blob: 128b3be49463ac258fc107b086d902a6a3b70645 [file] [log] [blame]
Paolo Valenteaee69d72017-04-19 08:29:02 -06001/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020052 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
56 *
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
66 *
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
76 *
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
83 *
84 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060085 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
88 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020089 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
93 *
Paolo Valente4029eef2018-05-31 16:45:05 +020094 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600102 *
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
107 *
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112 *
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
116 *
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118 *
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
122 *
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124 */
125#include <linux/module.h>
126#include <linux/slab.h>
127#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200128#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600129#include <linux/elevator.h>
130#include <linux/ktime.h>
131#include <linux/rbtree.h>
132#include <linux/ioprio.h>
133#include <linux/sbitmap.h>
134#include <linux/delay.h>
135
136#include "blk.h"
137#include "blk-mq.h"
138#include "blk-mq-tag.h"
139#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600140#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200141#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600142
143#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600144void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600145{ \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
147} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600148void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149{ \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
151} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600152int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600153{ \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
155}
156
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200157BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600158BFQ_BFQQ_FNS(busy);
159BFQ_BFQQ_FNS(wait_request);
160BFQ_BFQQ_FNS(non_blocking_wait_rq);
161BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200162BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200165BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200166BFQ_BFQQ_FNS(coop);
167BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200168BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600169#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600170
Paolo Valenteaee69d72017-04-19 08:29:02 -0600171/* Expiration time of sync (0) and async (1) requests, in ns. */
172static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173
174/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175static const int bfq_back_max = 16 * 1024;
176
177/* Penalty of a backwards seek, in number of sectors. */
178static const int bfq_back_penalty = 2;
179
180/* Idling period duration, in ns. */
181static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182
183/* Minimum number of assigned budgets for which stats are safe to compute. */
184static const int bfq_stats_min_budgets = 194;
185
186/* Default maximum budget values, in sectors and number of requests. */
187static const int bfq_default_max_budget = 16 * 1024;
188
Paolo Valentec0741702017-04-12 18:23:11 +0200189/*
190 * Async to sync throughput distribution is controlled as follows:
191 * when an async request is served, the entity is charged the number
192 * of sectors of the request, multiplied by the factor below
193 */
194static const int bfq_async_charge_factor = 10;
195
Paolo Valenteaee69d72017-04-19 08:29:02 -0600196/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600197const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600198
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100199/*
200 * Time limit for merging (see comments in bfq_setup_cooperator). Set
201 * to the slowest value that, in our tests, proved to be effective in
202 * removing false positives, while not causing true positives to miss
203 * queue merging.
204 *
205 * As can be deduced from the low time limit below, queue merging, if
206 * successful, happens at the very beggining of the I/O of the involved
207 * cooperating processes, as a consequence of the arrival of the very
208 * first requests from each cooperator. After that, there is very
209 * little chance to find cooperators.
210 */
211static const unsigned long bfq_merge_time_limit = HZ/10;
212
Paolo Valenteaee69d72017-04-19 08:29:02 -0600213static struct kmem_cache *bfq_pool;
214
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200215/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600216#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
217
218/* hw_tag detection: parallel requests threshold and min samples needed. */
219#define BFQ_HW_QUEUE_THRESHOLD 4
220#define BFQ_HW_QUEUE_SAMPLES 32
221
222#define BFQQ_SEEK_THR (sector_t)(8 * 100)
223#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
224#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100225#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600226
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200227/* Min number of samples required to perform peak-rate update */
228#define BFQ_RATE_MIN_SAMPLES 32
229/* Min observation time interval required to perform a peak-rate update (ns) */
230#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
231/* Target observation time interval for a peak-rate update (ns) */
232#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600233
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200234/*
235 * Shift used for peak-rate fixed precision calculations.
236 * With
237 * - the current shift: 16 positions
238 * - the current type used to store rate: u32
239 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
240 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
241 * the range of rates that can be stored is
242 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
243 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
244 * [15, 65G] sectors/sec
245 * Which, assuming a sector size of 512B, corresponds to a range of
246 * [7.5K, 33T] B/sec
247 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600248#define BFQ_RATE_SHIFT 16
249
Paolo Valente44e44a12017-04-12 18:23:12 +0200250/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200251 * When configured for computing the duration of the weight-raising
252 * for interactive queues automatically (see the comments at the
253 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200254 * duration = (ref_rate / r) * ref_wr_duration,
255 * where r is the peak rate of the device, and ref_rate and
256 * ref_wr_duration are two reference parameters. In particular,
257 * ref_rate is the peak rate of the reference storage device (see
258 * below), and ref_wr_duration is about the maximum time needed, with
259 * BFQ and while reading two files in parallel, to load typical large
260 * applications on the reference device (see the comments on
261 * max_service_from_wr below, for more details on how ref_wr_duration
262 * is obtained). In practice, the slower/faster the device at hand
263 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200264 * reference device. Accordingly, the longer/shorter BFQ grants
265 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200266 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200267 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
268 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200269 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200270 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
271 * are the reference values for a rotational device, whereas
272 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
273 * non-rotational device. The reference rates are not the actual peak
274 * rates of the devices used as a reference, but slightly lower
275 * values. The reason for using slightly lower values is that the
276 * peak-rate estimator tends to yield slightly lower values than the
277 * actual peak rate (it can yield the actual peak rate only if there
278 * is only one process doing I/O, and the process does sequential
279 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200280 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200281 * The reference peak rates are measured in sectors/usec, left-shifted
282 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200283 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200284static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200285/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200286 * To improve readability, a conversion function is used to initialize
287 * the following array, which entails that the array can be
288 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200289 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200290static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200291
Paolo Valente8a8747d2018-01-13 12:05:18 +0100292/*
293 * BFQ uses the above-detailed, time-based weight-raising mechanism to
294 * privilege interactive tasks. This mechanism is vulnerable to the
295 * following false positives: I/O-bound applications that will go on
296 * doing I/O for much longer than the duration of weight
297 * raising. These applications have basically no benefit from being
298 * weight-raised at the beginning of their I/O. On the opposite end,
299 * while being weight-raised, these applications
300 * a) unjustly steal throughput to applications that may actually need
301 * low latency;
302 * b) make BFQ uselessly perform device idling; device idling results
303 * in loss of device throughput with most flash-based storage, and may
304 * increase latencies when used purposelessly.
305 *
306 * BFQ tries to reduce these problems, by adopting the following
307 * countermeasure. To introduce this countermeasure, we need first to
308 * finish explaining how the duration of weight-raising for
309 * interactive tasks is computed.
310 *
311 * For a bfq_queue deemed as interactive, the duration of weight
312 * raising is dynamically adjusted, as a function of the estimated
313 * peak rate of the device, so as to be equal to the time needed to
314 * execute the 'largest' interactive task we benchmarked so far. By
315 * largest task, we mean the task for which each involved process has
316 * to do more I/O than for any of the other tasks we benchmarked. This
317 * reference interactive task is the start-up of LibreOffice Writer,
318 * and in this task each process/bfq_queue needs to have at most ~110K
319 * sectors transferred.
320 *
321 * This last piece of information enables BFQ to reduce the actual
322 * duration of weight-raising for at least one class of I/O-bound
323 * applications: those doing sequential or quasi-sequential I/O. An
324 * example is file copy. In fact, once started, the main I/O-bound
325 * processes of these applications usually consume the above 110K
326 * sectors in much less time than the processes of an application that
327 * is starting, because these I/O-bound processes will greedily devote
328 * almost all their CPU cycles only to their target,
329 * throughput-friendly I/O operations. This is even more true if BFQ
330 * happens to be underestimating the device peak rate, and thus
331 * overestimating the duration of weight raising. But, according to
332 * our measurements, once transferred 110K sectors, these processes
333 * have no right to be weight-raised any longer.
334 *
335 * Basing on the last consideration, BFQ ends weight-raising for a
336 * bfq_queue if the latter happens to have received an amount of
337 * service at least equal to the following constant. The constant is
338 * set to slightly more than 110K, to have a minimum safety margin.
339 *
340 * This early ending of weight-raising reduces the amount of time
341 * during which interactive false positives cause the two problems
342 * described at the beginning of these comments.
343 */
344static const unsigned long max_service_from_wr = 120000;
345
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700346#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600347#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
348
Paolo Valenteea25da42017-04-19 08:48:24 -0600349struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
350{
351 return bic->bfqq[is_sync];
352}
353
354void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
355{
356 bic->bfqq[is_sync] = bfqq;
357}
358
359struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
360{
361 return bic->icq.q->elevator->elevator_data;
362}
363
Paolo Valenteaee69d72017-04-19 08:29:02 -0600364/**
365 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
366 * @icq: the iocontext queue.
367 */
368static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
369{
370 /* bic->icq is the first member, %NULL will convert to %NULL */
371 return container_of(icq, struct bfq_io_cq, icq);
372}
373
374/**
375 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
376 * @bfqd: the lookup key.
377 * @ioc: the io_context of the process doing I/O.
378 * @q: the request queue.
379 */
380static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
381 struct io_context *ioc,
382 struct request_queue *q)
383{
384 if (ioc) {
385 unsigned long flags;
386 struct bfq_io_cq *icq;
387
388 spin_lock_irqsave(q->queue_lock, flags);
389 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
390 spin_unlock_irqrestore(q->queue_lock, flags);
391
392 return icq;
393 }
394
395 return NULL;
396}
397
398/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200399 * Scheduler run of queue, if there are requests pending and no one in the
400 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600401 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600402void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600403{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200404 if (bfqd->queued != 0) {
405 bfq_log(bfqd, "schedule dispatch");
406 blk_mq_run_hw_queues(bfqd->queue, true);
407 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600408}
409
Paolo Valenteaee69d72017-04-19 08:29:02 -0600410#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
411#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
412
413#define bfq_sample_valid(samples) ((samples) > 80)
414
415/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600416 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
417 * We choose the request that is closesr to the head right now. Distance
418 * behind the head is penalized and only allowed to a certain extent.
419 */
420static struct request *bfq_choose_req(struct bfq_data *bfqd,
421 struct request *rq1,
422 struct request *rq2,
423 sector_t last)
424{
425 sector_t s1, s2, d1 = 0, d2 = 0;
426 unsigned long back_max;
427#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
428#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
429 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
430
431 if (!rq1 || rq1 == rq2)
432 return rq2;
433 if (!rq2)
434 return rq1;
435
436 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
437 return rq1;
438 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
439 return rq2;
440 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
441 return rq1;
442 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
443 return rq2;
444
445 s1 = blk_rq_pos(rq1);
446 s2 = blk_rq_pos(rq2);
447
448 /*
449 * By definition, 1KiB is 2 sectors.
450 */
451 back_max = bfqd->bfq_back_max * 2;
452
453 /*
454 * Strict one way elevator _except_ in the case where we allow
455 * short backward seeks which are biased as twice the cost of a
456 * similar forward seek.
457 */
458 if (s1 >= last)
459 d1 = s1 - last;
460 else if (s1 + back_max >= last)
461 d1 = (last - s1) * bfqd->bfq_back_penalty;
462 else
463 wrap |= BFQ_RQ1_WRAP;
464
465 if (s2 >= last)
466 d2 = s2 - last;
467 else if (s2 + back_max >= last)
468 d2 = (last - s2) * bfqd->bfq_back_penalty;
469 else
470 wrap |= BFQ_RQ2_WRAP;
471
472 /* Found required data */
473
474 /*
475 * By doing switch() on the bit mask "wrap" we avoid having to
476 * check two variables for all permutations: --> faster!
477 */
478 switch (wrap) {
479 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
480 if (d1 < d2)
481 return rq1;
482 else if (d2 < d1)
483 return rq2;
484
485 if (s1 >= s2)
486 return rq1;
487 else
488 return rq2;
489
490 case BFQ_RQ2_WRAP:
491 return rq1;
492 case BFQ_RQ1_WRAP:
493 return rq2;
494 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
495 default:
496 /*
497 * Since both rqs are wrapped,
498 * start with the one that's further behind head
499 * (--> only *one* back seek required),
500 * since back seek takes more time than forward.
501 */
502 if (s1 <= s2)
503 return rq1;
504 else
505 return rq2;
506 }
507}
508
Paolo Valentea52a69e2018-01-13 12:05:17 +0100509/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100510 * Async I/O can easily starve sync I/O (both sync reads and sync
511 * writes), by consuming all tags. Similarly, storms of sync writes,
512 * such as those that sync(2) may trigger, can starve sync reads.
513 * Limit depths of async I/O and sync writes so as to counter both
514 * problems.
515 */
516static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
517{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100518 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100519
520 if (op_is_sync(op) && !op_is_write(op))
521 return;
522
Paolo Valentea52a69e2018-01-13 12:05:17 +0100523 data->shallow_depth =
524 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
525
526 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
527 __func__, bfqd->wr_busy_queues, op_is_sync(op),
528 data->shallow_depth);
529}
530
Arianna Avanzini36eca892017-04-12 18:23:16 +0200531static struct bfq_queue *
532bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
533 sector_t sector, struct rb_node **ret_parent,
534 struct rb_node ***rb_link)
535{
536 struct rb_node **p, *parent;
537 struct bfq_queue *bfqq = NULL;
538
539 parent = NULL;
540 p = &root->rb_node;
541 while (*p) {
542 struct rb_node **n;
543
544 parent = *p;
545 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
546
547 /*
548 * Sort strictly based on sector. Smallest to the left,
549 * largest to the right.
550 */
551 if (sector > blk_rq_pos(bfqq->next_rq))
552 n = &(*p)->rb_right;
553 else if (sector < blk_rq_pos(bfqq->next_rq))
554 n = &(*p)->rb_left;
555 else
556 break;
557 p = n;
558 bfqq = NULL;
559 }
560
561 *ret_parent = parent;
562 if (rb_link)
563 *rb_link = p;
564
565 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
566 (unsigned long long)sector,
567 bfqq ? bfqq->pid : 0);
568
569 return bfqq;
570}
571
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100572static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
573{
574 return bfqq->service_from_backlogged > 0 &&
575 time_is_before_jiffies(bfqq->first_IO_time +
576 bfq_merge_time_limit);
577}
578
Paolo Valenteea25da42017-04-19 08:48:24 -0600579void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200580{
581 struct rb_node **p, *parent;
582 struct bfq_queue *__bfqq;
583
584 if (bfqq->pos_root) {
585 rb_erase(&bfqq->pos_node, bfqq->pos_root);
586 bfqq->pos_root = NULL;
587 }
588
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100589 /*
590 * bfqq cannot be merged any longer (see comments in
591 * bfq_setup_cooperator): no point in adding bfqq into the
592 * position tree.
593 */
594 if (bfq_too_late_for_merging(bfqq))
595 return;
596
Arianna Avanzini36eca892017-04-12 18:23:16 +0200597 if (bfq_class_idle(bfqq))
598 return;
599 if (!bfqq->next_rq)
600 return;
601
602 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
603 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
604 blk_rq_pos(bfqq->next_rq), &parent, &p);
605 if (!__bfqq) {
606 rb_link_node(&bfqq->pos_node, parent, p);
607 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
608 } else
609 bfqq->pos_root = NULL;
610}
611
Paolo Valenteaee69d72017-04-19 08:29:02 -0600612/*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200613 * Tell whether there are active queues or groups with differentiated weights.
614 */
615static bool bfq_differentiated_weights(struct bfq_data *bfqd)
616{
617 /*
618 * For weights to differ, at least one of the trees must contain
619 * at least two nodes.
620 */
621 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
622 (bfqd->queue_weights_tree.rb_node->rb_left ||
623 bfqd->queue_weights_tree.rb_node->rb_right)
624#ifdef CONFIG_BFQ_GROUP_IOSCHED
625 ) ||
626 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
627 (bfqd->group_weights_tree.rb_node->rb_left ||
628 bfqd->group_weights_tree.rb_node->rb_right)
629#endif
630 );
631}
632
633/*
634 * The following function returns true if every queue must receive the
635 * same share of the throughput (this condition is used when deciding
636 * whether idling may be disabled, see the comments in the function
637 * bfq_bfqq_may_idle()).
638 *
639 * Such a scenario occurs when:
640 * 1) all active queues have the same weight,
641 * 2) all active groups at the same level in the groups tree have the same
642 * weight,
643 * 3) all active groups at the same level in the groups tree have the same
644 * number of children.
645 *
646 * Unfortunately, keeping the necessary state for evaluating exactly the
647 * above symmetry conditions would be quite complex and time-consuming.
648 * Therefore this function evaluates, instead, the following stronger
649 * sub-conditions, for which it is much easier to maintain the needed
650 * state:
651 * 1) all active queues have the same weight,
652 * 2) all active groups have the same weight,
653 * 3) all active groups have at most one active child each.
654 * In particular, the last two conditions are always true if hierarchical
655 * support and the cgroups interface are not enabled, thus no state needs
656 * to be maintained in this case.
657 */
658static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
659{
660 return !bfq_differentiated_weights(bfqd);
661}
662
663/*
664 * If the weight-counter tree passed as input contains no counter for
665 * the weight of the input entity, then add that counter; otherwise just
666 * increment the existing counter.
667 *
668 * Note that weight-counter trees contain few nodes in mostly symmetric
669 * scenarios. For example, if all queues have the same weight, then the
670 * weight-counter tree for the queues may contain at most one node.
671 * This holds even if low_latency is on, because weight-raised queues
672 * are not inserted in the tree.
673 * In most scenarios, the rate at which nodes are created/destroyed
674 * should be low too.
675 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600676void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
677 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200678{
679 struct rb_node **new = &(root->rb_node), *parent = NULL;
680
681 /*
682 * Do not insert if the entity is already associated with a
683 * counter, which happens if:
684 * 1) the entity is associated with a queue,
685 * 2) a request arrival has caused the queue to become both
686 * non-weight-raised, and hence change its weight, and
687 * backlogged; in this respect, each of the two events
688 * causes an invocation of this function,
689 * 3) this is the invocation of this function caused by the
690 * second event. This second invocation is actually useless,
691 * and we handle this fact by exiting immediately. More
692 * efficient or clearer solutions might possibly be adopted.
693 */
694 if (entity->weight_counter)
695 return;
696
697 while (*new) {
698 struct bfq_weight_counter *__counter = container_of(*new,
699 struct bfq_weight_counter,
700 weights_node);
701 parent = *new;
702
703 if (entity->weight == __counter->weight) {
704 entity->weight_counter = __counter;
705 goto inc_counter;
706 }
707 if (entity->weight < __counter->weight)
708 new = &((*new)->rb_left);
709 else
710 new = &((*new)->rb_right);
711 }
712
713 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
714 GFP_ATOMIC);
715
716 /*
717 * In the unlucky event of an allocation failure, we just
718 * exit. This will cause the weight of entity to not be
719 * considered in bfq_differentiated_weights, which, in its
720 * turn, causes the scenario to be deemed wrongly symmetric in
721 * case entity's weight would have been the only weight making
722 * the scenario asymmetric. On the bright side, no unbalance
723 * will however occur when entity becomes inactive again (the
724 * invocation of this function is triggered by an activation
725 * of entity). In fact, bfq_weights_tree_remove does nothing
726 * if !entity->weight_counter.
727 */
728 if (unlikely(!entity->weight_counter))
729 return;
730
731 entity->weight_counter->weight = entity->weight;
732 rb_link_node(&entity->weight_counter->weights_node, parent, new);
733 rb_insert_color(&entity->weight_counter->weights_node, root);
734
735inc_counter:
736 entity->weight_counter->num_active++;
737}
738
739/*
740 * Decrement the weight counter associated with the entity, and, if the
741 * counter reaches 0, remove the counter from the tree.
742 * See the comments to the function bfq_weights_tree_add() for considerations
743 * about overhead.
744 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600745void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
746 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200747{
748 if (!entity->weight_counter)
749 return;
750
751 entity->weight_counter->num_active--;
752 if (entity->weight_counter->num_active > 0)
753 goto reset_entity_pointer;
754
755 rb_erase(&entity->weight_counter->weights_node, root);
756 kfree(entity->weight_counter);
757
758reset_entity_pointer:
759 entity->weight_counter = NULL;
760}
761
762/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600763 * Return expired entry, or NULL to just start from scratch in rbtree.
764 */
765static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
766 struct request *last)
767{
768 struct request *rq;
769
770 if (bfq_bfqq_fifo_expire(bfqq))
771 return NULL;
772
773 bfq_mark_bfqq_fifo_expire(bfqq);
774
775 rq = rq_entry_fifo(bfqq->fifo.next);
776
777 if (rq == last || ktime_get_ns() < rq->fifo_time)
778 return NULL;
779
780 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
781 return rq;
782}
783
784static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
785 struct bfq_queue *bfqq,
786 struct request *last)
787{
788 struct rb_node *rbnext = rb_next(&last->rb_node);
789 struct rb_node *rbprev = rb_prev(&last->rb_node);
790 struct request *next, *prev = NULL;
791
792 /* Follow expired path, else get first next available. */
793 next = bfq_check_fifo(bfqq, last);
794 if (next)
795 return next;
796
797 if (rbprev)
798 prev = rb_entry_rq(rbprev);
799
800 if (rbnext)
801 next = rb_entry_rq(rbnext);
802 else {
803 rbnext = rb_first(&bfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
805 next = rb_entry_rq(rbnext);
806 }
807
808 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
809}
810
Paolo Valentec0741702017-04-12 18:23:11 +0200811/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600812static unsigned long bfq_serv_to_charge(struct request *rq,
813 struct bfq_queue *bfqq)
814{
Paolo Valente44e44a12017-04-12 18:23:12 +0200815 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
Paolo Valentec0741702017-04-12 18:23:11 +0200816 return blk_rq_sectors(rq);
817
Paolo Valentecfd69712017-04-12 18:23:15 +0200818 /*
819 * If there are no weight-raised queues, then amplify service
820 * by just the async charge factor; otherwise amplify service
821 * by twice the async charge factor, to further reduce latency
822 * for weight-raised queues.
823 */
824 if (bfqq->bfqd->wr_busy_queues == 0)
825 return blk_rq_sectors(rq) * bfq_async_charge_factor;
826
827 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600828}
829
830/**
831 * bfq_updated_next_req - update the queue after a new next_rq selection.
832 * @bfqd: the device data the queue belongs to.
833 * @bfqq: the queue to update.
834 *
835 * If the first request of a queue changes we make sure that the queue
836 * has enough budget to serve at least its first request (if the
837 * request has grown). We do this because if the queue has not enough
838 * budget for its first request, it has to go through two dispatch
839 * rounds to actually get it dispatched.
