blob: 44fac2182fcc913e85d8a3478df55941207c960b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <sound/driver.h>
23#include <linux/init.h>
24#include <linux/delay.h>
25#include <linux/slab.h>
26#include <linux/pci.h>
27#include <linux/moduleparam.h>
28#include <sound/core.h>
29#include "hda_codec.h"
30#include <sound/asoundef.h>
31#include <sound/initval.h>
32#include "hda_local.h"
33
34
35MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37MODULE_LICENSE("GPL");
38
39
40/*
41 * vendor / preset table
42 */
43
44struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47};
48
49/* codec vendor labels */
50static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x13f6, "C-Media" },
53 { 0x434d, "C-Media" },
Matt2f2f4252005-04-13 14:45:30 +020054 { 0x8384, "SigmaTel" },
Linus Torvalds1da177e2005-04-16 15:20:36 -070055 {} /* terminator */
56};
57
58/* codec presets */
59#include "hda_patch.h"
60
61
62/**
63 * snd_hda_codec_read - send a command and get the response
64 * @codec: the HDA codec
65 * @nid: NID to send the command
66 * @direct: direct flag
67 * @verb: the verb to send
68 * @parm: the parameter for the verb
69 *
70 * Send a single command and read the corresponding response.
71 *
72 * Returns the obtained response value, or -1 for an error.
73 */
74unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
75 unsigned int verb, unsigned int parm)
76{
77 unsigned int res;
78 down(&codec->bus->cmd_mutex);
79 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
80 res = codec->bus->ops.get_response(codec);
81 else
82 res = (unsigned int)-1;
83 up(&codec->bus->cmd_mutex);
84 return res;
85}
86
87/**
88 * snd_hda_codec_write - send a single command without waiting for response
89 * @codec: the HDA codec
90 * @nid: NID to send the command
91 * @direct: direct flag
92 * @verb: the verb to send
93 * @parm: the parameter for the verb
94 *
95 * Send a single command without waiting for response.
96 *
97 * Returns 0 if successful, or a negative error code.
98 */
99int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
100 unsigned int verb, unsigned int parm)
101{
102 int err;
103 down(&codec->bus->cmd_mutex);
104 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
105 up(&codec->bus->cmd_mutex);
106 return err;
107}
108
109/**
110 * snd_hda_sequence_write - sequence writes
111 * @codec: the HDA codec
112 * @seq: VERB array to send
113 *
114 * Send the commands sequentially from the given array.
115 * The array must be terminated with NID=0.
116 */
117void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
118{
119 for (; seq->nid; seq++)
120 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
121}
122
123/**
124 * snd_hda_get_sub_nodes - get the range of sub nodes
125 * @codec: the HDA codec
126 * @nid: NID to parse
127 * @start_id: the pointer to store the start NID
128 *
129 * Parse the NID and store the start NID of its sub-nodes.
130 * Returns the number of sub-nodes.
131 */
132int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
133{
134 unsigned int parm;
135
136 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
137 *start_id = (parm >> 16) & 0x7fff;
138 return (int)(parm & 0x7fff);
139}
140
141/**
142 * snd_hda_get_connections - get connection list
143 * @codec: the HDA codec
144 * @nid: NID to parse
145 * @conn_list: connection list array
146 * @max_conns: max. number of connections to store
147 *
148 * Parses the connection list of the given widget and stores the list
149 * of NIDs.
150 *
151 * Returns the number of connections, or a negative error code.
152 */
153int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
154 hda_nid_t *conn_list, int max_conns)
155{
156 unsigned int parm;
157 int i, j, conn_len, num_tupples, conns;
158 unsigned int shift, num_elems, mask;
159
160 snd_assert(conn_list && max_conns > 0, return -EINVAL);
161
162 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
163 if (parm & AC_CLIST_LONG) {
164 /* long form */
165 shift = 16;
166 num_elems = 2;
167 } else {
168 /* short form */
169 shift = 8;
170 num_elems = 4;
171 }
172 conn_len = parm & AC_CLIST_LENGTH;
173 num_tupples = num_elems / 2;
174 mask = (1 << (shift-1)) - 1;
175
176 if (! conn_len)
177 return 0; /* no connection */
178
179 if (conn_len == 1) {
180 /* single connection */
181 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
182 conn_list[0] = parm & mask;
183 return 1;
184 }
185
186 /* multi connection */
187 conns = 0;
188 for (i = 0; i < conn_len; i += num_elems) {
189 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
190 for (j = 0; j < num_tupples; j++) {
191 int range_val;
192 hda_nid_t val1, val2, n;
193 range_val = parm & (1 << (shift-1)); /* ranges */
194 val1 = parm & mask;
195 parm >>= shift;
196 val2 = parm & mask;
197 parm >>= shift;
198 if (range_val) {
199 /* ranges between val1 and val2 */
200 if (val1 > val2) {
201 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
202 continue;
203 }
204 for (n = val1; n <= val2; n++) {
205 if (conns >= max_conns)
206 return -EINVAL;
207 conn_list[conns++] = n;
208 }
209 } else {
210 if (! val1)
211 break;
212 if (conns >= max_conns)
213 return -EINVAL;
214 conn_list[conns++] = val1;
215 if (! val2)
216 break;
217 if (conns >= max_conns)
218 return -EINVAL;
219 conn_list[conns++] = val2;
220 }
221 }
222 }
223 return conns;
224}
225
226
227/**
228 * snd_hda_queue_unsol_event - add an unsolicited event to queue
229 * @bus: the BUS
230 * @res: unsolicited event (lower 32bit of RIRB entry)
231 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
232 *
233 * Adds the given event to the queue. The events are processed in
234 * the workqueue asynchronously. Call this function in the interrupt
235 * hanlder when RIRB receives an unsolicited event.
236 *
237 * Returns 0 if successful, or a negative error code.
