blob: e17a1449ee105366dcb0caccc703216edd7ee537 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
8 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
9 *
10 * Released under the GPL
11 */
12
Linus Torvalds1da177e2005-04-16 15:20:36 -070013#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/types.h>
16#include <linux/sched.h>
17#include <linux/string.h>
18#include <linux/ptrace.h>
19#include <linux/errno.h>
20#include <linux/ioport.h>
21#include <linux/slab.h>
22#include <linux/interrupt.h>
23#include <linux/pci.h>
24#include <linux/init.h>
25#include <linux/delay.h>
26#include <linux/netdevice.h>
27#include <linux/etherdevice.h>
28#include <linux/skbuff.h>
29#include <linux/spinlock.h>
30#include <linux/mii.h>
31#include <linux/ethtool.h>
32#include <linux/bitops.h>
Rolf Eike Beerd6bd3a32006-09-29 01:59:48 -070033#include <linux/dma-mapping.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034
35#include <asm/8xx_immap.h>
36#include <asm/pgtable.h>
37#include <asm/mpc8xx.h>
38#include <asm/irq.h>
39#include <asm/uaccess.h>
40#include <asm/commproc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070041
42#include "fec_8xx.h"
43
44/*************************************************/
45
46#define FEC_MAX_MULTICAST_ADDRS 64
47
48/*************************************************/
49
50static char version[] __devinitdata =
51 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
52
53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver");
55MODULE_LICENSE("GPL");
56
Rusty Russell8d3b33f2006-03-25 03:07:05 -080057int fec_8xx_debug = -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */
58module_param(fec_8xx_debug, int, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -070059MODULE_PARM_DESC(fec_8xx_debug,
60 "FEC 8xx bitmapped debugging message enable value");
61
Linus Torvalds1da177e2005-04-16 15:20:36 -070062
63/*************************************************/
64
65/*
66 * Delay to wait for FEC reset command to complete (in us)
67 */
68#define FEC_RESET_DELAY 50
69
70/*****************************************************************************************/
71
72static void fec_whack_reset(fec_t * fecp)
73{
74 int i;
75
76 /*
77 * Whack a reset. We should wait for this.
78 */
79 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
80 for (i = 0;
81 (FR(fecp, ecntrl) & FEC_ECNTRL_RESET) != 0 && i < FEC_RESET_DELAY;
82 i++)
83 udelay(1);
84
85 if (i == FEC_RESET_DELAY)
86 printk(KERN_WARNING "FEC Reset timeout!\n");
87
88}
89
90/****************************************************************************/
91
92/*
93 * Transmitter timeout.
94 */
95#define TX_TIMEOUT (2*HZ)
96
97/****************************************************************************/
98
99/*
100 * Returns the CRC needed when filling in the hash table for
101 * multicast group filtering
102 * pAddr must point to a MAC address (6 bytes)
103 */
104static __u32 fec_mulicast_calc_crc(char *pAddr)
105{
106 u8 byte;
107 int byte_count;
108 int bit_count;
109 __u32 crc = 0xffffffff;
110 u8 msb;
111
112 for (byte_count = 0; byte_count < 6; byte_count++) {
113 byte = pAddr[byte_count];
114 for (bit_count = 0; bit_count < 8; bit_count++) {
115 msb = crc >> 31;
116 crc <<= 1;
117 if (msb ^ (byte & 0x1)) {
118 crc ^= FEC_CRC_POLY;
119 }
120 byte >>= 1;
121 }
122 }
123 return (crc);
124}
125
126/*
127 * Set or clear the multicast filter for this adaptor.
128 * Skeleton taken from sunlance driver.
129 * The CPM Ethernet implementation allows Multicast as well as individual
130 * MAC address filtering. Some of the drivers check to make sure it is
131 * a group multicast address, and discard those that are not. I guess I
132 * will do the same for now, but just remove the test if you want
133 * individual filtering as well (do the upper net layers want or support
134 * this kind of feature?).
135 */
136static void fec_set_multicast_list(struct net_device *dev)
137{
138 struct fec_enet_private *fep = netdev_priv(dev);
139 fec_t *fecp = fep->fecp;
140 struct dev_mc_list *pmc;
141 __u32 crc;
142 int temp;
143 __u32 csrVal;
144 int hash_index;
145 __u32 hthi, htlo;
146 unsigned long flags;
147
148
149 if ((dev->flags & IFF_PROMISC) != 0) {
150
151 spin_lock_irqsave(&fep->lock, flags);
152 FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
153 spin_unlock_irqrestore(&fep->lock, flags);
154
155 /*
156 * Log any net taps.
157 */
158 printk(KERN_WARNING DRV_MODULE_NAME
159 ": %s: Promiscuous mode enabled.\n", dev->name);
160 return;
161
162 }
163
164 if ((dev->flags & IFF_ALLMULTI) != 0 ||
165 dev->mc_count > FEC_MAX_MULTICAST_ADDRS) {
166 /*
167 * Catch all multicast addresses, set the filter to all 1's.