840 */
841static void bfq_updated_next_req(struct bfq_data *bfqd,
842 struct bfq_queue *bfqq)
843{
844 struct bfq_entity *entity = &bfqq->entity;
845 struct request *next_rq = bfqq->next_rq;
846 unsigned long new_budget;
847
848 if (!next_rq)
849 return;
850
851 if (bfqq == bfqd->in_service_queue)
852 /*
853 * In order not to break guarantees, budgets cannot be
854 * changed after an entity has been selected.
855 */
856 return;
857
858 new_budget = max_t(unsigned long, bfqq->max_budget,
859 bfq_serv_to_charge(next_rq, bfqq));
860 if (entity->budget != new_budget) {
861 entity->budget = new_budget;
862 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
863 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200864 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600865 }
866}
867
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200868static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
869{
870 u64 dur;
871
872 if (bfqd->bfq_wr_max_time > 0)
873 return bfqd->bfq_wr_max_time;
874
Paolo Valentee24f1c22018-05-31 16:45:06 +0200875 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200876 do_div(dur, bfqd->peak_rate);
877
878 /*
Davide Sapienzad4505422018-05-31 16:45:07 +0200879 * Limit duration between 3 and 25 seconds. The upper limit
880 * has been conservatively set after the following worst case:
881 * on a QEMU/KVM virtual machine
882 * - running in a slow PC
883 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
884 * - serving a heavy I/O workload, such as the sequential reading
885 * of several files
886 * mplayer took 23 seconds to start, if constantly weight-raised.
887 *
888 * As for higher values than that accomodating the above bad
889 * scenario, tests show that higher values would often yield
890 * the opposite of the desired result, i.e., would worsen
891 * responsiveness by allowing non-interactive applications to
892 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200893 *
894 * On the other end, lower values than 3 seconds make it
895 * difficult for most interactive tasks to complete their jobs
896 * before weight-raising finishes.
897 */
Davide Sapienzad4505422018-05-31 16:45:07 +0200898 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200899}
900
901/* switch back from soft real-time to interactive weight raising */
902static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
903 struct bfq_data *bfqd)
904{
905 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
906 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
907 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
908}
909
Arianna Avanzini36eca892017-04-12 18:23:16 +0200910static void
Paolo Valente13c931b2017-06-27 12:30:47 -0600911bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
912 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200913{
Paolo Valente13c931b2017-06-27 12:30:47 -0600914 unsigned int old_wr_coeff = bfqq->wr_coeff;
915 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
916
Paolo Valented5be3fe2017-08-04 07:35:10 +0200917 if (bic->saved_has_short_ttime)
918 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200919 else
Paolo Valented5be3fe2017-08-04 07:35:10 +0200920 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200921
922 if (bic->saved_IO_bound)
923 bfq_mark_bfqq_IO_bound(bfqq);
924 else
925 bfq_clear_bfqq_IO_bound(bfqq);
926
927 bfqq->ttime = bic->saved_ttime;
928 bfqq->wr_coeff = bic->saved_wr_coeff;
929 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
930 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
931 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
932
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200933 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +0200934 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200935 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200936 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
937 !bfq_bfqq_in_large_burst(bfqq) &&
938 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
939 bfq_wr_duration(bfqd))) {
940 switch_back_to_interactive_wr(bfqq, bfqd);
941 } else {
942 bfqq->wr_coeff = 1;
943 bfq_log_bfqq(bfqq->bfqd, bfqq,
944 "resume state: switching off wr");
945 }
Arianna Avanzini36eca892017-04-12 18:23:16 +0200946 }
947
948 /* make sure weight will be updated, however we got here */
949 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -0600950
951 if (likely(!busy))
952 return;
953
954 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
955 bfqd->wr_busy_queues++;
956 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
957 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +0200958}
959
960static int bfqq_process_refs(struct bfq_queue *bfqq)
961{
962 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
963}
964
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200965/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
966static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
967{
968 struct bfq_queue *item;
969 struct hlist_node *n;
970
971 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
972 hlist_del_init(&item->burst_list_node);
973 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
974 bfqd->burst_size = 1;
975 bfqd->burst_parent_entity = bfqq->entity.parent;
976}
977
978/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
979static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
980{
981 /* Increment burst size to take into account also bfqq */
982 bfqd->burst_size++;
983
984 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
985 struct bfq_queue *pos, *bfqq_item;
986 struct hlist_node *n;
987
988 /*
989 * Enough queues have been activated shortly after each
990 * other to consider this burst as large.
991 */
992 bfqd->large_burst = true;
993
994 /*
995 * We can now mark all queues in the burst list as
996 * belonging to a large burst.
997 */
998 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
999 burst_list_node)
1000 bfq_mark_bfqq_in_large_burst(bfqq_item);
1001 bfq_mark_bfqq_in_large_burst(bfqq);
1002
1003 /*
1004 * From now on, and until the current burst finishes, any
1005 * new queue being activated shortly after the last queue
1006 * was inserted in the burst can be immediately marked as
1007 * belonging to a large burst. So the burst list is not
1008 * needed any more. Remove it.
1009 */
1010 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1011 burst_list_node)
1012 hlist_del_init(&pos->burst_list_node);
1013 } else /*
1014 * Burst not yet large: add bfqq to the burst list. Do
1015 * not increment the ref counter for bfqq, because bfqq
1016 * is removed from the burst list before freeing bfqq
1017 * in put_queue.
1018 */
1019 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1020}
1021
1022/*
1023 * If many queues belonging to the same group happen to be created
1024 * shortly after each other, then the processes associated with these
1025 * queues have typically a common goal. In particular, bursts of queue
1026 * creations are usually caused by services or applications that spawn
1027 * many parallel threads/processes. Examples are systemd during boot,
1028 * or git grep. To help these processes get their job done as soon as
1029 * possible, it is usually better to not grant either weight-raising
1030 * or device idling to their queues.
1031 *
1032 * In this comment we describe, firstly, the reasons why this fact
1033 * holds, and, secondly, the next function, which implements the main
1034 * steps needed to properly mark these queues so that they can then be
1035 * treated in a different way.
1036 *
1037 * The above services or applications benefit mostly from a high
1038 * throughput: the quicker the requests of the activated queues are
1039 * cumulatively served, the sooner the target job of these queues gets
1040 * completed. As a consequence, weight-raising any of these queues,
1041 * which also implies idling the device for it, is almost always
1042 * counterproductive. In most cases it just lowers throughput.
1043 *
1044 * On the other hand, a burst of queue creations may be caused also by
1045 * the start of an application that does not consist of a lot of
1046 * parallel I/O-bound threads. In fact, with a complex application,
1047 * several short processes may need to be executed to start-up the
1048 * application. In this respect, to start an application as quickly as
1049 * possible, the best thing to do is in any case to privilege the I/O
1050 * related to the application with respect to all other
1051 * I/O. Therefore, the best strategy to start as quickly as possible
1052 * an application that causes a burst of queue creations is to
1053 * weight-raise all the queues created during the burst. This is the
1054 * exact opposite of the best strategy for the other type of bursts.
1055 *
1056 * In the end, to take the best action for each of the two cases, the
1057 * two types of bursts need to be distinguished. Fortunately, this
1058 * seems relatively easy, by looking at the sizes of the bursts. In
1059 * particular, we found a threshold such that only bursts with a
1060 * larger size than that threshold are apparently caused by
1061 * services or commands such as systemd or git grep. For brevity,
1062 * hereafter we call just 'large' these bursts. BFQ *does not*
1063 * weight-raise queues whose creation occurs in a large burst. In
1064 * addition, for each of these queues BFQ performs or does not perform
1065 * idling depending on which choice boosts the throughput more. The
1066 * exact choice depends on the device and request pattern at
1067 * hand.
1068 *
1069 * Unfortunately, false positives may occur while an interactive task
1070 * is starting (e.g., an application is being started). The
1071 * consequence is that the queues associated with the task do not
1072 * enjoy weight raising as expected. Fortunately these false positives
1073 * are very rare. They typically occur if some service happens to
1074 * start doing I/O exactly when the interactive task starts.
1075 *
1076 * Turning back to the next function, it implements all the steps
1077 * needed to detect the occurrence of a large burst and to properly
1078 * mark all the queues belonging to it (so that they can then be
1079 * treated in a different way). This goal is achieved by maintaining a
1080 * "burst list" that holds, temporarily, the queues that belong to the
1081 * burst in progress. The list is then used to mark these queues as
1082 * belonging to a large burst if the burst does become large. The main
1083 * steps are the following.
1084 *
1085 * . when the very first queue is created, the queue is inserted into the
1086 * list (as it could be the first queue in a possible burst)
1087 *
1088 * . if the current burst has not yet become large, and a queue Q that does
1089 * not yet belong to the burst is activated shortly after the last time
1090 * at which a new queue entered the burst list, then the function appends
1091 * Q to the burst list
1092 *
1093 * . if, as a consequence of the previous step, the burst size reaches
1094 * the large-burst threshold, then
1095 *
1096 * . all the queues in the burst list are marked as belonging to a
1097 * large burst
1098 *
1099 * . the burst list is deleted; in fact, the burst list already served
1100 * its purpose (keeping temporarily track of the queues in a burst,
1101 * so as to be able to mark them as belonging to a large burst in the
1102 * previous sub-step), and now is not needed any more
1103 *
1104 * . the device enters a large-burst mode
1105 *
1106 * . if a queue Q that does not belong to the burst is created while
1107 * the device is in large-burst mode and shortly after the last time
1108 * at which a queue either entered the burst list or was marked as
1109 * belonging to the current large burst, then Q is immediately marked
1110 * as belonging to a large burst.
1111 *
1112 * . if a queue Q that does not belong to the burst is created a while
1113 * later, i.e., not shortly after, than the last time at which a queue
1114 * either entered the burst list or was marked as belonging to the
1115 * current large burst, then the current burst is deemed as finished and:
1116 *
1117 * . the large-burst mode is reset if set
1118 *
1119 * . the burst list is emptied
1120 *
1121 * . Q is inserted in the burst list, as Q may be the first queue
1122 * in a possible new burst (then the burst list contains just Q
1123 * after this step).
1124 */
1125static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1126{
1127 /*
1128 * If bfqq is already in the burst list or is part of a large
1129 * burst, or finally has just been split, then there is
1130 * nothing else to do.
1131 */
1132 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1133 bfq_bfqq_in_large_burst(bfqq) ||
1134 time_is_after_eq_jiffies(bfqq->split_time +
1135 msecs_to_jiffies(10)))
1136 return;
1137
1138 /*
1139 * If bfqq's creation happens late enough, or bfqq belongs to
1140 * a different group than the burst group, then the current
1141 * burst is finished, and related data structures must be
1142 * reset.
1143 *
1144 * In this respect, consider the special case where bfqq is
1145 * the very first queue created after BFQ is selected for this
1146 * device. In this case, last_ins_in_burst and
1147 * burst_parent_entity are not yet significant when we get
1148 * here. But it is easy to verify that, whether or not the
1149 * following condition is true, bfqq will end up being
1150 * inserted into the burst list. In particular the list will
1151 * happen to contain only bfqq. And this is exactly what has
1152 * to happen, as bfqq may be the first queue of the first
1153 * burst.
1154 */
1155 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1156 bfqd->bfq_burst_interval) ||
1157 bfqq->entity.parent != bfqd->burst_parent_entity) {
1158 bfqd->large_burst = false;
1159 bfq_reset_burst_list(bfqd, bfqq);
1160 goto end;
1161 }
1162
1163 /*
1164 * If we get here, then bfqq is being activated shortly after the
1165 * last queue. So, if the current burst is also large, we can mark
1166 * bfqq as belonging to this large burst immediately.
1167 */
1168 if (bfqd->large_burst) {
1169 bfq_mark_bfqq_in_large_burst(bfqq);
1170 goto end;
1171 }
1172
1173 /*
1174 * If we get here, then a large-burst state has not yet been
1175 * reached, but bfqq is being activated shortly after the last
1176 * queue. Then we add bfqq to the burst.
1177 */
1178 bfq_add_to_burst(bfqd, bfqq);
1179end:
1180 /*
1181 * At this point, bfqq either has been added to the current
1182 * burst or has caused the current burst to terminate and a
1183 * possible new burst to start. In particular, in the second
1184 * case, bfqq has become the first queue in the possible new
1185 * burst. In both cases last_ins_in_burst needs to be moved
1186 * forward.
1187 */
1188 bfqd->last_ins_in_burst = jiffies;
1189}
1190
Paolo Valenteaee69d72017-04-19 08:29:02 -06001191static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1192{
1193 struct bfq_entity *entity = &bfqq->entity;
1194
1195 return entity->budget - entity->service;
1196}
1197
1198/*
1199 * If enough samples have been computed, return the current max budget
1200 * stored in bfqd, which is dynamically updated according to the
1201 * estimated disk peak rate; otherwise return the default max budget
1202 */
1203static int bfq_max_budget(struct bfq_data *bfqd)
1204{
1205 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1206 return bfq_default_max_budget;
1207 else
1208 return bfqd->bfq_max_budget;
1209}
1210
1211/*
1212 * Return min budget, which is a fraction of the current or default
1213 * max budget (trying with 1/32)
1214 */
1215static int bfq_min_budget(struct bfq_data *bfqd)
1216{
1217 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1218 return bfq_default_max_budget / 32;
1219 else
1220 return bfqd->bfq_max_budget / 32;
1221}
1222
Paolo Valenteaee69d72017-04-19 08:29:02 -06001223/*
1224 * The next function, invoked after the input queue bfqq switches from
1225 * idle to busy, updates the budget of bfqq. The function also tells
1226 * whether the in-service queue should be expired, by returning
1227 * true. The purpose of expiring the in-service queue is to give bfqq
1228 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001229 * for preempting the in-service queue is to achieve one of the two
1230 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001231 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001232 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1233 * expired because it has remained idle. In particular, bfqq may have
1234 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001235 *
1236 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1237 * and did not make it to issue a new request before its last
1238 * request was served;
1239 *
1240 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1241 * a new request before the expiration of the idling-time.
1242 *
1243 * Even if bfqq has expired for one of the above reasons, the process
1244 * associated with the queue may be however issuing requests greedily,
1245 * and thus be sensitive to the bandwidth it receives (bfqq may have
1246 * remained idle for other reasons: CPU high load, bfqq not enjoying
1247 * idling, I/O throttling somewhere in the path from the process to
1248 * the I/O scheduler, ...). But if, after every expiration for one of
1249 * the above two reasons, bfqq has to wait for the service of at least
1250 * one full budget of another queue before being served again, then
1251 * bfqq is likely to get a much lower bandwidth or resource time than
1252 * its reserved ones. To address this issue, two countermeasures need
1253 * to be taken.
1254 *
1255 * First, the budget and the timestamps of bfqq need to be updated in
1256 * a special way on bfqq reactivation: they need to be updated as if
1257 * bfqq did not remain idle and did not expire. In fact, if they are
1258 * computed as if bfqq expired and remained idle until reactivation,
1259 * then the process associated with bfqq is treated as if, instead of
1260 * being greedy, it stopped issuing requests when bfqq remained idle,
1261 * and restarts issuing requests only on this reactivation. In other
1262 * words, the scheduler does not help the process recover the "service
1263 * hole" between bfqq expiration and reactivation. As a consequence,
1264 * the process receives a lower bandwidth than its reserved one. In
1265 * contrast, to recover this hole, the budget must be updated as if
1266 * bfqq was not expired at all before this reactivation, i.e., it must
1267 * be set to the value of the remaining budget when bfqq was
1268 * expired. Along the same line, timestamps need to be assigned the
1269 * value they had the last time bfqq was selected for service, i.e.,
1270 * before last expiration. Thus timestamps need to be back-shifted
1271 * with respect to their normal computation (see [1] for more details
1272 * on this tricky aspect).
1273 *
1274 * Secondly, to allow the process to recover the hole, the in-service
1275 * queue must be expired too, to give bfqq the chance to preempt it
1276 * immediately. In fact, if bfqq has to wait for a full budget of the
1277 * in-service queue to be completed, then it may become impossible to
1278 * let the process recover the hole, even if the back-shifted
1279 * timestamps of bfqq are lower than those of the in-service queue. If
1280 * this happens for most or all of the holes, then the process may not
1281 * receive its reserved bandwidth. In this respect, it is worth noting
1282 * that, being the service of outstanding requests unpreemptible, a
1283 * little fraction of the holes may however be unrecoverable, thereby
1284 * causing a little loss of bandwidth.
1285 *
1286 * The last important point is detecting whether bfqq does need this
1287 * bandwidth recovery. In this respect, the next function deems the
1288 * process associated with bfqq greedy, and thus allows it to recover
1289 * the hole, if: 1) the process is waiting for the arrival of a new
1290 * request (which implies that bfqq expired for one of the above two
1291 * reasons), and 2) such a request has arrived soon. The first
1292 * condition is controlled through the flag non_blocking_wait_rq,
1293 * while the second through the flag arrived_in_time. If both
1294 * conditions hold, then the function computes the budget in the
1295 * above-described special way, and signals that the in-service queue
1296 * should be expired. Timestamp back-shifting is done later in
1297 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001298 *
1299 * 2. Reduce latency. Even if timestamps are not backshifted to let
1300 * the process associated with bfqq recover a service hole, bfqq may
1301 * however happen to have, after being (re)activated, a lower finish
1302 * timestamp than the in-service queue. That is, the next budget of
1303 * bfqq may have to be completed before the one of the in-service
1304 * queue. If this is the case, then preempting the in-service queue
1305 * allows this goal to be achieved, apart from the unpreemptible,
1306 * outstanding requests mentioned above.
1307 *
1308 * Unfortunately, regardless of which of the above two goals one wants
1309 * to achieve, service trees need first to be updated to know whether
1310 * the in-service queue must be preempted. To have service trees
1311 * correctly updated, the in-service queue must be expired and
1312 * rescheduled, and bfqq must be scheduled too. This is one of the
1313 * most costly operations (in future versions, the scheduling
1314 * mechanism may be re-designed in such a way to make it possible to
1315 * know whether preemption is needed without needing to update service
1316 * trees). In addition, queue preemptions almost always cause random
1317 * I/O, and thus loss of throughput. Because of these facts, the next
1318 * function adopts the following simple scheme to avoid both costly
1319 * operations and too frequent preemptions: it requests the expiration
1320 * of the in-service queue (unconditionally) only for queues that need
1321 * to recover a hole, or that either are weight-raised or deserve to
1322 * be weight-raised.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001323 */
1324static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1325 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001326 bool arrived_in_time,
1327 bool wr_or_deserves_wr)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001328{
1329 struct bfq_entity *entity = &bfqq->entity;
1330
1331 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1332 /*
1333 * We do not clear the flag non_blocking_wait_rq here, as
1334 * the latter is used in bfq_activate_bfqq to signal
1335 * that timestamps need to be back-shifted (and is
1336 * cleared right after).
1337 */
1338
1339 /*
1340 * In next assignment we rely on that either
1341 * entity->service or entity->budget are not updated
1342 * on expiration if bfqq is empty (see
1343 * __bfq_bfqq_recalc_budget). Thus both quantities
1344 * remain unchanged after such an expiration, and the
1345 * following statement therefore assigns to
1346 * entity->budget the remaining budget on such an
1347 * expiration. For clarity, entity->service is not
1348 * updated on expiration in any case, and, in normal
1349 * operation, is reset only when bfqq is selected for
1350 * service (see bfq_get_next_queue).
1351 */
1352 entity->budget = min_t(unsigned long,
1353 bfq_bfqq_budget_left(bfqq),
1354 bfqq->max_budget);
1355
1356 return true;
1357 }
1358
1359 entity->budget = max_t(unsigned long, bfqq->max_budget,
1360 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1361 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02001362 return wr_or_deserves_wr;
1363}
1364
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001365/*
1366 * Return the farthest future time instant according to jiffies
1367 * macros.
1368 */
1369static unsigned long bfq_greatest_from_now(void)
1370{
1371 return jiffies + MAX_JIFFY_OFFSET;
1372}
1373
1374/*
1375 * Return the farthest past time instant according to jiffies
1376 * macros.
1377 */
1378static unsigned long bfq_smallest_from_now(void)
1379{
1380 return jiffies - MAX_JIFFY_OFFSET;
1381}
1382
Paolo Valente44e44a12017-04-12 18:23:12 +02001383static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1384 struct bfq_queue *bfqq,
1385 unsigned int old_wr_coeff,
1386 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001387 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001388 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001389 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001390{
1391 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1392 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001393 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001394 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001395 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1396 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1397 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001398 /*
1399 * No interactive weight raising in progress
1400 * here: assign minus infinity to
1401 * wr_start_at_switch_to_srt, to make sure
1402 * that, at the end of the soft-real-time
1403 * weight raising periods that is starting
1404 * now, no interactive weight-raising period
1405 * may be wrongly considered as still in
1406 * progress (and thus actually started by
1407 * mistake).
1408 */
1409 bfqq->wr_start_at_switch_to_srt =
1410 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001411 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1412 BFQ_SOFTRT_WEIGHT_FACTOR;
1413 bfqq->wr_cur_max_time =
1414 bfqd->bfq_wr_rt_max_time;
1415 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001416
1417 /*
1418 * If needed, further reduce budget to make sure it is
1419 * close to bfqq's backlog, so as to reduce the
1420 * scheduling-error component due to a too large
1421 * budget. Do not care about throughput consequences,
1422 * but only about latency. Finally, do not assign a
1423 * too small budget either, to avoid increasing
1424 * latency by causing too frequent expirations.
1425 */
1426 bfqq->entity.budget = min_t(unsigned long,
1427 bfqq->entity.budget,
1428 2 * bfq_min_budget(bfqd));
1429 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001430 if (interactive) { /* update wr coeff and duration */
1431 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1432 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001433 } else if (in_burst)
1434 bfqq->wr_coeff = 1;
1435 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001436 /*
1437 * The application is now or still meeting the
1438 * requirements for being deemed soft rt. We
1439 * can then correctly and safely (re)charge
1440 * the weight-raising duration for the
1441 * application with the weight-raising
1442 * duration for soft rt applications.
1443 *
1444 * In particular, doing this recharge now, i.e.,
1445 * before the weight-raising period for the
1446 * application finishes, reduces the probability
1447 * of the following negative scenario:
1448 * 1) the weight of a soft rt application is
1449 * raised at startup (as for any newly
1450 * created application),
1451 * 2) since the application is not interactive,
1452 * at a certain time weight-raising is
1453 * stopped for the application,
1454 * 3) at that time the application happens to
1455 * still have pending requests, and hence
1456 * is destined to not have a chance to be
1457 * deemed soft rt before these requests are
1458 * completed (see the comments to the
1459 * function bfq_bfqq_softrt_next_start()
1460 * for details on soft rt detection),
1461 * 4) these pending requests experience a high
1462 * latency because the application is not
1463 * weight-raised while they are pending.
