie. truncate) then we just need to re-
4036 * allocate the list to remove the extra space. Otherwise, if the
4037 * extents are being removed from the middle of the existing extent
4038 * entries, then we first need to move the extent records beginning
4039 * at idx + ext_diff up in the list to overwrite the records being
4040 * removed, then remove the extra space via kmem_realloc.
4041 */
4042void
4043xfs_iext_remove_direct(
4044 xfs_ifork_t *ifp, /* inode fork pointer */
4045 xfs_extnum_t idx, /* index to begin removing exts */
4046 int ext_diff) /* number of extents to remove */
4047{
4048 xfs_extnum_t nextents; /* number of extents in file */
4049 int new_size; /* size of extents after removal */
4050
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004051 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004052 new_size = ifp->if_bytes -
4053 (ext_diff * sizeof(xfs_bmbt_rec_t));
4054 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4055
4056 if (new_size == 0) {
4057 xfs_iext_destroy(ifp);
4058 return;
4059 }
4060 /* Move extents up in the list (if needed) */
4061 if (idx + ext_diff < nextents) {
4062 memmove(&ifp->if_u1.if_extents[idx],
4063 &ifp->if_u1.if_extents[idx + ext_diff],
4064 (nextents - (idx + ext_diff)) *
4065 sizeof(xfs_bmbt_rec_t));
4066 }
4067 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4068 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4069 /*
4070 * Reallocate the direct extent list. If the extents
4071 * will fit inside the inode then xfs_iext_realloc_direct
4072 * will switch from direct to inline extent allocation
4073 * mode for us.
4074 */
4075 xfs_iext_realloc_direct(ifp, new_size);
4076 ifp->if_bytes = new_size;
4077}
4078
4079/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004080 * This is called when incore extents are being removed from the
4081 * indirection array and the extents being removed span multiple extent
4082 * buffers. The idx parameter contains the file extent index where we
4083 * want to begin removing extents, and the count parameter contains
4084 * how many extents need to be removed.
4085 *
4086 * |-------| |-------|
4087 * | nex1 | | | nex1 - number of extents before idx
4088 * |-------| | count |
4089 * | | | | count - number of extents being removed at idx
4090 * | count | |-------|
4091 * | | | nex2 | nex2 - number of extents after idx + count
4092 * |-------| |-------|
4093 */
4094void
4095xfs_iext_remove_indirect(
4096 xfs_ifork_t *ifp, /* inode fork pointer */
4097 xfs_extnum_t idx, /* index to begin removing extents */
4098 int count) /* number of extents to remove */
4099{
4100 xfs_ext_irec_t *erp; /* indirection array pointer */
4101 int erp_idx = 0; /* indirection array index */
4102 xfs_extnum_t ext_cnt; /* extents left to remove */
4103 xfs_extnum_t ext_diff; /* extents to remove in current list */
4104 xfs_extnum_t nex1; /* number of extents before idx */
4105 xfs_extnum_t nex2; /* extents after idx + count */
Nathan Scottc41564b2006-03-29 08:55:14 +10004106 int nlists; /* entries in indirection array */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004107 int page_idx = idx; /* index in target extent list */
4108
4109 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4110 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4111 ASSERT(erp != NULL);
4112 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4113 nex1 = page_idx;
4114 ext_cnt = count;
4115 while (ext_cnt) {
4116 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4117 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4118 /*
4119 * Check for deletion of entire list;
4120 * xfs_iext_irec_remove() updates extent offsets.
4121 */
4122 if (ext_diff == erp->er_extcount) {
4123 xfs_iext_irec_remove(ifp, erp_idx);
4124 ext_cnt -= ext_diff;
4125 nex1 = 0;
4126 if (ext_cnt) {
4127 ASSERT(erp_idx < ifp->if_real_bytes /
4128 XFS_IEXT_BUFSZ);
4129 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4130 nex1 = 0;
4131 continue;
4132 } else {
4133 break;
4134 }
4135 }
4136 /* Move extents up (if needed) */
4137 if (nex2) {
4138 memmove(&erp->er_extbuf[nex1],
4139 &erp->er_extbuf[nex1 + ext_diff],
4140 nex2 * sizeof(xfs_bmbt_rec_t));
4141 }
4142 /* Zero out rest of page */
4143 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4144 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4145 /* Update remaining counters */
4146 erp->er_extcount -= ext_diff;
4147 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4148 ext_cnt -= ext_diff;
4149 nex1 = 0;
4150 erp_idx++;
4151 erp++;
4152 }
4153 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4154 xfs_iext_irec_compact(ifp);
4155}
4156
4157/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004158 * Create, destroy, or resize a linear (direct) block of extents.