168 */
169 hthi = 0xffffffffU;
170 htlo = 0xffffffffU;
171 } else {
172 hthi = 0;
173 htlo = 0;
174
175 /*
176 * Now populate the hash table
177 */
178 for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next) {
179 crc = fec_mulicast_calc_crc(pmc->dmi_addr);
180 temp = (crc & 0x3f) >> 1;
181 hash_index = ((temp & 0x01) << 4) |
182 ((temp & 0x02) << 2) |
183 ((temp & 0x04)) |
184 ((temp & 0x08) >> 2) |
185 ((temp & 0x10) >> 4);
186 csrVal = (1 << hash_index);
187 if (crc & 1)
188 hthi |= csrVal;
189 else
190 htlo |= csrVal;
191 }
192 }
193
194 spin_lock_irqsave(&fep->lock, flags);
195 FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
196 FW(fecp, hash_table_high, hthi);
197 FW(fecp, hash_table_low, htlo);
198 spin_unlock_irqrestore(&fep->lock, flags);
199}
200
201static int fec_set_mac_address(struct net_device *dev, void *addr)
202{
203 struct sockaddr *mac = addr;
204 struct fec_enet_private *fep = netdev_priv(dev);
205 struct fec *fecp = fep->fecp;
206 int i;
207 __u32 addrhi, addrlo;
208 unsigned long flags;
209
210 /* Get pointer to SCC area in parameter RAM. */
211 for (i = 0; i < 6; i++)
212 dev->dev_addr[i] = mac->sa_data[i];
213
214 /*
215 * Set station address.
216 */
217 addrhi = ((__u32) dev->dev_addr[0] << 24) |
218 ((__u32) dev->dev_addr[1] << 16) |
219 ((__u32) dev->dev_addr[2] << 8) |
220 (__u32) dev->dev_addr[3];
221 addrlo = ((__u32) dev->dev_addr[4] << 24) |
222 ((__u32) dev->dev_addr[5] << 16);
223
224 spin_lock_irqsave(&fep->lock, flags);
225 FW(fecp, addr_low, addrhi);
226 FW(fecp, addr_high, addrlo);
227 spin_unlock_irqrestore(&fep->lock, flags);
228
229 return 0;
230}
231
232/*
233 * This function is called to start or restart the FEC during a link
234 * change. This only happens when switching between half and full
235 * duplex.
236 */
237void fec_restart(struct net_device *dev, int duplex, int speed)
238{
239#ifdef CONFIG_DUET
240 immap_t *immap = (immap_t *) IMAP_ADDR;
241 __u32 cptr;
242#endif
243 struct fec_enet_private *fep = netdev_priv(dev);
244 struct fec *fecp = fep->fecp;
245 const struct fec_platform_info *fpi = fep->fpi;
246 cbd_t *bdp;
247 struct sk_buff *skb;
248 int i;
249 __u32 addrhi, addrlo;
250
251 fec_whack_reset(fep->fecp);
252
253 /*
254 * Set station address.
255 */
256 addrhi = ((__u32) dev->dev_addr[0] << 24) |
257 ((__u32) dev->dev_addr[1] << 16) |
258 ((__u32) dev->dev_addr[2] << 8) |
259 (__u32) dev->dev_addr[3];
260 addrlo = ((__u32) dev->dev_addr[4] << 24) |
261 ((__u32) dev->dev_addr[5] << 16);
262 FW(fecp, addr_low, addrhi);
263 FW(fecp, addr_high, addrlo);
264
265 /*
266 * Reset all multicast.
267 */
268 FW(fecp, hash_table_high, 0);
269 FW(fecp, hash_table_low, 0);
270
271 /*
272 * Set maximum receive buffer size.
273 */
274 FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
275 FW(fecp, r_hash, PKT_MAXBUF_SIZE);
276
277 /*
278 * Set receive and transmit descriptor base.
279 */
280 FW(fecp, r_des_start, iopa((__u32) (fep->rx_bd_base)));
281 FW(fecp, x_des_start, iopa((__u32) (fep->tx_bd_base)));
282
283 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
284 fep->tx_free = fep->tx_ring;
285 fep->cur_rx = fep->rx_bd_base;
286
287 /*
288 * Reset SKB receive buffers
289 */
290 for (i = 0; i < fep->rx_ring; i++) {
291 if ((skb = fep->rx_skbuff[i]) == NULL)
292 continue;
293 fep->rx_skbuff[i] = NULL;
294 dev_kfree_skb(skb);
295 }
296
297 /*
298 * Initialize the receive buffer descriptors.