238 */
239int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
240{
241 struct hda_bus_unsolicited *unsol;
242 unsigned int wp;
243
244 if ((unsol = bus->unsol) == NULL)
245 return 0;
246
247 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
248 unsol->wp = wp;
249
250 wp <<= 1;
251 unsol->queue[wp] = res;
252 unsol->queue[wp + 1] = res_ex;
253
254 queue_work(unsol->workq, &unsol->work);
255
256 return 0;
257}
258
259/*
260 * process queueud unsolicited events
261 */
262static void process_unsol_events(void *data)
263{
264 struct hda_bus *bus = data;
265 struct hda_bus_unsolicited *unsol = bus->unsol;
266 struct hda_codec *codec;
267 unsigned int rp, caddr, res;
268
269 while (unsol->rp != unsol->wp) {
270 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
271 unsol->rp = rp;
272 rp <<= 1;
273 res = unsol->queue[rp];
274 caddr = unsol->queue[rp + 1];
275 if (! (caddr & (1 << 4))) /* no unsolicited event? */
276 continue;
277 codec = bus->caddr_tbl[caddr & 0x0f];
278 if (codec && codec->patch_ops.unsol_event)
279 codec->patch_ops.unsol_event(codec, res);
280 }
281}
282
283/*
284 * initialize unsolicited queue
285 */
286static int init_unsol_queue(struct hda_bus *bus)
287{
288 struct hda_bus_unsolicited *unsol;
289
290 unsol = kcalloc(1, sizeof(*unsol), GFP_KERNEL);
291 if (! unsol) {
292 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
293 return -ENOMEM;
294 }
295 unsol->workq = create_workqueue("hda_codec");
296 if (! unsol->workq) {
297 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
298 kfree(unsol);
299 return -ENOMEM;
300 }
301 INIT_WORK(&unsol->work, process_unsol_events, bus);
302 bus->unsol = unsol;
303 return 0;
304}
305
306/*
307 * destructor
308 */
309static void snd_hda_codec_free(struct hda_codec *codec);
310
311static int snd_hda_bus_free(struct hda_bus *bus)
312{
313 struct list_head *p, *n;
314
315 if (! bus)
316 return 0;
317 if (bus->unsol) {
318 destroy_workqueue(bus->unsol->workq);
319 kfree(bus->unsol);
320 }
321 list_for_each_safe(p, n, &bus->codec_list) {
322 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
323 snd_hda_codec_free(codec);
324 }
325 if (bus->ops.private_free)
326 bus->ops.private_free(bus);
327 kfree(bus);
328 return 0;
329}
330
331static int snd_hda_bus_dev_free(snd_device_t *device)
332{
333 struct hda_bus *bus = device->device_data;
334 return snd_hda_bus_free(bus);
335}
336
337/**
338 * snd_hda_bus_new - create a HDA bus
339 * @card: the card entry
340 * @temp: the template for hda_bus information
341 * @busp: the pointer to store the created bus instance
342 *
343 * Returns 0 if successful, or a negative error code.
344 */
345int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
346 struct hda_bus **busp)
347{
348 struct hda_bus *bus;
349 int err;
350 static snd_device_ops_t dev_ops = {
351 .dev_free = snd_hda_bus_dev_free,
352 };
353
354 snd_assert(temp, return -EINVAL);
355 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
356
357 if (busp)
358 *busp = NULL;
359
360 bus = kcalloc(1, sizeof(*bus), GFP_KERNEL);
361 if (bus == NULL) {
362 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
363 return -ENOMEM;
364 }
365
366 bus->card = card;
367 bus->private_data = temp->private_data;
368 bus->pci = temp->pci;
369 bus->modelname = temp->modelname;
370 bus->ops = temp->ops;
371
372 init_MUTEX(&bus->cmd_mutex);
373 INIT_LIST_HEAD(&bus->codec_list);
374
375 init_unsol_queue(bus);
376
377 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
378 snd_hda_bus_free(bus);
379 return err;
380 }
381 if (busp)
382 *busp = bus;
383 return 0;
384}
385
386
387/*
388 * find a matching codec preset
389 */
390static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
391{
392 const struct hda_codec_preset **tbl, *preset;
393
394 for (tbl = hda_preset_tables; *tbl; tbl++) {
395 for (preset = *tbl; preset->id; preset++) {
396 u32 mask = preset->mask;
397 if (! mask)
398 mask = ~0;
399 if (preset->id == (codec->vendor_id & mask))
400 return preset;
401 }
402 }
403 return NULL;
404}
405
406/*
407 * snd_hda_get_codec_name - store the codec name
408 */
409void snd_hda_get_codec_name(struct hda_codec *codec,
410 char *name, int namelen)
411{
412 const struct hda_vendor_id *c;
413 const char *vendor = NULL;
414 u16 vendor_id = codec->vendor_id >> 16;
415 char tmp[16];
416
417 for (c = hda_vendor_ids; c->id; c++) {
418 if (c->id == vendor_id) {
419 vendor = c->name;
420 break;
421 }
422 }
423 if (! vendor) {
424 sprintf(tmp, "Generic %04x", vendor_id);
425 vendor = tmp;
426 }
427 if (codec->preset && codec->preset->name)
428 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
429 else
430 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
431}
432
433/*
434 * look for an AFG node
435 *
436 * return 0 if not found
437 */
438static int look_for_afg_node(struct hda_codec *codec)
439{
440 int i, total_nodes;
441 hda_nid_t nid;
442
443 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
444 for (i = 0; i < total_nodes; i++, nid++) {
445 if ((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff) ==
446 AC_GRP_AUDIO_FUNCTION)
447 return nid;
448 }
449 return 0;
450}
451
452/*
453 * codec destructor
454 */
455static void snd_hda_codec_free(struct hda_codec *codec)
456{
457 if (! codec)
458 return;
459 list_del(&codec->list);
460 codec->bus->caddr_tbl[codec->addr] = NULL;
461 if (codec->patch_ops.free)
462 codec->patch_ops.free(codec);
463 kfree(codec);
464}
465
466static void init_amp_hash(struct hda_codec *codec);
467
468/**
469 * snd_hda_codec_new - create a HDA codec
470 * @bus: the bus to assign
471 * @codec_addr: the codec address
472 * @codecp: the pointer to store the generated codec
473 *
474 * Returns 0 if successful, or a negative error code.