4159 */
4160void
4161xfs_iext_realloc_direct(
4162 xfs_ifork_t *ifp, /* inode fork pointer */
4163 int new_size) /* new size of extents */
4164{
4165 int rnew_size; /* real new size of extents */
4166
4167 rnew_size = new_size;
4168
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004169 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4170 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4171 (new_size != ifp->if_real_bytes)));
4172
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004173 /* Free extent records */
4174 if (new_size == 0) {
4175 xfs_iext_destroy(ifp);
4176 }
4177 /* Resize direct extent list and zero any new bytes */
4178 else if (ifp->if_real_bytes) {
4179 /* Check if extents will fit inside the inode */
4180 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4181 xfs_iext_direct_to_inline(ifp, new_size /
4182 (uint)sizeof(xfs_bmbt_rec_t));
4183 ifp->if_bytes = new_size;
4184 return;
4185 }
Vignesh Babu16a087d2007-06-28 16:46:37 +10004186 if (!is_power_of_2(new_size)){
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004187 rnew_size = xfs_iroundup(new_size);
4188 }
4189 if (rnew_size != ifp->if_real_bytes) {
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004190 ifp->if_u1.if_extents =
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004191 kmem_realloc(ifp->if_u1.if_extents,
4192 rnew_size,
4193 ifp->if_real_bytes,
4194 KM_SLEEP);
4195 }
4196 if (rnew_size > ifp->if_real_bytes) {
4197 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4198 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4199 rnew_size - ifp->if_real_bytes);
4200 }
4201 }
4202 /*
4203 * Switch from the inline extent buffer to a direct
4204 * extent list. Be sure to include the inline extent
4205 * bytes in new_size.
4206 */
4207 else {
4208 new_size += ifp->if_bytes;
Vignesh Babu16a087d2007-06-28 16:46:37 +10004209 if (!is_power_of_2(new_size)) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004210 rnew_size = xfs_iroundup(new_size);
4211 }
4212 xfs_iext_inline_to_direct(ifp, rnew_size);
4213 }
4214 ifp->if_real_bytes = rnew_size;
4215 ifp->if_bytes = new_size;
4216}
4217
4218/*
4219 * Switch from linear (direct) extent records to inline buffer.
4220 */
4221void
4222xfs_iext_direct_to_inline(
4223 xfs_ifork_t *ifp, /* inode fork pointer */
4224 xfs_extnum_t nextents) /* number of extents in file */
4225{
4226 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4227 ASSERT(nextents <= XFS_INLINE_EXTS);
4228 /*
4229 * The inline buffer was zeroed when we switched
4230 * from inline to direct extent allocation mode,
4231 * so we don't need to clear it here.
4232 */
4233 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4234 nextents * sizeof(xfs_bmbt_rec_t));
Mandy Kirkconnellfe6c1e72006-06-09 14:51:25 +10004235 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004236 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4237 ifp->if_real_bytes = 0;
4238}
4239
4240/*
4241 * Switch from inline buffer to linear (direct) extent records.
4242 * new_size should already be rounded up to the next power of 2
4243 * by the caller (when appropriate), so use new_size as it is.
4244 * However, since new_size may be rounded up, we can't update
4245 * if_bytes here. It is the caller's responsibility to update
4246 * if_bytes upon return.
4247 */
4248void
4249xfs_iext_inline_to_direct(
4250 xfs_ifork_t *ifp, /* inode fork pointer */
4251 int new_size) /* number of extents in file */
4252{
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004253 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004254 memset(ifp->if_u1.if_extents, 0, new_size);
4255 if (ifp->if_bytes) {
4256 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4257 ifp->if_bytes);
4258 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4259 sizeof(xfs_bmbt_rec_t));
4260 }
4261 ifp->if_real_bytes = new_size;
4262}
4263
4264/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004265 * Resize an extent indirection array to new_size bytes.