299 */
300 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
301 skb = dev_alloc_skb(ENET_RX_FRSIZE);
302 if (skb == NULL) {
303 printk(KERN_WARNING DRV_MODULE_NAME
304 ": %s Memory squeeze, unable to allocate skb\n",
305 dev->name);
306 fep->stats.rx_dropped++;
307 break;
308 }
309 fep->rx_skbuff[i] = skb;
310 skb->dev = dev;
311 CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
312 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
313 DMA_FROM_DEVICE));
314 CBDW_DATLEN(bdp, 0); /* zero */
315 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
316 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
317 }
318 /*
319 * if we failed, fillup remainder
320 */
321 for (; i < fep->rx_ring; i++, bdp++) {
322 fep->rx_skbuff[i] = NULL;
323 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
324 }
325
326 /*
327 * Reset SKB transmit buffers.
328 */
329 for (i = 0; i < fep->tx_ring; i++) {
330 if ((skb = fep->tx_skbuff[i]) == NULL)
331 continue;
332 fep->tx_skbuff[i] = NULL;
333 dev_kfree_skb(skb);
334 }
335
336 /*
337 * ...and the same for transmit.
338 */
339 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
340 fep->tx_skbuff[i] = NULL;
341 CBDW_BUFADDR(bdp, virt_to_bus(NULL));
342 CBDW_DATLEN(bdp, 0);
343 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
344 }
345
346 /*
347 * Enable big endian and don't care about SDMA FC.
348 */
349 FW(fecp, fun_code, 0x78000000);
350
351 /*
352 * Set MII speed.
353 */
354 FW(fecp, mii_speed, fep->fec_phy_speed);
355
356 /*
357 * Clear any outstanding interrupt.
358 */
359 FW(fecp, ievent, 0xffc0);
360 FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
361
362 /*
363 * adjust to speed (only for DUET & RMII)
364 */
365#ifdef CONFIG_DUET
366 cptr = in_be32(&immap->im_cpm.cp_cptr);
367 switch (fpi->fec_no) {
368 case 0:
369 /*
370 * check if in RMII mode
371 */
372 if ((cptr & 0x100) == 0)
373 break;
374
375 if (speed == 10)
376 cptr |= 0x0000010;
377 else if (speed == 100)
378 cptr &= ~0x0000010;
379 break;
380 case 1:
381 /*
382 * check if in RMII mode
383 */
384 if ((cptr & 0x80) == 0)
385 break;
386
387 if (speed == 10)
388 cptr |= 0x0000008;
389 else if (speed == 100)
390 cptr &= ~0x0000008;
391 break;
392 default:
393 break;
394 }
395 out_be32(&immap->im_cpm.cp_cptr, cptr);
396#endif
397
398 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
399 /*
400 * adjust to duplex mode
401 */
402 if (duplex) {
403 FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
404 FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
405 } else {
406 FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
407 FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
408 }
409
410 /*
411 * Enable interrupts we wish to service.
412 */
413 FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
414 FEC_ENET_RXF | FEC_ENET_RXB);
415
416 /*
417 * And last, enable the transmit and receive processing.
418 */
419 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
420 FW(fecp, r_des_active, 0x01000000);
421}
422
423void fec_stop(struct net_device *dev)
424{
425 struct fec_enet_private *fep = netdev_priv(dev);
426 fec_t *fecp = fep->fecp;
427 struct sk_buff *skb;
428 int i;
429
430 if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
431 return; /* already down */
432
433 FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
434 for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
435 i < FEC_RESET_DELAY; i++)
436 udelay(1);
437
438 if (i == FEC_RESET_DELAY)
439 printk(KERN_WARNING DRV_MODULE_NAME
440 ": %s FEC timeout on graceful transmit stop\n",
441 dev->name);
442 /*
443 * Disable FEC. Let only MII interrupts.
444 */
445 FW(fecp, imask, 0);
446 FW(fecp, ecntrl, ~FEC_ECNTRL_ETHER_EN);
447
448 /*
449 * Reset SKB transmit buffers.
450 */
451 for (i = 0; i < fep->tx_ring; i++) {
452 if ((skb = fep->tx_skbuff[i]) == NULL)
453 continue;
454 fep->tx_skbuff[i] = NULL;
455 dev_kfree_skb(skb);
456 }
457
458 /*
459 * Reset SKB receive buffers
460 */
461 for (i = 0; i < fep->rx_ring; i++) {
462 if ((skb = fep->rx_skbuff[i]) == NULL)
463 continue;
464 fep->rx_skbuff[i] = NULL;
465 dev_kfree_skb(skb);
466 }
467}
468
469/* common receive function */
470static int fec_enet_rx_common(struct net_device *dev, int *budget)
471{
472 struct fec_enet_private *fep = netdev_priv(dev);
473 fec_t *fecp = fep->fecp;
474 const struct fec_platform_info *fpi = fep->fpi;
475 cbd_t *bdp;
476 struct sk_buff *skb, *skbn, *skbt;
477 int received = 0;
478 __u16 pkt_len, sc;
479 int curidx;
480 int rx_work_limit;
481
482 if (fpi->use_napi) {
483 rx_work_limit = min(dev->quota, *budget);
484
485 if (!netif_running(dev))
486 return 0;
487 }
488
489 /*
490 * First, grab all of the stats for the incoming packet.
491 * These get messed up if we get called due to a busy condition.