475 */
476int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
477 struct hda_codec **codecp)
478{
479 struct hda_codec *codec;
480 char component[13];
481 int err;
482
483 snd_assert(bus, return -EINVAL);
484 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
485
486 if (bus->caddr_tbl[codec_addr]) {
487 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
488 return -EBUSY;
489 }
490
491 codec = kcalloc(1, sizeof(*codec), GFP_KERNEL);
492 if (codec == NULL) {
493 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
494 return -ENOMEM;
495 }
496
497 codec->bus = bus;
498 codec->addr = codec_addr;
499 init_MUTEX(&codec->spdif_mutex);
500 init_amp_hash(codec);
501
502 list_add_tail(&codec->list, &bus->codec_list);
503 bus->caddr_tbl[codec_addr] = codec;
504
505 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
506 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
507 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
508
509 /* FIXME: support for multiple AFGs? */
510 codec->afg = look_for_afg_node(codec);
511 if (! codec->afg) {
512 snd_printk(KERN_ERR "hda_codec: no AFG node found\n");
513 snd_hda_codec_free(codec);
514 return -ENODEV;
515 }
516
517 codec->preset = find_codec_preset(codec);
518 if (! *bus->card->mixername)
519 snd_hda_get_codec_name(codec, bus->card->mixername,
520 sizeof(bus->card->mixername));
521
522 if (codec->preset && codec->preset->patch)
523 err = codec->preset->patch(codec);
524 else
525 err = snd_hda_parse_generic_codec(codec);
526 if (err < 0) {
527 snd_hda_codec_free(codec);
528 return err;
529 }
530
531 snd_hda_codec_proc_new(codec);
532
533 sprintf(component, "HDA:%08x", codec->vendor_id);
534 snd_component_add(codec->bus->card, component);
535
536 if (codecp)
537 *codecp = codec;
538 return 0;
539}
540
541/**
542 * snd_hda_codec_setup_stream - set up the codec for streaming
543 * @codec: the CODEC to set up
544 * @nid: the NID to set up
545 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
546 * @channel_id: channel id to pass, zero based.
547 * @format: stream format.
548 */
549void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
550 int channel_id, int format)
551{
Takashi Iwaid21b37e2005-04-20 13:45:55 +0200552 if (! nid)
553 return;
554
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
556 nid, stream_tag, channel_id, format);
557 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
558 (stream_tag << 4) | channel_id);
559 msleep(1);
560 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
561}
562
563
564/*
565 * amp access functions
566 */
567
568#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + (idx) * 32 + (dir) * 64)
569#define INFO_AMP_CAPS (1<<0)
570#define INFO_AMP_VOL (1<<1)
571
572/* initialize the hash table */
573static void init_amp_hash(struct hda_codec *codec)
574{
575 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
576 codec->num_amp_entries = 0;
577}
578
579/* query the hash. allocate an entry if not found. */
580static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
581{
582 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
583 u16 cur = codec->amp_hash[idx];
584 struct hda_amp_info *info;
585
586 while (cur != 0xffff) {
587 info = &codec->amp_info[cur];
588 if (info->key == key)
589 return info;
590 cur = info->next;
591 }
592
593 /* add a new hash entry */
594 if (codec->num_amp_entries >= ARRAY_SIZE(codec->amp_info)) {
595 snd_printk(KERN_ERR "hda_codec: Tooooo many amps!\n");
596 return NULL;
597 }
598 cur = codec->num_amp_entries++;
599 info = &codec->amp_info[cur];
600 info->key = key;
601 info->status = 0; /* not initialized yet */
602 info->next = codec->amp_hash[idx];
603 codec->amp_hash[idx] = cur;
604
605 return info;
606}
607
608/*
609 * query AMP capabilities for the given widget and direction
610 */
611static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
612{
613 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
614
615 if (! info)
616 return 0;
617 if (! (info->status & INFO_AMP_CAPS)) {
618 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
619 nid = codec->afg;
620 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
621 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
622 info->status |= INFO_AMP_CAPS;
623 }
624 return info->amp_caps;
625}
626
627/*
628 * read the current volume to info
629 * if the cache exists, read from the cache.
630 */
631static void get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
632 hda_nid_t nid, int ch, int direction, int index)
633{
634 u32 val, parm;
635
636 if (info->status & (INFO_AMP_VOL << ch))
637 return;
638
639 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
640 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
641 parm |= index;
642 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
643 info->vol[ch] = val & 0xff;
644 info->status |= INFO_AMP_VOL << ch;
645}
646
647/*
648 * write the current volume in info to the h/w
649 */
650static void put_vol_mute(struct hda_codec *codec,
651 hda_nid_t nid, int ch, int direction, int index, int val)
652{
653 u32 parm;
654
655 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
656 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
657 parm |= index << AC_AMP_SET_INDEX_SHIFT;
658 parm |= val;
659 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
660}
661
662/*
663 * read/write AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
664 */
665int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
666{
667 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
668 if (! info)
669 return 0;
670 get_vol_mute(codec, info, nid, ch, direction, index);
671 return info->vol[ch];
672}
673
674int snd_hda_codec_amp_write(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int val)
675{
676 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
677 if (! info)
678 return 0;
679 get_vol_mute(codec, info, nid, ch, direction, idx);
680 if (info->vol[ch] == val && ! codec->in_resume)
681 return 0;
682 put_vol_mute(codec, nid, ch, direction, idx, val);
683 info->vol[ch] = val;
684 return 1;
685}
686
687
688/*
689 * AMP control callbacks
690 */
691/* retrieve parameters from private_value */
692#define get_amp_nid(kc) ((kc)->private_value & 0xffff)
693#define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
694#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
695#define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
696
697/* volume */
698int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
699{
700 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
701 u16 nid = get_amp_nid(kcontrol);
702 u8 chs = get_amp_channels(kcontrol);
703 int dir = get_amp_direction(kcontrol);
704 u32 caps;
705
706 caps = query_amp_caps(codec, nid, dir);
707 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
708 if (! caps) {
709 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
710 return -EINVAL;
711 }
712 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
713 uinfo->count = chs == 3 ? 2 : 1;
714 uinfo->value.integer.min = 0;
715 uinfo->value.integer.max = caps;
716 return 0;
717}
718
719int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
720{
721 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
722 hda_nid_t nid = get_amp_nid(kcontrol);
723 int chs = get_amp_channels(kcontrol);
724 int dir = get_amp_direction(kcontrol);
725 int idx = get_amp_index(kcontrol);
726 long *valp = ucontrol->value.integer.value;
727
728 if (chs & 1)
729 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
730 if (chs & 2)
731 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
732 return 0;
733}
734
735int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
736{
737 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
738 hda_nid_t nid = get_amp_nid(kcontrol);
739 int chs = get_amp_channels(kcontrol);
740 int dir = get_amp_direction(kcontrol);
741 int idx = get_amp_index(kcontrol);
742 int val;
743 long *valp = ucontrol->value.integer.value;
744 int change = 0;
745
746 if (chs & 1) {
747 val = *valp & 0x7f;