4266 */
4267void
4268xfs_iext_realloc_indirect(
4269 xfs_ifork_t *ifp, /* inode fork pointer */
4270 int new_size) /* new indirection array size */
4271{
4272 int nlists; /* number of irec's (ex lists) */
4273 int size; /* current indirection array size */
4274
4275 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4276 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4277 size = nlists * sizeof(xfs_ext_irec_t);
4278 ASSERT(ifp->if_real_bytes);
4279 ASSERT((new_size >= 0) && (new_size != size));
4280 if (new_size == 0) {
4281 xfs_iext_destroy(ifp);
4282 } else {
4283 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4284 kmem_realloc(ifp->if_u1.if_ext_irec,
4285 new_size, size, KM_SLEEP);
4286 }
4287}
4288
4289/*
4290 * Switch from indirection array to linear (direct) extent allocations.
4291 */
4292void
4293xfs_iext_indirect_to_direct(
4294 xfs_ifork_t *ifp) /* inode fork pointer */
4295{
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004296 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004297 xfs_extnum_t nextents; /* number of extents in file */
4298 int size; /* size of file extents */
4299
4300 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4301 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4302 ASSERT(nextents <= XFS_LINEAR_EXTS);
4303 size = nextents * sizeof(xfs_bmbt_rec_t);
4304
4305 xfs_iext_irec_compact_full(ifp);
4306 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4307
4308 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4309 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4310 ifp->if_flags &= ~XFS_IFEXTIREC;
4311 ifp->if_u1.if_extents = ep;
4312 ifp->if_bytes = size;
4313 if (nextents < XFS_LINEAR_EXTS) {
4314 xfs_iext_realloc_direct(ifp, size);
4315 }
4316}
4317
4318/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004319 * Free incore file extents.
4320 */
4321void
4322xfs_iext_destroy(
4323 xfs_ifork_t *ifp) /* inode fork pointer */
4324{
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004325 if (ifp->if_flags & XFS_IFEXTIREC) {
4326 int erp_idx;
4327 int nlists;
4328
4329 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4330 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4331 xfs_iext_irec_remove(ifp, erp_idx);
4332 }
4333 ifp->if_flags &= ~XFS_IFEXTIREC;
4334 } else if (ifp->if_real_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004335 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4336 } else if (ifp->if_bytes) {
4337 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4338 sizeof(xfs_bmbt_rec_t));
4339 }
4340 ifp->if_u1.if_extents = NULL;
4341 ifp->if_real_bytes = 0;
4342 ifp->if_bytes = 0;
4343}
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004344
4345/*
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004346 * Return a pointer to the extent record for file system block bno.
4347 */
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004348xfs_bmbt_rec_host_t * /* pointer to found extent record */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004349xfs_iext_bno_to_ext(
4350 xfs_ifork_t *ifp, /* inode fork pointer */
4351 xfs_fileoff_t bno, /* block number to search for */
4352 xfs_extnum_t *idxp) /* index of target extent */
4353{
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004354 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004355 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004356 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004357 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
Nathan Scottc41564b2006-03-29 08:55:14 +10004358 int high; /* upper boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004359 xfs_extnum_t idx = 0; /* index of target extent */
Nathan Scottc41564b2006-03-29 08:55:14 +10004360 int low; /* lower boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004361 xfs_extnum_t nextents; /* number of file extents */
4362 xfs_fileoff_t startoff = 0; /* start offset of extent */
4363
4364 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4365 if (nextents == 0) {
4366 *idxp = 0;
4367 return NULL;
4368 }
4369 low = 0;
4370 if (ifp->if_flags & XFS_IFEXTIREC) {
4371 /* Find target extent list */
4372 int erp_idx = 0;
4373 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4374 base = erp->er_extbuf;
4375 high = erp->er_extcount - 1;
4376 } else {
4377 base = ifp->if_u1.if_extents;
4378 high = nextents - 1;
4379 }
4380 /* Binary search extent records */
4381 while (low <= high) {
4382 idx = (low + high) >> 1;
4383 ep = base + idx;
4384 startoff = xfs_bmbt_get_startoff(ep);
4385 blockcount = xfs_bmbt_get_blockcount(ep);
4386 if (bno < startoff) {
4387 high = idx - 1;
4388 } else if (bno >= startoff + blockcount) {
4389 low = idx + 1;
4390 } else {
4391 /* Convert back to file-based extent index */
4392 if (ifp->if_flags & XFS_IFEXTIREC) {
4393 idx += erp->er_extoff;
4394 }
4395 *idxp = idx;
4396 return ep;
4397 }
4398 }
4399 /* Convert back to file-based extent index */
4400 if (ifp->if_flags & XFS_IFEXTIREC) {
4401 idx += erp->er_extoff;
4402 }
4403 if (bno >= startoff + blockcount) {
4404 if (++idx == nextents) {
4405 ep = NULL;
4406 } else {
4407 ep = xfs_iext_get_ext(ifp, idx);
4408 }
4409 }
4410 *idxp = idx;
4411 return ep;
4412}
4413
4414/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004415 * Return a pointer to the indirection array entry containing the
4416 * extent record for filesystem block bno. Store the index of the
4417 * target irec in *erp_idxp.