492 */
493 bdp = fep->cur_rx;
494
495 /* clear RX status bits for napi*/
496 if (fpi->use_napi)
497 FW(fecp, ievent, FEC_ENET_RXF | FEC_ENET_RXB);
498
499 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
500
501 curidx = bdp - fep->rx_bd_base;
502
503 /*
504 * Since we have allocated space to hold a complete frame,
505 * the last indicator should be set.
506 */
507 if ((sc & BD_ENET_RX_LAST) == 0)
508 printk(KERN_WARNING DRV_MODULE_NAME
509 ": %s rcv is not +last\n",
510 dev->name);
511
512 /*
513 * Check for errors.
514 */
515 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
516 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
517 fep->stats.rx_errors++;
518 /* Frame too long or too short. */
519 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
520 fep->stats.rx_length_errors++;
521 /* Frame alignment */
522 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
523 fep->stats.rx_frame_errors++;
524 /* CRC Error */
525 if (sc & BD_ENET_RX_CR)
526 fep->stats.rx_crc_errors++;
527 /* FIFO overrun */
528 if (sc & BD_ENET_RX_OV)
529 fep->stats.rx_crc_errors++;
530
531 skbn = fep->rx_skbuff[curidx];
532 BUG_ON(skbn == NULL);
533
534 } else {
535
536 /* napi, got packet but no quota */
537 if (fpi->use_napi && --rx_work_limit < 0)
538 break;
539
540 skb = fep->rx_skbuff[curidx];
541 BUG_ON(skb == NULL);
542
543 /*
544 * Process the incoming frame.
545 */
546 fep->stats.rx_packets++;
547 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
548 fep->stats.rx_bytes += pkt_len + 4;
549
550 if (pkt_len <= fpi->rx_copybreak) {
551 /* +2 to make IP header L1 cache aligned */
552 skbn = dev_alloc_skb(pkt_len + 2);
553 if (skbn != NULL) {
554 skb_reserve(skbn, 2); /* align IP header */
555 memcpy(skbn->data, skb->data, pkt_len);
556 /* swap */
557 skbt = skb;
558 skb = skbn;
559 skbn = skbt;
560 }
561 } else
562 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
563
564 if (skbn != NULL) {
565 skb->dev = dev;
566 skb_put(skb, pkt_len); /* Make room */
567 skb->protocol = eth_type_trans(skb, dev);
568 received++;
569 if (!fpi->use_napi)
570 netif_rx(skb);
571 else
572 netif_receive_skb(skb);
573 } else {
574 printk(KERN_WARNING DRV_MODULE_NAME
575 ": %s Memory squeeze, dropping packet.\n",
576 dev->name);
577 fep->stats.rx_dropped++;
578 skbn = skb;
579 }
580 }
581
582 fep->rx_skbuff[curidx] = skbn;
583 CBDW_BUFADDR(bdp, dma_map_single(NULL, skbn->data,
584 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
585 DMA_FROM_DEVICE));
586 CBDW_DATLEN(bdp, 0);
587 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
588
589 /*
590 * Update BD pointer to next entry.
591 */
592 if ((sc & BD_ENET_RX_WRAP) == 0)
593 bdp++;
594 else
595 bdp = fep->rx_bd_base;
596
597 /*
598 * Doing this here will keep the FEC running while we process
599 * incoming frames. On a heavily loaded network, we should be
600 * able to keep up at the expense of system resources.
601 */
602 FW(fecp, r_des_active, 0x01000000);
603 }
604
605 fep->cur_rx = bdp;
606
607 if (fpi->use_napi) {
608 dev->quota -= received;
609 *budget -= received;
610
611 if (rx_work_limit < 0)
612 return 1; /* not done */
613
614 /* done */
615 netif_rx_complete(dev);
616
617 /* enable RX interrupt bits */
618 FS(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
619 }
620
621 return 0;
622}
623
624static void fec_enet_tx(struct net_device *dev)
625{
626 struct fec_enet_private *fep = netdev_priv(dev);
627 cbd_t *bdp;
628 struct sk_buff *skb;
629 int dirtyidx, do_wake;
630 __u16 sc;
631
632 spin_lock(&fep->lock);
633 bdp = fep->dirty_tx;
634
635 do_wake = 0;
636 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
637
638 dirtyidx = bdp - fep->tx_bd_base;
639
640 if (fep->tx_free == fep->tx_ring)
641 break;
642
643 skb = fep->tx_skbuff[dirtyidx];
644
645 /*
646 * Check for errors.