748 val |= snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80;
749 change = snd_hda_codec_amp_write(codec, nid, 0, dir, idx, val);
750 valp++;
751 }
752 if (chs & 2) {
753 val = *valp & 0x7f;
754 val |= snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80;
755 change |= snd_hda_codec_amp_write(codec, nid, 1, dir, idx, val);
756 }
757 return change;
758}
759
760/* switch */
761int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
762{
763 int chs = get_amp_channels(kcontrol);
764
765 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
766 uinfo->count = chs == 3 ? 2 : 1;
767 uinfo->value.integer.min = 0;
768 uinfo->value.integer.max = 1;
769 return 0;
770}
771
772int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
773{
774 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
775 hda_nid_t nid = get_amp_nid(kcontrol);
776 int chs = get_amp_channels(kcontrol);
777 int dir = get_amp_direction(kcontrol);
778 int idx = get_amp_index(kcontrol);
779 long *valp = ucontrol->value.integer.value;
780
781 if (chs & 1)
782 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
783 if (chs & 2)
784 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
785 return 0;
786}
787
788int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
789{
790 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
791 hda_nid_t nid = get_amp_nid(kcontrol);
792 int chs = get_amp_channels(kcontrol);
793 int dir = get_amp_direction(kcontrol);
794 int idx = get_amp_index(kcontrol);
795 int val;
796 long *valp = ucontrol->value.integer.value;
797 int change = 0;
798
799 if (chs & 1) {
800 val = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
801 val |= *valp ? 0 : 0x80;
802 change = snd_hda_codec_amp_write(codec, nid, 0, dir, idx, val);
803 valp++;
804 }
805 if (chs & 2) {
806 val = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
807 val |= *valp ? 0 : 0x80;
808 change = snd_hda_codec_amp_write(codec, nid, 1, dir, idx, val);
809 }
810 return change;
811}
812
813/*
814 * SPDIF out controls
815 */
816
817static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
818{
819 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
820 uinfo->count = 1;
821 return 0;
822}
823
824static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
825{
826 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
827 IEC958_AES0_NONAUDIO |
828 IEC958_AES0_CON_EMPHASIS_5015 |
829 IEC958_AES0_CON_NOT_COPYRIGHT;
830 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
831 IEC958_AES1_CON_ORIGINAL;
832 return 0;
833}
834
835static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
836{
837 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
838 IEC958_AES0_NONAUDIO |
839 IEC958_AES0_PRO_EMPHASIS_5015;
840 return 0;
841}
842
843static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
844{
845 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
846
847 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
848 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
849 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
850 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
851
852 return 0;
853}
854
855/* convert from SPDIF status bits to HDA SPDIF bits
856 * bit 0 (DigEn) is always set zero (to be filled later)
857 */
858static unsigned short convert_from_spdif_status(unsigned int sbits)
859{
860 unsigned short val = 0;
861
862 if (sbits & IEC958_AES0_PROFESSIONAL)
863 val |= 1 << 6;
864 if (sbits & IEC958_AES0_NONAUDIO)
865 val |= 1 << 5;
866 if (sbits & IEC958_AES0_PROFESSIONAL) {
867 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
868 val |= 1 << 3;
869 } else {
870 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
871 val |= 1 << 3;
872 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
873 val |= 1 << 4;
874 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
875 val |= 1 << 7;
876 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
877 }
878 return val;
879}
880
881/* convert to SPDIF status bits from HDA SPDIF bits
882 */
883static unsigned int convert_to_spdif_status(unsigned short val)
884{
885 unsigned int sbits = 0;
886
887 if (val & (1 << 5))
888 sbits |= IEC958_AES0_NONAUDIO;
889 if (val & (1 << 6))
890 sbits |= IEC958_AES0_PROFESSIONAL;
891 if (sbits & IEC958_AES0_PROFESSIONAL) {
892 if (sbits & (1 << 3))
893 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
894 } else {
895 if (val & (1 << 3))
896 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
897 if (! (val & (1 << 4)))
898 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
899 if (val & (1 << 7))
900 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
901 sbits |= val & (0x7f << 8);
902 }
903 return sbits;
904}
905
906static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
907{
908 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
909 hda_nid_t nid = kcontrol->private_value;
910 unsigned short val;
911 int change;
912
913 down(&codec->spdif_mutex);
914 codec->spdif_status = ucontrol->value.iec958.status[0] |
915 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
916 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
917 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
918 val = convert_from_spdif_status(codec->spdif_status);
919 val |= codec->spdif_ctls & 1;
920 change = codec->spdif_ctls != val;
921 codec->spdif_ctls = val;
922
923 if (change || codec->in_resume) {
924 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
925 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
926 }
927
928 up(&codec->spdif_mutex);
929 return change;
930}
931
932static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
933{
934 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
935 uinfo->count = 1;
936 uinfo->value.integer.min = 0;
937 uinfo->value.integer.max = 1;
938 return 0;
939}
940
941static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
942{
943 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
944
945 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
946 return 0;
947}
948
949static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
950{
951 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
952 hda_nid_t nid = kcontrol->private_value;
953 unsigned short val;
954 int change;
955
956 down(&codec->spdif_mutex);
957 val = codec->spdif_ctls & ~1;
958 if (ucontrol->value.integer.value[0])
959 val |= 1;
960 change = codec->spdif_ctls != val;
961 if (change || codec->in_resume) {
962 codec->spdif_ctls = val;
963 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
964 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
965 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
966 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
967 }
968 up(&codec->spdif_mutex);
969 return change;
970}
971
972static snd_kcontrol_new_t dig_mixes[] = {
973 {
974 .access = SNDRV_CTL_ELEM_ACCESS_READ,
975 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
976 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
977 .info = snd_hda_spdif_mask_info,
978 .get = snd_hda_spdif_cmask_get,
979 },
980 {
981 .access = SNDRV_CTL_ELEM_ACCESS_READ,
982 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
983 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
984 .info = snd_hda_spdif_mask_info,
985 .get = snd_hda_spdif_pmask_get,
986 },
987 {
988 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
989 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
990 .info = snd_hda_spdif_mask_info,
991 .get = snd_hda_spdif_default_get,
992 .put = snd_hda_spdif_default_put,
993 },
994 {
995 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
996 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
997 .info = snd_hda_spdif_out_switch_info,
998 .get = snd_hda_spdif_out_switch_get,
999 .put = snd_hda_spdif_out_switch_put,
1000 },
1001 { } /* end */
1002};
1003
1004/**
1005 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1006 * @codec: the HDA codec
1007 * @nid: audio out widget NID
1008 *
1009 * Creates controls related with the SPDIF output.
