Matt Porter | c2dde5f | 2012-08-22 21:09:34 -0400 | [diff] [blame] | 1 | /* |
| 2 | * TI EDMA DMA engine driver |
| 3 | * |
| 4 | * Copyright 2012 Texas Instruments |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License as |
| 8 | * published by the Free Software Foundation version 2. |
| 9 | * |
| 10 | * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| 11 | * kind, whether express or implied; without even the implied warranty |
| 12 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/dmaengine.h> |
| 17 | #include <linux/dma-mapping.h> |
| 18 | #include <linux/err.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/interrupt.h> |
| 21 | #include <linux/list.h> |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/platform_device.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/spinlock.h> |
| 26 | |
| 27 | #include <mach/edma.h> |
| 28 | |
| 29 | #include "dmaengine.h" |
| 30 | #include "virt-dma.h" |
| 31 | |
| 32 | /* |
| 33 | * This will go away when the private EDMA API is folded |
| 34 | * into this driver and the platform device(s) are |
| 35 | * instantiated in the arch code. We can only get away |
| 36 | * with this simplification because DA8XX may not be built |
| 37 | * in the same kernel image with other DaVinci parts. This |
| 38 | * avoids having to sprinkle dmaengine driver platform devices |
| 39 | * and data throughout all the existing board files. |
| 40 | */ |
| 41 | #ifdef CONFIG_ARCH_DAVINCI_DA8XX |
| 42 | #define EDMA_CTLRS 2 |
| 43 | #define EDMA_CHANS 32 |
| 44 | #else |
| 45 | #define EDMA_CTLRS 1 |
| 46 | #define EDMA_CHANS 64 |
| 47 | #endif /* CONFIG_ARCH_DAVINCI_DA8XX */ |
| 48 | |
| 49 | /* Max of 16 segments per channel to conserve PaRAM slots */ |
| 50 | #define MAX_NR_SG 16 |
| 51 | #define EDMA_MAX_SLOTS MAX_NR_SG |
| 52 | #define EDMA_DESCRIPTORS 16 |
| 53 | |
| 54 | struct edma_desc { |
| 55 | struct virt_dma_desc vdesc; |
| 56 | struct list_head node; |
| 57 | int absync; |
| 58 | int pset_nr; |
| 59 | struct edmacc_param pset[0]; |
| 60 | }; |
| 61 | |
| 62 | struct edma_cc; |
| 63 | |
| 64 | struct edma_chan { |
| 65 | struct virt_dma_chan vchan; |
| 66 | struct list_head node; |
| 67 | struct edma_desc *edesc; |
| 68 | struct edma_cc *ecc; |
| 69 | int ch_num; |
| 70 | bool alloced; |
| 71 | int slot[EDMA_MAX_SLOTS]; |
| 72 | dma_addr_t addr; |
| 73 | int addr_width; |
| 74 | int maxburst; |
| 75 | }; |
| 76 | |
| 77 | struct edma_cc { |
| 78 | int ctlr; |
| 79 | struct dma_device dma_slave; |
| 80 | struct edma_chan slave_chans[EDMA_CHANS]; |
| 81 | int num_slave_chans; |
| 82 | int dummy_slot; |
| 83 | }; |
| 84 | |
| 85 | static inline struct edma_cc *to_edma_cc(struct dma_device *d) |
| 86 | { |
| 87 | return container_of(d, struct edma_cc, dma_slave); |
| 88 | } |
| 89 | |
| 90 | static inline struct edma_chan *to_edma_chan(struct dma_chan *c) |
| 91 | { |
| 92 | return container_of(c, struct edma_chan, vchan.chan); |
| 93 | } |
| 94 | |
| 95 | static inline struct edma_desc |
| 96 | *to_edma_desc(struct dma_async_tx_descriptor *tx) |
| 97 | { |
| 98 | return container_of(tx, struct edma_desc, vdesc.tx); |
