blob: 9802de0f85e61fe061ea150d15177c39b4128ca3 [file] [log] [blame]
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
David Teiglande0c2a9a2012-01-09 17:18:05 -05003 * Copyright 2004-2011 Red Hat, Inc.
Steven Whitehousef057f6c2009-01-12 10:43:39 +00004 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/fs.h>
11#include <linux/dlm.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090012#include <linux/slab.h>
Steven Whitehousef057f6c2009-01-12 10:43:39 +000013#include <linux/types.h>
David Teiglande0c2a9a2012-01-09 17:18:05 -050014#include <linux/delay.h>
Steven Whitehousef057f6c2009-01-12 10:43:39 +000015#include <linux/gfs2_ondisk.h>
16
17#include "incore.h"
18#include "glock.h"
19#include "util.h"
David Teiglande0c2a9a2012-01-09 17:18:05 -050020#include "sys.h"
Steven Whitehousea2457692012-01-20 10:38:36 +000021#include "trace_gfs2.h"
Steven Whitehousef057f6c2009-01-12 10:43:39 +000022
David Teiglande0c2a9a2012-01-09 17:18:05 -050023extern struct workqueue_struct *gfs2_control_wq;
Steven Whitehousef057f6c2009-01-12 10:43:39 +000024
Steven Whitehousea2457692012-01-20 10:38:36 +000025/**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The varience estimate is a bit
33 * more complicated. We subtract the abs value of the @delta from
34 * the current variance estimate and add 1/4 of that to the running
35 * total.
36 *
37 * Note that the index points at the array entry containing the smoothed
38 * mean value, and the variance is always in the following entry
39 *
40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42 * they are not scaled fixed point.
43 */
44
45static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 s64 sample)
47{
48 s64 delta = sample - s->stats[index];
49 s->stats[index] += (delta >> 3);
50 index++;
51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52}
53
54/**
55 * gfs2_update_reply_times - Update locking statistics
56 * @gl: The glock to update
57 *
58 * This assumes that gl->gl_dstamp has been set earlier.
59 *
60 * The rtt (lock round trip time) is an estimate of the time
61 * taken to perform a dlm lock request. We update it on each
62 * reply from the dlm.
63 *
64 * The blocking flag is set on the glock for all dlm requests
65 * which may potentially block due to lock requests from other nodes.
66 * DLM requests where the current lock state is exclusive, the
67 * requested state is null (or unlocked) or where the TRY or
68 * TRY_1CB flags are set are classified as non-blocking. All
69 * other DLM requests are counted as (potentially) blocking.
70 */
71static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72{
73 struct gfs2_pcpu_lkstats *lks;
74 const unsigned gltype = gl->gl_name.ln_type;
75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 s64 rtt;
78
79 preempt_disable();
80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
84 preempt_enable();
85
86 trace_gfs2_glock_lock_time(gl, rtt);
87}
88
89/**
90 * gfs2_update_request_times - Update locking statistics
91 * @gl: The glock to update
92 *
93 * The irt (lock inter-request times) measures the average time
94 * between requests to the dlm. It is updated immediately before
95 * each dlm call.
96 */
97
98static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99{
100 struct gfs2_pcpu_lkstats *lks;
101 const unsigned gltype = gl->gl_name.ln_type;
102 ktime_t dstamp;
103 s64 irt;
104
105 preempt_disable();
106 dstamp = gl->gl_dstamp;
107 gl->gl_dstamp = ktime_get_real();
108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112 preempt_enable();
113}
114
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000115static void gdlm_ast(void *arg)
116{
117 struct gfs2_glock *gl = arg;
118 unsigned ret = gl->gl_state;
119
Steven Whitehousea2457692012-01-20 10:38:36 +0000120 gfs2_update_reply_times(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122
David Teigland4e2f8842012-11-14 13:47:37 -0500123 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
124 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000125
126 switch (gl->gl_lksb.sb_status) {
127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
Steven Whitehousefc0e38d2011-03-09 10:58:04 +0000128 gfs2_glock_free(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000129 return;
130 case -DLM_ECANCEL: /* Cancel while getting lock */
131 ret |= LM_OUT_CANCELED;
132 goto out;
133 case -EAGAIN: /* Try lock fails */
Steven Whitehouse1fea7c22010-09-08 10:09:25 +0100134 case -EDEADLK: /* Deadlock detected */
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000135 goto out;
Steven Whitehouse1fea7c22010-09-08 10:09:25 +0100136 case -ETIMEDOUT: /* Canceled due to timeout */