1010 * Called from each patch supporting the SPDIF out.
1011 *
1012 * Returns 0 if successful, or a negative error code.
1013 */
1014int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1015{
1016 int err;
1017 snd_kcontrol_t *kctl;
1018 snd_kcontrol_new_t *dig_mix;
1019
1020 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1021 kctl = snd_ctl_new1(dig_mix, codec);
1022 kctl->private_value = nid;
1023 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1024 return err;
1025 }
1026 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1027 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1028 return 0;
1029}
1030
1031/*
1032 * SPDIF input
1033 */
1034
1035#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1036
1037static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1038{
1039 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1040
1041 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1042 return 0;
1043}
1044
1045static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1046{
1047 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1048 hda_nid_t nid = kcontrol->private_value;
1049 unsigned int val = !!ucontrol->value.integer.value[0];
1050 int change;
1051
1052 down(&codec->spdif_mutex);
1053 change = codec->spdif_in_enable != val;
1054 if (change || codec->in_resume) {
1055 codec->spdif_in_enable = val;
1056 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1057 }
1058 up(&codec->spdif_mutex);
1059 return change;
1060}
1061
1062static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1063{
1064 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1065 hda_nid_t nid = kcontrol->private_value;
1066 unsigned short val;
1067 unsigned int sbits;
1068
1069 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1070 sbits = convert_to_spdif_status(val);
1071 ucontrol->value.iec958.status[0] = sbits;
1072 ucontrol->value.iec958.status[1] = sbits >> 8;
1073 ucontrol->value.iec958.status[2] = sbits >> 16;
1074 ucontrol->value.iec958.status[3] = sbits >> 24;
1075 return 0;
1076}
1077
1078static snd_kcontrol_new_t dig_in_ctls[] = {
1079 {
1080 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1081 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1082 .info = snd_hda_spdif_in_switch_info,
1083 .get = snd_hda_spdif_in_switch_get,
1084 .put = snd_hda_spdif_in_switch_put,
1085 },
1086 {
1087 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1088 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1089 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1090 .info = snd_hda_spdif_mask_info,
1091 .get = snd_hda_spdif_in_status_get,
1092 },
1093 { } /* end */
1094};
1095
1096/**
1097 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1098 * @codec: the HDA codec
1099 * @nid: audio in widget NID
1100 *
1101 * Creates controls related with the SPDIF input.
1102 * Called from each patch supporting the SPDIF in.
1103 *
1104 * Returns 0 if successful, or a negative error code.
1105 */
1106int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1107{
1108 int err;
1109 snd_kcontrol_t *kctl;
1110 snd_kcontrol_new_t *dig_mix;
1111
1112 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1113 kctl = snd_ctl_new1(dig_mix, codec);
1114 kctl->private_value = nid;
1115 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1116 return err;
1117 }
1118 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1119 return 0;
1120}
1121
1122
1123/**
1124 * snd_hda_build_controls - build mixer controls
1125 * @bus: the BUS
1126 *
1127 * Creates mixer controls for each codec included in the bus.
1128 *
1129 * Returns 0 if successful, otherwise a negative error code.
1130 */
1131int snd_hda_build_controls(struct hda_bus *bus)
1132{
1133 struct list_head *p;
1134
1135 /* build controls */
1136 list_for_each(p, &bus->codec_list) {
1137 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1138 int err;
1139 if (! codec->patch_ops.build_controls)
1140 continue;
1141 err = codec->patch_ops.build_controls(codec);
1142 if (err < 0)
1143 return err;
1144 }
1145
1146 /* initialize */
1147 list_for_each(p, &bus->codec_list) {
1148 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1149 int err;
1150 if (! codec->patch_ops.init)
1151 continue;
1152 err = codec->patch_ops.init(codec);
1153 if (err < 0)
1154 return err;
1155 }
1156 return 0;
1157}
1158
1159
1160/*
1161 * stream formats
1162 */
1163static unsigned int rate_bits[][3] = {
1164 /* rate in Hz, ALSA rate bitmask, HDA format value */
1165 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1166 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1167 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1168 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1169 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1170 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1171 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1172 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1173 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1174 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1175 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1176 { 0 }
1177};
1178
1179/**
1180 * snd_hda_calc_stream_format - calculate format bitset
1181 * @rate: the sample rate
1182 * @channels: the number of channels
1183 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1184 * @maxbps: the max. bps
1185 *
1186 * Calculate the format bitset from the given rate, channels and th PCM format.
1187 *
1188 * Return zero if invalid.