| 99 | } |
| 100 | |
| 101 | static void edma_desc_free(struct virt_dma_desc *vdesc) |
| 102 | { |
| 103 | kfree(container_of(vdesc, struct edma_desc, vdesc)); |
| 104 | } |
| 105 | |
| 106 | /* Dispatch a queued descriptor to the controller (caller holds lock) */ |
| 107 | static void edma_execute(struct edma_chan *echan) |
| 108 | { |
| 109 | struct virt_dma_desc *vdesc = vchan_next_desc(&echan->vchan); |
| 110 | struct edma_desc *edesc; |
| 111 | int i; |
| 112 | |
| 113 | if (!vdesc) { |
| 114 | echan->edesc = NULL; |
| 115 | return; |
| 116 | } |
| 117 | |
| 118 | list_del(&vdesc->node); |
| 119 | |
| 120 | echan->edesc = edesc = to_edma_desc(&vdesc->tx); |
| 121 | |
| 122 | /* Write descriptor PaRAM set(s) */ |
| 123 | for (i = 0; i < edesc->pset_nr; i++) { |
| 124 | edma_write_slot(echan->slot[i], &edesc->pset[i]); |
| 125 | dev_dbg(echan->vchan.chan.device->dev, |
| 126 | "\n pset[%d]:\n" |
| 127 | " chnum\t%d\n" |
| 128 | " slot\t%d\n" |
| 129 | " opt\t%08x\n" |
| 130 | " src\t%08x\n" |
| 131 | " dst\t%08x\n" |
| 132 | " abcnt\t%08x\n" |
| 133 | " ccnt\t%08x\n" |
| 134 | " bidx\t%08x\n" |
| 135 | " cidx\t%08x\n" |
| 136 | " lkrld\t%08x\n", |
| 137 | i, echan->ch_num, echan->slot[i], |
| 138 | edesc->pset[i].opt, |
| 139 | edesc->pset[i].src, |
| 140 | edesc->pset[i].dst, |
| 141 | edesc->pset[i].a_b_cnt, |
| 142 | edesc->pset[i].ccnt, |
| 143 | edesc->pset[i].src_dst_bidx, |
| 144 | edesc->pset[i].src_dst_cidx, |
| 145 | edesc->pset[i].link_bcntrld); |
| 146 | /* Link to the previous slot if not the last set */ |
| 147 | if (i != (edesc->pset_nr - 1)) |
| 148 | edma_link(echan->slot[i], echan->slot[i+1]); |
| 149 | /* Final pset links to the dummy pset */ |
| 150 | else |
| 151 | edma_link(echan->slot[i], echan->ecc->dummy_slot); |
| 152 | } |
| 153 | |
| 154 | edma_start(echan->ch_num); |
| 155 | } |
| 156 | |
| 157 | static int edma_terminate_all(struct edma_chan *echan) |
| 158 | { |
| 159 | unsigned long flags; |
| 160 | LIST_HEAD(head); |
| 161 | |
| 162 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 163 | |
| 164 | /* |
| 165 | * Stop DMA activity: we assume the callback will not be called |
| 166 | * after edma_dma() returns (even if it does, it will see |
| 167 | * echan->edesc is NULL and exit.) |
| 168 | */ |
| 169 | if (echan->edesc) { |
| 170 | echan->edesc = NULL; |
| 171 | edma_stop(echan->ch_num); |
| 172 | } |
| 173 | |
| 174 | vchan_get_all_descriptors(&echan->vchan, &head); |
| 175 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 176 | vchan_dma_desc_free_list(&echan->vchan, &head); |
| 177 | |
| 178 | return 0; |
| 179 | } |
| 180 | |
| 181 | |
| 182 | static int edma_slave_config(struct edma_chan *echan, |
| 183 | struct dma_slave_config *config) |
| 184 | { |
| 185 | if ((config->src_addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES) || |
| 186 | (config->dst_addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)) |
| 187 | return -EINVAL; |
| 188 | |
| 189 | if (config->direction == DMA_MEM_TO_DEV) { |
| 190 | if (config->dst_addr) |
| 191 | echan->addr = config->dst_addr; |
| 192 | if (config->dst_addr_width) |