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000137 ret |= LM_OUT_ERROR;
138 goto out;
139 case 0: /* Success */
140 break;
141 default: /* Something unexpected */
142 BUG();
143 }
144
Benjamin Marzinski02ffad082009-03-06 10:03:20 -0600145 ret = gl->gl_req;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
Benjamin Marzinski02ffad082009-03-06 10:03:20 -0600147 if (gl->gl_req == LM_ST_SHARED)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000148 ret = LM_ST_DEFERRED;
Benjamin Marzinski02ffad082009-03-06 10:03:20 -0600149 else if (gl->gl_req == LM_ST_DEFERRED)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000150 ret = LM_ST_SHARED;
151 else
152 BUG();
153 }
154
155 set_bit(GLF_INITIAL, &gl->gl_flags);
156 gfs2_glock_complete(gl, ret);
157 return;
158out:
159 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 gl->gl_lksb.sb_lkid = 0;
161 gfs2_glock_complete(gl, ret);
162}
163
164static void gdlm_bast(void *arg, int mode)
165{
166 struct gfs2_glock *gl = arg;
167
168 switch (mode) {
169 case DLM_LOCK_EX:
170 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 break;
172 case DLM_LOCK_CW:
173 gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 break;
175 case DLM_LOCK_PR:
176 gfs2_glock_cb(gl, LM_ST_SHARED);
177 break;
178 default:
179 printk(KERN_ERR "unknown bast mode %d", mode);
180 BUG();
181 }
182}
183
184/* convert gfs lock-state to dlm lock-mode */
185
186static int make_mode(const unsigned int lmstate)
187{
188 switch (lmstate) {
189 case LM_ST_UNLOCKED:
190 return DLM_LOCK_NL;
191 case LM_ST_EXCLUSIVE:
192 return DLM_LOCK_EX;
193 case LM_ST_DEFERRED:
194 return DLM_LOCK_CW;
195 case LM_ST_SHARED:
196 return DLM_LOCK_PR;
197 }
198 printk(KERN_ERR "unknown LM state %d", lmstate);
199 BUG();
200 return -1;
201}
202
Bob Peterson4c569a72012-04-10 14:45:24 -0400203static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000204 const int req)
205{
David Teiglanddba2d702012-11-14 13:46:53 -0500206 u32 lkf = 0;
207
David Teigland4e2f8842012-11-14 13:47:37 -0500208 if (gl->gl_lksb.sb_lvbptr)
David Teiglanddba2d702012-11-14 13:46:53 -0500209 lkf |= DLM_LKF_VALBLK;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000210
211 if (gfs_flags & LM_FLAG_TRY)
212 lkf |= DLM_LKF_NOQUEUE;
213
214 if (gfs_flags & LM_FLAG_TRY_1CB) {
215 lkf |= DLM_LKF_NOQUEUE;
216 lkf |= DLM_LKF_NOQUEUEBAST;
217 }
218
219 if (gfs_flags & LM_FLAG_PRIORITY) {
220 lkf |= DLM_LKF_NOORDER;
221 lkf |= DLM_LKF_HEADQUE;
222 }
223
224 if (gfs_flags & LM_FLAG_ANY) {
225 if (req == DLM_LOCK_PR)
226 lkf |= DLM_LKF_ALTCW;
227 else if (req == DLM_LOCK_CW)
228 lkf |= DLM_LKF_ALTPR;
229 else
230 BUG();
231 }
232
David Teiglanddba2d702012-11-14 13:46:53 -0500233 if (gl->gl_lksb.sb_lkid != 0) {
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000234 lkf |= DLM_LKF_CONVERT;
Bob Peterson4c569a72012-04-10 14:45:24 -0400235 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
236 lkf |= DLM_LKF_QUECVT;
237 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000238
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000239 return lkf;
240}
241
Steven Whitehousea2457692012-01-20 10:38:36 +0000242static void gfs2_reverse_hex(char *c, u64 value)
243{
Nathan Strazec148752012-12-11 17:01:24 -0500244 *c = '0';
Steven Whitehousea2457692012-01-20 10:38:36 +0000245 while (value) {
246 *c-- = hex_asc[value & 0x0f];
247 value >>= 4;
248 }
249}
250
Steven Whitehouse921169c2010-11-29 12:50:38 +0000251static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
252 unsigned int flags)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000253{
254 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000255 int req;
256 u32 lkf;
Steven Whitehousea2457692012-01-20 10:38:36 +0000257 char strname[GDLM_STRNAME_BYTES] = "";
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000258
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000259 req = make_mode(req_state);
Bob Peterson4c569a72012-04-10 14:45:24 -0400260 lkf = make_flags(gl, flags, req);
Steven Whitehousea2457692012-01-20 10:38:36 +0000261 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
262 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
263 if (gl->gl_lksb.sb_lkid) {
264 gfs2_update_request_times(gl);
265 } else {
266 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
267 strname[GDLM_STRNAME_BYTES - 1] = '\0';
268 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
269 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
270 gl->gl_dstamp = ktime_get_real();
271 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000272 /*
273 * Submit the actual lock request.