1464 */
1465 if (bfqq->wr_cur_max_time !=
1466 bfqd->bfq_wr_rt_max_time) {
1467 bfqq->wr_start_at_switch_to_srt =
1468 bfqq->last_wr_start_finish;
1469
1470 bfqq->wr_cur_max_time =
1471 bfqd->bfq_wr_rt_max_time;
1472 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1473 BFQ_SOFTRT_WEIGHT_FACTOR;
1474 }
1475 bfqq->last_wr_start_finish = jiffies;
1476 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001477 }
1478}
1479
1480static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1481 struct bfq_queue *bfqq)
1482{
1483 return bfqq->dispatched == 0 &&
1484 time_is_before_jiffies(
1485 bfqq->budget_timeout +
1486 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001487}
1488
1489static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1490 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001491 int old_wr_coeff,
1492 struct request *rq,
1493 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001494{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001495 bool soft_rt, in_burst, wr_or_deserves_wr,
1496 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001497 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001498 /*
1499 * See the comments on
1500 * bfq_bfqq_update_budg_for_activation for
1501 * details on the usage of the next variable.
1502 */
1503 arrived_in_time = ktime_get_ns() <=
1504 bfqq->ttime.last_end_request +
1505 bfqd->bfq_slice_idle * 3;
1506
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001507
Paolo Valenteaee69d72017-04-19 08:29:02 -06001508 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001509 * bfqq deserves to be weight-raised if:
1510 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001511 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001512 * - it has been idle for enough time or is soft real-time,
1513 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001514 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001515 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001516 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001517 !in_burst &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001518 time_is_before_jiffies(bfqq->soft_rt_next_start);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001519 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001520 wr_or_deserves_wr = bfqd->low_latency &&
1521 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001522 (bfq_bfqq_sync(bfqq) &&
1523 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001524
1525 /*
1526 * Using the last flag, update budget and check whether bfqq
1527 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001528 */
1529 bfqq_wants_to_preempt =
1530 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001531 arrived_in_time,
1532 wr_or_deserves_wr);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001533
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001534 /*
1535 * If bfqq happened to be activated in a burst, but has been
1536 * idle for much more than an interactive queue, then we
1537 * assume that, in the overall I/O initiated in the burst, the
1538 * I/O associated with bfqq is finished. So bfqq does not need
1539 * to be treated as a queue belonging to a burst
1540 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1541 * if set, and remove bfqq from the burst list if it's
1542 * there. We do not decrement burst_size, because the fact
1543 * that bfqq does not need to belong to the burst list any
1544 * more does not invalidate the fact that bfqq was created in
1545 * a burst.
1546 */
1547 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1548 idle_for_long_time &&
1549 time_is_before_jiffies(
1550 bfqq->budget_timeout +
1551 msecs_to_jiffies(10000))) {
1552 hlist_del_init(&bfqq->burst_list_node);
1553 bfq_clear_bfqq_in_large_burst(bfqq);
1554 }
1555
1556 bfq_clear_bfqq_just_created(bfqq);
1557
1558
Paolo Valenteaee69d72017-04-19 08:29:02 -06001559 if (!bfq_bfqq_IO_bound(bfqq)) {
1560 if (arrived_in_time) {
1561 bfqq->requests_within_timer++;
1562 if (bfqq->requests_within_timer >=
1563 bfqd->bfq_requests_within_timer)
1564 bfq_mark_bfqq_IO_bound(bfqq);
1565 } else
1566 bfqq->requests_within_timer = 0;
1567 }
1568
Paolo Valente44e44a12017-04-12 18:23:12 +02001569 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001570 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1571 /* wraparound */
1572 bfqq->split_time =
1573 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001574
Arianna Avanzini36eca892017-04-12 18:23:16 +02001575 if (time_is_before_jiffies(bfqq->split_time +
1576 bfqd->bfq_wr_min_idle_time)) {
1577 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1578 old_wr_coeff,
1579 wr_or_deserves_wr,
1580 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001581 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001582 soft_rt);
1583
1584 if (old_wr_coeff != bfqq->wr_coeff)
1585 bfqq->entity.prio_changed = 1;
1586 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001587 }
1588
Paolo Valente77b7dce2017-04-12 18:23:13 +02001589 bfqq->last_idle_bklogged = jiffies;
1590 bfqq->service_from_backlogged = 0;
1591 bfq_clear_bfqq_softrt_update(bfqq);
1592
Paolo Valenteaee69d72017-04-19 08:29:02 -06001593 bfq_add_bfqq_busy(bfqd, bfqq);
1594
1595 /*
1596 * Expire in-service queue only if preemption may be needed
1597 * for guarantees. In this respect, the function
1598 * next_queue_may_preempt just checks a simple, necessary
1599 * condition, and not a sufficient condition based on
1600 * timestamps. In fact, for the latter condition to be
1601 * evaluated, timestamps would need first to be updated, and
1602 * this operation is quite costly (see the comments on the
1603 * function bfq_bfqq_update_budg_for_activation).
1604 */
1605 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001606 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001607 next_queue_may_preempt(bfqd))
1608 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1609 false, BFQQE_PREEMPTED);
1610}
1611
1612static void bfq_add_request(struct request *rq)
1613{
1614 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1615 struct bfq_data *bfqd = bfqq->bfqd;
1616 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001617 unsigned int old_wr_coeff = bfqq->wr_coeff;
1618 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001619
1620 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1621 bfqq->queued[rq_is_sync(rq)]++;
1622 bfqd->queued++;
1623
1624 elv_rb_add(&bfqq->sort_list, rq);
1625
1626 /*
1627 * Check if this request is a better next-serve candidate.
1628 */
1629 prev = bfqq->next_rq;
1630 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1631 bfqq->next_rq = next_rq;
1632
Arianna Avanzini36eca892017-04-12 18:23:16 +02001633 /*
1634 * Adjust priority tree position, if next_rq changes.
1635 */
1636 if (prev != bfqq->next_rq)
1637 bfq_pos_tree_add_move(bfqd, bfqq);
1638
Paolo Valenteaee69d72017-04-19 08:29:02 -06001639 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02001640 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1641 rq, &interactive);
1642 else {
1643 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1644 time_is_before_jiffies(
1645 bfqq->last_wr_start_finish +
1646 bfqd->bfq_wr_min_inter_arr_async)) {
1647 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1648 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1649
Paolo Valentecfd69712017-04-12 18:23:15 +02001650 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02001651 bfqq->entity.prio_changed = 1;
1652 }
1653 if (prev != bfqq->next_rq)
1654 bfq_updated_next_req(bfqd, bfqq);
1655 }
1656
1657 /*
1658 * Assign jiffies to last_wr_start_finish in the following
1659 * cases:
1660 *
1661 * . if bfqq is not going to be weight-raised, because, for
1662 * non weight-raised queues, last_wr_start_finish stores the
1663 * arrival time of the last request; as of now, this piece
1664 * of information is used only for deciding whether to
1665 * weight-raise async queues
1666 *
1667 * . if bfqq is not weight-raised, because, if bfqq is now
1668 * switching to weight-raised, then last_wr_start_finish
1669 * stores the time when weight-raising starts
1670 *
1671 * . if bfqq is interactive, because, regardless of whether
1672 * bfqq is currently weight-raised, the weight-raising
1673 * period must start or restart (this case is considered
1674 * separately because it is not detected by the above
1675 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02001676 *
1677 * last_wr_start_finish has to be updated also if bfqq is soft
1678 * real-time, because the weight-raising period is constantly
1679 * restarted on idle-to-busy transitions for these queues, but
1680 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1681 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02001682 */
1683 if (bfqd->low_latency &&
1684 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1685 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001686}
1687
1688static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1689 struct bio *bio,
1690 struct request_queue *q)
1691{
1692 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1693
1694
1695 if (bfqq)
1696 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1697
1698 return NULL;
1699}
1700
Paolo Valenteab0e43e2017-04-12 18:23:10 +02001701static sector_t get_sdist(sector_t last_pos, struct request *rq)
1702{
1703 if (last_pos)
1704 return abs(blk_rq_pos(rq) - last_pos);
1705
1706 return 0;
1707}
1708
Paolo Valenteaee69d72017-04-19 08:29:02 -06001709#if 0 /* Still not clear if we can do without next two functions */
1710static void bfq_activate_request(struct request_queue *q, struct request *rq)
1711{
1712 struct bfq_data *bfqd = q->elevator->elevator_data;
1713
1714 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001715}
1716
1717static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1718{
1719 struct bfq_data *bfqd = q->elevator->elevator_data;
1720
1721 bfqd->rq_in_driver--;
1722}
1723#endif
1724
1725static void bfq_remove_request(struct request_queue *q,
1726 struct request *rq)
1727{
1728 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1729 struct bfq_data *bfqd = bfqq->bfqd;
1730 const int sync = rq_is_sync(rq);
1731
1732 if (bfqq->next_rq == rq) {
1733 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1734 bfq_updated_next_req(bfqd, bfqq);
1735 }
1736
1737 if (rq->queuelist.prev != &rq->queuelist)
1738 list_del_init(&rq->queuelist);
1739 bfqq->queued[sync]--;
1740 bfqd->queued--;
1741 elv_rb_del(&bfqq->sort_list, rq);
1742
1743 elv_rqhash_del(q, rq);
1744 if (q->last_merge == rq)
1745 q->last_merge = NULL;
1746
1747 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1748 bfqq->next_rq = NULL;
1749
1750 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001751 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001752 /*
1753 * bfqq emptied. In normal operation, when
1754 * bfqq is empty, bfqq->entity.service and
1755 * bfqq->entity.budget must contain,
1756 * respectively, the service received and the
1757 * budget used last time bfqq emptied. These
1758 * facts do not hold in this case, as at least
1759 * this last removal occurred while bfqq is
1760 * not in service. To avoid inconsistencies,
1761 * reset both bfqq->entity.service and
1762 * bfqq->entity.budget, if bfqq has still a
1763 * process that may issue I/O requests to it.
1764 */
1765 bfqq->entity.budget = bfqq->entity.service = 0;
1766 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001767
1768 /*
1769 * Remove queue from request-position tree as it is empty.
1770 */
1771 if (bfqq->pos_root) {
1772 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1773 bfqq->pos_root = NULL;
1774 }
Paolo Valente05e90282017-12-20 12:38:31 +01001775 } else {
1776 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001777 }
1778
1779 if (rq->cmd_flags & REQ_META)
1780 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001781
Paolo Valenteaee69d72017-04-19 08:29:02 -06001782}
1783
1784static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1785{
1786 struct request_queue *q = hctx->queue;
1787 struct bfq_data *bfqd = q->elevator->elevator_data;
1788 struct request *free = NULL;
1789 /*
1790 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1791 * store its return value for later use, to avoid nesting
1792 * queue_lock inside the bfqd->lock. We assume that the bic
1793 * returned by bfq_bic_lookup does not go away before
1794 * bfqd->lock is taken.
1795 */
1796 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1797 bool ret;
1798
1799 spin_lock_irq(&bfqd->lock);
1800
1801 if (bic)
1802 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1803 else
1804 bfqd->bio_bfqq = NULL;
1805 bfqd->bio_bic = bic;
1806
1807 ret = blk_mq_sched_try_merge(q, bio, &free);
1808
1809 if (free)
1810 blk_mq_free_request(free);
1811 spin_unlock_irq(&bfqd->lock);
1812
1813 return ret;
1814}
1815
1816static int bfq_request_merge(struct request_queue *q, struct request **req,
1817 struct bio *bio)
1818{
1819 struct bfq_data *bfqd = q->elevator->elevator_data;
1820 struct request *__rq;
1821
1822 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1823 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1824 *req = __rq;
1825 return ELEVATOR_FRONT_MERGE;
1826 }
1827
1828 return ELEVATOR_NO_MERGE;
1829}
1830
Paolo Valente18e5a572018-05-04 19:17:01 +02001831static struct bfq_queue *bfq_init_rq(struct request *rq);
1832
Paolo Valenteaee69d72017-04-19 08:29:02 -06001833static void bfq_request_merged(struct request_queue *q, struct request *req,
1834 enum elv_merge type)
1835{
1836 if (type == ELEVATOR_FRONT_MERGE &&
1837 rb_prev(&req->rb_node) &&
1838 blk_rq_pos(req) <
1839 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1840 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02001841 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001842 struct bfq_data *bfqd = bfqq->bfqd;
1843 struct request *prev, *next_rq;
1844
1845 /* Reposition request in its sort_list */
1846 elv_rb_del(&bfqq->sort_list, req);
1847 elv_rb_add(&bfqq->sort_list, req);
1848
1849 /* Choose next request to be served for bfqq */
1850 prev = bfqq->next_rq;
1851 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1852 bfqd->last_position);
1853 bfqq->next_rq = next_rq;
1854 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02001855 * If next_rq changes, update both the queue's budget to
1856 * fit the new request and the queue's position in its
1857 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001858 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02001859 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001860 bfq_updated_next_req(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001861 bfq_pos_tree_add_move(bfqd, bfqq);
1862 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06001863 }
1864}
1865
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001866/*
1867 * This function is called to notify the scheduler that the requests
1868 * rq and 'next' have been merged, with 'next' going away. BFQ
1869 * exploits this hook to address the following issue: if 'next' has a
1870 * fifo_time lower that rq, then the fifo_time of rq must be set to
1871 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001872 *
1873 * NOTE: in this function we assume that rq is in a bfq_queue, basing
1874 * on that rq is picked from the hash table q->elevator->hash, which,
1875 * in its turn, is filled only with I/O requests present in
1876 * bfq_queues, while BFQ is in use for the request queue q. In fact,
1877 * the function that fills this hash table (elv_rqhash_add) is called
1878 * only by bfq_insert_request.
1879 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06001880static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1881 struct request *next)
1882{
Paolo Valente18e5a572018-05-04 19:17:01 +02001883 struct bfq_queue *bfqq = bfq_init_rq(rq),
1884 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001885
Paolo Valenteaee69d72017-04-19 08:29:02 -06001886 /*
1887 * If next and rq belong to the same bfq_queue and next is older
1888 * than rq, then reposition rq in the fifo (by substituting next
1889 * with rq). Otherwise, if next and rq belong to different
1890 * bfq_queues, never reposition rq: in fact, we would have to
1891 * reposition it with respect to next's position in its own fifo,
1892 * which would most certainly be too expensive with respect to
1893 * the benefits.
1894 */
1895 if (bfqq == next_bfqq &&
1896 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1897 next->fifo_time < rq->fifo_time) {
1898 list_del_init(&rq->queuelist);
1899 list_replace_init(&next->queuelist, &rq->queuelist);
1900 rq->fifo_time = next->fifo_time;
1901 }
1902
1903 if (bfqq->next_rq == next)
1904 bfqq->next_rq = rq;
1905
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001906 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001907}
1908
Paolo Valente44e44a12017-04-12 18:23:12 +02001909/* Must be called with bfqq != NULL */
1910static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1911{
Paolo Valentecfd69712017-04-12 18:23:15 +02001912 if (bfq_bfqq_busy(bfqq))
1913 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02001914 bfqq->wr_coeff = 1;
1915 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001916 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02001917 /*
1918 * Trigger a weight change on the next invocation of
1919 * __bfq_entity_update_weight_prio.
1920 */
1921 bfqq->entity.prio_changed = 1;
1922}
1923
Paolo Valenteea25da42017-04-19 08:48:24 -06001924void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1925 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02001926{
1927 int i, j;
1928
1929 for (i = 0; i < 2; i++)
1930 for (j = 0; j < IOPRIO_BE_NR; j++)
1931 if (bfqg->async_bfqq[i][j])
1932 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1933 if (bfqg->async_idle_bfqq)
1934 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1935}
1936
1937static void bfq_end_wr(struct bfq_data *bfqd)
1938{
1939 struct bfq_queue *bfqq;
1940
1941 spin_lock_irq(&bfqd->lock);
1942
1943 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1944 bfq_bfqq_end_wr(bfqq);
1945 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1946 bfq_bfqq_end_wr(bfqq);
1947 bfq_end_wr_async(bfqd);
1948
1949 spin_unlock_irq(&bfqd->lock);
1950}
1951
Arianna Avanzini36eca892017-04-12 18:23:16 +02001952static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1953{
1954 if (request)
1955 return blk_rq_pos(io_struct);
1956 else
1957 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1958}
1959
1960static int bfq_rq_close_to_sector(void *io_struct, bool request,
1961 sector_t sector)
1962{
1963 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1964 BFQQ_CLOSE_THR;
1965}
1966
1967static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1968 struct bfq_queue *bfqq,
1969 sector_t sector)
1970{
1971 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1972 struct rb_node *parent, *node;
1973 struct bfq_queue *__bfqq;
1974
1975 if (RB_EMPTY_ROOT(root))
1976 return NULL;
1977
1978 /*
1979 * First, if we find a request starting at the end of the last
1980 * request, choose it.
1981 */
1982 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1983 if (__bfqq)
1984 return __bfqq;
1985
1986 /*
1987 * If the exact sector wasn't found, the parent of the NULL leaf
1988 * will contain the closest sector (rq_pos_tree sorted by
1989 * next_request position).
1990 */
1991 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1992 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1993 return __bfqq;
1994
1995 if (blk_rq_pos(__bfqq->next_rq) < sector)
1996 node = rb_next(&__bfqq->pos_node);
1997 else
1998 node = rb_prev(&__bfqq->pos_node);
1999 if (!node)
2000 return NULL;
2001
2002 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2003 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2004 return __bfqq;
2005
2006 return NULL;
2007}
2008
2009static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2010 struct bfq_queue *cur_bfqq,
2011 sector_t sector)
2012{
2013 struct bfq_queue *bfqq;
2014
2015 /*
2016 * We shall notice if some of the queues are cooperating,
2017 * e.g., working closely on the same area of the device. In
2018 * that case, we can group them together and: 1) don't waste
2019 * time idling, and 2) serve the union of their requests in
2020 * the best possible order for throughput.
2021 */
2022 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2023 if (!bfqq || bfqq == cur_bfqq)
2024 return NULL;
2025
2026 return bfqq;
2027}
2028
2029static struct bfq_queue *
2030bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2031{
2032 int process_refs, new_process_refs;
2033 struct bfq_queue *__bfqq;
2034
2035 /*
2036 * If there are no process references on the new_bfqq, then it is
2037 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2038 * may have dropped their last reference (not just their last process
2039 * reference).
2040 */
2041 if (!bfqq_process_refs(new_bfqq))
2042 return NULL;
2043
2044 /* Avoid a circular list and skip interim queue merges. */
2045 while ((__bfqq = new_bfqq->new_bfqq)) {
2046 if (__bfqq == bfqq)
2047 return NULL;
2048 new_bfqq = __bfqq;
2049 }
2050
2051 process_refs = bfqq_process_refs(bfqq);
2052 new_process_refs = bfqq_process_refs(new_bfqq);
2053 /*
2054 * If the process for the bfqq has gone away, there is no
2055 * sense in merging the queues.
2056 */
2057 if (process_refs == 0 || new_process_refs == 0)
2058 return NULL;
2059
2060 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2061 new_bfqq->pid);
2062
2063 /*
2064 * Merging is just a redirection: the requests of the process
2065 * owning one of the two queues are redirected to the other queue.
2066 * The latter queue, in its turn, is set as shared if this is the
2067 * first time that the requests of some process are redirected to
2068 * it.
2069 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002070 * We redirect bfqq to new_bfqq and not the opposite, because
2071 * we are in the context of the process owning bfqq, thus we
2072 * have the io_cq of this process. So we can immediately
2073 * configure this io_cq to redirect the requests of the
2074 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2075 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002076 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002077 * Anyway, even in case new_bfqq coincides with the in-service
2078 * queue, redirecting requests the in-service queue is the
2079 * best option, as we feed the in-service queue with new
2080 * requests close to the last request served and, by doing so,
2081 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002082 */
2083 bfqq->new_bfqq = new_bfqq;
2084 new_bfqq->ref += process_refs;
2085 return new_bfqq;
2086}
2087
2088static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2089 struct bfq_queue *new_bfqq)
2090{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002091 if (bfq_too_late_for_merging(new_bfqq))
2092 return false;
2093
Arianna Avanzini36eca892017-04-12 18:23:16 +02002094 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2095 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2096 return false;
2097
2098 /*
2099 * If either of the queues has already been detected as seeky,
2100 * then merging it with the other queue is unlikely to lead to
2101 * sequential I/O.
2102 */
2103 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2104 return false;
2105
2106 /*
2107 * Interleaved I/O is known to be done by (some) applications
2108 * only for reads, so it does not make sense to merge async
2109 * queues.
2110 */
2111 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2112 return false;
2113
2114 return true;
2115}
2116
2117/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002118 * Attempt to schedule a merge of bfqq with the currently in-service
2119 * queue or with a close queue among the scheduled queues. Return
2120 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2121 * structure otherwise.
2122 *
2123 * The OOM queue is not allowed to participate to cooperation: in fact, since
2124 * the requests temporarily redirected to the OOM queue could be redirected
2125 * again to dedicated queues at any time, the state needed to correctly
2126 * handle merging with the OOM queue would be quite complex and expensive
2127 * to maintain. Besides, in such a critical condition as an out of memory,
2128 * the benefits of queue merging may be little relevant, or even negligible.
2129 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002130 * WARNING: queue merging may impair fairness among non-weight raised
2131 * queues, for at least two reasons: 1) the original weight of a
2132 * merged queue may change during the merged state, 2) even being the
2133 * weight the same, a merged queue may be bloated with many more
2134 * requests than the ones produced by its originally-associated
2135 * process.
2136 */
2137static struct bfq_queue *
2138bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2139 void *io_struct, bool request)
2140{
2141 struct bfq_queue *in_service_bfqq, *new_bfqq;
2142
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002143 /*
2144 * Prevent bfqq from being merged if it has been created too
2145 * long ago. The idea is that true cooperating processes, and
2146 * thus their associated bfq_queues, are supposed to be
2147 * created shortly after each other. This is the case, e.g.,
2148 * for KVM/QEMU and dump I/O threads. Basing on this
2149 * assumption, the following filtering greatly reduces the
2150 * probability that two non-cooperating processes, which just
2151 * happen to do close I/O for some short time interval, have
2152 * their queues merged by mistake.
2153 */
2154 if (bfq_too_late_for_merging(bfqq))
2155 return NULL;
2156
Arianna Avanzini36eca892017-04-12 18:23:16 +02002157 if (bfqq->new_bfqq)
2158 return bfqq->new_bfqq;
2159
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002160 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002161 return NULL;
2162
2163 /* If there is only one backlogged queue, don't search. */
2164 if (bfqd->busy_queues == 1)
2165 return NULL;
2166
2167 in_service_bfqq = bfqd->in_service_queue;
2168
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002169 if (in_service_bfqq && in_service_bfqq != bfqq &&
2170 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2171 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002172 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2173 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2174 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2175 if (new_bfqq)
2176 return new_bfqq;
2177 }
2178 /*
2179 * Check whether there is a cooperator among currently scheduled
2180 * queues. The only thing we need is that the bio/request is not
2181 * NULL, as we need it to establish whether a cooperator exists.