| 193 | echan->addr_width = config->dst_addr_width; |
| 194 | if (config->dst_maxburst) |
| 195 | echan->maxburst = config->dst_maxburst; |
| 196 | } else if (config->direction == DMA_DEV_TO_MEM) { |
| 197 | if (config->src_addr) |
| 198 | echan->addr = config->src_addr; |
| 199 | if (config->src_addr_width) |
| 200 | echan->addr_width = config->src_addr_width; |
| 201 | if (config->src_maxburst) |
| 202 | echan->maxburst = config->src_maxburst; |
| 203 | } |
| 204 | |
| 205 | return 0; |
| 206 | } |
| 207 | |
| 208 | static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, |
| 209 | unsigned long arg) |
| 210 | { |
| 211 | int ret = 0; |
| 212 | struct dma_slave_config *config; |
| 213 | struct edma_chan *echan = to_edma_chan(chan); |
| 214 | |
| 215 | switch (cmd) { |
| 216 | case DMA_TERMINATE_ALL: |
| 217 | edma_terminate_all(echan); |
| 218 | break; |
| 219 | case DMA_SLAVE_CONFIG: |
| 220 | config = (struct dma_slave_config *)arg; |
| 221 | ret = edma_slave_config(echan, config); |
| 222 | break; |
| 223 | default: |
| 224 | ret = -ENOSYS; |
| 225 | } |
| 226 | |
| 227 | return ret; |
| 228 | } |
| 229 | |
| 230 | static struct dma_async_tx_descriptor *edma_prep_slave_sg( |
| 231 | struct dma_chan *chan, struct scatterlist *sgl, |
| 232 | unsigned int sg_len, enum dma_transfer_direction direction, |
| 233 | unsigned long tx_flags, void *context) |
| 234 | { |
| 235 | struct edma_chan *echan = to_edma_chan(chan); |
| 236 | struct device *dev = chan->device->dev; |
| 237 | struct edma_desc *edesc; |
| 238 | struct scatterlist *sg; |
| 239 | int i; |
| 240 | int acnt, bcnt, ccnt, src, dst, cidx; |
| 241 | int src_bidx, dst_bidx, src_cidx, dst_cidx; |
| 242 | |
| 243 | if (unlikely(!echan || !sgl || !sg_len)) |
| 244 | return NULL; |
| 245 | |
| 246 | if (echan->addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| 247 | dev_err(dev, "Undefined slave buswidth\n"); |
| 248 | return NULL; |
| 249 | } |
| 250 | |
| 251 | if (sg_len > MAX_NR_SG) { |
| 252 | dev_err(dev, "Exceeded max SG segments %d > %d\n", |
| 253 | sg_len, MAX_NR_SG); |
| 254 | return NULL; |
| 255 | } |
| 256 | |
| 257 | edesc = kzalloc(sizeof(*edesc) + sg_len * |
| 258 | sizeof(edesc->pset[0]), GFP_ATOMIC); |
| 259 | if (!edesc) { |
| 260 | dev_dbg(dev, "Failed to allocate a descriptor\n"); |
| 261 | return NULL; |
| 262 | } |
| 263 | |
| 264 | edesc->pset_nr = sg_len; |
| 265 | |
| 266 | for_each_sg(sgl, sg, sg_len, i) { |
| 267 | /* Allocate a PaRAM slot, if needed */ |
| 268 | if (echan->slot[i] < 0) { |
| 269 | echan->slot[i] = |
| 270 | edma_alloc_slot(EDMA_CTLR(echan->ch_num), |
| 271 | EDMA_SLOT_ANY); |
| 272 | if (echan->slot[i] < 0) { |
| 273 | dev_err(dev, "Failed to allocate slot\n"); |
| 274 | return NULL; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | acnt = echan->addr_width; |
| 279 | |
| 280 | /* |
| 281 | * If the maxburst is equal to the fifo width, use |
| 282 | * A-synced transfers. This allows for large contiguous |
| 283 | * buffer transfers using only one PaRAM set. |
| 284 | */ |
| 285 | if (echan->maxburst == 1) { |
| 286 | edesc->absync = false; |