274 */
275
Steven Whitehousea2457692012-01-20 10:38:36 +0000276 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
Steven Whitehouse921169c2010-11-29 12:50:38 +0000277 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000278}
279
Steven Whitehousebc015cb2011-01-19 09:30:01 +0000280static void gdlm_put_lock(struct gfs2_glock *gl)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000281{
Steven Whitehousee4027462010-01-25 11:20:19 +0000282 struct gfs2_sbd *sdp = gl->gl_sbd;
283 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
David Teiglandd4e0bfe2013-01-03 17:52:07 -0500284 int lvb_needs_unlock = 0;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000285 int error;
286
287 if (gl->gl_lksb.sb_lkid == 0) {
Steven Whitehousefc0e38d2011-03-09 10:58:04 +0000288 gfs2_glock_free(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000289 return;
290 }
291
Steven Whitehousea2457692012-01-20 10:38:36 +0000292 clear_bit(GLF_BLOCKING, &gl->gl_flags);
293 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
294 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
295 gfs2_update_request_times(gl);
David Teiglandfb6791d2012-11-13 10:58:56 -0500296
297 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
David Teiglandd4e0bfe2013-01-03 17:52:07 -0500298
299 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
300 lvb_needs_unlock = 1;
301
David Teiglandfb6791d2012-11-13 10:58:56 -0500302 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
David Teiglandd4e0bfe2013-01-03 17:52:07 -0500303 !lvb_needs_unlock) {
David Teiglandfb6791d2012-11-13 10:58:56 -0500304 gfs2_glock_free(gl);
305 return;
306 }
307
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000308 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
309 NULL, gl);
310 if (error) {
311 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
312 gl->gl_name.ln_type,
313 (unsigned long long)gl->gl_name.ln_number, error);
314 return;
315 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000316}
317
318static void gdlm_cancel(struct gfs2_glock *gl)
319{
320 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
321 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
322}
323
David Teiglande0c2a9a2012-01-09 17:18:05 -0500324/*
325 * dlm/gfs2 recovery coordination using dlm_recover callbacks
326 *
327 * 1. dlm_controld sees lockspace members change
328 * 2. dlm_controld blocks dlm-kernel locking activity
329 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
330 * 4. dlm_controld starts and finishes its own user level recovery
331 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
332 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
333 * 7. dlm_recoverd does its own lock recovery
334 * 8. dlm_recoverd unblocks dlm-kernel locking activity
335 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
336 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
337 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
338 * 12. gfs2_recover dequeues and recovers journals of failed nodes
339 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
340 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
341 * 15. gfs2_control unblocks normal locking when all journals are recovered
342 *
343 * - failures during recovery
344 *
345 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
346 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
347 * recovering for a prior failure. gfs2_control needs a way to detect
348 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
349 * the recover_block and recover_start values.
350 *
351 * recover_done() provides a new lockspace generation number each time it
352 * is called (step 9). This generation number is saved as recover_start.
353 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
354 * recover_block = recover_start. So, while recover_block is equal to
355 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
356 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
357 *
358 * - more specific gfs2 steps in sequence above
359 *
360 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
361 * 6. recover_slot records any failed jids (maybe none)
362 * 9. recover_done sets recover_start = new generation number
363 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
364 * 12. gfs2_recover does journal recoveries for failed jids identified above
365 * 14. gfs2_control clears control_lock lvb bits for recovered jids
366 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
367 * again) then do nothing, otherwise if recover_start > recover_block
368 * then clear BLOCK_LOCKS.
369 *
370 * - parallel recovery steps across all nodes
371 *
372 * All nodes attempt to update the control_lock lvb with the new generation
373 * number and jid bits, but only the first to get the control_lock EX will
374 * do so; others will see that it's already done (lvb already contains new
375 * generation number.)
376 *
377 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
378 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
379 * . One node gets control_lock first and writes the lvb, others see it's done
380 * . All nodes attempt to recover jids for which they see control_lock bits set
381 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
382 * . All nodes will eventually see all lvb bits clear and unblock locks
383 *
384 * - is there a problem with clearing an lvb bit that should be set
385 * and missing a journal recovery?
386 *
387 * 1. jid fails
388 * 2. lvb bit set for step 1
389 * 3. jid recovered for step 1
390 * 4. jid taken again (new mount)
391 * 5. jid fails (for step 4)
392 * 6. lvb bit set for step 5 (will already be set)
393 * 7. lvb bit cleared for step 3
394 *
395 * This is not a problem because the failure in step 5 does not
396 * require recovery, because the mount in step 4 could not have
397 * progressed far enough to unblock locks and access the fs. The
398 * control_mount() function waits for all recoveries to be complete
399 * for the latest lockspace generation before ever unblocking locks
400 * and returning. The mount in step 4 waits until the recovery in
401 * step 1 is done.
402 *
403 * - special case of first mounter: first node to mount the fs
404 *
405 * The first node to mount a gfs2 fs needs to check all the journals
406 * and recover any that need recovery before other nodes are allowed
407 * to mount the fs. (Others may begin mounting, but they must wait
408 * for the first mounter to be done before taking locks on the fs
409 * or accessing the fs.) This has two parts:
410 *
411 * 1. The mounted_lock tells a node it's the first to mount the fs.
412 * Each node holds the mounted_lock in PR while it's mounted.
413 * Each node tries to acquire the mounted_lock in EX when it mounts.
414 * If a node is granted the mounted_lock EX it means there are no
415 * other mounted nodes (no PR locks exist), and it is the first mounter.
416 * The mounted_lock is demoted to PR when first recovery is done, so
417 * others will fail to get an EX lock, but will get a PR lock.
418 *
419 * 2. The control_lock blocks others in control_mount() while the first
420 * mounter is doing first mount recovery of all journals.
421 * A mounting node needs to acquire control_lock in EX mode before
422 * it can proceed. The first mounter holds control_lock in EX while doing
423 * the first mount recovery, blocking mounts from other nodes, then demotes
424 * control_lock to NL when it's done (others_may_mount/first_done),
425 * allowing other nodes to continue mounting.