1189 */
1190unsigned int snd_hda_calc_stream_format(unsigned int rate,
1191 unsigned int channels,
1192 unsigned int format,
1193 unsigned int maxbps)
1194{
1195 int i;
1196 unsigned int val = 0;
1197
1198 for (i = 0; rate_bits[i][0]; i++)
1199 if (rate_bits[i][0] == rate) {
1200 val = rate_bits[i][2];
1201 break;
1202 }
1203 if (! rate_bits[i][0]) {
1204 snd_printdd("invalid rate %d\n", rate);
1205 return 0;
1206 }
1207
1208 if (channels == 0 || channels > 8) {
1209 snd_printdd("invalid channels %d\n", channels);
1210 return 0;
1211 }
1212 val |= channels - 1;
1213
1214 switch (snd_pcm_format_width(format)) {
1215 case 8: val |= 0x00; break;
1216 case 16: val |= 0x10; break;
1217 case 20:
1218 case 24:
1219 case 32:
1220 if (maxbps >= 32)
1221 val |= 0x40;
1222 else if (maxbps >= 24)
1223 val |= 0x30;
1224 else
1225 val |= 0x20;
1226 break;
1227 default:
1228 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1229 return 0;
1230 }
1231
1232 return val;
1233}
1234
1235/**
1236 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1237 * @codec: the HDA codec
1238 * @nid: NID to query
1239 * @ratesp: the pointer to store the detected rate bitflags
1240 * @formatsp: the pointer to store the detected formats
1241 * @bpsp: the pointer to store the detected format widths
1242 *
1243 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1244 * or @bsps argument is ignored.
1245 *
1246 * Returns 0 if successful, otherwise a negative error code.
1247 */
1248int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1249 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1250{
1251 int i;
1252 unsigned int val, streams;
1253
1254 val = 0;
1255 if (nid != codec->afg &&
1256 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1257 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1258 if (val == -1)
1259 return -EIO;
1260 }
1261 if (! val)
1262 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1263
1264 if (ratesp) {
1265 u32 rates = 0;
1266 for (i = 0; rate_bits[i][0]; i++) {
1267 if (val & (1 << i))
1268 rates |= rate_bits[i][1];
1269 }
1270 *ratesp = rates;
1271 }
1272
1273 if (formatsp || bpsp) {
1274 u64 formats = 0;
1275 unsigned int bps;
1276 unsigned int wcaps;
1277
1278 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1279 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1280 if (streams == -1)
1281 return -EIO;
1282 if (! streams) {
1283 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1284 if (streams == -1)
1285 return -EIO;
1286 }
1287
1288 bps = 0;
1289 if (streams & AC_SUPFMT_PCM) {
1290 if (val & AC_SUPPCM_BITS_8) {
1291 formats |= SNDRV_PCM_FMTBIT_U8;
1292 bps = 8;
1293 }
1294 if (val & AC_SUPPCM_BITS_16) {
1295 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1296 bps = 16;
1297 }
1298 if (wcaps & AC_WCAP_DIGITAL) {
1299 if (val & AC_SUPPCM_BITS_32)
1300 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1301 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1302 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1303 if (val & AC_SUPPCM_BITS_24)
1304 bps = 24;
1305 else if (val & AC_SUPPCM_BITS_20)
1306 bps = 20;
1307 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1308 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1309 if (val & AC_SUPPCM_BITS_32)
1310 bps = 32;
1311 else if (val & AC_SUPPCM_BITS_20)
1312 bps = 20;
1313 else if (val & AC_SUPPCM_BITS_24)
1314 bps = 24;
1315 }
1316 }
1317 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1318 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1319 bps = 32;
1320 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1321 /* temporary hack: we have still no proper support
1322 * for the direct AC3 stream...
1323 */
1324 formats |= SNDRV_PCM_FMTBIT_U8;
1325 bps = 8;
1326 }
1327 if (formatsp)
1328 *formatsp = formats;
1329 if (bpsp)
1330 *bpsp = bps;
1331 }
1332
1333 return 0;
1334}
1335
1336/**
1337 * snd_hda_is_supported_format - check whether the given node supports the format val
1338 *
1339 * Returns 1 if supported, 0 if not.
1340 */
1341int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1342 unsigned int format)
1343{
1344 int i;
1345 unsigned int val = 0, rate, stream;
1346
1347 if (nid != codec->afg &&
1348 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1349 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1350 if (val == -1)
1351 return 0;
1352 }
1353 if (! val) {
1354 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1355 if (val == -1)
1356 return 0;
1357 }
1358
1359 rate = format & 0xff00;
1360 for (i = 0; rate_bits[i][0]; i++)
1361 if (rate_bits[i][2] == rate) {
1362 if (val & (1 << i))
1363 break;
1364 return 0;
1365 }
1366 if (! rate_bits[i][0])
1367 return 0;
1368
1369 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1370 if (stream == -1)
1371 return 0;
1372 if (! stream && nid != codec->afg)
1373 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1374 if (! stream || stream == -1)
1375 return 0;
1376
1377 if (stream & AC_SUPFMT_PCM) {
1378 switch (format & 0xf0) {
1379 case 0x00:
1380 if (! (val & AC_SUPPCM_BITS_8))
1381 return 0;
1382 break;
1383 case 0x10:
1384 if (! (val & AC_SUPPCM_BITS_16))
1385 return 0;
1386 break;
1387 case 0x20:
1388 if (! (val & AC_SUPPCM_BITS_20))
1389 return 0;
1390 break;
1391 case 0x30:
1392 if (! (val & AC_SUPPCM_BITS_24))
1393 return 0;
1394 break;
1395 case 0x40:
1396 if (! (val & AC_SUPPCM_BITS_32))
1397 return 0;
1398 break;
1399 default:
1400 return 0;
1401 }
1402 } else {
1403 /* FIXME: check for float32 and AC3? */
1404 }
1405
1406 return 1;
1407}
1408
1409/*
1410 * PCM stuff
1411 */
1412static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1413 struct hda_codec *codec,
1414 snd_pcm_substream_t *substream)
1415{
1416 return 0;
1417}
1418
1419static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1420 struct hda_codec *codec,
1421 unsigned int stream_tag,
1422 unsigned int format,
1423 snd_pcm_substream_t *substream)
1424{
1425 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1426 return 0;
1427}
1428
1429static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1430 struct hda_codec *codec,
1431 snd_pcm_substream_t *substream)
1432{
1433 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1434 return 0;
1435}
1436
1437static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1438{
1439 if (info->nid) {
1440 /* query support PCM information from the given NID */
1441 if (! info->rates || ! info->formats)
1442 snd_hda_query_supported_pcm(codec, info->nid,
1443 info->rates ? NULL : &info->rates,
1444 info->formats ? NULL : &info->formats,
1445 info->maxbps ? NULL : &info->maxbps);
1446 }
1447 if (info->ops.open == NULL)
1448 info->ops.open = hda_pcm_default_open_close;
1449 if (info->ops.close == NULL)
1450 info->ops.close = hda_pcm_default_open_close;
1451 if (info->ops.prepare == NULL) {
1452 snd_assert(info->nid, return -EINVAL);
1453 info->ops.prepare = hda_pcm_default_prepare;
1454 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 if (info->ops.cleanup == NULL) {
1456 snd_assert(info->nid, return -EINVAL);
1457 info->ops.cleanup = hda_pcm_default_cleanup;
1458 }
1459 return 0;
1460}
1461
1462/**
1463 * snd_hda_build_pcms - build PCM information
1464 * @bus: the BUS
1465 *
1466 * Create PCM information for each codec included in the bus.