| 287 | ccnt = sg_dma_len(sg) / acnt / (SZ_64K - 1); |
| 288 | bcnt = sg_dma_len(sg) / acnt - ccnt * (SZ_64K - 1); |
| 289 | if (bcnt) |
| 290 | ccnt++; |
| 291 | else |
| 292 | bcnt = SZ_64K - 1; |
| 293 | cidx = acnt; |
| 294 | /* |
| 295 | * If maxburst is greater than the fifo address_width, |
| 296 | * use AB-synced transfers where A count is the fifo |
| 297 | * address_width and B count is the maxburst. In this |
| 298 | * case, we are limited to transfers of C count frames |
| 299 | * of (address_width * maxburst) where C count is limited |
| 300 | * to SZ_64K-1. This places an upper bound on the length |
| 301 | * of an SG segment that can be handled. |
| 302 | */ |
| 303 | } else { |
| 304 | edesc->absync = true; |
| 305 | bcnt = echan->maxburst; |
| 306 | ccnt = sg_dma_len(sg) / (acnt * bcnt); |
| 307 | if (ccnt > (SZ_64K - 1)) { |
| 308 | dev_err(dev, "Exceeded max SG segment size\n"); |
| 309 | return NULL; |
| 310 | } |
| 311 | cidx = acnt * bcnt; |
| 312 | } |
| 313 | |
| 314 | if (direction == DMA_MEM_TO_DEV) { |
| 315 | src = sg_dma_address(sg); |
| 316 | dst = echan->addr; |
| 317 | src_bidx = acnt; |
| 318 | src_cidx = cidx; |
| 319 | dst_bidx = 0; |
| 320 | dst_cidx = 0; |
| 321 | } else { |
| 322 | src = echan->addr; |
| 323 | dst = sg_dma_address(sg); |
| 324 | src_bidx = 0; |
| 325 | src_cidx = 0; |
| 326 | dst_bidx = acnt; |
| 327 | dst_cidx = cidx; |
| 328 | } |
| 329 | |
| 330 | edesc->pset[i].opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); |
| 331 | /* Configure A or AB synchronized transfers */ |
| 332 | if (edesc->absync) |
| 333 | edesc->pset[i].opt |= SYNCDIM; |
| 334 | /* If this is the last set, enable completion interrupt flag */ |
| 335 | if (i == sg_len - 1) |
| 336 | edesc->pset[i].opt |= TCINTEN; |
| 337 | |
| 338 | edesc->pset[i].src = src; |
| 339 | edesc->pset[i].dst = dst; |
| 340 | |
| 341 | edesc->pset[i].src_dst_bidx = (dst_bidx << 16) | src_bidx; |
| 342 | edesc->pset[i].src_dst_cidx = (dst_cidx << 16) | src_cidx; |
| 343 | |
| 344 | edesc->pset[i].a_b_cnt = bcnt << 16 | acnt; |
| 345 | edesc->pset[i].ccnt = ccnt; |
| 346 | edesc->pset[i].link_bcntrld = 0xffffffff; |
| 347 | |
| 348 | } |
| 349 | |
| 350 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| 351 | } |
| 352 | |
| 353 | static void edma_callback(unsigned ch_num, u16 ch_status, void *data) |
| 354 | { |
| 355 | struct edma_chan *echan = data; |
| 356 | struct device *dev = echan->vchan.chan.device->dev; |
| 357 | struct edma_desc *edesc; |
| 358 | unsigned long flags; |
| 359 | |
| 360 | /* Stop the channel */ |
| 361 | edma_stop(echan->ch_num); |
| 362 | |
| 363 | switch (ch_status) { |
| 364 | case DMA_COMPLETE: |
| 365 | dev_dbg(dev, "transfer complete on channel %d\n", ch_num); |
| 366 | |
| 367 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 368 | |
| 369 | edesc = echan->edesc; |
| 370 | if (edesc) { |
| 371 | edma_execute(echan); |
| 372 | vchan_cookie_complete(&edesc->vdesc); |
| 373 | } |
| 374 | |
| 375 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 376 | |
| 377 | break; |
| 378 | case DMA_CC_ERROR: |
| 379 | dev_dbg(dev, "transfer error on channel %d\n", ch_num); |