2182 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002183 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2184 bfq_io_struct_pos(io_struct, request));
2185
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002186 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002187 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2188 return bfq_setup_merge(bfqq, new_bfqq);
2189
2190 return NULL;
2191}
2192
2193static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2194{
2195 struct bfq_io_cq *bic = bfqq->bic;
2196
2197 /*
2198 * If !bfqq->bic, the queue is already shared or its requests
2199 * have already been redirected to a shared queue; both idle window
2200 * and weight raising state have already been saved. Do nothing.
2201 */
2202 if (!bic)
2203 return;
2204
2205 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002206 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002207 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002208 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2209 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002210 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002211 !bfq_bfqq_in_large_burst(bfqq) &&
2212 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002213 /*
2214 * bfqq being merged right after being created: bfqq
2215 * would have deserved interactive weight raising, but
2216 * did not make it to be set in a weight-raised state,
2217 * because of this early merge. Store directly the
2218 * weight-raising state that would have been assigned
2219 * to bfqq, so that to avoid that bfqq unjustly fails
2220 * to enjoy weight raising if split soon.
2221 */
2222 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2223 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2224 bic->saved_last_wr_start_finish = jiffies;
2225 } else {
2226 bic->saved_wr_coeff = bfqq->wr_coeff;
2227 bic->saved_wr_start_at_switch_to_srt =
2228 bfqq->wr_start_at_switch_to_srt;
2229 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2230 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2231 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002232}
2233
Arianna Avanzini36eca892017-04-12 18:23:16 +02002234static void
2235bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2236 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2237{
2238 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2239 (unsigned long)new_bfqq->pid);
2240 /* Save weight raising and idle window of the merged queues */
2241 bfq_bfqq_save_state(bfqq);
2242 bfq_bfqq_save_state(new_bfqq);
2243 if (bfq_bfqq_IO_bound(bfqq))
2244 bfq_mark_bfqq_IO_bound(new_bfqq);
2245 bfq_clear_bfqq_IO_bound(bfqq);
2246
2247 /*
2248 * If bfqq is weight-raised, then let new_bfqq inherit
2249 * weight-raising. To reduce false positives, neglect the case
2250 * where bfqq has just been created, but has not yet made it
2251 * to be weight-raised (which may happen because EQM may merge
2252 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002253 * time for bfqq). Handling this case would however be very
2254 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002255 */
2256 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2257 new_bfqq->wr_coeff = bfqq->wr_coeff;
2258 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2259 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2260 new_bfqq->wr_start_at_switch_to_srt =
2261 bfqq->wr_start_at_switch_to_srt;
2262 if (bfq_bfqq_busy(new_bfqq))
2263 bfqd->wr_busy_queues++;
2264 new_bfqq->entity.prio_changed = 1;
2265 }
2266
2267 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2268 bfqq->wr_coeff = 1;
2269 bfqq->entity.prio_changed = 1;
2270 if (bfq_bfqq_busy(bfqq))
2271 bfqd->wr_busy_queues--;
2272 }
2273
2274 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2275 bfqd->wr_busy_queues);
2276
2277 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002278 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2279 */
2280 bic_set_bfqq(bic, new_bfqq, 1);
2281 bfq_mark_bfqq_coop(new_bfqq);
2282 /*
2283 * new_bfqq now belongs to at least two bics (it is a shared queue):
2284 * set new_bfqq->bic to NULL. bfqq either:
2285 * - does not belong to any bic any more, and hence bfqq->bic must
2286 * be set to NULL, or
2287 * - is a queue whose owning bics have already been redirected to a
2288 * different queue, hence the queue is destined to not belong to
2289 * any bic soon and bfqq->bic is already NULL (therefore the next
2290 * assignment causes no harm).
2291 */
2292 new_bfqq->bic = NULL;
2293 bfqq->bic = NULL;
2294 /* release process reference to bfqq */
2295 bfq_put_queue(bfqq);
2296}
2297
Paolo Valenteaee69d72017-04-19 08:29:02 -06002298static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2299 struct bio *bio)
2300{
2301 struct bfq_data *bfqd = q->elevator->elevator_data;
2302 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002303 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002304
2305 /*
2306 * Disallow merge of a sync bio into an async request.
2307 */
2308 if (is_sync && !rq_is_sync(rq))
2309 return false;
2310
2311 /*
2312 * Lookup the bfqq that this bio will be queued with. Allow
2313 * merge only if rq is queued there.
2314 */
2315 if (!bfqq)
2316 return false;
2317
Arianna Avanzini36eca892017-04-12 18:23:16 +02002318 /*
2319 * We take advantage of this function to perform an early merge
2320 * of the queues of possible cooperating processes.
2321 */
2322 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2323 if (new_bfqq) {
2324 /*
2325 * bic still points to bfqq, then it has not yet been
2326 * redirected to some other bfq_queue, and a queue
2327 * merge beween bfqq and new_bfqq can be safely
2328 * fulfillled, i.e., bic can be redirected to new_bfqq
2329 * and bfqq can be put.
2330 */
2331 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2332 new_bfqq);
2333 /*
2334 * If we get here, bio will be queued into new_queue,
2335 * so use new_bfqq to decide whether bio and rq can be
2336 * merged.
2337 */
2338 bfqq = new_bfqq;
2339
2340 /*
2341 * Change also bqfd->bio_bfqq, as
2342 * bfqd->bio_bic now points to new_bfqq, and
2343 * this function may be invoked again (and then may
2344 * use again bqfd->bio_bfqq).
2345 */
2346 bfqd->bio_bfqq = bfqq;
2347 }
2348
Paolo Valenteaee69d72017-04-19 08:29:02 -06002349 return bfqq == RQ_BFQQ(rq);
2350}
2351
Paolo Valente44e44a12017-04-12 18:23:12 +02002352/*
2353 * Set the maximum time for the in-service queue to consume its
2354 * budget. This prevents seeky processes from lowering the throughput.
2355 * In practice, a time-slice service scheme is used with seeky
2356 * processes.
2357 */
2358static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2359 struct bfq_queue *bfqq)
2360{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002361 unsigned int timeout_coeff;
2362
2363 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2364 timeout_coeff = 1;
2365 else
2366 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2367
Paolo Valente44e44a12017-04-12 18:23:12 +02002368 bfqd->last_budget_start = ktime_get();
2369
2370 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002371 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002372}
2373
Paolo Valenteaee69d72017-04-19 08:29:02 -06002374static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2375 struct bfq_queue *bfqq)
2376{
2377 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002378 bfq_clear_bfqq_fifo_expire(bfqq);
2379
2380 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2381
Paolo Valente77b7dce2017-04-12 18:23:13 +02002382 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2383 bfqq->wr_coeff > 1 &&
2384 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2385 time_is_before_jiffies(bfqq->budget_timeout)) {
2386 /*
2387 * For soft real-time queues, move the start
2388 * of the weight-raising period forward by the
2389 * time the queue has not received any
2390 * service. Otherwise, a relatively long
2391 * service delay is likely to cause the
2392 * weight-raising period of the queue to end,
2393 * because of the short duration of the
2394 * weight-raising period of a soft real-time
2395 * queue. It is worth noting that this move
2396 * is not so dangerous for the other queues,
2397 * because soft real-time queues are not
2398 * greedy.
2399 *
2400 * To not add a further variable, we use the
2401 * overloaded field budget_timeout to
2402 * determine for how long the queue has not
2403 * received service, i.e., how much time has
2404 * elapsed since the queue expired. However,
2405 * this is a little imprecise, because
2406 * budget_timeout is set to jiffies if bfqq
2407 * not only expires, but also remains with no
2408 * request.
2409 */
2410 if (time_after(bfqq->budget_timeout,
2411 bfqq->last_wr_start_finish))
2412 bfqq->last_wr_start_finish +=
2413 jiffies - bfqq->budget_timeout;
2414 else
2415 bfqq->last_wr_start_finish = jiffies;
2416 }
2417
Paolo Valente44e44a12017-04-12 18:23:12 +02002418 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002419 bfq_log_bfqq(bfqd, bfqq,
2420 "set_in_service_queue, cur-budget = %d",
2421 bfqq->entity.budget);
2422 }
2423
2424 bfqd->in_service_queue = bfqq;
2425}
2426
2427/*
2428 * Get and set a new queue for service.
2429 */
2430static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2431{
2432 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2433
2434 __bfq_set_in_service_queue(bfqd, bfqq);
2435 return bfqq;
2436}
2437
Paolo Valenteaee69d72017-04-19 08:29:02 -06002438static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2439{
2440 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002441 u32 sl;
2442
Paolo Valenteaee69d72017-04-19 08:29:02 -06002443 bfq_mark_bfqq_wait_request(bfqq);
2444
2445 /*
2446 * We don't want to idle for seeks, but we do want to allow
2447 * fair distribution of slice time for a process doing back-to-back
2448 * seeks. So allow a little bit of time for him to submit a new rq.
2449 */
2450 sl = bfqd->bfq_slice_idle;
2451 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002452 * Unless the queue is being weight-raised or the scenario is
2453 * asymmetric, grant only minimum idle time if the queue
2454 * is seeky. A long idling is preserved for a weight-raised
2455 * queue, or, more in general, in an asymmetric scenario,
2456 * because a long idling is needed for guaranteeing to a queue
2457 * its reserved share of the throughput (in particular, it is
2458 * needed if the queue has a higher weight than some other
2459 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002460 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002461 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2462 bfq_symmetric_scenario(bfqd))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002463 sl = min_t(u64, sl, BFQ_MIN_TT);
2464
2465 bfqd->last_idling_start = ktime_get();
2466 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2467 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002468 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002469}
2470
2471/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002472 * In autotuning mode, max_budget is dynamically recomputed as the
2473 * amount of sectors transferred in timeout at the estimated peak
2474 * rate. This enables BFQ to utilize a full timeslice with a full
2475 * budget, even if the in-service queue is served at peak rate. And
2476 * this maximises throughput with sequential workloads.
2477 */
2478static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2479{
2480 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2481 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2482}
2483
Paolo Valente44e44a12017-04-12 18:23:12 +02002484/*
2485 * Update parameters related to throughput and responsiveness, as a
2486 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002487 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002488 */
2489static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2490{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002491 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002492 bfqd->bfq_max_budget =
2493 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002494 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002495 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002496}
2497
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002498static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2499 struct request *rq)
2500{
2501 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2502 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2503 bfqd->peak_rate_samples = 1;
2504 bfqd->sequential_samples = 0;
2505 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2506 blk_rq_sectors(rq);
2507 } else /* no new rq dispatched, just reset the number of samples */
2508 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2509
2510 bfq_log(bfqd,
2511 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2512 bfqd->peak_rate_samples, bfqd->sequential_samples,
2513 bfqd->tot_sectors_dispatched);
2514}
2515
2516static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2517{
2518 u32 rate, weight, divisor;
2519
2520 /*
2521 * For the convergence property to hold (see comments on
2522 * bfq_update_peak_rate()) and for the assessment to be
2523 * reliable, a minimum number of samples must be present, and
2524 * a minimum amount of time must have elapsed. If not so, do
2525 * not compute new rate. Just reset parameters, to get ready
2526 * for a new evaluation attempt.
2527 */
2528 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2529 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2530 goto reset_computation;
2531
2532 /*
2533 * If a new request completion has occurred after last
2534 * dispatch, then, to approximate the rate at which requests
2535 * have been served by the device, it is more precise to
2536 * extend the observation interval to the last completion.
2537 */
2538 bfqd->delta_from_first =
2539 max_t(u64, bfqd->delta_from_first,
2540 bfqd->last_completion - bfqd->first_dispatch);
2541
2542 /*
2543 * Rate computed in sects/usec, and not sects/nsec, for
2544 * precision issues.
2545 */
2546 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2547 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2548
2549 /*
2550 * Peak rate not updated if:
2551 * - the percentage of sequential dispatches is below 3/4 of the
2552 * total, and rate is below the current estimated peak rate
2553 * - rate is unreasonably high (> 20M sectors/sec)
2554 */
2555 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2556 rate <= bfqd->peak_rate) ||
2557 rate > 20<<BFQ_RATE_SHIFT)
2558 goto reset_computation;
2559
2560 /*
2561 * We have to update the peak rate, at last! To this purpose,
2562 * we use a low-pass filter. We compute the smoothing constant
2563 * of the filter as a function of the 'weight' of the new
2564 * measured rate.
2565 *
2566 * As can be seen in next formulas, we define this weight as a
2567 * quantity proportional to how sequential the workload is,
2568 * and to how long the observation time interval is.
2569 *
2570 * The weight runs from 0 to 8. The maximum value of the
2571 * weight, 8, yields the minimum value for the smoothing
2572 * constant. At this minimum value for the smoothing constant,
2573 * the measured rate contributes for half of the next value of
2574 * the estimated peak rate.
2575 *
2576 * So, the first step is to compute the weight as a function
2577 * of how sequential the workload is. Note that the weight
2578 * cannot reach 9, because bfqd->sequential_samples cannot
2579 * become equal to bfqd->peak_rate_samples, which, in its
2580 * turn, holds true because bfqd->sequential_samples is not
2581 * incremented for the first sample.
2582 */
2583 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2584
2585 /*
2586 * Second step: further refine the weight as a function of the
2587 * duration of the observation interval.
2588 */
2589 weight = min_t(u32, 8,
2590 div_u64(weight * bfqd->delta_from_first,
2591 BFQ_RATE_REF_INTERVAL));
2592
2593 /*
2594 * Divisor ranging from 10, for minimum weight, to 2, for
2595 * maximum weight.
2596 */
2597 divisor = 10 - weight;
2598
2599 /*
2600 * Finally, update peak rate:
2601 *
2602 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2603 */
2604 bfqd->peak_rate *= divisor-1;
2605 bfqd->peak_rate /= divisor;
2606 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2607
2608 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02002609
2610 /*
2611 * For a very slow device, bfqd->peak_rate can reach 0 (see
2612 * the minimum representable values reported in the comments
2613 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2614 * divisions by zero where bfqd->peak_rate is used as a
2615 * divisor.
2616 */
2617 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2618
Paolo Valente44e44a12017-04-12 18:23:12 +02002619 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002620
2621reset_computation:
2622 bfq_reset_rate_computation(bfqd, rq);
2623}
2624
2625/*
2626 * Update the read/write peak rate (the main quantity used for
2627 * auto-tuning, see update_thr_responsiveness_params()).
2628 *
2629 * It is not trivial to estimate the peak rate (correctly): because of
2630 * the presence of sw and hw queues between the scheduler and the
2631 * device components that finally serve I/O requests, it is hard to
2632 * say exactly when a given dispatched request is served inside the
2633 * device, and for how long. As a consequence, it is hard to know
2634 * precisely at what rate a given set of requests is actually served
2635 * by the device.
2636 *
2637 * On the opposite end, the dispatch time of any request is trivially
2638 * available, and, from this piece of information, the "dispatch rate"
2639 * of requests can be immediately computed. So, the idea in the next
2640 * function is to use what is known, namely request dispatch times
2641 * (plus, when useful, request completion times), to estimate what is
2642 * unknown, namely in-device request service rate.
2643 *
2644 * The main issue is that, because of the above facts, the rate at
2645 * which a certain set of requests is dispatched over a certain time
2646 * interval can vary greatly with respect to the rate at which the
2647 * same requests are then served. But, since the size of any
2648 * intermediate queue is limited, and the service scheme is lossless
2649 * (no request is silently dropped), the following obvious convergence
2650 * property holds: the number of requests dispatched MUST become
2651 * closer and closer to the number of requests completed as the
2652 * observation interval grows. This is the key property used in
2653 * the next function to estimate the peak service rate as a function
2654 * of the observed dispatch rate. The function assumes to be invoked
2655 * on every request dispatch.
2656 */
2657static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2658{
2659 u64 now_ns = ktime_get_ns();
2660
2661 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2662 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2663 bfqd->peak_rate_samples);
2664 bfq_reset_rate_computation(bfqd, rq);
2665 goto update_last_values; /* will add one sample */
2666 }
2667
2668 /*
2669 * Device idle for very long: the observation interval lasting
2670 * up to this dispatch cannot be a valid observation interval
2671 * for computing a new peak rate (similarly to the late-
2672 * completion event in bfq_completed_request()). Go to
2673 * update_rate_and_reset to have the following three steps
2674 * taken:
2675 * - close the observation interval at the last (previous)
2676 * request dispatch or completion
2677 * - compute rate, if possible, for that observation interval
2678 * - start a new observation interval with this dispatch
2679 */
2680 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2681 bfqd->rq_in_driver == 0)
2682 goto update_rate_and_reset;
2683
2684 /* Update sampling information */
2685 bfqd->peak_rate_samples++;
2686
2687 if ((bfqd->rq_in_driver > 0 ||
2688 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2689 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2690 bfqd->sequential_samples++;
2691
2692 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2693
2694 /* Reset max observed rq size every 32 dispatches */
2695 if (likely(bfqd->peak_rate_samples % 32))
2696 bfqd->last_rq_max_size =
2697 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2698 else
2699 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2700
2701 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2702
2703 /* Target observation interval not yet reached, go on sampling */
2704 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2705 goto update_last_values;
2706
2707update_rate_and_reset:
2708 bfq_update_rate_reset(bfqd, rq);
2709update_last_values:
2710 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2711 bfqd->last_dispatch = now_ns;
2712}
2713
2714/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06002715 * Remove request from internal lists.
2716 */
2717static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2718{
2719 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2720
2721 /*
2722 * For consistency, the next instruction should have been
2723 * executed after removing the request from the queue and
2724 * dispatching it. We execute instead this instruction before
2725 * bfq_remove_request() (and hence introduce a temporary
2726 * inconsistency), for efficiency. In fact, should this
2727 * dispatch occur for a non in-service bfqq, this anticipated
2728 * increment prevents two counters related to bfqq->dispatched
2729 * from risking to be, first, uselessly decremented, and then
2730 * incremented again when the (new) value of bfqq->dispatched
2731 * happens to be taken into account.
2732 */
2733 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002734 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002735
2736 bfq_remove_request(q, rq);
2737}
2738
2739static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2740{
Arianna Avanzini36eca892017-04-12 18:23:16 +02002741 /*
2742 * If this bfqq is shared between multiple processes, check
2743 * to make sure that those processes are still issuing I/Os
2744 * within the mean seek distance. If not, it may be time to
2745 * break the queues apart again.
2746 */
2747 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2748 bfq_mark_bfqq_split_coop(bfqq);
2749
Paolo Valente44e44a12017-04-12 18:23:12 +02002750 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2751 if (bfqq->dispatched == 0)
2752 /*
2753 * Overloading budget_timeout field to store
2754 * the time at which the queue remains with no
2755 * backlog and no outstanding request; used by
2756 * the weight-raising mechanism.
2757 */
2758 bfqq->budget_timeout = jiffies;
2759
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002760 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002761 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02002762 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002763 /*
2764 * Resort priority tree of potential close cooperators.
2765 */
2766 bfq_pos_tree_add_move(bfqd, bfqq);
2767 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002768
2769 /*
2770 * All in-service entities must have been properly deactivated
2771 * or requeued before executing the next function, which
2772 * resets all in-service entites as no more in service.
2773 */
2774 __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002775}
2776
2777/**
2778 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2779 * @bfqd: device data.
2780 * @bfqq: queue to update.
2781 * @reason: reason for expiration.
2782 *
2783 * Handle the feedback on @bfqq budget at queue expiration.
2784 * See the body for detailed comments.
2785 */
2786static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2787 struct bfq_queue *bfqq,
2788 enum bfqq_expiration reason)
2789{
2790 struct request *next_rq;
2791 int budget, min_budget;
2792
Paolo Valenteaee69d72017-04-19 08:29:02 -06002793 min_budget = bfq_min_budget(bfqd);
2794
Paolo Valente44e44a12017-04-12 18:23:12 +02002795 if (bfqq->wr_coeff == 1)
2796 budget = bfqq->max_budget;
2797 else /*
2798 * Use a constant, low budget for weight-raised queues,
2799 * to help achieve a low latency. Keep it slightly higher
2800 * than the minimum possible budget, to cause a little
2801 * bit fewer expirations.
2802 */
2803 budget = 2 * min_budget;
2804
Paolo Valenteaee69d72017-04-19 08:29:02 -06002805 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2806 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2807 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2808 budget, bfq_min_budget(bfqd));
2809 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2810 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2811
Paolo Valente44e44a12017-04-12 18:23:12 +02002812 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002813 switch (reason) {
2814 /*
2815 * Caveat: in all the following cases we trade latency
2816 * for throughput.
2817 */
2818 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02002819 /*
2820 * This is the only case where we may reduce
2821 * the budget: if there is no request of the
2822 * process still waiting for completion, then
2823 * we assume (tentatively) that the timer has
2824 * expired because the batch of requests of
2825 * the process could have been served with a
2826 * smaller budget. Hence, betting that
2827 * process will behave in the same way when it
2828 * becomes backlogged again, we reduce its
2829 * next budget. As long as we guess right,
2830 * this budget cut reduces the latency
2831 * experienced by the process.
2832 *
2833 * However, if there are still outstanding
2834 * requests, then the process may have not yet
2835 * issued its next request just because it is
2836 * still waiting for the completion of some of
2837 * the still outstanding ones. So in this
2838 * subcase we do not reduce its budget, on the
2839 * contrary we increase it to possibly boost
2840 * the throughput, as discussed in the
2841 * comments to the BUDGET_TIMEOUT case.
2842 */
2843 if (bfqq->dispatched > 0) /* still outstanding reqs */
2844 budget = min(budget * 2, bfqd->bfq_max_budget);
2845 else {
2846 if (budget > 5 * min_budget)
2847 budget -= 4 * min_budget;
2848 else
2849 budget = min_budget;
2850 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002851 break;
2852 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02002853 /*
2854 * We double the budget here because it gives
2855 * the chance to boost the throughput if this
2856 * is not a seeky process (and has bumped into
2857 * this timeout because of, e.g., ZBR).
2858 */
2859 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002860 break;
2861 case BFQQE_BUDGET_EXHAUSTED:
2862 /*
2863 * The process still has backlog, and did not
2864 * let either the budget timeout or the disk
2865 * idling timeout expire. Hence it is not
2866 * seeky, has a short thinktime and may be
2867 * happy with a higher budget too. So
2868 * definitely increase the budget of this good
2869 * candidate to boost the disk throughput.