1467 *
1468 * The build_pcms codec patch is requested to set up codec->num_pcms and
1469 * codec->pcm_info properly. The array is referred by the top-level driver
1470 * to create its PCM instances.
1471 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1472 * callback.
1473 *
1474 * At least, substreams, channels_min and channels_max must be filled for
1475 * each stream. substreams = 0 indicates that the stream doesn't exist.
1476 * When rates and/or formats are zero, the supported values are queried
1477 * from the given nid. The nid is used also by the default ops.prepare
1478 * and ops.cleanup callbacks.
1479 *
1480 * The driver needs to call ops.open in its open callback. Similarly,
1481 * ops.close is supposed to be called in the close callback.
1482 * ops.prepare should be called in the prepare or hw_params callback
1483 * with the proper parameters for set up.
1484 * ops.cleanup should be called in hw_free for clean up of streams.
1485 *
1486 * This function returns 0 if successfull, or a negative error code.
1487 */
1488int snd_hda_build_pcms(struct hda_bus *bus)
1489{
1490 struct list_head *p;
1491
1492 list_for_each(p, &bus->codec_list) {
1493 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1494 unsigned int pcm, s;
1495 int err;
1496 if (! codec->patch_ops.build_pcms)
1497 continue;
1498 err = codec->patch_ops.build_pcms(codec);
1499 if (err < 0)
1500 return err;
1501 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1502 for (s = 0; s < 2; s++) {
1503 struct hda_pcm_stream *info;
1504 info = &codec->pcm_info[pcm].stream[s];
1505 if (! info->substreams)
1506 continue;
1507 err = set_pcm_default_values(codec, info);
1508 if (err < 0)
1509 return err;
1510 }
1511 }
1512 }
1513 return 0;
1514}
1515
1516
1517/**
1518 * snd_hda_check_board_config - compare the current codec with the config table
1519 * @codec: the HDA codec
1520 * @tbl: configuration table, terminated by null entries
1521 *
1522 * Compares the modelname or PCI subsystem id of the current codec with the
1523 * given configuration table. If a matching entry is found, returns its
1524 * config value (supposed to be 0 or positive).
1525 *
1526 * If no entries are matching, the function returns a negative value.
1527 */
1528int snd_hda_check_board_config(struct hda_codec *codec, struct hda_board_config *tbl)
1529{
1530 struct hda_board_config *c;
1531
1532 if (codec->bus->modelname) {
1533 for (c = tbl; c->modelname || c->pci_vendor; c++) {
1534 if (c->modelname &&
1535 ! strcmp(codec->bus->modelname, c->modelname)) {
1536 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1537 return c->config;
1538 }
1539 }
1540 }
1541
1542 if (codec->bus->pci) {
1543 u16 subsystem_vendor, subsystem_device;
1544 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1545 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1546 for (c = tbl; c->modelname || c->pci_vendor; c++) {
1547 if (c->pci_vendor == subsystem_vendor &&
1548 c->pci_device == subsystem_device)
1549 return c->config;
1550 }
1551 }
1552 return -1;
1553}
1554
1555/**
1556 * snd_hda_add_new_ctls - create controls from the array
1557 * @codec: the HDA codec
1558 * @knew: the array of snd_kcontrol_new_t
1559 *
1560 * This helper function creates and add new controls in the given array.
1561 * The array must be terminated with an empty entry as terminator.
1562 *
1563 * Returns 0 if successful, or a negative error code.
1564 */
1565int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1566{
1567 int err;
1568
1569 for (; knew->name; knew++) {
1570 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1571 if (err < 0)
1572 return err;
1573 }
1574 return 0;
1575}
1576
1577
1578/*
1579 * input MUX helper
1580 */
1581int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1582{
1583 unsigned int index;
1584
1585 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1586 uinfo->count = 1;
1587 uinfo->value.enumerated.items = imux->num_items;
1588 index = uinfo->value.enumerated.item;
1589 if (index >= imux->num_items)
1590 index = imux->num_items - 1;
1591 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1592 return 0;
1593}
1594
1595int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1596 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1597 unsigned int *cur_val)
1598{
1599 unsigned int idx;
1600
1601 idx = ucontrol->value.enumerated.item[0];
1602 if (idx >= imux->num_items)
1603 idx = imux->num_items - 1;
1604 if (*cur_val == idx && ! codec->in_resume)
1605 return 0;
1606 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1607 imux->items[idx].index);
1608 *cur_val = idx;
1609 return 1;
1610}
1611
1612
1613/*
1614 * Multi-channel / digital-out PCM helper functions
1615 */
1616
1617/*
1618 * open the digital out in the exclusive mode
1619 */
1620int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1621{
1622 down(&codec->spdif_mutex);
1623 if (mout->dig_out_used) {
1624 up(&codec->spdif_mutex);
1625 return -EBUSY; /* already being used */
1626 }
1627 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1628 up(&codec->spdif_mutex);
1629 return 0;
1630}
1631
1632/*
1633 * release the digital out
1634 */
1635int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1636{
1637 down(&codec->spdif_mutex);
1638 mout->dig_out_used = 0;
1639 up(&codec->spdif_mutex);
1640 return 0;
1641}
1642
1643/*
1644 * set up more restrictions for analog out
1645 */
1646int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1647 snd_pcm_substream_t *substream)
1648{
1649 substream->runtime->hw.channels_max = mout->max_channels;
1650 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1651 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1652}
1653
1654/*
1655 * set up the i/o for analog out
1656 * when the digital out is available, copy the front out to digital out, too.