| 380 | break; |
| 381 | default: |
| 382 | break; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | /* Alloc channel resources */ |
| 387 | static int edma_alloc_chan_resources(struct dma_chan *chan) |
| 388 | { |
| 389 | struct edma_chan *echan = to_edma_chan(chan); |
| 390 | struct device *dev = chan->device->dev; |
| 391 | int ret; |
| 392 | int a_ch_num; |
| 393 | LIST_HEAD(descs); |
| 394 | |
| 395 | a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback, |
| 396 | chan, EVENTQ_DEFAULT); |
| 397 | |
| 398 | if (a_ch_num < 0) { |
| 399 | ret = -ENODEV; |
| 400 | goto err_no_chan; |
| 401 | } |
| 402 | |
| 403 | if (a_ch_num != echan->ch_num) { |
| 404 | dev_err(dev, "failed to allocate requested channel %u:%u\n", |
| 405 | EDMA_CTLR(echan->ch_num), |
| 406 | EDMA_CHAN_SLOT(echan->ch_num)); |
| 407 | ret = -ENODEV; |
| 408 | goto err_wrong_chan; |
| 409 | } |
| 410 | |
| 411 | echan->alloced = true; |
| 412 | echan->slot[0] = echan->ch_num; |
| 413 | |
| 414 | dev_info(dev, "allocated channel for %u:%u\n", |
| 415 | EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); |
| 416 | |
| 417 | return 0; |
| 418 | |
| 419 | err_wrong_chan: |
| 420 | edma_free_channel(a_ch_num); |
| 421 | err_no_chan: |
| 422 | return ret; |
| 423 | } |
| 424 | |
| 425 | /* Free channel resources */ |
| 426 | static void edma_free_chan_resources(struct dma_chan *chan) |
| 427 | { |
| 428 | struct edma_chan *echan = to_edma_chan(chan); |
| 429 | struct device *dev = chan->device->dev; |
| 430 | int i; |
| 431 | |
| 432 | /* Terminate transfers */ |
| 433 | edma_stop(echan->ch_num); |
| 434 | |
| 435 | vchan_free_chan_resources(&echan->vchan); |
| 436 | |
| 437 | /* Free EDMA PaRAM slots */ |
| 438 | for (i = 1; i < EDMA_MAX_SLOTS; i++) { |
| 439 | if (echan->slot[i] >= 0) { |
| 440 | edma_free_slot(echan->slot[i]); |
| 441 | echan->slot[i] = -1; |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | /* Free EDMA channel */ |
| 446 | if (echan->alloced) { |
| 447 | edma_free_channel(echan->ch_num); |
| 448 | echan->alloced = false; |
| 449 | } |
| 450 | |
| 451 | dev_info(dev, "freeing channel for %u\n", echan->ch_num); |
| 452 | } |
| 453 | |
| 454 | /* Send pending descriptor to hardware */ |
| 455 | static void edma_issue_pending(struct dma_chan *chan) |
| 456 | { |
| 457 | struct edma_chan *echan = to_edma_chan(chan); |
| 458 | unsigned long flags; |
| 459 | |
| 460 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 461 | if (vchan_issue_pending(&echan->vchan) && !echan->edesc) |
| 462 | edma_execute(echan); |
| 463 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 464 | } |
| 465 | |
| 466 | static size_t edma_desc_size(struct edma_desc *edesc) |
| 467 | { |
| 468 | int i; |
| 469 | size_t size; |
| 470 | |
| 471 | if (edesc->absync) |
| 472 | for (size = i = 0; i < edesc->pset_nr; i++) |
| 473 | size += (edesc->pset[i].a_b_cnt & 0xffff) * |
| 474 | (edesc->pset[i].a_b_cnt >> 16) * |
| 475 | edesc->pset[i].ccnt; |
| 476 | else |
| 477 | size = (edesc->pset[0].a_b_cnt & 0xffff) * |
| 478 | (edesc->pset[0].a_b_cnt >> 16) + |