647 */
648 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
649 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
650 fep->stats.tx_errors++;
651 if (sc & BD_ENET_TX_HB) /* No heartbeat */
652 fep->stats.tx_heartbeat_errors++;
653 if (sc & BD_ENET_TX_LC) /* Late collision */
654 fep->stats.tx_window_errors++;
655 if (sc & BD_ENET_TX_RL) /* Retrans limit */
656 fep->stats.tx_aborted_errors++;
657 if (sc & BD_ENET_TX_UN) /* Underrun */
658 fep->stats.tx_fifo_errors++;
659 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
660 fep->stats.tx_carrier_errors++;
661 } else
662 fep->stats.tx_packets++;
663
664 if (sc & BD_ENET_TX_READY)
665 printk(KERN_WARNING DRV_MODULE_NAME
666 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
667 dev->name);
668
669 /*
670 * Deferred means some collisions occurred during transmit,
671 * but we eventually sent the packet OK.
672 */
673 if (sc & BD_ENET_TX_DEF)
674 fep->stats.collisions++;
675
676 /*
677 * Free the sk buffer associated with this last transmit.
678 */
679 dev_kfree_skb_irq(skb);
680 fep->tx_skbuff[dirtyidx] = NULL;
681
682 /*
683 * Update pointer to next buffer descriptor to be transmitted.
684 */
685 if ((sc & BD_ENET_TX_WRAP) == 0)
686 bdp++;
687 else
688 bdp = fep->tx_bd_base;
689
690 /*
691 * Since we have freed up a buffer, the ring is no longer
692 * full.
693 */
694 if (!fep->tx_free++)
695 do_wake = 1;
696 }
697
698 fep->dirty_tx = bdp;
699
700 spin_unlock(&fep->lock);
701
702 if (do_wake && netif_queue_stopped(dev))
703 netif_wake_queue(dev);
704}
705
706/*
707 * The interrupt handler.
708 * This is called from the MPC core interrupt.
709 */
710static irqreturn_t
711fec_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
712{
713 struct net_device *dev = dev_id;
714 struct fec_enet_private *fep;
715 const struct fec_platform_info *fpi;
716 fec_t *fecp;
717 __u32 int_events;
718 __u32 int_events_napi;
719
720 if (unlikely(dev == NULL))
721 return IRQ_NONE;
722
723 fep = netdev_priv(dev);
724 fecp = fep->fecp;
725 fpi = fep->fpi;
726
727 /*
728 * Get the interrupt events that caused us to be here.
729 */
730 while ((int_events = FR(fecp, ievent) & FR(fecp, imask)) != 0) {
731
732 if (!fpi->use_napi)
733 FW(fecp, ievent, int_events);
734 else {
735 int_events_napi = int_events & ~(FEC_ENET_RXF | FEC_ENET_RXB);
736 FW(fecp, ievent, int_events_napi);
737 }
738
739 if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
740 FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
741 printk(KERN_WARNING DRV_MODULE_NAME
742 ": %s FEC ERROR(s) 0x%x\n",
743 dev->name, int_events);
744
745 if ((int_events & FEC_ENET_RXF) != 0) {
746 if (!fpi->use_napi)
747 fec_enet_rx_common(dev, NULL);
748 else {
749 if (netif_rx_schedule_prep(dev)) {
750 /* disable rx interrupts */
751 FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
752 __netif_rx_schedule(dev);
753 } else {
754 printk(KERN_ERR DRV_MODULE_NAME
755 ": %s driver bug! interrupt while in poll!\n",
756 dev->name);
757 FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
758 }
759 }
760 }
761
762 if ((int_events & FEC_ENET_TXF) != 0)
763 fec_enet_tx(dev);
764 }
765
766 return IRQ_HANDLED;
767}
768
769/* This interrupt occurs when the PHY detects a link change. */
770static irqreturn_t
771fec_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs)
772{
773 struct net_device *dev = dev_id;
774 struct fec_enet_private *fep;
775 const struct fec_platform_info *fpi;
776
777 if (unlikely(dev == NULL))
778 return IRQ_NONE;
779
780 fep = netdev_priv(dev);
781 fpi = fep->fpi;
782
783 if (!fpi->use_mdio)
784 return IRQ_NONE;
785
786 /*
787 * Acknowledge the interrupt if possible. If we have not
788 * found the PHY yet we can't process or acknowledge the
789 * interrupt now. Instead we ignore this interrupt for now,
790 * which we can do since it is edge triggered. It will be
791 * acknowledged later by fec_enet_open().
792 */
793 if (!fep->phy)
794 return IRQ_NONE;
795
796 fec_mii_ack_int(dev);
797 fec_mii_link_status_change_check(dev, 0);
798
799 return IRQ_HANDLED;
800}
801
802
803/**********************************************************************************/
804
805static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
806{
807 struct fec_enet_private *fep = netdev_priv(dev);
808 fec_t *fecp = fep->fecp;
809 cbd_t *bdp;
810 int curidx;
811 unsigned long flags;
812
813 spin_lock_irqsave(&fep->tx_lock, flags);
814
815 /*
816 * Fill in a Tx ring entry
817 */
818 bdp = fep->cur_tx;
819
820 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
821 netif_stop_queue(dev);
822 spin_unlock_irqrestore(&fep->tx_lock, flags);
823
824 /*
825 * Ooops. All transmit buffers are full. Bail out.
826 * This should not happen, since the tx queue should be stopped.