4418 */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004419xfs_ext_irec_t * /* pointer to found extent record */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004420xfs_iext_bno_to_irec(
4421 xfs_ifork_t *ifp, /* inode fork pointer */
4422 xfs_fileoff_t bno, /* block number to search for */
4423 int *erp_idxp) /* irec index of target ext list */
4424{
4425 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4426 xfs_ext_irec_t *erp_next; /* next indirection array entry */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004427 int erp_idx; /* indirection array index */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004428 int nlists; /* number of extent irec's (lists) */
4429 int high; /* binary search upper limit */
4430 int low; /* binary search lower limit */
4431
4432 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4433 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4434 erp_idx = 0;
4435 low = 0;
4436 high = nlists - 1;
4437 while (low <= high) {
4438 erp_idx = (low + high) >> 1;
4439 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4440 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4441 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4442 high = erp_idx - 1;
4443 } else if (erp_next && bno >=
4444 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4445 low = erp_idx + 1;
4446 } else {
4447 break;
4448 }
4449 }
4450 *erp_idxp = erp_idx;
4451 return erp;
4452}
4453
4454/*
4455 * Return a pointer to the indirection array entry containing the
4456 * extent record at file extent index *idxp. Store the index of the
4457 * target irec in *erp_idxp and store the page index of the target
4458 * extent record in *idxp.
4459 */
4460xfs_ext_irec_t *
4461xfs_iext_idx_to_irec(
4462 xfs_ifork_t *ifp, /* inode fork pointer */
4463 xfs_extnum_t *idxp, /* extent index (file -> page) */
4464 int *erp_idxp, /* pointer to target irec */
4465 int realloc) /* new bytes were just added */
4466{
4467 xfs_ext_irec_t *prev; /* pointer to previous irec */
4468 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4469 int erp_idx; /* indirection array index */
4470 int nlists; /* number of irec's (ex lists) */
4471 int high; /* binary search upper limit */
4472 int low; /* binary search lower limit */
4473 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4474
4475 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4476 ASSERT(page_idx >= 0 && page_idx <=
4477 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4478 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4479 erp_idx = 0;
4480 low = 0;
4481 high = nlists - 1;
4482
4483 /* Binary search extent irec's */
4484 while (low <= high) {
4485 erp_idx = (low + high) >> 1;
4486 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4487 prev = erp_idx > 0 ? erp - 1 : NULL;
4488 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4489 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4490 high = erp_idx - 1;
4491 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4492 (page_idx == erp->er_extoff + erp->er_extcount &&
4493 !realloc)) {
4494 low = erp_idx + 1;
4495 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4496 erp->er_extcount == XFS_LINEAR_EXTS) {
4497 ASSERT(realloc);
4498 page_idx = 0;
4499 erp_idx++;
4500 erp = erp_idx < nlists ? erp + 1 : NULL;
4501 break;
4502 } else {
4503 page_idx -= erp->er_extoff;
4504 break;
4505 }
4506 }
4507 *idxp = page_idx;
4508 *erp_idxp = erp_idx;
4509 return(erp);
4510}
4511
4512/*
4513 * Allocate and initialize an indirection array once the space needed
4514 * for incore extents increases above XFS_IEXT_BUFSZ.