426 *
427 * first mounter:
428 * control_lock EX/NOQUEUE success
429 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
430 * set first=1
431 * do first mounter recovery
432 * mounted_lock EX->PR
433 * control_lock EX->NL, write lvb generation
434 *
435 * other mounter:
436 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
437 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
438 * mounted_lock PR/NOQUEUE success
439 * read lvb generation
440 * control_lock EX->NL
441 * set first=0
442 *
443 * - mount during recovery
444 *
445 * If a node mounts while others are doing recovery (not first mounter),
446 * the mounting node will get its initial recover_done() callback without
447 * having seen any previous failures/callbacks.
448 *
449 * It must wait for all recoveries preceding its mount to be finished
450 * before it unblocks locks. It does this by repeating the "other mounter"
451 * steps above until the lvb generation number is >= its mount generation
452 * number (from initial recover_done) and all lvb bits are clear.
453 *
454 * - control_lock lvb format
455 *
456 * 4 bytes generation number: the latest dlm lockspace generation number
457 * from recover_done callback. Indicates the jid bitmap has been updated
458 * to reflect all slot failures through that generation.
459 * 4 bytes unused.
460 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
461 * that jid N needs recovery.
462 */
463
464#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
465
466static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
467 char *lvb_bits)
468{
469 uint32_t gen;
470 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
471 memcpy(&gen, lvb_bits, sizeof(uint32_t));
472 *lvb_gen = le32_to_cpu(gen);
473}
474
475static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
476 char *lvb_bits)
477{
478 uint32_t gen;
479 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
480 gen = cpu_to_le32(lvb_gen);
481 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
482}
483
484static int all_jid_bits_clear(char *lvb)
485{
486 int i;
487 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
488 if (lvb[i])
489 return 0;
490 }
491 return 1;
492}
493
494static void sync_wait_cb(void *arg)
495{
496 struct lm_lockstruct *ls = arg;
497 complete(&ls->ls_sync_wait);
498}
499
500static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000501{
502 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
503 int error;
504
David Teiglande0c2a9a2012-01-09 17:18:05 -0500505 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
506 if (error) {
507 fs_err(sdp, "%s lkid %x error %d\n",
508 name, lksb->sb_lkid, error);
509 return error;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000510 }
511
David Teiglande0c2a9a2012-01-09 17:18:05 -0500512 wait_for_completion(&ls->ls_sync_wait);
513
514 if (lksb->sb_status != -DLM_EUNLOCK) {
515 fs_err(sdp, "%s lkid %x status %d\n",
516 name, lksb->sb_lkid, lksb->sb_status);
517 return -1;
518 }
519 return 0;
520}
521
522static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
523 unsigned int num, struct dlm_lksb *lksb, char *name)
524{
525 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
526 char strname[GDLM_STRNAME_BYTES];
527 int error, status;
528
529 memset(strname, 0, GDLM_STRNAME_BYTES);
530 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
531
532 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
533 strname, GDLM_STRNAME_BYTES - 1,
534 0, sync_wait_cb, ls, NULL);
535 if (error) {
536 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
537 name, lksb->sb_lkid, flags, mode, error);
538 return error;
539 }
540
541 wait_for_completion(&ls->ls_sync_wait);
542
543 status = lksb->sb_status;
544
545 if (status && status != -EAGAIN) {
546 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
547 name, lksb->sb_lkid, flags, mode, status);
548 }
549
550 return status;
551}
552
553static int mounted_unlock(struct gfs2_sbd *sdp)
554{
555 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
556 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
557}
558
559static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
560{
561 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
562 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
563 &ls->ls_mounted_lksb, "mounted_lock");
564}
565
566static int control_unlock(struct gfs2_sbd *sdp)
567{
568 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
569 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
570}
571
572static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
573{
574 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
575 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
576 &ls->ls_control_lksb, "control_lock");
577}
578
579static void gfs2_control_func(struct work_struct *work)
580{
581 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
582 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
583 char lvb_bits[GDLM_LVB_SIZE];
584 uint32_t block_gen, start_gen, lvb_gen, flags;
585 int recover_set = 0;
586 int write_lvb = 0;
587 int recover_size;
588 int i, error;
589
590 spin_lock(&ls->ls_recover_spin);
591 /*
592 * No MOUNT_DONE means we're still mounting; control_mount()
593 * will set this flag, after which this thread will take over
594 * all further clearing of BLOCK_LOCKS.
595 *
596 * FIRST_MOUNT means this node is doing first mounter recovery,
597 * for which recovery control is handled by
598 * control_mount()/control_first_done(), not this thread.
599 */
600 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
601 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
602 spin_unlock(&ls->ls_recover_spin);
603 return;
604 }
605 block_gen = ls->ls_recover_block;
606 start_gen = ls->ls_recover_start;
607 spin_unlock(&ls->ls_recover_spin);
608
609 /*
610 * Equal block_gen and start_gen implies we are between
611 * recover_prep and recover_done callbacks, which means
612 * dlm recovery is in progress and dlm locking is blocked.
613 * There's no point trying to do any work until recover_done.