1657 */
1658int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1659 unsigned int stream_tag,
1660 unsigned int format,
1661 snd_pcm_substream_t *substream)
1662{
1663 hda_nid_t *nids = mout->dac_nids;
1664 int chs = substream->runtime->channels;
1665 int i;
1666
1667 down(&codec->spdif_mutex);
1668 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1669 if (chs == 2 &&
1670 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1671 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1672 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1673 /* setup digital receiver */
1674 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1675 stream_tag, 0, format);
1676 } else {
1677 mout->dig_out_used = 0;
1678 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1679 }
1680 }
1681 up(&codec->spdif_mutex);
1682
1683 /* front */
1684 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1685 if (mout->hp_nid)
1686 /* headphone out will just decode front left/right (stereo) */
1687 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1688 /* surrounds */
1689 for (i = 1; i < mout->num_dacs; i++) {
1690 if (i == HDA_REAR && chs == 2) /* copy front to rear */
1691 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0, format);
1692 else if (chs >= (i + 1) * 2) /* independent out */
1693 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1694 format);
1695 }
1696 return 0;
1697}
1698
1699/*
1700 * clean up the setting for analog out
1701 */
1702int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1703{
1704 hda_nid_t *nids = mout->dac_nids;
1705 int i;
1706
1707 for (i = 0; i < mout->num_dacs; i++)
1708 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1709 if (mout->hp_nid)
1710 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1711 down(&codec->spdif_mutex);
1712 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1713 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1714 mout->dig_out_used = 0;
1715 }
1716 up(&codec->spdif_mutex);
1717 return 0;
1718}
1719
1720#ifdef CONFIG_PM
1721/*
1722 * power management
1723 */
1724
1725/**
1726 * snd_hda_suspend - suspend the codecs
1727 * @bus: the HDA bus
1728 * @state: suspsend state
1729 *
1730 * Returns 0 if successful.
1731 */
1732int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1733{
1734 struct list_head *p;
1735
1736 /* FIXME: should handle power widget capabilities */
1737 list_for_each(p, &bus->codec_list) {
1738 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1739 if (codec->patch_ops.suspend)
1740 codec->patch_ops.suspend(codec, state);
1741 }
1742 return 0;
1743}
1744
1745/**
1746 * snd_hda_resume - resume the codecs
1747 * @bus: the HDA bus
1748 * @state: resume state
1749 *
1750 * Returns 0 if successful.
1751 */
1752int snd_hda_resume(struct hda_bus *bus)
1753{
1754 struct list_head *p;
1755
1756 list_for_each(p, &bus->codec_list) {
1757 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1758 if (codec->patch_ops.resume)
1759 codec->patch_ops.resume(codec);
1760 }
1761 return 0;
1762}
1763
1764/**
1765 * snd_hda_resume_ctls - resume controls in the new control list
1766 * @codec: the HDA codec
1767 * @knew: the array of snd_kcontrol_new_t
1768 *
1769 * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1770 * originally for snd_hda_add_new_ctls().
1771 * The array must be terminated with an empty entry as terminator.
1772 */
1773int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1774{
1775 snd_ctl_elem_value_t *val;
1776
1777 val = kmalloc(sizeof(*val), GFP_KERNEL);
1778 if (! val)
1779 return -ENOMEM;
1780 codec->in_resume = 1;
1781 for (; knew->name; knew++) {
1782 int i, count;
1783 count = knew->count ? knew->count : 1;
1784 for (i = 0; i < count; i++) {
1785 memset(val, 0, sizeof(*val));
1786 val->id.iface = knew->iface;
1787 val->id.device = knew->device;
1788 val->id.subdevice = knew->subdevice;
1789 strcpy(val->id.name, knew->name);
1790 val->id.index = knew->index ? knew->index : i;
1791 /* Assume that get callback reads only from cache,
1792 * not accessing to the real hardware
1793 */
1794 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1795 continue;
1796 snd_ctl_elem_write(codec->bus->card, NULL, val);
1797 }
1798 }
1799 codec->in_resume = 0;
1800 kfree(val);
1801 return 0;
1802}
1803
1804/**
1805 * snd_hda_resume_spdif_out - resume the digital out
1806 * @codec: the HDA codec
1807 */
1808int snd_hda_resume_spdif_out(struct hda_codec *codec)
1809{
1810 return snd_hda_resume_ctls(codec, dig_mixes);
1811}
1812
1813/**
1814 * snd_hda_resume_spdif_in - resume the digital in
1815 * @codec: the HDA codec
1816 */
1817int snd_hda_resume_spdif_in(struct hda_codec *codec)
1818{
1819 return snd_hda_resume_ctls(codec, dig_in_ctls);
1820}
1821#endif
1822
1823/*
1824 * symbols exported for controller modules
1825 */
1826EXPORT_SYMBOL(snd_hda_codec_read);
1827EXPORT_SYMBOL(snd_hda_codec_write);
1828EXPORT_SYMBOL(snd_hda_sequence_write);
1829EXPORT_SYMBOL(snd_hda_get_sub_nodes);
1830EXPORT_SYMBOL(snd_hda_queue_unsol_event);
1831EXPORT_SYMBOL(snd_hda_bus_new);
1832EXPORT_SYMBOL(snd_hda_codec_new);
1833EXPORT_SYMBOL(snd_hda_codec_setup_stream);
1834EXPORT_SYMBOL(snd_hda_calc_stream_format);
1835EXPORT_SYMBOL(snd_hda_build_pcms);
1836EXPORT_SYMBOL(snd_hda_build_controls);
1837#ifdef CONFIG_PM
1838EXPORT_SYMBOL(snd_hda_suspend);
1839EXPORT_SYMBOL(snd_hda_resume);
1840#endif
1841
1842/*
1843 * INIT part
1844 */
1845
1846static int __init alsa_hda_init(void)
1847{
1848 return 0;
1849}
1850
1851static void __exit alsa_hda_exit(void)
1852{
1853}
1854
1855module_init(alsa_hda_init)
1856module_exit(alsa_hda_exit)