4515 */
4516void
4517xfs_iext_irec_init(
4518 xfs_ifork_t *ifp) /* inode fork pointer */
4519{
4520 xfs_ext_irec_t *erp; /* indirection array pointer */
4521 xfs_extnum_t nextents; /* number of extents in file */
4522
4523 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4524 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4525 ASSERT(nextents <= XFS_LINEAR_EXTS);
4526
4527 erp = (xfs_ext_irec_t *)
4528 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4529
4530 if (nextents == 0) {
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004531 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004532 } else if (!ifp->if_real_bytes) {
4533 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4534 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4535 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4536 }
4537 erp->er_extbuf = ifp->if_u1.if_extents;
4538 erp->er_extcount = nextents;
4539 erp->er_extoff = 0;
4540
4541 ifp->if_flags |= XFS_IFEXTIREC;
4542 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4543 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4544 ifp->if_u1.if_ext_irec = erp;
4545
4546 return;
4547}
4548
4549/*
4550 * Allocate and initialize a new entry in the indirection array.
4551 */
4552xfs_ext_irec_t *
4553xfs_iext_irec_new(
4554 xfs_ifork_t *ifp, /* inode fork pointer */
4555 int erp_idx) /* index for new irec */
4556{
4557 xfs_ext_irec_t *erp; /* indirection array pointer */
4558 int i; /* loop counter */
4559 int nlists; /* number of irec's (ex lists) */
4560
4561 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4562 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4563
4564 /* Resize indirection array */
4565 xfs_iext_realloc_indirect(ifp, ++nlists *
4566 sizeof(xfs_ext_irec_t));
4567 /*
4568 * Move records down in the array so the
4569 * new page can use erp_idx.
4570 */
4571 erp = ifp->if_u1.if_ext_irec;
4572 for (i = nlists - 1; i > erp_idx; i--) {
4573 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4574 }
4575 ASSERT(i == erp_idx);
4576
4577 /* Initialize new extent record */
4578 erp = ifp->if_u1.if_ext_irec;
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004579 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004580 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4581 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4582 erp[erp_idx].er_extcount = 0;
4583 erp[erp_idx].er_extoff = erp_idx > 0 ?
4584 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4585 return (&erp[erp_idx]);
4586}
4587
4588/*
4589 * Remove a record from the indirection array.
4590 */
4591void
4592xfs_iext_irec_remove(
4593 xfs_ifork_t *ifp, /* inode fork pointer */
4594 int erp_idx) /* irec index to remove */
4595{
4596 xfs_ext_irec_t *erp; /* indirection array pointer */
4597 int i; /* loop counter */
4598 int nlists; /* number of irec's (ex lists) */
4599
4600 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4601 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4602 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4603 if (erp->er_extbuf) {
4604 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4605 -erp->er_extcount);
4606 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4607 }
4608 /* Compact extent records */
4609 erp = ifp->if_u1.if_ext_irec;
4610 for (i = erp_idx; i < nlists - 1; i++) {
4611 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4612 }
4613 /*
4614 * Manually free the last extent record from the indirection
4615 * array. A call to xfs_iext_realloc_indirect() with a size
4616 * of zero would result in a call to xfs_iext_destroy() which
4617 * would in turn call this function again, creating a nasty
4618 * infinite loop.
4619 */
4620 if (--nlists) {
4621 xfs_iext_realloc_indirect(ifp,
4622 nlists * sizeof(xfs_ext_irec_t));
4623 } else {
4624 kmem_free(ifp->if_u1.if_ext_irec,
4625 sizeof(xfs_ext_irec_t));
4626 }
4627 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4628}
4629
4630/*
4631 * This is called to clean up large amounts of unused memory allocated
4632 * by the indirection array. Before compacting anything though, verify
4633 * that the indirection array is still needed and switch back to the
4634 * linear extent list (or even the inline buffer) if possible. The
4635 * compaction policy is as follows:
4636 *
4637 * Full Compaction: Extents fit into a single page (or inline buffer)
4638 * Full Compaction: Extents occupy less than 10% of allocated space
4639 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4640 * No Compaction: Extents occupy at least 50% of allocated space
4641 */
4642void
4643xfs_iext_irec_compact(
4644 xfs_ifork_t *ifp) /* inode fork pointer */
4645{
4646 xfs_extnum_t nextents; /* number of extents in file */
4647 int nlists; /* number of irec's (ex lists) */
4648
4649 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4650 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4651 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4652
4653 if (nextents == 0) {
4654 xfs_iext_destroy(ifp);
4655 } else if (nextents <= XFS_INLINE_EXTS) {
4656 xfs_iext_indirect_to_direct(ifp);
4657 xfs_iext_direct_to_inline(ifp, nextents);
4658 } else if (nextents <= XFS_LINEAR_EXTS) {
4659 xfs_iext_indirect_to_direct(ifp);
4660 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4661 xfs_iext_irec_compact_full(ifp);
4662 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4663 xfs_iext_irec_compact_pages(ifp);
4664 }
4665}
4666
4667/*
4668 * Combine extents from neighboring extent pages.