614 */
615
616 if (block_gen == start_gen)
617 return;
618
619 /*
620 * Propagate recover_submit[] and recover_result[] to lvb:
621 * dlm_recoverd adds to recover_submit[] jids needing recovery
622 * gfs2_recover adds to recover_result[] journal recovery results
623 *
624 * set lvb bit for jids in recover_submit[] if the lvb has not
625 * yet been updated for the generation of the failure
626 *
627 * clear lvb bit for jids in recover_result[] if the result of
628 * the journal recovery is SUCCESS
629 */
630
631 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
632 if (error) {
633 fs_err(sdp, "control lock EX error %d\n", error);
634 return;
635 }
636
637 control_lvb_read(ls, &lvb_gen, lvb_bits);
638
639 spin_lock(&ls->ls_recover_spin);
640 if (block_gen != ls->ls_recover_block ||
641 start_gen != ls->ls_recover_start) {
642 fs_info(sdp, "recover generation %u block1 %u %u\n",
643 start_gen, block_gen, ls->ls_recover_block);
644 spin_unlock(&ls->ls_recover_spin);
645 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
646 return;
647 }
648
649 recover_size = ls->ls_recover_size;
650
651 if (lvb_gen <= start_gen) {
652 /*
653 * Clear lvb bits for jids we've successfully recovered.
654 * Because all nodes attempt to recover failed journals,
655 * a journal can be recovered multiple times successfully
656 * in succession. Only the first will really do recovery,
657 * the others find it clean, but still report a successful
658 * recovery. So, another node may have already recovered
659 * the jid and cleared the lvb bit for it.
660 */
661 for (i = 0; i < recover_size; i++) {
662 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
663 continue;
664
665 ls->ls_recover_result[i] = 0;
666
667 if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
668 continue;
669
670 __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
671 write_lvb = 1;
672 }
673 }
674
675 if (lvb_gen == start_gen) {
676 /*
677 * Failed slots before start_gen are already set in lvb.
678 */
679 for (i = 0; i < recover_size; i++) {
680 if (!ls->ls_recover_submit[i])
681 continue;
682 if (ls->ls_recover_submit[i] < lvb_gen)
683 ls->ls_recover_submit[i] = 0;
684 }
685 } else if (lvb_gen < start_gen) {
686 /*
687 * Failed slots before start_gen are not yet set in lvb.
688 */
689 for (i = 0; i < recover_size; i++) {
690 if (!ls->ls_recover_submit[i])
691 continue;
692 if (ls->ls_recover_submit[i] < start_gen) {
693 ls->ls_recover_submit[i] = 0;
694 __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
695 }
696 }
697 /* even if there are no bits to set, we need to write the
698 latest generation to the lvb */
699 write_lvb = 1;
700 } else {
701 /*
702 * we should be getting a recover_done() for lvb_gen soon
703 */
704 }
705 spin_unlock(&ls->ls_recover_spin);
706
707 if (write_lvb) {
708 control_lvb_write(ls, start_gen, lvb_bits);
709 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
710 } else {
711 flags = DLM_LKF_CONVERT;
712 }
713
714 error = control_lock(sdp, DLM_LOCK_NL, flags);
715 if (error) {
716 fs_err(sdp, "control lock NL error %d\n", error);
717 return;
718 }
719
720 /*
721 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
722 * and clear a jid bit in the lvb if the recovery is a success.
723 * Eventually all journals will be recovered, all jid bits will
724 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
725 */
726
727 for (i = 0; i < recover_size; i++) {
728 if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
729 fs_info(sdp, "recover generation %u jid %d\n",
730 start_gen, i);
731 gfs2_recover_set(sdp, i);
732 recover_set++;
733 }
734 }
735 if (recover_set)
736 return;
737
738 /*
739 * No more jid bits set in lvb, all recovery is done, unblock locks
740 * (unless a new recover_prep callback has occured blocking locks
741 * again while working above)
742 */
743
744 spin_lock(&ls->ls_recover_spin);
745 if (ls->ls_recover_block == block_gen &&
746 ls->ls_recover_start == start_gen) {
747 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
748 spin_unlock(&ls->ls_recover_spin);
749 fs_info(sdp, "recover generation %u done\n", start_gen);
750 gfs2_glock_thaw(sdp);
751 } else {
752 fs_info(sdp, "recover generation %u block2 %u %u\n",
753 start_gen, block_gen, ls->ls_recover_block);
754 spin_unlock(&ls->ls_recover_spin);
755 }
756}
757
758static int control_mount(struct gfs2_sbd *sdp)
759{
760 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
761 char lvb_bits[GDLM_LVB_SIZE];
762 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
763 int mounted_mode;
764 int retries = 0;
765 int error;
766
767 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
768 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
769 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
770 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
771 init_completion(&ls->ls_sync_wait);
772
773 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
774
775 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
776 if (error) {
777 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
778 return error;
779 }
780
781 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
782 if (error) {
783 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
784 control_unlock(sdp);
785 return error;
786 }
787 mounted_mode = DLM_LOCK_NL;
788
789restart:
790 if (retries++ && signal_pending(current)) {
791 error = -EINTR;
792 goto fail;
793 }
794
795 /*
796 * We always start with both locks in NL. control_lock is
797 * demoted to NL below so we don't need to do it here.
798 */
799
800 if (mounted_mode != DLM_LOCK_NL) {
801 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
802 if (error)
803 goto fail;
804 mounted_mode = DLM_LOCK_NL;
805 }
806
807 /*
808 * Other nodes need to do some work in dlm recovery and gfs2_control
809 * before the recover_done and control_lock will be ready for us below.