2870 */
Paolo Valente54b60452017-04-12 18:23:09 +02002871 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002872 break;
2873 case BFQQE_NO_MORE_REQUESTS:
2874 /*
2875 * For queues that expire for this reason, it
2876 * is particularly important to keep the
2877 * budget close to the actual service they
2878 * need. Doing so reduces the timestamp
2879 * misalignment problem described in the
2880 * comments in the body of
2881 * __bfq_activate_entity. In fact, suppose
2882 * that a queue systematically expires for
2883 * BFQQE_NO_MORE_REQUESTS and presents a
2884 * new request in time to enjoy timestamp
2885 * back-shifting. The larger the budget of the
2886 * queue is with respect to the service the
2887 * queue actually requests in each service
2888 * slot, the more times the queue can be
2889 * reactivated with the same virtual finish
2890 * time. It follows that, even if this finish
2891 * time is pushed to the system virtual time
2892 * to reduce the consequent timestamp
2893 * misalignment, the queue unjustly enjoys for
2894 * many re-activations a lower finish time
2895 * than all newly activated queues.
2896 *
2897 * The service needed by bfqq is measured
2898 * quite precisely by bfqq->entity.service.
2899 * Since bfqq does not enjoy device idling,
2900 * bfqq->entity.service is equal to the number
2901 * of sectors that the process associated with
2902 * bfqq requested to read/write before waiting
2903 * for request completions, or blocking for
2904 * other reasons.
2905 */
2906 budget = max_t(int, bfqq->entity.service, min_budget);
2907 break;
2908 default:
2909 return;
2910 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002911 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002912 /*
2913 * Async queues get always the maximum possible
2914 * budget, as for them we do not care about latency
2915 * (in addition, their ability to dispatch is limited
2916 * by the charging factor).
2917 */
2918 budget = bfqd->bfq_max_budget;
2919 }
2920
2921 bfqq->max_budget = budget;
2922
2923 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2924 !bfqd->bfq_user_max_budget)
2925 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2926
2927 /*
2928 * If there is still backlog, then assign a new budget, making
2929 * sure that it is large enough for the next request. Since
2930 * the finish time of bfqq must be kept in sync with the
2931 * budget, be sure to call __bfq_bfqq_expire() *after* this
2932 * update.
2933 *
2934 * If there is no backlog, then no need to update the budget;
2935 * it will be updated on the arrival of a new request.
2936 */
2937 next_rq = bfqq->next_rq;
2938 if (next_rq)
2939 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2940 bfq_serv_to_charge(next_rq, bfqq));
2941
2942 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2943 next_rq ? blk_rq_sectors(next_rq) : 0,
2944 bfqq->entity.budget);
2945}
2946
Paolo Valenteaee69d72017-04-19 08:29:02 -06002947/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002948 * Return true if the process associated with bfqq is "slow". The slow
2949 * flag is used, in addition to the budget timeout, to reduce the
2950 * amount of service provided to seeky processes, and thus reduce
2951 * their chances to lower the throughput. More details in the comments
2952 * on the function bfq_bfqq_expire().
2953 *
2954 * An important observation is in order: as discussed in the comments
2955 * on the function bfq_update_peak_rate(), with devices with internal
2956 * queues, it is hard if ever possible to know when and for how long
2957 * an I/O request is processed by the device (apart from the trivial
2958 * I/O pattern where a new request is dispatched only after the
2959 * previous one has been completed). This makes it hard to evaluate
2960 * the real rate at which the I/O requests of each bfq_queue are
2961 * served. In fact, for an I/O scheduler like BFQ, serving a
2962 * bfq_queue means just dispatching its requests during its service
2963 * slot (i.e., until the budget of the queue is exhausted, or the
2964 * queue remains idle, or, finally, a timeout fires). But, during the
2965 * service slot of a bfq_queue, around 100 ms at most, the device may
2966 * be even still processing requests of bfq_queues served in previous
2967 * service slots. On the opposite end, the requests of the in-service
2968 * bfq_queue may be completed after the service slot of the queue
2969 * finishes.
2970 *
2971 * Anyway, unless more sophisticated solutions are used
2972 * (where possible), the sum of the sizes of the requests dispatched
2973 * during the service slot of a bfq_queue is probably the only
2974 * approximation available for the service received by the bfq_queue
2975 * during its service slot. And this sum is the quantity used in this
2976 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06002977 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002978static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2979 bool compensate, enum bfqq_expiration reason,
2980 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06002981{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002982 ktime_t delta_ktime;
2983 u32 delta_usecs;
2984 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06002985
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002986 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002987 return false;
2988
2989 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002990 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002991 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002992 delta_ktime = ktime_get();
2993 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2994 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002995
2996 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002997 if (delta_usecs < 1000) {
2998 if (blk_queue_nonrot(bfqd->queue))
2999 /*
3000 * give same worst-case guarantees as idling
3001 * for seeky
3002 */
3003 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3004 else /* charge at least one seek */
3005 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003006
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003007 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003008 }
3009
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003010 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003011
3012 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003013 * Use only long (> 20ms) intervals to filter out excessive
3014 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003015 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003016 if (delta_usecs > 20000) {
3017 /*
3018 * Caveat for rotational devices: processes doing I/O
3019 * in the slower disk zones tend to be slow(er) even
3020 * if not seeky. In this respect, the estimated peak
3021 * rate is likely to be an average over the disk
3022 * surface. Accordingly, to not be too harsh with
3023 * unlucky processes, a process is deemed slow only if
3024 * its rate has been lower than half of the estimated
3025 * peak rate.
3026 */
3027 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3028 }
3029
3030 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3031
3032 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003033}
3034
3035/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003036 * To be deemed as soft real-time, an application must meet two
3037 * requirements. First, the application must not require an average
3038 * bandwidth higher than the approximate bandwidth required to playback or
3039 * record a compressed high-definition video.
3040 * The next function is invoked on the completion of the last request of a
3041 * batch, to compute the next-start time instant, soft_rt_next_start, such
3042 * that, if the next request of the application does not arrive before
3043 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3044 *
3045 * The second requirement is that the request pattern of the application is
3046 * isochronous, i.e., that, after issuing a request or a batch of requests,
3047 * the application stops issuing new requests until all its pending requests
3048 * have been completed. After that, the application may issue a new batch,
3049 * and so on.
3050 * For this reason the next function is invoked to compute
3051 * soft_rt_next_start only for applications that meet this requirement,
3052 * whereas soft_rt_next_start is set to infinity for applications that do
3053 * not.
3054 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003055 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3056 * happen to meet, occasionally or systematically, both the above
3057 * bandwidth and isochrony requirements. This may happen at least in
3058 * the following circumstances. First, if the CPU load is high. The
3059 * application may stop issuing requests while the CPUs are busy
3060 * serving other processes, then restart, then stop again for a while,
3061 * and so on. The other circumstances are related to the storage
3062 * device: the storage device is highly loaded or reaches a low-enough
3063 * throughput with the I/O of the application (e.g., because the I/O
3064 * is random and/or the device is slow). In all these cases, the
3065 * I/O of the application may be simply slowed down enough to meet
3066 * the bandwidth and isochrony requirements. To reduce the probability
3067 * that greedy applications are deemed as soft real-time in these
3068 * corner cases, a further rule is used in the computation of
3069 * soft_rt_next_start: the return value of this function is forced to
3070 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003071 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003072 * (a) Current time plus: (1) the maximum time for which the arrival
3073 * of a request is waited for when a sync queue becomes idle,
3074 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3075 * postpone for a moment the reason for adding a few extra
3076 * jiffies; we get back to it after next item (b). Lower-bounding
3077 * the return value of this function with the current time plus
3078 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3079 * because the latter issue their next request as soon as possible
3080 * after the last one has been completed. In contrast, a soft
3081 * real-time application spends some time processing data, after a
3082 * batch of its requests has been completed.
3083 *
3084 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3085 * above, greedy applications may happen to meet both the
3086 * bandwidth and isochrony requirements under heavy CPU or
3087 * storage-device load. In more detail, in these scenarios, these
3088 * applications happen, only for limited time periods, to do I/O
3089 * slowly enough to meet all the requirements described so far,
3090 * including the filtering in above item (a). These slow-speed
3091 * time intervals are usually interspersed between other time
3092 * intervals during which these applications do I/O at a very high
3093 * speed. Fortunately, exactly because of the high speed of the
3094 * I/O in the high-speed intervals, the values returned by this
3095 * function happen to be so high, near the end of any such
3096 * high-speed interval, to be likely to fall *after* the end of
3097 * the low-speed time interval that follows. These high values are
3098 * stored in bfqq->soft_rt_next_start after each invocation of
3099 * this function. As a consequence, if the last value of
3100 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3101 * next value that this function may return, then, from the very
3102 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3103 * likely to be constantly kept so high that any I/O request
3104 * issued during the low-speed interval is considered as arriving
3105 * to soon for the application to be deemed as soft
3106 * real-time. Then, in the high-speed interval that follows, the
3107 * application will not be deemed as soft real-time, just because
3108 * it will do I/O at a high speed. And so on.
3109 *
3110 * Getting back to the filtering in item (a), in the following two
3111 * cases this filtering might be easily passed by a greedy
3112 * application, if the reference quantity was just
3113 * bfqd->bfq_slice_idle:
3114 * 1) HZ is so low that the duration of a jiffy is comparable to or
3115 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3116 * devices with HZ=100. The time granularity may be so coarse
3117 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3118 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003119 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3120 * for a while, then suddenly 'jump' by several units to recover the lost
3121 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003122 * To address this issue, in the filtering in (a) we do not use as a
3123 * reference time interval just bfqd->bfq_slice_idle, but
3124 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3125 * minimum number of jiffies for which the filter seems to be quite
3126 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003127 */
3128static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3129 struct bfq_queue *bfqq)
3130{
Paolo Valentea34b0242017-12-15 07:23:12 +01003131 return max3(bfqq->soft_rt_next_start,
3132 bfqq->last_idle_bklogged +
3133 HZ * bfqq->service_from_backlogged /
3134 bfqd->bfq_wr_max_softrt_rate,
3135 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003136}
3137
Paolo Valenteaee69d72017-04-19 08:29:02 -06003138/**
3139 * bfq_bfqq_expire - expire a queue.
3140 * @bfqd: device owning the queue.
3141 * @bfqq: the queue to expire.
3142 * @compensate: if true, compensate for the time spent idling.
3143 * @reason: the reason causing the expiration.
3144 *
Paolo Valentec0741702017-04-12 18:23:11 +02003145 * If the process associated with bfqq does slow I/O (e.g., because it
3146 * issues random requests), we charge bfqq with the time it has been
3147 * in service instead of the service it has received (see
3148 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3149 * a consequence, bfqq will typically get higher timestamps upon
3150 * reactivation, and hence it will be rescheduled as if it had
3151 * received more service than what it has actually received. In the
3152 * end, bfqq receives less service in proportion to how slowly its
3153 * associated process consumes its budgets (and hence how seriously it
3154 * tends to lower the throughput). In addition, this time-charging
3155 * strategy guarantees time fairness among slow processes. In
3156 * contrast, if the process associated with bfqq is not slow, we
3157 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003158 *
Paolo Valentec0741702017-04-12 18:23:11 +02003159 * Charging time to the first type of queues and the exact service to
3160 * the other has the effect of using the WF2Q+ policy to schedule the
3161 * former on a timeslice basis, without violating service domain
3162 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003163 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003164void bfq_bfqq_expire(struct bfq_data *bfqd,
3165 struct bfq_queue *bfqq,
3166 bool compensate,
3167 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003168{
3169 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003170 unsigned long delta = 0;
3171 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003172 int ref;
3173
3174 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003175 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003176 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003177 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003178
3179 /*
Paolo Valentec0741702017-04-12 18:23:11 +02003180 * As above explained, charge slow (typically seeky) and
3181 * timed-out queues with the time and not the service
3182 * received, to favor sequential workloads.
3183 *
3184 * Processes doing I/O in the slower disk zones will tend to
3185 * be slow(er) even if not seeky. Therefore, since the
3186 * estimated peak rate is actually an average over the disk
3187 * surface, these processes may timeout just for bad luck. To
3188 * avoid punishing them, do not charge time to processes that
3189 * succeeded in consuming at least 2/3 of their budget. This
3190 * allows BFQ to preserve enough elasticity to still perform
3191 * bandwidth, and not time, distribution with little unlucky
3192 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003193 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003194 if (bfqq->wr_coeff == 1 &&
3195 (slow ||
3196 (reason == BFQQE_BUDGET_TIMEOUT &&
3197 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec0741702017-04-12 18:23:11 +02003198 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003199
3200 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003201 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003202 bfq_clear_bfqq_IO_bound(bfqq);
3203
Paolo Valente44e44a12017-04-12 18:23:12 +02003204 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3205 bfqq->last_wr_start_finish = jiffies;
3206
Paolo Valente77b7dce2017-04-12 18:23:13 +02003207 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3208 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3209 /*
3210 * If we get here, and there are no outstanding
3211 * requests, then the request pattern is isochronous
3212 * (see the comments on the function
3213 * bfq_bfqq_softrt_next_start()). Thus we can compute
3214 * soft_rt_next_start. If, instead, the queue still
3215 * has outstanding requests, then we have to wait for
3216 * the completion of all the outstanding requests to
3217 * discover whether the request pattern is actually
3218 * isochronous.
3219 */
3220 if (bfqq->dispatched == 0)
3221 bfqq->soft_rt_next_start =
3222 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3223 else {
3224 /*
3225 * The application is still waiting for the
3226 * completion of one or more requests:
3227 * prevent it from possibly being incorrectly
3228 * deemed as soft real-time by setting its
3229 * soft_rt_next_start to infinity. In fact,
3230 * without this assignment, the application
3231 * would be incorrectly deemed as soft
3232 * real-time if:
3233 * 1) it issued a new request before the
3234 * completion of all its in-flight
3235 * requests, and
3236 * 2) at that time, its soft_rt_next_start
3237 * happened to be in the past.
3238 */
3239 bfqq->soft_rt_next_start =
3240 bfq_greatest_from_now();
3241 /*
3242 * Schedule an update of soft_rt_next_start to when
3243 * the task may be discovered to be isochronous.
3244 */
3245 bfq_mark_bfqq_softrt_update(bfqq);
3246 }
3247 }
3248
Paolo Valenteaee69d72017-04-19 08:29:02 -06003249 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003250 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3251 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003252
3253 /*
3254 * Increase, decrease or leave budget unchanged according to
3255 * reason.
3256 */
3257 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3258 ref = bfqq->ref;
3259 __bfq_bfqq_expire(bfqd, bfqq);
3260
3261 /* mark bfqq as waiting a request only if a bic still points to it */
3262 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3263 reason != BFQQE_BUDGET_TIMEOUT &&
3264 reason != BFQQE_BUDGET_EXHAUSTED)
3265 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3266}
3267
3268/*
3269 * Budget timeout is not implemented through a dedicated timer, but
3270 * just checked on request arrivals and completions, as well as on
3271 * idle timer expirations.
3272 */
3273static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3274{
Paolo Valente44e44a12017-04-12 18:23:12 +02003275 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003276}
3277
3278/*
3279 * If we expire a queue that is actively waiting (i.e., with the
3280 * device idled) for the arrival of a new request, then we may incur
3281 * the timestamp misalignment problem described in the body of the
3282 * function __bfq_activate_entity. Hence we return true only if this
3283 * condition does not hold, or if the queue is slow enough to deserve
3284 * only to be kicked off for preserving a high throughput.
3285 */
3286static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3287{
3288 bfq_log_bfqq(bfqq->bfqd, bfqq,
3289 "may_budget_timeout: wait_request %d left %d timeout %d",
3290 bfq_bfqq_wait_request(bfqq),
3291 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3292 bfq_bfqq_budget_timeout(bfqq));
3293
3294 return (!bfq_bfqq_wait_request(bfqq) ||
3295 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3296 &&
3297 bfq_bfqq_budget_timeout(bfqq);
3298}
3299
3300/*
3301 * For a queue that becomes empty, device idling is allowed only if
Paolo Valente44e44a12017-04-12 18:23:12 +02003302 * this function returns true for the queue. As a consequence, since
3303 * device idling plays a critical role in both throughput boosting and
3304 * service guarantees, the return value of this function plays a
3305 * critical role in both these aspects as well.
3306 *
3307 * In a nutshell, this function returns true only if idling is
3308 * beneficial for throughput or, even if detrimental for throughput,
3309 * idling is however necessary to preserve service guarantees (low
3310 * latency, desired throughput distribution, ...). In particular, on
3311 * NCQ-capable devices, this function tries to return false, so as to
3312 * help keep the drives' internal queues full, whenever this helps the
3313 * device boost the throughput without causing any service-guarantee
3314 * issue.
3315 *
3316 * In more detail, the return value of this function is obtained by,
3317 * first, computing a number of boolean variables that take into
3318 * account throughput and service-guarantee issues, and, then,
3319 * combining these variables in a logical expression. Most of the
3320 * issues taken into account are not trivial. We discuss these issues
3321 * individually while introducing the variables.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003322 */
3323static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3324{
3325 struct bfq_data *bfqd = bfqq->bfqd;
Paolo Valenteedaf9422017-08-04 07:35:11 +02003326 bool rot_without_queueing =
3327 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3328 bfqq_sequential_and_IO_bound,
3329 idling_boosts_thr, idling_boosts_thr_without_issues,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003330 idling_needed_for_service_guarantees,
Paolo Valentecfd69712017-04-12 18:23:15 +02003331 asymmetric_scenario;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003332
3333 if (bfqd->strict_guarantees)
3334 return true;
3335
3336 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003337 * Idling is performed only if slice_idle > 0. In addition, we
3338 * do not idle if
3339 * (a) bfqq is async
3340 * (b) bfqq is in the idle io prio class: in this case we do
3341 * not idle because we want to minimize the bandwidth that
3342 * queues in this class can steal to higher-priority queues
3343 */
3344 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3345 bfq_class_idle(bfqq))
3346 return false;
3347
Paolo Valenteedaf9422017-08-04 07:35:11 +02003348 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3349 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3350
Paolo Valented5be3fe2017-08-04 07:35:10 +02003351 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02003352 * The next variable takes into account the cases where idling
3353 * boosts the throughput.
3354 *
Paolo Valentee01eff02017-04-12 18:23:19 +02003355 * The value of the variable is computed considering, first, that
3356 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02003357 * (a) the device is not NCQ-capable and rotational, or
3358 * (b) regardless of the presence of NCQ, the device is rotational and
3359 * the request pattern for bfqq is I/O-bound and sequential, or
3360 * (c) regardless of whether it is rotational, the device is
3361 * not NCQ-capable and the request pattern for bfqq is
3362 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003363 *
3364 * Secondly, and in contrast to the above item (b), idling an
3365 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02003366 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003367 * the throughput in proportion to how fast the device
3368 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02003369 * above conditions (a), (b) or (c) is true, and, in
3370 * particular, happens to be false if bfqd is an NCQ-capable
3371 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003372 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02003373 idling_boosts_thr = rot_without_queueing ||
3374 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3375 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003376
3377 /*
Paolo Valentecfd69712017-04-12 18:23:15 +02003378 * The value of the next variable,
3379 * idling_boosts_thr_without_issues, is equal to that of
3380 * idling_boosts_thr, unless a special case holds. In this
3381 * special case, described below, idling may cause problems to
3382 * weight-raised queues.
3383 *
3384 * When the request pool is saturated (e.g., in the presence
3385 * of write hogs), if the processes associated with
3386 * non-weight-raised queues ask for requests at a lower rate,
3387 * then processes associated with weight-raised queues have a
3388 * higher probability to get a request from the pool
3389 * immediately (or at least soon) when they need one. Thus
3390 * they have a higher probability to actually get a fraction
3391 * of the device throughput proportional to their high
3392 * weight. This is especially true with NCQ-capable drives,
3393 * which enqueue several requests in advance, and further
3394 * reorder internally-queued requests.
3395 *
3396 * For this reason, we force to false the value of
3397 * idling_boosts_thr_without_issues if there are weight-raised
3398 * busy queues. In this case, and if bfqq is not weight-raised,
3399 * this guarantees that the device is not idled for bfqq (if,
3400 * instead, bfqq is weight-raised, then idling will be
3401 * guaranteed by another variable, see below). Combined with
3402 * the timestamping rules of BFQ (see [1] for details), this
3403 * behavior causes bfqq, and hence any sync non-weight-raised
3404 * queue, to get a lower number of requests served, and thus
3405 * to ask for a lower number of requests from the request
3406 * pool, before the busy weight-raised queues get served
3407 * again. This often mitigates starvation problems in the
3408 * presence of heavy write workloads and NCQ, thereby
3409 * guaranteeing a higher application and system responsiveness
3410 * in these hostile scenarios.
3411 */
3412 idling_boosts_thr_without_issues = idling_boosts_thr &&
3413 bfqd->wr_busy_queues == 0;
3414
3415 /*
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003416 * There is then a case where idling must be performed not
3417 * for throughput concerns, but to preserve service
3418 * guarantees.
3419 *
3420 * To introduce this case, we can note that allowing the drive
3421 * to enqueue more than one request at a time, and hence
Paolo Valente44e44a12017-04-12 18:23:12 +02003422 * delegating de facto final scheduling decisions to the
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003423 * drive's internal scheduler, entails loss of control on the
Paolo Valente44e44a12017-04-12 18:23:12 +02003424 * actual request service order. In particular, the critical
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003425 * situation is when requests from different processes happen
Paolo Valente44e44a12017-04-12 18:23:12 +02003426 * to be present, at the same time, in the internal queue(s)
3427 * of the drive. In such a situation, the drive, by deciding
3428 * the service order of the internally-queued requests, does
3429 * determine also the actual throughput distribution among
3430 * these processes. But the drive typically has no notion or
3431 * concern about per-process throughput distribution, and
3432 * makes its decisions only on a per-request basis. Therefore,
3433 * the service distribution enforced by the drive's internal
3434 * scheduler is likely to coincide with the desired
3435 * device-throughput distribution only in a completely
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003436 * symmetric scenario where:
3437 * (i) each of these processes must get the same throughput as
3438 * the others;
3439 * (ii) all these processes have the same I/O pattern
3440 (either sequential or random).
3441 * In fact, in such a scenario, the drive will tend to treat
3442 * the requests of each of these processes in about the same
3443 * way as the requests of the others, and thus to provide
3444 * each of these processes with about the same throughput
3445 * (which is exactly the desired throughput distribution). In
3446 * contrast, in any asymmetric scenario, device idling is
3447 * certainly needed to guarantee that bfqq receives its
3448 * assigned fraction of the device throughput (see [1] for
3449 * details).