4669 */
4670void
4671xfs_iext_irec_compact_pages(
4672 xfs_ifork_t *ifp) /* inode fork pointer */
4673{
4674 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4675 int erp_idx = 0; /* indirection array index */
4676 int nlists; /* number of irec's (ex lists) */
4677
4678 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4679 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4680 while (erp_idx < nlists - 1) {
4681 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4682 erp_next = erp + 1;
4683 if (erp_next->er_extcount <=
4684 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4685 memmove(&erp->er_extbuf[erp->er_extcount],
4686 erp_next->er_extbuf, erp_next->er_extcount *
4687 sizeof(xfs_bmbt_rec_t));
4688 erp->er_extcount += erp_next->er_extcount;
4689 /*
4690 * Free page before removing extent record
4691 * so er_extoffs don't get modified in
4692 * xfs_iext_irec_remove.
4693 */
4694 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4695 erp_next->er_extbuf = NULL;
4696 xfs_iext_irec_remove(ifp, erp_idx + 1);
4697 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4698 } else {
4699 erp_idx++;
4700 }
4701 }
4702}
4703
4704/*
4705 * Fully compact the extent records managed by the indirection array.
4706 */
4707void
4708xfs_iext_irec_compact_full(
4709 xfs_ifork_t *ifp) /* inode fork pointer */
4710{
Christoph Hellwiga6f64d42007-08-16 16:23:40 +10004711 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004712 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4713 int erp_idx = 0; /* extent irec index */
4714 int ext_avail; /* empty entries in ex list */
4715 int ext_diff; /* number of exts to add */
4716 int nlists; /* number of irec's (ex lists) */
4717
4718 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4719 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4720 erp = ifp->if_u1.if_ext_irec;
4721 ep = &erp->er_extbuf[erp->er_extcount];
4722 erp_next = erp + 1;
4723 ep_next = erp_next->er_extbuf;
4724 while (erp_idx < nlists - 1) {
4725 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4726 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4727 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4728 erp->er_extcount += ext_diff;
4729 erp_next->er_extcount -= ext_diff;
4730 /* Remove next page */
4731 if (erp_next->er_extcount == 0) {
4732 /*
4733 * Free page before removing extent record
4734 * so er_extoffs don't get modified in
4735 * xfs_iext_irec_remove.
4736 */
4737 kmem_free(erp_next->er_extbuf,
4738 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4739 erp_next->er_extbuf = NULL;
4740 xfs_iext_irec_remove(ifp, erp_idx + 1);
4741 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4742 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4743 /* Update next page */
4744 } else {
4745 /* Move rest of page up to become next new page */
4746 memmove(erp_next->er_extbuf, ep_next,
4747 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4748 ep_next = erp_next->er_extbuf;
4749 memset(&ep_next[erp_next->er_extcount], 0,
4750 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4751 sizeof(xfs_bmbt_rec_t));
4752 }
4753 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4754 erp_idx++;
4755 if (erp_idx < nlists)
4756 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4757 else
4758 break;
4759 }
4760 ep = &erp->er_extbuf[erp->er_extcount];
4761 erp_next = erp + 1;
4762 ep_next = erp_next->er_extbuf;
4763 }
4764}
4765
4766/*
4767 * This is called to update the er_extoff field in the indirection
4768 * array when extents have been added or removed from one of the
4769 * extent lists. erp_idx contains the irec index to begin updating
4770 * at and ext_diff contains the number of extents that were added
4771 * or removed.
4772 */
4773void
4774xfs_iext_irec_update_extoffs(
4775 xfs_ifork_t *ifp, /* inode fork pointer */
4776 int erp_idx, /* irec index to update */
4777 int ext_diff) /* number of new extents */
4778{
4779 int i; /* loop counter */
4780 int nlists; /* number of irec's (ex lists */
4781
4782 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4783 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4784 for (i = erp_idx; i < nlists; i++) {
4785 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4786 }
4787}