810 * A delay here is not required but often avoids having to retry.
811 */
812
813 msleep_interruptible(500);
814
815 /*
816 * Acquire control_lock in EX and mounted_lock in either EX or PR.
817 * control_lock lvb keeps track of any pending journal recoveries.
818 * mounted_lock indicates if any other nodes have the fs mounted.
819 */
820
821 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
822 if (error == -EAGAIN) {
823 goto restart;
824 } else if (error) {
825 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
826 goto fail;
827 }
828
829 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
830 if (!error) {
831 mounted_mode = DLM_LOCK_EX;
832 goto locks_done;
833 } else if (error != -EAGAIN) {
834 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
835 goto fail;
836 }
837
838 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
839 if (!error) {
840 mounted_mode = DLM_LOCK_PR;
841 goto locks_done;
842 } else {
843 /* not even -EAGAIN should happen here */
844 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
845 goto fail;
846 }
847
848locks_done:
849 /*
850 * If we got both locks above in EX, then we're the first mounter.
851 * If not, then we need to wait for the control_lock lvb to be
852 * updated by other mounted nodes to reflect our mount generation.
853 *
854 * In simple first mounter cases, first mounter will see zero lvb_gen,
855 * but in cases where all existing nodes leave/fail before mounting
856 * nodes finish control_mount, then all nodes will be mounting and
857 * lvb_gen will be non-zero.
858 */
859
860 control_lvb_read(ls, &lvb_gen, lvb_bits);
861
862 if (lvb_gen == 0xFFFFFFFF) {
863 /* special value to force mount attempts to fail */
864 fs_err(sdp, "control_mount control_lock disabled\n");
865 error = -EINVAL;
866 goto fail;
867 }
868
869 if (mounted_mode == DLM_LOCK_EX) {
870 /* first mounter, keep both EX while doing first recovery */
871 spin_lock(&ls->ls_recover_spin);
872 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
873 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
874 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
875 spin_unlock(&ls->ls_recover_spin);
876 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
877 return 0;
878 }
879
880 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000881 if (error)
David Teiglande0c2a9a2012-01-09 17:18:05 -0500882 goto fail;
883
884 /*
885 * We are not first mounter, now we need to wait for the control_lock
886 * lvb generation to be >= the generation from our first recover_done
887 * and all lvb bits to be clear (no pending journal recoveries.)
888 */
889
890 if (!all_jid_bits_clear(lvb_bits)) {
891 /* journals need recovery, wait until all are clear */
892 fs_info(sdp, "control_mount wait for journal recovery\n");
893 goto restart;
894 }
895
896 spin_lock(&ls->ls_recover_spin);
897 block_gen = ls->ls_recover_block;
898 start_gen = ls->ls_recover_start;
899 mount_gen = ls->ls_recover_mount;
900
901 if (lvb_gen < mount_gen) {
902 /* wait for mounted nodes to update control_lock lvb to our
903 generation, which might include new recovery bits set */
904 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
905 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
906 lvb_gen, ls->ls_recover_flags);
907 spin_unlock(&ls->ls_recover_spin);
908 goto restart;
909 }
910
911 if (lvb_gen != start_gen) {
912 /* wait for mounted nodes to update control_lock lvb to the
913 latest recovery generation */
914 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
915 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
916 lvb_gen, ls->ls_recover_flags);
917 spin_unlock(&ls->ls_recover_spin);
918 goto restart;
919 }
920
921 if (block_gen == start_gen) {
922 /* dlm recovery in progress, wait for it to finish */
923 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
924 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
925 lvb_gen, ls->ls_recover_flags);
926 spin_unlock(&ls->ls_recover_spin);
927 goto restart;
928 }
929
930 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
931 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
932 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
933 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
934 spin_unlock(&ls->ls_recover_spin);
935 return 0;
936
937fail:
938 mounted_unlock(sdp);
939 control_unlock(sdp);
940 return error;
941}
942
943static int dlm_recovery_wait(void *word)
944{
945 schedule();
946 return 0;
947}
948
949static int control_first_done(struct gfs2_sbd *sdp)
950{
951 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
952 char lvb_bits[GDLM_LVB_SIZE];
953 uint32_t start_gen, block_gen;
954 int error;
955
956restart:
957 spin_lock(&ls->ls_recover_spin);
958 start_gen = ls->ls_recover_start;
959 block_gen = ls->ls_recover_block;
960
961 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
962 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
963 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
964 /* sanity check, should not happen */
965 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
966 start_gen, block_gen, ls->ls_recover_flags);
967 spin_unlock(&ls->ls_recover_spin);
968 control_unlock(sdp);
969 return -1;
970 }
971
972 if (start_gen == block_gen) {
973 /*
974 * Wait for the end of a dlm recovery cycle to switch from
975 * first mounter recovery. We can ignore any recover_slot
976 * callbacks between the recover_prep and next recover_done
977 * because we are still the first mounter and any failed nodes
978 * have not fully mounted, so they don't need recovery.