| 479 | (edesc->pset[0].a_b_cnt & 0xffff) * |
| 480 | (SZ_64K - 1) * edesc->pset[0].ccnt; |
| 481 | |
| 482 | return size; |
| 483 | } |
| 484 | |
| 485 | /* Check request completion status */ |
| 486 | static enum dma_status edma_tx_status(struct dma_chan *chan, |
| 487 | dma_cookie_t cookie, |
| 488 | struct dma_tx_state *txstate) |
| 489 | { |
| 490 | struct edma_chan *echan = to_edma_chan(chan); |
| 491 | struct virt_dma_desc *vdesc; |
| 492 | enum dma_status ret; |
| 493 | unsigned long flags; |
| 494 | |
| 495 | ret = dma_cookie_status(chan, cookie, txstate); |
| 496 | if (ret == DMA_SUCCESS || !txstate) |
| 497 | return ret; |
| 498 | |
| 499 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 500 | vdesc = vchan_find_desc(&echan->vchan, cookie); |
| 501 | if (vdesc) { |
| 502 | txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx)); |
| 503 | } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { |
| 504 | struct edma_desc *edesc = echan->edesc; |
| 505 | txstate->residue = edma_desc_size(edesc); |
| 506 | } else { |
| 507 | txstate->residue = 0; |
| 508 | } |
| 509 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 510 | |
| 511 | return ret; |
| 512 | } |
| 513 | |
| 514 | static void __init edma_chan_init(struct edma_cc *ecc, |
| 515 | struct dma_device *dma, |
| 516 | struct edma_chan *echans) |
| 517 | { |
| 518 | int i, j; |
| 519 | |
| 520 | for (i = 0; i < EDMA_CHANS; i++) { |
| 521 | struct edma_chan *echan = &echans[i]; |
| 522 | echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i); |
| 523 | echan->ecc = ecc; |
| 524 | echan->vchan.desc_free = edma_desc_free; |
| 525 | |
| 526 | vchan_init(&echan->vchan, dma); |
| 527 | |
| 528 | INIT_LIST_HEAD(&echan->node); |
| 529 | for (j = 0; j < EDMA_MAX_SLOTS; j++) |
| 530 | echan->slot[j] = -1; |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma, |
| 535 | struct device *dev) |
| 536 | { |
| 537 | dma->device_prep_slave_sg = edma_prep_slave_sg; |
| 538 | dma->device_alloc_chan_resources = edma_alloc_chan_resources; |
| 539 | dma->device_free_chan_resources = edma_free_chan_resources; |
| 540 | dma->device_issue_pending = edma_issue_pending; |
| 541 | dma->device_tx_status = edma_tx_status; |
| 542 | dma->device_control = edma_control; |
| 543 | dma->dev = dev; |
| 544 | |
| 545 | INIT_LIST_HEAD(&dma->channels); |
| 546 | } |
| 547 | |
| 548 | static int __devinit edma_probe(struct platform_device *pdev) |
| 549 | { |
| 550 | struct edma_cc *ecc; |
| 551 | int ret; |
| 552 | |
| 553 | ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL); |
| 554 | if (!ecc) { |
| 555 | dev_err(&pdev->dev, "Can't allocate controller\n"); |
| 556 | return -ENOMEM; |
| 557 | } |
| 558 | |
| 559 | ecc->ctlr = pdev->id; |
| 560 | ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY); |
| 561 | if (ecc->dummy_slot < 0) { |
| 562 | dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n"); |
| 563 | return -EIO; |
| 564 | } |
| 565 | |
| 566 | dma_cap_zero(ecc->dma_slave.cap_mask); |
| 567 | dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask); |
| 568 | |
| 569 | edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev); |