Paolo Valente44e44a12017-04-12 18:23:12 +02003450 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003451 * We address this issue by controlling, actually, only the
3452 * symmetry sub-condition (i), i.e., provided that
3453 * sub-condition (i) holds, idling is not performed,
3454 * regardless of whether sub-condition (ii) holds. In other
3455 * words, only if sub-condition (i) holds, then idling is
3456 * allowed, and the device tends to be prevented from queueing
3457 * many requests, possibly of several processes. The reason
3458 * for not controlling also sub-condition (ii) is that we
3459 * exploit preemption to preserve guarantees in case of
3460 * symmetric scenarios, even if (ii) does not hold, as
3461 * explained in the next two paragraphs.
Paolo Valente44e44a12017-04-12 18:23:12 +02003462 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003463 * Even if a queue, say Q, is expired when it remains idle, Q
3464 * can still preempt the new in-service queue if the next
3465 * request of Q arrives soon (see the comments on
3466 * bfq_bfqq_update_budg_for_activation). If all queues and
3467 * groups have the same weight, this form of preemption,
3468 * combined with the hole-recovery heuristic described in the
3469 * comments on function bfq_bfqq_update_budg_for_activation,
3470 * are enough to preserve a correct bandwidth distribution in
3471 * the mid term, even without idling. In fact, even if not
3472 * idling allows the internal queues of the device to contain
3473 * many requests, and thus to reorder requests, we can rather
3474 * safely assume that the internal scheduler still preserves a
3475 * minimum of mid-term fairness. The motivation for using
3476 * preemption instead of idling is that, by not idling,
3477 * service guarantees are preserved without minimally
3478 * sacrificing throughput. In other words, both a high
3479 * throughput and its desired distribution are obtained.
3480 *
3481 * More precisely, this preemption-based, idleless approach
3482 * provides fairness in terms of IOPS, and not sectors per
3483 * second. This can be seen with a simple example. Suppose
3484 * that there are two queues with the same weight, but that
3485 * the first queue receives requests of 8 sectors, while the
3486 * second queue receives requests of 1024 sectors. In
3487 * addition, suppose that each of the two queues contains at
3488 * most one request at a time, which implies that each queue
3489 * always remains idle after it is served. Finally, after
3490 * remaining idle, each queue receives very quickly a new
3491 * request. It follows that the two queues are served
3492 * alternatively, preempting each other if needed. This
3493 * implies that, although both queues have the same weight,
3494 * the queue with large requests receives a service that is
3495 * 1024/8 times as high as the service received by the other
3496 * queue.
3497 *
3498 * On the other hand, device idling is performed, and thus
3499 * pure sector-domain guarantees are provided, for the
3500 * following queues, which are likely to need stronger
3501 * throughput guarantees: weight-raised queues, and queues
3502 * with a higher weight than other queues. When such queues
3503 * are active, sub-condition (i) is false, which triggers
3504 * device idling.
3505 *
3506 * According to the above considerations, the next variable is
3507 * true (only) if sub-condition (i) holds. To compute the
3508 * value of this variable, we not only use the return value of
3509 * the function bfq_symmetric_scenario(), but also check
3510 * whether bfqq is being weight-raised, because
3511 * bfq_symmetric_scenario() does not take into account also
3512 * weight-raised queues (see comments on
3513 * bfq_weights_tree_add()).
Paolo Valente44e44a12017-04-12 18:23:12 +02003514 *
3515 * As a side note, it is worth considering that the above
3516 * device-idling countermeasures may however fail in the
3517 * following unlucky scenario: if idling is (correctly)
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003518 * disabled in a time period during which all symmetry
3519 * sub-conditions hold, and hence the device is allowed to
Paolo Valente44e44a12017-04-12 18:23:12 +02003520 * enqueue many requests, but at some later point in time some
3521 * sub-condition stops to hold, then it may become impossible
3522 * to let requests be served in the desired order until all
3523 * the requests already queued in the device have been served.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003524 */
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003525 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3526 !bfq_symmetric_scenario(bfqd);
Paolo Valente44e44a12017-04-12 18:23:12 +02003527
3528 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003529 * Finally, there is a case where maximizing throughput is the
3530 * best choice even if it may cause unfairness toward
3531 * bfqq. Such a case is when bfqq became active in a burst of
3532 * queue activations. Queues that became active during a large
3533 * burst benefit only from throughput, as discussed in the
3534 * comments on bfq_handle_burst. Thus, if bfqq became active
3535 * in a burst and not idling the device maximizes throughput,
3536 * then the device must no be idled, because not idling the
3537 * device provides bfqq and all other queues in the burst with
3538 * maximum benefit. Combining this and the above case, we can
3539 * now establish when idling is actually needed to preserve
3540 * service guarantees.
3541 */
3542 idling_needed_for_service_guarantees =
3543 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3544
3545 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003546 * We have now all the components we need to compute the
3547 * return value of the function, which is true only if idling
3548 * either boosts the throughput (without issues), or is
3549 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003550 */
Paolo Valented5be3fe2017-08-04 07:35:10 +02003551 return idling_boosts_thr_without_issues ||
3552 idling_needed_for_service_guarantees;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003553}
3554
3555/*
3556 * If the in-service queue is empty but the function bfq_bfqq_may_idle
3557 * returns true, then:
3558 * 1) the queue must remain in service and cannot be expired, and
3559 * 2) the device must be idled to wait for the possible arrival of a new
3560 * request for the queue.
3561 * See the comments on the function bfq_bfqq_may_idle for the reasons
3562 * why performing device idling is the best choice to boost the throughput
3563 * and preserve service guarantees when bfq_bfqq_may_idle itself
3564 * returns true.
3565 */
3566static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3567{
Paolo Valented5be3fe2017-08-04 07:35:10 +02003568 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003569}
3570
3571/*
3572 * Select a queue for service. If we have a current queue in service,
3573 * check whether to continue servicing it, or retrieve and set a new one.
3574 */
3575static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3576{
3577 struct bfq_queue *bfqq;
3578 struct request *next_rq;
3579 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3580
3581 bfqq = bfqd->in_service_queue;
3582 if (!bfqq)
3583 goto new_queue;
3584
3585 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3586
3587 if (bfq_may_expire_for_budg_timeout(bfqq) &&
3588 !bfq_bfqq_wait_request(bfqq) &&
3589 !bfq_bfqq_must_idle(bfqq))
3590 goto expire;
3591
3592check_queue:
3593 /*
3594 * This loop is rarely executed more than once. Even when it
3595 * happens, it is much more convenient to re-execute this loop
3596 * than to return NULL and trigger a new dispatch to get a
3597 * request served.
3598 */
3599 next_rq = bfqq->next_rq;
3600 /*
3601 * If bfqq has requests queued and it has enough budget left to
3602 * serve them, keep the queue, otherwise expire it.
3603 */
3604 if (next_rq) {
3605 if (bfq_serv_to_charge(next_rq, bfqq) >
3606 bfq_bfqq_budget_left(bfqq)) {
3607 /*
3608 * Expire the queue for budget exhaustion,
3609 * which makes sure that the next budget is
3610 * enough to serve the next request, even if
3611 * it comes from the fifo expired path.
3612 */
3613 reason = BFQQE_BUDGET_EXHAUSTED;
3614 goto expire;
3615 } else {
3616 /*
3617 * The idle timer may be pending because we may
3618 * not disable disk idling even when a new request
3619 * arrives.
3620 */
3621 if (bfq_bfqq_wait_request(bfqq)) {
3622 /*
3623 * If we get here: 1) at least a new request
3624 * has arrived but we have not disabled the
3625 * timer because the request was too small,
3626 * 2) then the block layer has unplugged
3627 * the device, causing the dispatch to be
3628 * invoked.
3629 *
3630 * Since the device is unplugged, now the
3631 * requests are probably large enough to
3632 * provide a reasonable throughput.
3633 * So we disable idling.
3634 */
3635 bfq_clear_bfqq_wait_request(bfqq);
3636 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3637 }
3638 goto keep_queue;
3639 }
3640 }
3641
3642 /*
3643 * No requests pending. However, if the in-service queue is idling
3644 * for a new request, or has requests waiting for a completion and
3645 * may idle after their completion, then keep it anyway.
3646 */
3647 if (bfq_bfqq_wait_request(bfqq) ||
3648 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3649 bfqq = NULL;
3650 goto keep_queue;
3651 }
3652
3653 reason = BFQQE_NO_MORE_REQUESTS;
3654expire:
3655 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3656new_queue:
3657 bfqq = bfq_set_in_service_queue(bfqd);
3658 if (bfqq) {
3659 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3660 goto check_queue;
3661 }
3662keep_queue:
3663 if (bfqq)
3664 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3665 else
3666 bfq_log(bfqd, "select_queue: no queue returned");
3667
3668 return bfqq;
3669}
3670
Paolo Valente44e44a12017-04-12 18:23:12 +02003671static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3672{
3673 struct bfq_entity *entity = &bfqq->entity;
3674
3675 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3676 bfq_log_bfqq(bfqd, bfqq,
3677 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3678 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3679 jiffies_to_msecs(bfqq->wr_cur_max_time),
3680 bfqq->wr_coeff,
3681 bfqq->entity.weight, bfqq->entity.orig_weight);
3682
3683 if (entity->prio_changed)
3684 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3685
3686 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003687 * If the queue was activated in a burst, or too much
3688 * time has elapsed from the beginning of this
3689 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02003690 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003691 if (bfq_bfqq_in_large_burst(bfqq))
3692 bfq_bfqq_end_wr(bfqq);
3693 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3694 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003695 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3696 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003697 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02003698 bfq_bfqq_end_wr(bfqq);
3699 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02003700 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003701 bfqq->entity.prio_changed = 1;
3702 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003703 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01003704 if (bfqq->wr_coeff > 1 &&
3705 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3706 bfqq->service_from_wr > max_service_from_wr) {
3707 /* see comments on max_service_from_wr */
3708 bfq_bfqq_end_wr(bfqq);
3709 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003710 }
Paolo Valente431b17f2017-07-03 10:00:10 +02003711 /*
3712 * To improve latency (for this or other queues), immediately
3713 * update weight both if it must be raised and if it must be
3714 * lowered. Since, entity may be on some active tree here, and
3715 * might have a pending change of its ioprio class, invoke
3716 * next function with the last parameter unset (see the
3717 * comments on the function).
3718 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003719 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02003720 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3721 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02003722}
3723
Paolo Valenteaee69d72017-04-19 08:29:02 -06003724/*
3725 * Dispatch next request from bfqq.
3726 */
3727static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3728 struct bfq_queue *bfqq)
3729{
3730 struct request *rq = bfqq->next_rq;
3731 unsigned long service_to_charge;
3732
3733 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3734
3735 bfq_bfqq_served(bfqq, service_to_charge);
3736
3737 bfq_dispatch_remove(bfqd->queue, rq);
3738
Paolo Valente44e44a12017-04-12 18:23:12 +02003739 /*
3740 * If weight raising has to terminate for bfqq, then next
3741 * function causes an immediate update of bfqq's weight,
3742 * without waiting for next activation. As a consequence, on
3743 * expiration, bfqq will be timestamped as if has never been
3744 * weight-raised during this service slot, even if it has
3745 * received part or even most of the service as a
3746 * weight-raised queue. This inflates bfqq's timestamps, which
3747 * is beneficial, as bfqq is then more willing to leave the
3748 * device immediately to possible other weight-raised queues.
3749 */
3750 bfq_update_wr_data(bfqd, bfqq);
3751
Paolo Valenteaee69d72017-04-19 08:29:02 -06003752 /*
3753 * Expire bfqq, pretending that its budget expired, if bfqq
3754 * belongs to CLASS_IDLE and other queues are waiting for
3755 * service.
3756 */
3757 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3758 goto expire;
3759
3760 return rq;
3761
3762expire:
3763 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3764 return rq;
3765}
3766
3767static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3768{
3769 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3770
3771 /*
3772 * Avoiding lock: a race on bfqd->busy_queues should cause at
3773 * most a call to dispatch for nothing
3774 */
3775 return !list_empty_careful(&bfqd->dispatch) ||
3776 bfqd->busy_queues > 0;
3777}
3778
3779static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3780{
3781 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3782 struct request *rq = NULL;
3783 struct bfq_queue *bfqq = NULL;
3784
3785 if (!list_empty(&bfqd->dispatch)) {
3786 rq = list_first_entry(&bfqd->dispatch, struct request,
3787 queuelist);
3788 list_del_init(&rq->queuelist);
3789
3790 bfqq = RQ_BFQQ(rq);
3791
3792 if (bfqq) {
3793 /*
3794 * Increment counters here, because this
3795 * dispatch does not follow the standard
3796 * dispatch flow (where counters are
3797 * incremented)
3798 */
3799 bfqq->dispatched++;
3800
3801 goto inc_in_driver_start_rq;
3802 }
3803
3804 /*
Paolo Valentea7877392018-02-07 22:19:20 +01003805 * We exploit the bfq_finish_requeue_request hook to
3806 * decrement rq_in_driver, but
3807 * bfq_finish_requeue_request will not be invoked on
3808 * this request. So, to avoid unbalance, just start
3809 * this request, without incrementing rq_in_driver. As
3810 * a negative consequence, rq_in_driver is deceptively
3811 * lower than it should be while this request is in
3812 * service. This may cause bfq_schedule_dispatch to be
3813 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003814 *
3815 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01003816 * bfq_finish_requeue_request hook, if defined, is
3817 * probably invoked also on this request. So, by
3818 * exploiting this hook, we could 1) increment
3819 * rq_in_driver here, and 2) decrement it in
3820 * bfq_finish_requeue_request. Such a solution would
3821 * let the value of the counter be always accurate,
3822 * but it would entail using an extra interface
3823 * function. This cost seems higher than the benefit,
3824 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06003825 * requests very low.
3826 */
3827 goto start_rq;
3828 }
3829
3830 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3831
3832 if (bfqd->busy_queues == 0)
3833 goto exit;
3834
3835 /*
3836 * Force device to serve one request at a time if
3837 * strict_guarantees is true. Forcing this service scheme is
3838 * currently the ONLY way to guarantee that the request
3839 * service order enforced by the scheduler is respected by a
3840 * queueing device. Otherwise the device is free even to make
3841 * some unlucky request wait for as long as the device
3842 * wishes.
3843 *
3844 * Of course, serving one request at at time may cause loss of
3845 * throughput.
3846 */
3847 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3848 goto exit;
3849
3850 bfqq = bfq_select_queue(bfqd);
3851 if (!bfqq)
3852 goto exit;
3853
3854 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3855
3856 if (rq) {
3857inc_in_driver_start_rq:
3858 bfqd->rq_in_driver++;
3859start_rq:
3860 rq->rq_flags |= RQF_STARTED;
3861 }
3862exit:
3863 return rq;
3864}
3865
Paolo Valente9b25bd02017-12-04 11:42:05 +01003866#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
3867static void bfq_update_dispatch_stats(struct request_queue *q,
3868 struct request *rq,
3869 struct bfq_queue *in_serv_queue,
3870 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003871{
Paolo Valente9b25bd02017-12-04 11:42:05 +01003872 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003873
Paolo Valente24bfd192017-11-13 07:34:09 +01003874 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01003875 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01003876
3877 /*
3878 * rq and bfqq are guaranteed to exist until this function
3879 * ends, for the following reasons. First, rq can be
3880 * dispatched to the device, and then can be completed and
3881 * freed, only after this function ends. Second, rq cannot be
3882 * merged (and thus freed because of a merge) any longer,
3883 * because it has already started. Thus rq cannot be freed
3884 * before this function ends, and, since rq has a reference to
3885 * bfqq, the same guarantee holds for bfqq too.
3886 *
3887 * In addition, the following queue lock guarantees that
3888 * bfqq_group(bfqq) exists as well.
3889 */
Paolo Valente9b25bd02017-12-04 11:42:05 +01003890 spin_lock_irq(q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01003891 if (idle_timer_disabled)
3892 /*
3893 * Since the idle timer has been disabled,
3894 * in_serv_queue contained some request when
3895 * __bfq_dispatch_request was invoked above, which
3896 * implies that rq was picked exactly from
3897 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3898 * therefore guaranteed to exist because of the above
3899 * arguments.
3900 */
3901 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3902 if (bfqq) {
3903 struct bfq_group *bfqg = bfqq_group(bfqq);
3904
3905 bfqg_stats_update_avg_queue_size(bfqg);
3906 bfqg_stats_set_start_empty_time(bfqg);
3907 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3908 }
Paolo Valente9b25bd02017-12-04 11:42:05 +01003909 spin_unlock_irq(q->queue_lock);
3910}
3911#else
3912static inline void bfq_update_dispatch_stats(struct request_queue *q,
3913 struct request *rq,
3914 struct bfq_queue *in_serv_queue,
3915 bool idle_timer_disabled) {}
Paolo Valente24bfd192017-11-13 07:34:09 +01003916#endif
3917
Paolo Valente9b25bd02017-12-04 11:42:05 +01003918static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3919{
3920 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3921 struct request *rq;
3922 struct bfq_queue *in_serv_queue;
3923 bool waiting_rq, idle_timer_disabled;
3924
3925 spin_lock_irq(&bfqd->lock);
3926
3927 in_serv_queue = bfqd->in_service_queue;
3928 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3929
3930 rq = __bfq_dispatch_request(hctx);
3931
3932 idle_timer_disabled =
3933 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
3934
3935 spin_unlock_irq(&bfqd->lock);
3936
3937 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
3938 idle_timer_disabled);
3939
Paolo Valenteaee69d72017-04-19 08:29:02 -06003940 return rq;
3941}
3942
3943/*
3944 * Task holds one reference to the queue, dropped when task exits. Each rq
3945 * in-flight on this queue also holds a reference, dropped when rq is freed.
3946 *
3947 * Scheduler lock must be held here. Recall not to use bfqq after calling
3948 * this function on it.
3949 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003950void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003951{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003952#ifdef CONFIG_BFQ_GROUP_IOSCHED
3953 struct bfq_group *bfqg = bfqq_group(bfqq);
3954#endif
3955
Paolo Valenteaee69d72017-04-19 08:29:02 -06003956 if (bfqq->bfqd)
3957 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3958 bfqq, bfqq->ref);
3959
3960 bfqq->ref--;
3961 if (bfqq->ref)
3962 return;
3963
Paolo Valente99fead82017-10-09 13:11:23 +02003964 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003965 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02003966 /*
3967 * Decrement also burst size after the removal, if the
3968 * process associated with bfqq is exiting, and thus
3969 * does not contribute to the burst any longer. This
3970 * decrement helps filter out false positives of large
3971 * bursts, when some short-lived process (often due to
3972 * the execution of commands by some service) happens
3973 * to start and exit while a complex application is
3974 * starting, and thus spawning several processes that
3975 * do I/O (and that *must not* be treated as a large
3976 * burst, see comments on bfq_handle_burst).
3977 *
3978 * In particular, the decrement is performed only if:
3979 * 1) bfqq is not a merged queue, because, if it is,
3980 * then this free of bfqq is not triggered by the exit
3981 * of the process bfqq is associated with, but exactly
3982 * by the fact that bfqq has just been merged.
3983 * 2) burst_size is greater than 0, to handle
3984 * unbalanced decrements. Unbalanced decrements may
3985 * happen in te following case: bfqq is inserted into
3986 * the current burst list--without incrementing
3987 * bust_size--because of a split, but the current
3988 * burst list is not the burst list bfqq belonged to
3989 * (see comments on the case of a split in
3990 * bfq_set_request).
3991 */
3992 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
3993 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02003994 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003995
Paolo Valenteaee69d72017-04-19 08:29:02 -06003996 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003997#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02003998 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003999#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06004000}
4001
Arianna Avanzini36eca892017-04-12 18:23:16 +02004002static void bfq_put_cooperator(struct bfq_queue *bfqq)
4003{
4004 struct bfq_queue *__bfqq, *next;
4005
4006 /*
4007 * If this queue was scheduled to merge with another queue, be
4008 * sure to drop the reference taken on that queue (and others in
4009 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4010 */
4011 __bfqq = bfqq->new_bfqq;
4012 while (__bfqq) {
4013 if (__bfqq == bfqq)
4014 break;
4015 next = __bfqq->new_bfqq;
4016 bfq_put_queue(__bfqq);
4017 __bfqq = next;
4018 }
4019}
4020
Paolo Valenteaee69d72017-04-19 08:29:02 -06004021static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4022{
4023 if (bfqq == bfqd->in_service_queue) {
4024 __bfq_bfqq_expire(bfqd, bfqq);
4025 bfq_schedule_dispatch(bfqd);
4026 }
4027
4028 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4029
Arianna Avanzini36eca892017-04-12 18:23:16 +02004030 bfq_put_cooperator(bfqq);
4031
Paolo Valenteaee69d72017-04-19 08:29:02 -06004032 bfq_put_queue(bfqq); /* release process reference */
4033}
4034
4035static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4036{
4037 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4038 struct bfq_data *bfqd;
4039
4040 if (bfqq)
4041 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4042
4043 if (bfqq && bfqd) {
4044 unsigned long flags;
4045
4046 spin_lock_irqsave(&bfqd->lock, flags);
4047 bfq_exit_bfqq(bfqd, bfqq);
4048 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004049 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004050 }
4051}
4052
4053static void bfq_exit_icq(struct io_cq *icq)
4054{
4055 struct bfq_io_cq *bic = icq_to_bic(icq);
4056
4057 bfq_exit_icq_bfqq(bic, true);
4058 bfq_exit_icq_bfqq(bic, false);
4059}
4060
4061/*
4062 * Update the entity prio values; note that the new values will not
4063 * be used until the next (re)activation.
4064 */
4065static void
4066bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4067{
4068 struct task_struct *tsk = current;
4069 int ioprio_class;
4070 struct bfq_data *bfqd = bfqq->bfqd;
4071
4072 if (!bfqd)
4073 return;
4074
4075 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4076 switch (ioprio_class) {
4077 default:
4078 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4079 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004080 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004081 case IOPRIO_CLASS_NONE:
4082 /*
4083 * No prio set, inherit CPU scheduling settings.
4084 */
4085 bfqq->new_ioprio = task_nice_ioprio(tsk);
4086 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4087 break;
4088 case IOPRIO_CLASS_RT:
4089 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4090 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4091 break;
4092 case IOPRIO_CLASS_BE:
4093 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4094 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4095 break;
4096 case IOPRIO_CLASS_IDLE:
4097 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4098 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004099 break;
4100 }
4101
4102 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4103 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4104 bfqq->new_ioprio);
4105 bfqq->new_ioprio = IOPRIO_BE_NR;
4106 }
4107
4108 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4109 bfqq->entity.prio_changed = 1;
4110}
4111
Paolo Valenteea25da42017-04-19 08:48:24 -06004112static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4113 struct bio *bio, bool is_sync,
4114 struct bfq_io_cq *bic);
4115
Paolo Valenteaee69d72017-04-19 08:29:02 -06004116static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4117{
4118 struct bfq_data *bfqd = bic_to_bfqd(bic);
4119 struct bfq_queue *bfqq;
4120 int ioprio = bic->icq.ioc->ioprio;
4121
4122 /*
4123 * This condition may trigger on a newly created bic, be sure to
4124 * drop the lock before returning.