827 */
828 printk(KERN_WARNING DRV_MODULE_NAME
829 ": %s tx queue full!.\n", dev->name);
830 return 1;
831 }
832
833 curidx = bdp - fep->tx_bd_base;
834 /*
835 * Clear all of the status flags.
836 */
837 CBDC_SC(bdp, BD_ENET_TX_STATS);
838
839 /*
840 * Save skb pointer.
841 */
842 fep->tx_skbuff[curidx] = skb;
843
844 fep->stats.tx_bytes += skb->len;
845
846 /*
847 * Push the data cache so the CPM does not get stale memory data.
848 */
849 CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
850 skb->len, DMA_TO_DEVICE));
851 CBDW_DATLEN(bdp, skb->len);
852
853 dev->trans_start = jiffies;
854
855 /*
856 * If this was the last BD in the ring, start at the beginning again.
857 */
858 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
859 fep->cur_tx++;
860 else
861 fep->cur_tx = fep->tx_bd_base;
862
863 if (!--fep->tx_free)
864 netif_stop_queue(dev);
865
866 /*
867 * Trigger transmission start
868 */
869 CBDS_SC(bdp, BD_ENET_TX_READY | BD_ENET_TX_INTR |
870 BD_ENET_TX_LAST | BD_ENET_TX_TC);
871 FW(fecp, x_des_active, 0x01000000);
872
873 spin_unlock_irqrestore(&fep->tx_lock, flags);
874
875 return 0;
876}
877
878static void fec_timeout(struct net_device *dev)
879{
880 struct fec_enet_private *fep = netdev_priv(dev);
881
882 fep->stats.tx_errors++;
883
884 if (fep->tx_free)
885 netif_wake_queue(dev);
886
887 /* check link status again */
888 fec_mii_link_status_change_check(dev, 0);
889}
890
891static int fec_enet_open(struct net_device *dev)
892{
893 struct fec_enet_private *fep = netdev_priv(dev);
894 const struct fec_platform_info *fpi = fep->fpi;
895 unsigned long flags;
896
897 /* Install our interrupt handler. */
898 if (request_irq(fpi->fec_irq, fec_enet_interrupt, 0, "fec", dev) != 0) {
899 printk(KERN_ERR DRV_MODULE_NAME
900 ": %s Could not allocate FEC IRQ!", dev->name);
901 return -EINVAL;
902 }
903
904 /* Install our phy interrupt handler */
905 if (fpi->phy_irq != -1 &&
906 request_irq(fpi->phy_irq, fec_mii_link_interrupt, 0, "fec-phy",
907 dev) != 0) {
908 printk(KERN_ERR DRV_MODULE_NAME
909 ": %s Could not allocate PHY IRQ!", dev->name);
910 free_irq(fpi->fec_irq, dev);
911 return -EINVAL;
912 }
913
914 if (fpi->use_mdio) {
915 fec_mii_startup(dev);
916 netif_carrier_off(dev);
917 fec_mii_link_status_change_check(dev, 1);
918 } else {
919 spin_lock_irqsave(&fep->lock, flags);
920 fec_restart(dev, 1, 100); /* XXX this sucks */
921 spin_unlock_irqrestore(&fep->lock, flags);
922
923 netif_carrier_on(dev);
924 netif_start_queue(dev);
925 }
926 return 0;
927}
928
929static int fec_enet_close(struct net_device *dev)
930{
931 struct fec_enet_private *fep = netdev_priv(dev);
932 const struct fec_platform_info *fpi = fep->fpi;
933 unsigned long flags;
934
935 netif_stop_queue(dev);
936 netif_carrier_off(dev);
937
938 if (fpi->use_mdio)
939 fec_mii_shutdown(dev);
940
941 spin_lock_irqsave(&fep->lock, flags);
942 fec_stop(dev);
943 spin_unlock_irqrestore(&fep->lock, flags);
944
945 /* release any irqs */
946 if (fpi->phy_irq != -1)
947 free_irq(fpi->phy_irq, dev);
948 free_irq(fpi->fec_irq, dev);
949
950 return 0;
951}
952
953static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
954{
955 struct fec_enet_private *fep = netdev_priv(dev);
956 return &fep->stats;
957}
958
959static int fec_enet_poll(struct net_device *dev, int *budget)
960{
961 return fec_enet_rx_common(dev, budget);
962}
963
964/*************************************************************************/
965
966static void fec_get_drvinfo(struct net_device *dev,
967 struct ethtool_drvinfo *info)
968{
969 strcpy(info->driver, DRV_MODULE_NAME);
970 strcpy(info->version, DRV_MODULE_VERSION);
971}
972
973static int fec_get_regs_len(struct net_device *dev)
974{
975 return sizeof(fec_t);
976}
977
978static void fec_get_regs(struct net_device *dev, struct ethtool_regs *regs,
979 void *p)
980{
981 struct fec_enet_private *fep = netdev_priv(dev);
982 unsigned long flags;
983
984 if (regs->len < sizeof(fec_t))