| 570 | |
| 571 | edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans); |
| 572 | |
| 573 | ret = dma_async_device_register(&ecc->dma_slave); |
| 574 | if (ret) |
| 575 | goto err_reg1; |
| 576 | |
| 577 | platform_set_drvdata(pdev, ecc); |
| 578 | |
| 579 | dev_info(&pdev->dev, "TI EDMA DMA engine driver\n"); |
| 580 | |
| 581 | return 0; |
| 582 | |
| 583 | err_reg1: |
| 584 | edma_free_slot(ecc->dummy_slot); |
| 585 | return ret; |
| 586 | } |
| 587 | |
| 588 | static int __devexit edma_remove(struct platform_device *pdev) |
| 589 | { |
| 590 | struct device *dev = &pdev->dev; |
| 591 | struct edma_cc *ecc = dev_get_drvdata(dev); |
| 592 | |
| 593 | dma_async_device_unregister(&ecc->dma_slave); |
| 594 | edma_free_slot(ecc->dummy_slot); |
| 595 | |
| 596 | return 0; |
| 597 | } |
| 598 | |
| 599 | static struct platform_driver edma_driver = { |
| 600 | .probe = edma_probe, |
| 601 | .remove = __devexit_p(edma_remove), |
| 602 | .driver = { |
| 603 | .name = "edma-dma-engine", |
| 604 | .owner = THIS_MODULE, |
| 605 | }, |
| 606 | }; |
| 607 | |
| 608 | bool edma_filter_fn(struct dma_chan *chan, void *param) |
| 609 | { |
| 610 | if (chan->device->dev->driver == &edma_driver.driver) { |
| 611 | struct edma_chan *echan = to_edma_chan(chan); |
| 612 | unsigned ch_req = *(unsigned *)param; |
| 613 | return ch_req == echan->ch_num; |
| 614 | } |
| 615 | return false; |
| 616 | } |
| 617 | EXPORT_SYMBOL(edma_filter_fn); |
| 618 | |
| 619 | static struct platform_device *pdev0, *pdev1; |
| 620 | |
| 621 | static const struct platform_device_info edma_dev_info0 = { |
| 622 | .name = "edma-dma-engine", |
| 623 | .id = 0, |
| 624 | .dma_mask = DMA_BIT_MASK(32), |
| 625 | }; |
| 626 | |
| 627 | static const struct platform_device_info edma_dev_info1 = { |
| 628 | .name = "edma-dma-engine", |
| 629 | .id = 1, |
| 630 | .dma_mask = DMA_BIT_MASK(32), |
| 631 | }; |
| 632 | |
| 633 | static int edma_init(void) |
| 634 | { |
| 635 | int ret = platform_driver_register(&edma_driver); |
| 636 | |
| 637 | if (ret == 0) { |
| 638 | pdev0 = platform_device_register_full(&edma_dev_info0); |
| 639 | if (IS_ERR(pdev0)) { |
| 640 | platform_driver_unregister(&edma_driver); |
| 641 | ret = PTR_ERR(pdev0); |
| 642 | goto out; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | if (EDMA_CTLRS == 2) { |
| 647 | pdev1 = platform_device_register_full(&edma_dev_info1); |
| 648 | if (IS_ERR(pdev1)) { |
| 649 | platform_driver_unregister(&edma_driver); |
| 650 | platform_device_unregister(pdev0); |
| 651 | ret = PTR_ERR(pdev1); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | out: |
| 656 | return ret; |
| 657 | } |
| 658 | subsys_initcall(edma_init); |
| 659 | |
| 660 | static void __exit edma_exit(void) |
| 661 | { |
| 662 | platform_device_unregister(pdev0); |
| 663 | if (pdev1) |
| 664 | platform_device_unregister(pdev1); |
| 665 | platform_driver_unregister(&edma_driver); |
| 666 | } |
| 667 | module_exit(edma_exit); |
| 668 | |
| 669 | MODULE_AUTHOR("Matt Porter <mporter@ti.com>"); |
| 670 | MODULE_DESCRIPTION("TI EDMA DMA engine driver"); |
| 671 | MODULE_LICENSE("GPL v2"); |