4125 */
4126 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4127 return;
4128
4129 bic->ioprio = ioprio;
4130
4131 bfqq = bic_to_bfqq(bic, false);
4132 if (bfqq) {
4133 /* release process reference on this queue */
4134 bfq_put_queue(bfqq);
4135 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4136 bic_set_bfqq(bic, bfqq, false);
4137 }
4138
4139 bfqq = bic_to_bfqq(bic, true);
4140 if (bfqq)
4141 bfq_set_next_ioprio_data(bfqq, bic);
4142}
4143
4144static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4145 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4146{
4147 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4148 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004149 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004150
4151 bfqq->ref = 0;
4152 bfqq->bfqd = bfqd;
4153
4154 if (bic)
4155 bfq_set_next_ioprio_data(bfqq, bic);
4156
4157 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02004158 /*
4159 * No need to mark as has_short_ttime if in
4160 * idle_class, because no device idling is performed
4161 * for queues in idle class
4162 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004163 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02004164 /* tentatively mark as has_short_ttime */
4165 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004166 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004167 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004168 } else
4169 bfq_clear_bfqq_sync(bfqq);
4170
4171 /* set end request to minus infinity from now */
4172 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4173
4174 bfq_mark_bfqq_IO_bound(bfqq);
4175
4176 bfqq->pid = pid;
4177
4178 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02004179 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004180 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06004181
Paolo Valente44e44a12017-04-12 18:23:12 +02004182 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004183 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02004184 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02004185 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02004186
4187 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01004188 * To not forget the possibly high bandwidth consumed by a
4189 * process/queue in the recent past,
4190 * bfq_bfqq_softrt_next_start() returns a value at least equal
4191 * to the current value of bfqq->soft_rt_next_start (see
4192 * comments on bfq_bfqq_softrt_next_start). Set
4193 * soft_rt_next_start to now, to mean that bfqq has consumed
4194 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004195 */
Paolo Valentea34b0242017-12-15 07:23:12 +01004196 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02004197
Paolo Valenteaee69d72017-04-19 08:29:02 -06004198 /* first request is almost certainly seeky */
4199 bfqq->seek_history = 1;
4200}
4201
4202static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004203 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004204 int ioprio_class, int ioprio)
4205{
4206 switch (ioprio_class) {
4207 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004208 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004209 case IOPRIO_CLASS_NONE:
4210 ioprio = IOPRIO_NORM;
4211 /* fall through */
4212 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004213 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004214 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004215 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004216 default:
4217 return NULL;
4218 }
4219}
4220
4221static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4222 struct bio *bio, bool is_sync,
4223 struct bfq_io_cq *bic)
4224{
4225 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4226 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4227 struct bfq_queue **async_bfqq = NULL;
4228 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004229 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004230
4231 rcu_read_lock();
4232
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004233 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4234 if (!bfqg) {
4235 bfqq = &bfqd->oom_bfqq;
4236 goto out;
4237 }
4238
Paolo Valenteaee69d72017-04-19 08:29:02 -06004239 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004240 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004241 ioprio);
4242 bfqq = *async_bfqq;
4243 if (bfqq)
4244 goto out;
4245 }
4246
4247 bfqq = kmem_cache_alloc_node(bfq_pool,
4248 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4249 bfqd->queue->node);
4250
4251 if (bfqq) {
4252 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4253 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004254 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004255 bfq_log_bfqq(bfqd, bfqq, "allocated");
4256 } else {
4257 bfqq = &bfqd->oom_bfqq;
4258 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4259 goto out;
4260 }
4261
4262 /*
4263 * Pin the queue now that it's allocated, scheduler exit will
4264 * prune it.
4265 */
4266 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004267 bfqq->ref++; /*
4268 * Extra group reference, w.r.t. sync
4269 * queue. This extra reference is removed
4270 * only if bfqq->bfqg disappears, to
4271 * guarantee that this queue is not freed
4272 * until its group goes away.
4273 */
4274 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06004275 bfqq, bfqq->ref);
4276 *async_bfqq = bfqq;
4277 }
4278
4279out:
4280 bfqq->ref++; /* get a process reference to this queue */
4281 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4282 rcu_read_unlock();
4283 return bfqq;
4284}
4285
4286static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4287 struct bfq_queue *bfqq)
4288{
4289 struct bfq_ttime *ttime = &bfqq->ttime;
4290 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4291
4292 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4293
4294 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4295 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4296 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4297 ttime->ttime_samples);
4298}
4299
4300static void
4301bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4302 struct request *rq)
4303{
Paolo Valenteaee69d72017-04-19 08:29:02 -06004304 bfqq->seek_history <<= 1;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004305 bfqq->seek_history |=
4306 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004307 (!blk_queue_nonrot(bfqd->queue) ||
4308 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4309}
4310
Paolo Valented5be3fe2017-08-04 07:35:10 +02004311static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4312 struct bfq_queue *bfqq,
4313 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004314{
Paolo Valented5be3fe2017-08-04 07:35:10 +02004315 bool has_short_ttime = true;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004316
Paolo Valented5be3fe2017-08-04 07:35:10 +02004317 /*
4318 * No need to update has_short_ttime if bfqq is async or in
4319 * idle io prio class, or if bfq_slice_idle is zero, because
4320 * no device idling is performed for bfqq in this case.
4321 */
4322 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4323 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004324 return;
4325
Arianna Avanzini36eca892017-04-12 18:23:16 +02004326 /* Idle window just restored, statistics are meaningless. */
4327 if (time_is_after_eq_jiffies(bfqq->split_time +
4328 bfqd->bfq_wr_min_idle_time))
4329 return;
4330
Paolo Valented5be3fe2017-08-04 07:35:10 +02004331 /* Think time is infinite if no process is linked to
4332 * bfqq. Otherwise check average think time to
4333 * decide whether to mark as has_short_ttime
4334 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004335 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02004336 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4337 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4338 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004339
Paolo Valented5be3fe2017-08-04 07:35:10 +02004340 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4341 has_short_ttime);
4342
4343 if (has_short_ttime)
4344 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004345 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02004346 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004347}
4348
4349/*
4350 * Called when a new fs request (rq) is added to bfqq. Check if there's
4351 * something we should do about it.
4352 */
4353static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4354 struct request *rq)
4355{
4356 struct bfq_io_cq *bic = RQ_BIC(rq);
4357
4358 if (rq->cmd_flags & REQ_META)
4359 bfqq->meta_pending++;
4360
4361 bfq_update_io_thinktime(bfqd, bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02004362 bfq_update_has_short_ttime(bfqd, bfqq, bic);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004363 bfq_update_io_seektime(bfqd, bfqq, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004364
4365 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004366 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4367 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004368
4369 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4370
4371 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4372 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4373 blk_rq_sectors(rq) < 32;
4374 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4375
4376 /*
4377 * There is just this request queued: if the request
4378 * is small and the queue is not to be expired, then
4379 * just exit.
4380 *
4381 * In this way, if the device is being idled to wait
4382 * for a new request from the in-service queue, we
4383 * avoid unplugging the device and committing the
4384 * device to serve just a small request. On the
4385 * contrary, we wait for the block layer to decide
4386 * when to unplug the device: hopefully, new requests
4387 * will be merged to this one quickly, then the device
4388 * will be unplugged and larger requests will be
4389 * dispatched.
4390 */
4391 if (small_req && !budget_timeout)
4392 return;
4393
4394 /*
4395 * A large enough request arrived, or the queue is to
4396 * be expired: in both cases disk idling is to be
4397 * stopped, so clear wait_request flag and reset
4398 * timer.
4399 */
4400 bfq_clear_bfqq_wait_request(bfqq);
4401 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4402
4403 /*
4404 * The queue is not empty, because a new request just
4405 * arrived. Hence we can safely expire the queue, in
4406 * case of budget timeout, without risking that the
4407 * timestamps of the queue are not updated correctly.
4408 * See [1] for more details.
4409 */
4410 if (budget_timeout)
4411 bfq_bfqq_expire(bfqd, bfqq, false,
4412 BFQQE_BUDGET_TIMEOUT);
4413 }
4414}
4415
Paolo Valente24bfd192017-11-13 07:34:09 +01004416/* returns true if it causes the idle timer to be disabled */
4417static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004418{
Arianna Avanzini36eca892017-04-12 18:23:16 +02004419 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4420 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01004421 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004422
4423 if (new_bfqq) {
4424 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4425 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4426 /*
4427 * Release the request's reference to the old bfqq
4428 * and make sure one is taken to the shared queue.
4429 */
4430 new_bfqq->allocated++;
4431 bfqq->allocated--;
4432 new_bfqq->ref++;
4433 /*
4434 * If the bic associated with the process
4435 * issuing this request still points to bfqq
4436 * (and thus has not been already redirected
4437 * to new_bfqq or even some other bfq_queue),
4438 * then complete the merge and redirect it to
4439 * new_bfqq.
4440 */
4441 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4442 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4443 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02004444
4445 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004446 /*
4447 * rq is about to be enqueued into new_bfqq,
4448 * release rq reference on bfqq
4449 */
4450 bfq_put_queue(bfqq);
4451 rq->elv.priv[1] = new_bfqq;
4452 bfqq = new_bfqq;
4453 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004454
Paolo Valente24bfd192017-11-13 07:34:09 +01004455 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004456 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004457 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004458
4459 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4460 list_add_tail(&rq->queuelist, &bfqq->fifo);
4461
4462 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004463
4464 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004465}
4466
Paolo Valente9b25bd02017-12-04 11:42:05 +01004467#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4468static void bfq_update_insert_stats(struct request_queue *q,
4469 struct bfq_queue *bfqq,
4470 bool idle_timer_disabled,
4471 unsigned int cmd_flags)
4472{
4473 if (!bfqq)
4474 return;
4475
4476 /*
4477 * bfqq still exists, because it can disappear only after
4478 * either it is merged with another queue, or the process it
4479 * is associated with exits. But both actions must be taken by
4480 * the same process currently executing this flow of
4481 * instructions.
4482 *
4483 * In addition, the following queue lock guarantees that
4484 * bfqq_group(bfqq) exists as well.
4485 */
4486 spin_lock_irq(q->queue_lock);
4487 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4488 if (idle_timer_disabled)
4489 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4490 spin_unlock_irq(q->queue_lock);
4491}
4492#else
4493static inline void bfq_update_insert_stats(struct request_queue *q,
4494 struct bfq_queue *bfqq,
4495 bool idle_timer_disabled,
4496 unsigned int cmd_flags) {}
4497#endif
4498
Paolo Valenteaee69d72017-04-19 08:29:02 -06004499static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4500 bool at_head)
4501{
4502 struct request_queue *q = hctx->queue;
4503 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02004504 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01004505 bool idle_timer_disabled = false;
4506 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004507
4508 spin_lock_irq(&bfqd->lock);
4509 if (blk_mq_sched_try_insert_merge(q, rq)) {
4510 spin_unlock_irq(&bfqd->lock);
4511 return;
4512 }
4513
4514 spin_unlock_irq(&bfqd->lock);
4515
4516 blk_mq_sched_request_inserted(rq);
4517
4518 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02004519 bfqq = bfq_init_rq(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004520 if (at_head || blk_rq_is_passthrough(rq)) {
4521 if (at_head)
4522 list_add(&rq->queuelist, &bfqd->dispatch);
4523 else
4524 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valente18e5a572018-05-04 19:17:01 +02004525 } else { /* bfqq is assumed to be non null here */
Paolo Valente24bfd192017-11-13 07:34:09 +01004526 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004527 /*
4528 * Update bfqq, because, if a queue merge has occurred
4529 * in __bfq_insert_request, then rq has been
4530 * redirected into a new queue.
4531 */
4532 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004533
4534 if (rq_mergeable(rq)) {
4535 elv_rqhash_add(q, rq);
4536 if (!q->last_merge)
4537 q->last_merge = rq;
4538 }
4539 }
4540
Paolo Valente24bfd192017-11-13 07:34:09 +01004541 /*
4542 * Cache cmd_flags before releasing scheduler lock, because rq
4543 * may disappear afterwards (for example, because of a request
4544 * merge).
4545 */
4546 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01004547
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004548 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004549
Paolo Valente9b25bd02017-12-04 11:42:05 +01004550 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4551 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004552}
4553
4554static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4555 struct list_head *list, bool at_head)
4556{
4557 while (!list_empty(list)) {
4558 struct request *rq;
4559
4560 rq = list_first_entry(list, struct request, queuelist);
4561 list_del_init(&rq->queuelist);
4562 bfq_insert_request(hctx, rq, at_head);
4563 }
4564}
4565
4566static void bfq_update_hw_tag(struct bfq_data *bfqd)
4567{
4568 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4569 bfqd->rq_in_driver);
4570
4571 if (bfqd->hw_tag == 1)
4572 return;
4573
4574 /*
4575 * This sample is valid if the number of outstanding requests
4576 * is large enough to allow a queueing behavior. Note that the
4577 * sum is not exact, as it's not taking into account deactivated
4578 * requests.
4579 */
4580 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4581 return;
4582
4583 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4584 return;
4585
4586 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4587 bfqd->max_rq_in_driver = 0;
4588 bfqd->hw_tag_samples = 0;
4589}
4590
4591static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4592{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004593 u64 now_ns;
4594 u32 delta_us;
4595
Paolo Valenteaee69d72017-04-19 08:29:02 -06004596 bfq_update_hw_tag(bfqd);
4597
4598 bfqd->rq_in_driver--;
4599 bfqq->dispatched--;
4600
Paolo Valente44e44a12017-04-12 18:23:12 +02004601 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4602 /*
4603 * Set budget_timeout (which we overload to store the
4604 * time at which the queue remains with no backlog and
4605 * no outstanding request; used by the weight-raising
4606 * mechanism).
4607 */
4608 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02004609
4610 bfq_weights_tree_remove(bfqd, &bfqq->entity,
4611 &bfqd->queue_weights_tree);
Paolo Valente44e44a12017-04-12 18:23:12 +02004612 }
4613
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004614 now_ns = ktime_get_ns();
4615
4616 bfqq->ttime.last_end_request = now_ns;
4617
4618 /*
4619 * Using us instead of ns, to get a reasonable precision in
4620 * computing rate in next check.
4621 */
4622 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4623
4624 /*
4625 * If the request took rather long to complete, and, according
4626 * to the maximum request size recorded, this completion latency
4627 * implies that the request was certainly served at a very low
4628 * rate (less than 1M sectors/sec), then the whole observation
4629 * interval that lasts up to this time instant cannot be a
4630 * valid time interval for computing a new peak rate. Invoke
4631 * bfq_update_rate_reset to have the following three steps
4632 * taken:
4633 * - close the observation interval at the last (previous)
4634 * request dispatch or completion
4635 * - compute rate, if possible, for that observation interval
4636 * - reset to zero samples, which will trigger a proper
4637 * re-initialization of the observation interval on next
4638 * dispatch
4639 */
4640 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4641 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4642 1UL<<(BFQ_RATE_SHIFT - 10))
4643 bfq_update_rate_reset(bfqd, NULL);
4644 bfqd->last_completion = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004645
4646 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02004647 * If we are waiting to discover whether the request pattern
4648 * of the task associated with the queue is actually
4649 * isochronous, and both requisites for this condition to hold
4650 * are now satisfied, then compute soft_rt_next_start (see the
4651 * comments on the function bfq_bfqq_softrt_next_start()). We
4652 * schedule this delayed check when bfqq expires, if it still
4653 * has in-flight requests.
4654 */
4655 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4656 RB_EMPTY_ROOT(&bfqq->sort_list))
4657 bfqq->soft_rt_next_start =
4658 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4659
4660 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06004661 * If this is the in-service queue, check if it needs to be expired,
4662 * or if we want to idle in case it has no pending requests.
4663 */
4664 if (bfqd->in_service_queue == bfqq) {
Paolo Valente44e44a12017-04-12 18:23:12 +02004665 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06004666 bfq_arm_slice_timer(bfqd);
4667 return;
4668 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4669 bfq_bfqq_expire(bfqd, bfqq, false,
4670 BFQQE_BUDGET_TIMEOUT);
4671 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4672 (bfqq->dispatched == 0 ||
4673 !bfq_bfqq_may_idle(bfqq)))
4674 bfq_bfqq_expire(bfqd, bfqq, false,
4675 BFQQE_NO_MORE_REQUESTS);
4676 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08004677
4678 if (!bfqd->rq_in_driver)
4679 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004680}
4681
Paolo Valentea7877392018-02-07 22:19:20 +01004682static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004683{
4684 bfqq->allocated--;
4685
4686 bfq_put_queue(bfqq);
4687}
4688
Paolo Valentea7877392018-02-07 22:19:20 +01004689/*
4690 * Handle either a requeue or a finish for rq. The things to do are
4691 * the same in both cases: all references to rq are to be dropped. In
4692 * particular, rq is considered completed from the point of view of
4693 * the scheduler.
4694 */
4695static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004696{
Paolo Valentea7877392018-02-07 22:19:20 +01004697 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004698 struct bfq_data *bfqd;
4699
Paolo Valentea7877392018-02-07 22:19:20 +01004700 /*
4701 * Requeue and finish hooks are invoked in blk-mq without
4702 * checking whether the involved request is actually still
4703 * referenced in the scheduler. To handle this fact, the
4704 * following two checks make this function exit in case of
4705 * spurious invocations, for which there is nothing to do.
4706 *
4707 * First, check whether rq has nothing to do with an elevator.
4708 */
4709 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004710 return;
4711
Paolo Valentea7877392018-02-07 22:19:20 +01004712 /*
4713 * rq either is not associated with any icq, or is an already
4714 * requeued request that has not (yet) been re-inserted into
4715 * a bfq_queue.
4716 */
4717 if (!rq->elv.icq || !bfqq)
4718 return;
4719
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004720 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004721
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004722 if (rq->rq_flags & RQF_STARTED)
4723 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07004724 rq->start_time_ns,
4725 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004726 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004727
4728 if (likely(rq->rq_flags & RQF_STARTED)) {
4729 unsigned long flags;
4730
4731 spin_lock_irqsave(&bfqd->lock, flags);
4732
4733 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01004734 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004735
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004736 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004737 } else {
4738 /*
4739 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01004740 * in which case we need to remove it (this should
4741 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06004742 * defer such a check and removal, to avoid
4743 * inconsistencies in the time interval from the end
4744 * of this function to the start of the deferred work.
4745 * This situation seems to occur only in process
4746 * context, as a consequence of a merge. In the
4747 * current version of the code, this implies that the
4748 * lock is held.
4749 */
4750
Luca Miccio614822f2017-11-13 07:34:08 +01004751 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02004752 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004753 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4754 rq->cmd_flags);
4755 }
Paolo Valentea7877392018-02-07 22:19:20 +01004756 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004757 }
4758
Paolo Valentea7877392018-02-07 22:19:20 +01004759 /*
4760 * Reset private fields. In case of a requeue, this allows
4761 * this function to correctly do nothing if it is spuriously
4762 * invoked again on this same request (see the check at the
4763 * beginning of the function). Probably, a better general
4764 * design would be to prevent blk-mq from invoking the requeue
4765 * or finish hooks of an elevator, for a request that is not
4766 * referred by that elevator.
4767 *
4768 * Resetting the following fields would break the
4769 * request-insertion logic if rq is re-inserted into a bfq
4770 * internal queue, without a re-preparation. Here we assume
4771 * that re-insertions of requeued requests, without
4772 * re-preparation, can happen only for pass_through or at_head
4773 * requests (which are not re-inserted into bfq internal
4774 * queues).
4775 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004776 rq->elv.priv[0] = NULL;
4777 rq->elv.priv[1] = NULL;
4778}
4779
4780/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02004781 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4782 * was the last process referring to that bfqq.
4783 */
4784static struct bfq_queue *
4785bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4786{
4787 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4788
4789 if (bfqq_process_refs(bfqq) == 1) {
4790 bfqq->pid = current->pid;
4791 bfq_clear_bfqq_coop(bfqq);
4792 bfq_clear_bfqq_split_coop(bfqq);
4793 return bfqq;
4794 }
4795
4796 bic_set_bfqq(bic, NULL, 1);
4797
4798 bfq_put_cooperator(bfqq);
4799
4800 bfq_put_queue(bfqq);
4801 return NULL;
4802}
4803
4804static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4805 struct bfq_io_cq *bic,
4806 struct bio *bio,
4807 bool split, bool is_sync,
4808 bool *new_queue)
4809{
4810 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4811
4812 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4813 return bfqq;
4814
4815 if (new_queue)
4816 *new_queue = true;
4817
4818 if (bfqq)
4819 bfq_put_queue(bfqq);
4820 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4821
4822 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004823 if (split && is_sync) {
4824 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4825 bic->saved_in_large_burst)
4826 bfq_mark_bfqq_in_large_burst(bfqq);
4827 else {
4828 bfq_clear_bfqq_in_large_burst(bfqq);
4829 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02004830 /*
4831 * If bfqq was in the current
4832 * burst list before being
4833 * merged, then we have to add
4834 * it back. And we do not need
4835 * to increase burst_size, as
4836 * we did not decrement
4837 * burst_size when we removed
4838 * bfqq from the burst list as
4839 * a consequence of a merge
4840 * (see comments in
4841 * bfq_put_queue). In this
4842 * respect, it would be rather
4843 * costly to know whether the
4844 * current burst list is still
4845 * the same burst list from
4846 * which bfqq was removed on
4847 * the merge. To avoid this
4848 * cost, if bfqq was in a
4849 * burst list, then we add
4850 * bfqq to the current burst
4851 * list without any further
4852 * check. This can cause
4853 * inappropriate insertions,
4854 * but rarely enough to not
4855 * harm the detection of large
4856 * bursts significantly.
4857 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004858 hlist_add_head(&bfqq->burst_list_node,
4859 &bfqd->burst_list);
4860 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02004861 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004862 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02004863
4864 return bfqq;
4865}
4866
4867/*
Paolo Valente18e5a572018-05-04 19:17:01 +02004868 * Only reset private fields. The actual request preparation will be
4869 * performed by bfq_init_rq, when rq is either inserted or merged. See
4870 * comments on bfq_init_rq for the reason behind this delayed
4871 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004872 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004873static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004874{
Paolo Valente18e5a572018-05-04 19:17:01 +02004875 /*
4876 * Regardless of whether we have an icq attached, we have to
4877 * clear the scheduler pointers, as they might point to
4878 * previously allocated bic/bfqq structs.
4879 */
4880 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
4881}
4882
4883/*
4884 * If needed, init rq, allocate bfq data structures associated with
4885 * rq, and increment reference counters in the destination bfq_queue
4886 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
4887 * not associated with any bfq_queue.