979 */
980 spin_unlock(&ls->ls_recover_spin);
981 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
982
983 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
984 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
985 goto restart;
986 }
987
988 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
989 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
990 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
991 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
992 spin_unlock(&ls->ls_recover_spin);
993
994 memset(lvb_bits, 0, sizeof(lvb_bits));
995 control_lvb_write(ls, start_gen, lvb_bits);
996
997 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
998 if (error)
999 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1000
1001 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1002 if (error)
1003 fs_err(sdp, "control_first_done control NL error %d\n", error);
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001004
1005 return error;
1006}
1007
David Teiglande0c2a9a2012-01-09 17:18:05 -05001008/*
1009 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1010 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1011 * gfs2 jids start at 0, so jid = slot - 1)
1012 */
1013
1014#define RECOVER_SIZE_INC 16
1015
1016static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1017 int num_slots)
1018{
1019 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1020 uint32_t *submit = NULL;
1021 uint32_t *result = NULL;
1022 uint32_t old_size, new_size;
1023 int i, max_jid;
1024
1025 max_jid = 0;
1026 for (i = 0; i < num_slots; i++) {
1027 if (max_jid < slots[i].slot - 1)
1028 max_jid = slots[i].slot - 1;
1029 }
1030
1031 old_size = ls->ls_recover_size;
1032
1033 if (old_size >= max_jid + 1)
1034 return 0;
1035
1036 new_size = old_size + RECOVER_SIZE_INC;
1037
1038 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1039 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1040 if (!submit || !result) {
1041 kfree(submit);
1042 kfree(result);
1043 return -ENOMEM;
1044 }
1045
1046 spin_lock(&ls->ls_recover_spin);
1047 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1048 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1049 kfree(ls->ls_recover_submit);
1050 kfree(ls->ls_recover_result);
1051 ls->ls_recover_submit = submit;
1052 ls->ls_recover_result = result;
1053 ls->ls_recover_size = new_size;
1054 spin_unlock(&ls->ls_recover_spin);
1055 return 0;
1056}
1057
1058static void free_recover_size(struct lm_lockstruct *ls)
1059{
1060 kfree(ls->ls_recover_submit);
1061 kfree(ls->ls_recover_result);
1062 ls->ls_recover_submit = NULL;
1063 ls->ls_recover_result = NULL;
1064 ls->ls_recover_size = 0;
1065}
1066
1067/* dlm calls before it does lock recovery */
1068
1069static void gdlm_recover_prep(void *arg)
1070{
1071 struct gfs2_sbd *sdp = arg;
1072 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1073
1074 spin_lock(&ls->ls_recover_spin);
1075 ls->ls_recover_block = ls->ls_recover_start;
1076 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1077
1078 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1079 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1080 spin_unlock(&ls->ls_recover_spin);
1081 return;
1082 }
1083 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1084 spin_unlock(&ls->ls_recover_spin);
1085}
1086
1087/* dlm calls after recover_prep has been completed on all lockspace members;
1088 identifies slot/jid of failed member */
1089
1090static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1091{
1092 struct gfs2_sbd *sdp = arg;
1093 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1094 int jid = slot->slot - 1;
1095
1096 spin_lock(&ls->ls_recover_spin);
1097 if (ls->ls_recover_size < jid + 1) {
1098 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1099 jid, ls->ls_recover_block, ls->ls_recover_size);
1100 spin_unlock(&ls->ls_recover_spin);
1101 return;
1102 }
1103
1104 if (ls->ls_recover_submit[jid]) {
1105 fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1106 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1107 }
1108 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1109 spin_unlock(&ls->ls_recover_spin);
1110}
1111
1112/* dlm calls after recover_slot and after it completes lock recovery */
1113
1114static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1115 int our_slot, uint32_t generation)
1116{
1117 struct gfs2_sbd *sdp = arg;
1118 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1119
1120 /* ensure the ls jid arrays are large enough */
1121 set_recover_size(sdp, slots, num_slots);
1122
1123 spin_lock(&ls->ls_recover_spin);
1124 ls->ls_recover_start = generation;
1125
1126 if (!ls->ls_recover_mount) {
1127 ls->ls_recover_mount = generation;
1128 ls->ls_jid = our_slot - 1;
1129 }
1130
1131 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1132 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1133
1134 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1135 smp_mb__after_clear_bit();
1136 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1137 spin_unlock(&ls->ls_recover_spin);
1138}
1139
1140/* gfs2_recover thread has a journal recovery result */
1141
1142static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1143 unsigned int result)
1144{
1145 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1146
1147 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1148 return;
1149
1150 /* don't care about the recovery of own journal during mount */
1151 if (jid == ls->ls_jid)
1152 return;
1153
1154 spin_lock(&ls->ls_recover_spin);
1155 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1156 spin_unlock(&ls->ls_recover_spin);