985 return;
986
987 regs->version = 0;
988 spin_lock_irqsave(&fep->lock, flags);
989 memcpy_fromio(p, fep->fecp, sizeof(fec_t));
990 spin_unlock_irqrestore(&fep->lock, flags);
991}
992
993static int fec_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
994{
995 struct fec_enet_private *fep = netdev_priv(dev);
996 unsigned long flags;
997 int rc;
998
999 spin_lock_irqsave(&fep->lock, flags);
1000 rc = mii_ethtool_gset(&fep->mii_if, cmd);
1001 spin_unlock_irqrestore(&fep->lock, flags);
1002
1003 return rc;
1004}
1005
1006static int fec_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1007{
1008 struct fec_enet_private *fep = netdev_priv(dev);
1009 unsigned long flags;
1010 int rc;
1011
1012 spin_lock_irqsave(&fep->lock, flags);
1013 rc = mii_ethtool_sset(&fep->mii_if, cmd);
1014 spin_unlock_irqrestore(&fep->lock, flags);
1015
1016 return rc;
1017}
1018
1019static int fec_nway_reset(struct net_device *dev)
1020{
1021 struct fec_enet_private *fep = netdev_priv(dev);
1022 return mii_nway_restart(&fep->mii_if);
1023}
1024
1025static __u32 fec_get_msglevel(struct net_device *dev)
1026{
1027 struct fec_enet_private *fep = netdev_priv(dev);
1028 return fep->msg_enable;
1029}
1030
1031static void fec_set_msglevel(struct net_device *dev, __u32 value)
1032{
1033 struct fec_enet_private *fep = netdev_priv(dev);
1034 fep->msg_enable = value;
1035}
1036
Jeff Garzik7282d492006-09-13 14:30:00 -04001037static const struct ethtool_ops fec_ethtool_ops = {
1038 .get_drvinfo = fec_get_drvinfo,
1039 .get_regs_len = fec_get_regs_len,
1040 .get_settings = fec_get_settings,
1041 .set_settings = fec_set_settings,
1042 .nway_reset = fec_nway_reset,
1043 .get_link = ethtool_op_get_link,
1044 .get_msglevel = fec_get_msglevel,
1045 .set_msglevel = fec_set_msglevel,
1046 .get_tx_csum = ethtool_op_get_tx_csum,
1047 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1048 .get_sg = ethtool_op_get_sg,
1049 .set_sg = ethtool_op_set_sg,
1050 .get_regs = fec_get_regs,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001051};
1052
1053static int fec_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1054{
1055 struct fec_enet_private *fep = netdev_priv(dev);
1056 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
1057 unsigned long flags;
1058 int rc;
1059
1060 if (!netif_running(dev))
1061 return -EINVAL;
1062
1063 spin_lock_irqsave(&fep->lock, flags);
1064 rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
1065 spin_unlock_irqrestore(&fep->lock, flags);
1066 return rc;
1067}
1068
1069int fec_8xx_init_one(const struct fec_platform_info *fpi,
1070 struct net_device **devp)
1071{
1072 immap_t *immap = (immap_t *) IMAP_ADDR;
1073 static int fec_8xx_version_printed = 0;
1074 struct net_device *dev = NULL;
1075 struct fec_enet_private *fep = NULL;
1076 fec_t *fecp = NULL;
1077 int i;
1078 int err = 0;
1079 int registered = 0;
1080 __u32 siel;
1081
1082 *devp = NULL;
1083
1084 switch (fpi->fec_no) {
1085 case 0:
1086 fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec;
1087 break;
1088#ifdef CONFIG_DUET
1089 case 1:
1090 fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec2;
1091 break;
1092#endif
1093 default:
1094 return -EINVAL;
1095 }
1096
1097 if (fec_8xx_version_printed++ == 0)
1098 printk(KERN_INFO "%s", version);
1099
1100 i = sizeof(*fep) + (sizeof(struct sk_buff **) *
1101 (fpi->rx_ring + fpi->tx_ring));
1102
1103 dev = alloc_etherdev(i);
1104 if (!dev) {
1105 err = -ENOMEM;
1106 goto err;
1107 }
1108 SET_MODULE_OWNER(dev);
1109
1110 fep = netdev_priv(dev);
1111
1112 /* partial reset of FEC */
1113 fec_whack_reset(fecp);
1114
1115 /* point rx_skbuff, tx_skbuff */
1116 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1117 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1118
1119 fep->fecp = fecp;
1120 fep->fpi = fpi;
1121
1122 /* init locks */
1123 spin_lock_init(&fep->lock);
1124 spin_lock_init(&fep->tx_lock);
1125
1126 /*
1127 * Set the Ethernet address.