4888 *
4889 * This function is invoked by the functions that perform rq insertion
4890 * or merging. One may have expected the above preparation operations
4891 * to be performed in bfq_prepare_request, and not delayed to when rq
4892 * is inserted or merged. The rationale behind this delayed
4893 * preparation is that, after the prepare_request hook is invoked for
4894 * rq, rq may still be transformed into a request with no icq, i.e., a
4895 * request not associated with any queue. No bfq hook is invoked to
4896 * signal this tranformation. As a consequence, should these
4897 * preparation operations be performed when the prepare_request hook
4898 * is invoked, and should rq be transformed one moment later, bfq
4899 * would end up in an inconsistent state, because it would have
4900 * incremented some queue counters for an rq destined to
4901 * transformation, without any chance to correctly lower these
4902 * counters back. In contrast, no transformation can still happen for
4903 * rq after rq has been inserted or merged. So, it is safe to execute
4904 * these preparation operations when rq is finally inserted or merged.
4905 */
4906static struct bfq_queue *bfq_init_rq(struct request *rq)
4907{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004908 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02004909 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004910 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02004911 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004912 const int is_sync = rq_is_sync(rq);
4913 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004914 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06004915 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004916
Paolo Valente18e5a572018-05-04 19:17:01 +02004917 if (unlikely(!rq->elv.icq))
4918 return NULL;
4919
Jens Axboe72961c42018-04-17 17:08:52 -06004920 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02004921 * Assuming that elv.priv[1] is set only if everything is set
4922 * for this rq. This holds true, because this function is
4923 * invoked only for insertion or merging, and, after such
4924 * events, a request cannot be manipulated any longer before
4925 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06004926 */
Paolo Valente18e5a572018-05-04 19:17:01 +02004927 if (rq->elv.priv[1])
4928 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06004929
Christoph Hellwig9f210732017-06-16 18:15:24 +02004930 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004931
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01004932 bfq_check_ioprio_change(bic, bio);
4933
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004934 bfq_bic_update_cgroup(bic, bio);
4935
Arianna Avanzini36eca892017-04-12 18:23:16 +02004936 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4937 &new_queue);
4938
4939 if (likely(!new_queue)) {
4940 /* If the queue was seeky for too long, break it apart. */
4941 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4942 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004943
4944 /* Update bic before losing reference to bfqq */
4945 if (bfq_bfqq_in_large_burst(bfqq))
4946 bic->saved_in_large_burst = true;
4947
Arianna Avanzini36eca892017-04-12 18:23:16 +02004948 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004949 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004950
4951 if (!bfqq)
4952 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4953 true, is_sync,
4954 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06004955 else
4956 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004957 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004958 }
4959
4960 bfqq->allocated++;
4961 bfqq->ref++;
4962 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4963 rq, bfqq, bfqq->ref);
4964
4965 rq->elv.priv[0] = bic;
4966 rq->elv.priv[1] = bfqq;
4967
Arianna Avanzini36eca892017-04-12 18:23:16 +02004968 /*
4969 * If a bfq_queue has only one process reference, it is owned
4970 * by only this bic: we can then set bfqq->bic = bic. in
4971 * addition, if the queue has also just been split, we have to
4972 * resume its state.
4973 */
4974 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4975 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004976 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02004977 /*
4978 * The queue has just been split from a shared
4979 * queue: restore the idle window and the
4980 * possible weight raising period.
4981 */
Paolo Valente13c931b2017-06-27 12:30:47 -06004982 bfq_bfqq_resume_state(bfqq, bfqd, bic,
4983 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004984 }
4985 }
4986
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004987 if (unlikely(bfq_bfqq_just_created(bfqq)))
4988 bfq_handle_burst(bfqd, bfqq);
4989
Paolo Valente18e5a572018-05-04 19:17:01 +02004990 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004991}
4992
4993static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4994{
4995 struct bfq_data *bfqd = bfqq->bfqd;
4996 enum bfqq_expiration reason;
4997 unsigned long flags;
4998
4999 spin_lock_irqsave(&bfqd->lock, flags);
5000 bfq_clear_bfqq_wait_request(bfqq);
5001
5002 if (bfqq != bfqd->in_service_queue) {
5003 spin_unlock_irqrestore(&bfqd->lock, flags);
5004 return;
5005 }
5006
5007 if (bfq_bfqq_budget_timeout(bfqq))
5008 /*
5009 * Also here the queue can be safely expired
5010 * for budget timeout without wasting
5011 * guarantees
5012 */
5013 reason = BFQQE_BUDGET_TIMEOUT;
5014 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5015 /*
5016 * The queue may not be empty upon timer expiration,
5017 * because we may not disable the timer when the
5018 * first request of the in-service queue arrives
5019 * during disk idling.
5020 */
5021 reason = BFQQE_TOO_IDLE;
5022 else
5023 goto schedule_dispatch;
5024
5025 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5026
5027schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005028 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005029 bfq_schedule_dispatch(bfqd);
5030}
5031
5032/*
5033 * Handler of the expiration of the timer running if the in-service queue
5034 * is idling inside its time slice.
5035 */
5036static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5037{
5038 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5039 idle_slice_timer);
5040 struct bfq_queue *bfqq = bfqd->in_service_queue;
5041
5042 /*
5043 * Theoretical race here: the in-service queue can be NULL or
5044 * different from the queue that was idling if a new request
5045 * arrives for the current queue and there is a full dispatch
5046 * cycle that changes the in-service queue. This can hardly
5047 * happen, but in the worst case we just expire a queue too
5048 * early.
5049 */
5050 if (bfqq)
5051 bfq_idle_slice_timer_body(bfqq);
5052
5053 return HRTIMER_NORESTART;
5054}
5055
5056static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5057 struct bfq_queue **bfqq_ptr)
5058{
5059 struct bfq_queue *bfqq = *bfqq_ptr;
5060
5061 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5062 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005063 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5064
Paolo Valenteaee69d72017-04-19 08:29:02 -06005065 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5066 bfqq, bfqq->ref);
5067 bfq_put_queue(bfqq);
5068 *bfqq_ptr = NULL;
5069 }
5070}
5071
5072/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005073 * Release all the bfqg references to its async queues. If we are
5074 * deallocating the group these queues may still contain requests, so
5075 * we reparent them to the root cgroup (i.e., the only one that will
5076 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06005077 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005078void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005079{
5080 int i, j;
5081
5082 for (i = 0; i < 2; i++)
5083 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005084 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005085
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005086 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005087}
5088
Jens Axboef0635b82018-05-09 13:27:21 -06005089/*
5090 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06005091 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06005092 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06005093static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5094 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06005095{
Jens Axboe483b7bf2018-05-09 15:26:55 -06005096 unsigned int i, j, min_shallow = UINT_MAX;
5097
Jens Axboef0635b82018-05-09 13:27:21 -06005098 /*
5099 * In-word depths if no bfq_queue is being weight-raised:
5100 * leaving 25% of tags only for sync reads.
5101 *
5102 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005103 * (1U<<bt->sb.shift), instead of computing directly
5104 * (1U<<(bt->sb.shift - something)), to be robust against
5105 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06005106 * limit 'something'.
5107 */
5108 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005109 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005110 /*
5111 * no more than 75% of tags for sync writes (25% extra tags
5112 * w.r.t. async I/O, to prevent async I/O from starving sync
5113 * writes)
5114 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005115 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005116
5117 /*
5118 * In-word depths in case some bfq_queue is being weight-
5119 * raised: leaving ~63% of tags for sync reads. This is the
5120 * highest percentage for which, in our tests, application
5121 * start-up times didn't suffer from any regression due to tag
5122 * shortage.
5123 */
5124 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005125 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005126 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005127 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06005128
5129 for (i = 0; i < 2; i++)
5130 for (j = 0; j < 2; j++)
5131 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5132
5133 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005134}
5135
5136static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5137{
5138 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5139 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06005140 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005141
Jens Axboe483b7bf2018-05-09 15:26:55 -06005142 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5143 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboef0635b82018-05-09 13:27:21 -06005144 return 0;
5145}
5146
Paolo Valenteaee69d72017-04-19 08:29:02 -06005147static void bfq_exit_queue(struct elevator_queue *e)
5148{
5149 struct bfq_data *bfqd = e->elevator_data;
5150 struct bfq_queue *bfqq, *n;
5151
5152 hrtimer_cancel(&bfqd->idle_slice_timer);
5153
5154 spin_lock_irq(&bfqd->lock);
5155 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005156 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005157 spin_unlock_irq(&bfqd->lock);
5158
5159 hrtimer_cancel(&bfqd->idle_slice_timer);
5160
Jens Axboe8abef102018-01-09 12:20:51 -07005161#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01005162 /* release oom-queue reference to root group */
5163 bfqg_and_blkg_put(bfqd->root_group);
5164
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005165 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5166#else
5167 spin_lock_irq(&bfqd->lock);
5168 bfq_put_async_queues(bfqd, bfqd->root_group);
5169 kfree(bfqd->root_group);
5170 spin_unlock_irq(&bfqd->lock);
5171#endif
5172
Paolo Valenteaee69d72017-04-19 08:29:02 -06005173 kfree(bfqd);
5174}
5175
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005176static void bfq_init_root_group(struct bfq_group *root_group,
5177 struct bfq_data *bfqd)
5178{
5179 int i;
5180
5181#ifdef CONFIG_BFQ_GROUP_IOSCHED
5182 root_group->entity.parent = NULL;
5183 root_group->my_entity = NULL;
5184 root_group->bfqd = bfqd;
5185#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02005186 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005187 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5188 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5189 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5190}
5191
Paolo Valenteaee69d72017-04-19 08:29:02 -06005192static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5193{
5194 struct bfq_data *bfqd;
5195 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005196
5197 eq = elevator_alloc(q, e);
5198 if (!eq)
5199 return -ENOMEM;
5200
5201 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5202 if (!bfqd) {
5203 kobject_put(&eq->kobj);
5204 return -ENOMEM;
5205 }
5206 eq->elevator_data = bfqd;
5207
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005208 spin_lock_irq(q->queue_lock);
5209 q->elevator = eq;
5210 spin_unlock_irq(q->queue_lock);
5211
Paolo Valenteaee69d72017-04-19 08:29:02 -06005212 /*
5213 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5214 * Grab a permanent reference to it, so that the normal code flow
5215 * will not attempt to free it.
5216 */
5217 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5218 bfqd->oom_bfqq.ref++;
5219 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5220 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5221 bfqd->oom_bfqq.entity.new_weight =
5222 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005223
5224 /* oom_bfqq does not participate to bursts */
5225 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5226
Paolo Valenteaee69d72017-04-19 08:29:02 -06005227 /*
5228 * Trigger weight initialization, according to ioprio, at the
5229 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5230 * class won't be changed any more.
5231 */
5232 bfqd->oom_bfqq.entity.prio_changed = 1;
5233
5234 bfqd->queue = q;
5235
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005236 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005237
5238 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5239 HRTIMER_MODE_REL);
5240 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5241
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005242 bfqd->queue_weights_tree = RB_ROOT;
5243 bfqd->group_weights_tree = RB_ROOT;
5244
Paolo Valenteaee69d72017-04-19 08:29:02 -06005245 INIT_LIST_HEAD(&bfqd->active_list);
5246 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005247 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005248
5249 bfqd->hw_tag = -1;
5250
5251 bfqd->bfq_max_budget = bfq_default_max_budget;
5252
5253 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5254 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5255 bfqd->bfq_back_max = bfq_back_max;
5256 bfqd->bfq_back_penalty = bfq_back_penalty;
5257 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005258 bfqd->bfq_timeout = bfq_timeout;
5259
5260 bfqd->bfq_requests_within_timer = 120;
5261
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005262 bfqd->bfq_large_burst_thresh = 8;
5263 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5264
Paolo Valente44e44a12017-04-12 18:23:12 +02005265 bfqd->low_latency = true;
5266
5267 /*
5268 * Trade-off between responsiveness and fairness.
5269 */
5270 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005271 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02005272 bfqd->bfq_wr_max_time = 0;
5273 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5274 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02005275 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5276 * Approximate rate required
5277 * to playback or record a
5278 * high-definition compressed
5279 * video.
5280 */
Paolo Valentecfd69712017-04-12 18:23:15 +02005281 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02005282
5283 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02005284 * Begin by assuming, optimistically, that the device peak
5285 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02005286 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005287 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5288 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5289 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02005290
Paolo Valenteaee69d72017-04-19 08:29:02 -06005291 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005292
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005293 /*
5294 * The invocation of the next bfq_create_group_hierarchy
5295 * function is the head of a chain of function calls
5296 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5297 * blk_mq_freeze_queue) that may lead to the invocation of the
5298 * has_work hook function. For this reason,
5299 * bfq_create_group_hierarchy is invoked only after all
5300 * scheduler data has been initialized, apart from the fields
5301 * that can be initialized only after invoking
5302 * bfq_create_group_hierarchy. This, in particular, enables
5303 * has_work to correctly return false. Of course, to avoid
5304 * other inconsistencies, the blk-mq stack must then refrain
5305 * from invoking further scheduler hooks before this init
5306 * function is finished.
5307 */
5308 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5309 if (!bfqd->root_group)
5310 goto out_free;
5311 bfq_init_root_group(bfqd->root_group, bfqd);
5312 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5313
Luca Micciob5dc5d42017-10-09 16:27:21 +02005314 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005315 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005316
5317out_free:
5318 kfree(bfqd);
5319 kobject_put(&eq->kobj);
5320 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005321}
5322
5323static void bfq_slab_kill(void)
5324{
5325 kmem_cache_destroy(bfq_pool);
5326}
5327
5328static int __init bfq_slab_setup(void)
5329{
5330 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5331 if (!bfq_pool)
5332 return -ENOMEM;
5333 return 0;
5334}
5335
5336static ssize_t bfq_var_show(unsigned int var, char *page)
5337{
5338 return sprintf(page, "%u\n", var);
5339}
5340
Bart Van Assche2f791362017-08-30 11:42:09 -07005341static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005342{
5343 unsigned long new_val;
5344 int ret = kstrtoul(page, 10, &new_val);
5345
Bart Van Assche2f791362017-08-30 11:42:09 -07005346 if (ret)
5347 return ret;
5348 *var = new_val;
5349 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005350}
5351
5352#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5353static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5354{ \
5355 struct bfq_data *bfqd = e->elevator_data; \
5356 u64 __data = __VAR; \
5357 if (__CONV == 1) \
5358 __data = jiffies_to_msecs(__data); \
5359 else if (__CONV == 2) \
5360 __data = div_u64(__data, NSEC_PER_MSEC); \
5361 return bfq_var_show(__data, (page)); \
5362}
5363SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5364SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5365SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5366SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5367SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5368SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5369SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5370SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02005371SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005372#undef SHOW_FUNCTION
5373
5374#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5375static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5376{ \
5377 struct bfq_data *bfqd = e->elevator_data; \
5378 u64 __data = __VAR; \
5379 __data = div_u64(__data, NSEC_PER_USEC); \
5380 return bfq_var_show(__data, (page)); \
5381}
5382USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5383#undef USEC_SHOW_FUNCTION
5384
5385#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5386static ssize_t \
5387__FUNC(struct elevator_queue *e, const char *page, size_t count) \
5388{ \
5389 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005390 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005391 int ret; \
5392 \
5393 ret = bfq_var_store(&__data, (page)); \
5394 if (ret) \
5395 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005396 if (__data < __min) \
5397 __data = __min; \
5398 else if (__data > __max) \
5399 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005400 if (__CONV == 1) \
5401 *(__PTR) = msecs_to_jiffies(__data); \
5402 else if (__CONV == 2) \
5403 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5404 else \
5405 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08005406 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005407}
5408STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5409 INT_MAX, 2);
5410STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5411 INT_MAX, 2);
5412STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5413STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5414 INT_MAX, 0);
5415STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5416#undef STORE_FUNCTION
5417
5418#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5419static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5420{ \
5421 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005422 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005423 int ret; \
5424 \
5425 ret = bfq_var_store(&__data, (page)); \
5426 if (ret) \
5427 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005428 if (__data < __min) \
5429 __data = __min; \
5430 else if (__data > __max) \
5431 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005432 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08005433 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005434}
5435USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5436 UINT_MAX);
5437#undef USEC_STORE_FUNCTION
5438
Paolo Valenteaee69d72017-04-19 08:29:02 -06005439static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5440 const char *page, size_t count)
5441{
5442 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005443 unsigned long __data;
5444 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005445
Bart Van Assche2f791362017-08-30 11:42:09 -07005446 ret = bfq_var_store(&__data, (page));
5447 if (ret)
5448 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005449
5450 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005451 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005452 else {
5453 if (__data > INT_MAX)
5454 __data = INT_MAX;
5455 bfqd->bfq_max_budget = __data;
5456 }
5457
5458 bfqd->bfq_user_max_budget = __data;
5459
weiping zhang235f8da2017-08-25 01:11:33 +08005460 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005461}
5462
5463/*
5464 * Leaving this name to preserve name compatibility with cfq
5465 * parameters, but this timeout is used for both sync and async.
5466 */
5467static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5468 const char *page, size_t count)
5469{
5470 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005471 unsigned long __data;
5472 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005473
Bart Van Assche2f791362017-08-30 11:42:09 -07005474 ret = bfq_var_store(&__data, (page));
5475 if (ret)
5476 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005477
5478 if (__data < 1)
5479 __data = 1;
5480 else if (__data > INT_MAX)
5481 __data = INT_MAX;
5482
5483 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5484 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005485 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005486
weiping zhang235f8da2017-08-25 01:11:33 +08005487 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005488}
5489
5490static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5491 const char *page, size_t count)
5492{
5493 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005494 unsigned long __data;
5495 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005496
Bart Van Assche2f791362017-08-30 11:42:09 -07005497 ret = bfq_var_store(&__data, (page));
5498 if (ret)
5499 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005500
5501 if (__data > 1)
5502 __data = 1;
5503 if (!bfqd->strict_guarantees && __data == 1
5504 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5505 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5506
5507 bfqd->strict_guarantees = __data;
5508
weiping zhang235f8da2017-08-25 01:11:33 +08005509 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005510}
5511
Paolo Valente44e44a12017-04-12 18:23:12 +02005512static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5513 const char *page, size_t count)
5514{
5515 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005516 unsigned long __data;
5517 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005518
Bart Van Assche2f791362017-08-30 11:42:09 -07005519 ret = bfq_var_store(&__data, (page));
5520 if (ret)
5521 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02005522
5523 if (__data > 1)
5524 __data = 1;
5525 if (__data == 0 && bfqd->low_latency != 0)
5526 bfq_end_wr(bfqd);
5527 bfqd->low_latency = __data;
5528
weiping zhang235f8da2017-08-25 01:11:33 +08005529 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02005530}
5531
Paolo Valenteaee69d72017-04-19 08:29:02 -06005532#define BFQ_ATTR(name) \
5533 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5534
5535static struct elv_fs_entry bfq_attrs[] = {
5536 BFQ_ATTR(fifo_expire_sync),
5537 BFQ_ATTR(fifo_expire_async),
5538 BFQ_ATTR(back_seek_max),
5539 BFQ_ATTR(back_seek_penalty),
5540 BFQ_ATTR(slice_idle),
5541 BFQ_ATTR(slice_idle_us),
5542 BFQ_ATTR(max_budget),
5543 BFQ_ATTR(timeout_sync),
5544 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02005545 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06005546 __ATTR_NULL
5547};
5548
5549static struct elevator_type iosched_bfq_mq = {
5550 .ops.mq = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01005551 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005552 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01005553 .requeue_request = bfq_finish_requeue_request,
5554 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005555 .exit_icq = bfq_exit_icq,
5556 .insert_requests = bfq_insert_requests,
5557 .dispatch_request = bfq_dispatch_request,
5558 .next_request = elv_rb_latter_request,
5559 .former_request = elv_rb_former_request,
5560 .allow_merge = bfq_allow_bio_merge,
5561 .bio_merge = bfq_bio_merge,
5562 .request_merge = bfq_request_merge,
5563 .requests_merged = bfq_requests_merged,
5564 .request_merged = bfq_request_merged,
5565 .has_work = bfq_has_work,
Jens Axboef0635b82018-05-09 13:27:21 -06005566 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005567 .init_sched = bfq_init_queue,
5568 .exit_sched = bfq_exit_queue,
5569 },
5570
5571 .uses_mq = true,
5572 .icq_size = sizeof(struct bfq_io_cq),
5573 .icq_align = __alignof__(struct bfq_io_cq),
5574 .elevator_attrs = bfq_attrs,
5575 .elevator_name = "bfq",
5576 .elevator_owner = THIS_MODULE,
5577};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01005578MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06005579
5580static int __init bfq_init(void)
5581{
5582 int ret;
5583
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005584#ifdef CONFIG_BFQ_GROUP_IOSCHED
5585 ret = blkcg_policy_register(&blkcg_policy_bfq);
5586 if (ret)
5587 return ret;
5588#endif
5589
Paolo Valenteaee69d72017-04-19 08:29:02 -06005590 ret = -ENOMEM;
5591 if (bfq_slab_setup())
5592 goto err_pol_unreg;
5593
Paolo Valente44e44a12017-04-12 18:23:12 +02005594 /*
5595 * Times to load large popular applications for the typical
5596 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02005597 * comments before the definition of the next
5598 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02005599 * estimated peak rate tends to be smaller than the actual
5600 * peak rate. The reason for this last fact is that estimates
5601 * are computed over much shorter time intervals than the long
5602 * intervals typically used for benchmarking. Why? First, to
5603 * adapt more quickly to variations. Second, because an I/O
5604 * scheduler cannot rely on a peak-rate-evaluation workload to
5605 * be run for a long time.
5606 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005607 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5608 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02005609
Paolo Valenteaee69d72017-04-19 08:29:02 -06005610 ret = elv_register(&iosched_bfq_mq);
5611 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08005612 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005613
5614 return 0;
5615
weiping zhang37dcd652017-08-19 00:37:20 +08005616slab_kill:
5617 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06005618err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005619#ifdef CONFIG_BFQ_GROUP_IOSCHED
5620 blkcg_policy_unregister(&blkcg_policy_bfq);
5621#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005622 return ret;
5623}
5624
5625static void __exit bfq_exit(void)
5626{
5627 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005628#ifdef CONFIG_BFQ_GROUP_IOSCHED
5629 blkcg_policy_unregister(&blkcg_policy_bfq);
5630#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005631 bfq_slab_kill();
5632}
5633
5634module_init(bfq_init);
5635module_exit(bfq_exit);
5636
5637MODULE_AUTHOR("Paolo Valente");
5638MODULE_LICENSE("GPL");
5639MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");