1157 return;
1158 }
1159 if (ls->ls_recover_size < jid + 1) {
1160 fs_err(sdp, "recovery_result jid %d short size %d",
1161 jid, ls->ls_recover_size);
1162 spin_unlock(&ls->ls_recover_spin);
1163 return;
1164 }
1165
1166 fs_info(sdp, "recover jid %d result %s\n", jid,
1167 result == LM_RD_GAVEUP ? "busy" : "success");
1168
1169 ls->ls_recover_result[jid] = result;
1170
1171 /* GAVEUP means another node is recovering the journal; delay our
1172 next attempt to recover it, to give the other node a chance to
1173 finish before trying again */
1174
1175 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1176 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1177 result == LM_RD_GAVEUP ? HZ : 0);
1178 spin_unlock(&ls->ls_recover_spin);
1179}
1180
1181const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1182 .recover_prep = gdlm_recover_prep,
1183 .recover_slot = gdlm_recover_slot,
1184 .recover_done = gdlm_recover_done,
1185};
1186
1187static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1188{
1189 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1190 char cluster[GFS2_LOCKNAME_LEN];
1191 const char *fsname;
1192 uint32_t flags;
1193 int error, ops_result;
1194
1195 /*
1196 * initialize everything
1197 */
1198
1199 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1200 spin_lock_init(&ls->ls_recover_spin);
1201 ls->ls_recover_flags = 0;
1202 ls->ls_recover_mount = 0;
1203 ls->ls_recover_start = 0;
1204 ls->ls_recover_block = 0;
1205 ls->ls_recover_size = 0;
1206 ls->ls_recover_submit = NULL;
1207 ls->ls_recover_result = NULL;
1208
1209 error = set_recover_size(sdp, NULL, 0);
1210 if (error)
1211 goto fail;
1212
1213 /*
1214 * prepare dlm_new_lockspace args
1215 */
1216
1217 fsname = strchr(table, ':');
1218 if (!fsname) {
1219 fs_info(sdp, "no fsname found\n");
1220 error = -EINVAL;
1221 goto fail_free;
1222 }
1223 memset(cluster, 0, sizeof(cluster));
1224 memcpy(cluster, table, strlen(table) - strlen(fsname));
1225 fsname++;
1226
1227 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
David Teiglande0c2a9a2012-01-09 17:18:05 -05001228
1229 /*
1230 * create/join lockspace
1231 */
1232
1233 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1234 &gdlm_lockspace_ops, sdp, &ops_result,
1235 &ls->ls_dlm);
1236 if (error) {
1237 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1238 goto fail_free;
1239 }
1240
1241 if (ops_result < 0) {
1242 /*
1243 * dlm does not support ops callbacks,
1244 * old dlm_controld/gfs_controld are used, try without ops.
1245 */
1246 fs_info(sdp, "dlm lockspace ops not used\n");
1247 free_recover_size(ls);
1248 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1249 return 0;
1250 }
1251
1252 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1253 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1254 error = -EINVAL;
1255 goto fail_release;
1256 }
1257
1258 /*
1259 * control_mount() uses control_lock to determine first mounter,
1260 * and for later mounts, waits for any recoveries to be cleared.
1261 */
1262
1263 error = control_mount(sdp);
1264 if (error) {
1265 fs_err(sdp, "mount control error %d\n", error);
1266 goto fail_release;
1267 }
1268
1269 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1270 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1271 smp_mb__after_clear_bit();
1272 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1273 return 0;
1274
1275fail_release:
1276 dlm_release_lockspace(ls->ls_dlm, 2);
1277fail_free:
1278 free_recover_size(ls);
1279fail:
1280 return error;
1281}
1282
1283static void gdlm_first_done(struct gfs2_sbd *sdp)
1284{
1285 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1286 int error;
1287
1288 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1289 return;
1290
1291 error = control_first_done(sdp);
1292 if (error)
1293 fs_err(sdp, "mount first_done error %d\n", error);
1294}
1295
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001296static void gdlm_unmount(struct gfs2_sbd *sdp)
1297{
1298 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1299
David Teiglande0c2a9a2012-01-09 17:18:05 -05001300 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1301 goto release;
1302
1303 /* wait for gfs2_control_wq to be done with this mount */
1304
1305 spin_lock(&ls->ls_recover_spin);
1306 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1307 spin_unlock(&ls->ls_recover_spin);
Tejun Heo43829732012-08-20 14:51:24 -07001308 flush_delayed_work(&sdp->sd_control_work);
David Teiglande0c2a9a2012-01-09 17:18:05 -05001309
1310 /* mounted_lock and control_lock will be purged in dlm recovery */
1311release:
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001312 if (ls->ls_dlm) {
1313 dlm_release_lockspace(ls->ls_dlm, 2);
1314 ls->ls_dlm = NULL;
1315 }
David Teiglande0c2a9a2012-01-09 17:18:05 -05001316
1317 free_recover_size(ls);
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001318}
1319
1320static const match_table_t dlm_tokens = {
1321 { Opt_jid, "jid=%d"},
1322 { Opt_id, "id=%d"},
1323 { Opt_first, "first=%d"},
1324 { Opt_nodir, "nodir=%d"},
1325 { Opt_err, NULL },
1326};
1327
1328const struct lm_lockops gfs2_dlm_ops = {
1329 .lm_proto_name = "lock_dlm",
1330 .lm_mount = gdlm_mount,
David Teiglande0c2a9a2012-01-09 17:18:05 -05001331 .lm_first_done = gdlm_first_done,
1332 .lm_recovery_result = gdlm_recovery_result,
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001333 .lm_unmount = gdlm_unmount,
1334 .lm_put_lock = gdlm_put_lock,
1335 .lm_lock = gdlm_lock,
1336 .lm_cancel = gdlm_cancel,
1337 .lm_tokens = &dlm_tokens,
1338};
1339