1128 */
1129 for (i = 0; i < 6; i++)
1130 dev->dev_addr[i] = fpi->macaddr[i];
1131
1132 fep->ring_base = dma_alloc_coherent(NULL,
1133 (fpi->tx_ring + fpi->rx_ring) *
1134 sizeof(cbd_t), &fep->ring_mem_addr,
1135 GFP_KERNEL);
1136 if (fep->ring_base == NULL) {
1137 printk(KERN_ERR DRV_MODULE_NAME
1138 ": %s dma alloc failed.\n", dev->name);
1139 err = -ENOMEM;
1140 goto err;
1141 }
1142
1143 /*
1144 * Set receive and transmit descriptor base.
1145 */
1146 fep->rx_bd_base = fep->ring_base;
1147 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1148
1149 /* initialize ring size variables */
1150 fep->tx_ring = fpi->tx_ring;
1151 fep->rx_ring = fpi->rx_ring;
1152
1153 /* SIU interrupt */
1154 if (fpi->phy_irq != -1 &&
1155 (fpi->phy_irq >= SIU_IRQ0 && fpi->phy_irq < SIU_LEVEL7)) {
1156
1157 siel = in_be32(&immap->im_siu_conf.sc_siel);
1158 if ((fpi->phy_irq & 1) == 0)
1159 siel |= (0x80000000 >> fpi->phy_irq);
1160 else
1161 siel &= ~(0x80000000 >> (fpi->phy_irq & ~1));
1162 out_be32(&immap->im_siu_conf.sc_siel, siel);
1163 }
1164
1165 /*
1166 * The FEC Ethernet specific entries in the device structure.
1167 */
1168 dev->open = fec_enet_open;
1169 dev->hard_start_xmit = fec_enet_start_xmit;
1170 dev->tx_timeout = fec_timeout;
1171 dev->watchdog_timeo = TX_TIMEOUT;
1172 dev->stop = fec_enet_close;
1173 dev->get_stats = fec_enet_get_stats;
1174 dev->set_multicast_list = fec_set_multicast_list;
1175 dev->set_mac_address = fec_set_mac_address;
1176 if (fpi->use_napi) {
1177 dev->poll = fec_enet_poll;
1178 dev->weight = fpi->napi_weight;
1179 }
1180 dev->ethtool_ops = &fec_ethtool_ops;
1181 dev->do_ioctl = fec_ioctl;
1182
1183 fep->fec_phy_speed =
1184 ((((fpi->sys_clk + 4999999) / 2500000) / 2) & 0x3F) << 1;
1185
1186 init_timer(&fep->phy_timer_list);
1187
1188 /* partial reset of FEC so that only MII works */
1189 FW(fecp, mii_speed, fep->fec_phy_speed);
1190 FW(fecp, ievent, 0xffc0);
1191 FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
1192 FW(fecp, imask, 0);
1193 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
1194 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
1195
1196 netif_carrier_off(dev);
1197
1198 err = register_netdev(dev);
1199 if (err != 0)
1200 goto err;
1201 registered = 1;
1202
1203 if (fpi->use_mdio) {
1204 fep->mii_if.dev = dev;
1205 fep->mii_if.mdio_read = fec_mii_read;
1206 fep->mii_if.mdio_write = fec_mii_write;
1207 fep->mii_if.phy_id_mask = 0x1f;
1208 fep->mii_if.reg_num_mask = 0x1f;
1209 fep->mii_if.phy_id = fec_mii_phy_id_detect(dev);
1210 }
1211
1212 *devp = dev;
1213
1214 return 0;
1215
1216 err:
1217 if (dev != NULL) {
1218 if (fecp != NULL)
1219 fec_whack_reset(fecp);
1220
1221 if (registered)
1222 unregister_netdev(dev);
1223
1224 if (fep != NULL) {
1225 if (fep->ring_base)
1226 dma_free_coherent(NULL,
1227 (fpi->tx_ring +
1228 fpi->rx_ring) *
1229 sizeof(cbd_t), fep->ring_base,
1230 fep->ring_mem_addr);
1231 }
1232 free_netdev(dev);
1233 }
1234 return err;
1235}
1236
1237int fec_8xx_cleanup_one(struct net_device *dev)
1238{
1239 struct fec_enet_private *fep = netdev_priv(dev);
1240 fec_t *fecp = fep->fecp;
1241 const struct fec_platform_info *fpi = fep->fpi;
1242
1243 fec_whack_reset(fecp);
1244
1245 unregister_netdev(dev);
1246
1247 dma_free_coherent(NULL, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1248 fep->ring_base, fep->ring_mem_addr);
1249
1250 free_netdev(dev);
1251
1252 return 0;
1253}
1254
1255/**************************************************************************************/
1256/**************************************************************************************/
1257/**************************************************************************************/
1258
1259static int __init fec_8xx_init(void)
1260{
1261 return fec_8xx_platform_init();
1262}
1263
1264static void __exit fec_8xx_cleanup(void)
1265{
1266 fec_8xx_platform_cleanup();
1267}
1268
1269/**************************************************************************************/
1270/**************************************************************************************/
1271/**************************************************************************************/
1272
1273module_init(fec_8xx_init);
1274module_exit(fec_8xx_cleanup);