blob: e4bec78c8e3fbda595e9b29cde3b14908fe6ec66 [file] [log] [blame]
Casey Leedom16f8bd42010-06-25 12:12:54 +00001/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/pci.h>
38
39#include "t4vf_common.h"
40#include "t4vf_defs.h"
41
42#include "../cxgb4/t4_regs.h"
43#include "../cxgb4/t4fw_api.h"
44
45/*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
48 * become ready ...
49 */
50int __devinit t4vf_wait_dev_ready(struct adapter *adapter)
51{
52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 const u32 notready1 = 0xffffffff;
54 const u32 notready2 = 0xeeeeeeee;
55 u32 val;
56
57 val = t4_read_reg(adapter, whoami);
58 if (val != notready1 && val != notready2)
59 return 0;
60 msleep(500);
61 val = t4_read_reg(adapter, whoami);
62 if (val != notready1 && val != notready2)
63 return 0;
64 else
65 return -EIO;
66}
67
68/*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 u32 mbox_data)
74{
75 for ( ; size; size -= 8, mbox_data += 8)
76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77}
78
79/*
80 * Dump contents of mailbox with a leading tag.
81 */
82static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
83{
84 dev_err(adapter->pdev_dev,
85 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0),
87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8),
88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
93 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
94}
95
96/**
97 * t4vf_wr_mbox_core - send a command to FW through the mailbox
98 * @adapter: the adapter
99 * @cmd: the command to write
100 * @size: command length in bytes
101 * @rpl: where to optionally store the reply
102 * @sleep_ok: if true we may sleep while awaiting command completion
103 *
104 * Sends the given command to FW through the mailbox and waits for the
105 * FW to execute the command. If @rpl is not %NULL it is used to store
106 * the FW's reply to the command. The command and its optional reply
107 * are of the same length. FW can take up to 500 ms to respond.
108 * @sleep_ok determines whether we may sleep while awaiting the response.
109 * If sleeping is allowed we use progressive backoff otherwise we spin.
110 *
111 * The return value is 0 on success or a negative errno on failure. A
112 * failure can happen either because we are not able to execute the
113 * command or FW executes it but signals an error. In the latter case
114 * the return value is the error code indicated by FW (negated).
115 */
116int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
117 void *rpl, bool sleep_ok)
118{
Joe Perches215faf92010-12-21 02:16:10 -0800119 static const int delay[] = {
Casey Leedom16f8bd42010-06-25 12:12:54 +0000120 1, 1, 3, 5, 10, 10, 20, 50, 100
121 };
122
123 u32 v;
124 int i, ms, delay_idx;
125 const __be64 *p;
126 u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
127 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
128
129 /*
130 * Commands must be multiples of 16 bytes in length and may not be
131 * larger than the size of the Mailbox Data register array.
132 */
133 if ((size % 16) != 0 ||
134 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
135 return -EINVAL;
136
137 /*
138 * Loop trying to get ownership of the mailbox. Return an error
139 * if we can't gain ownership.
140 */
141 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
142 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
143 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
144 if (v != MBOX_OWNER_DRV)
145 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
146
147 /*
148 * Write the command array into the Mailbox Data register array and
149 * transfer ownership of the mailbox to the firmware.
150 */
151 for (i = 0, p = cmd; i < size; i += 8)
152 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
153 t4_write_reg(adapter, mbox_ctl,
154 MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
155 t4_read_reg(adapter, mbox_ctl); /* flush write */
156
157 /*
158 * Spin waiting for firmware to acknowledge processing our command.
159 */
160 delay_idx = 0;
161 ms = delay[0];
162
163 for (i = 0; i < 500; i += ms) {
164 if (sleep_ok) {
165 ms = delay[delay_idx];
Casey Leedom024e6292010-07-19 17:51:46 -0700166 if (delay_idx < ARRAY_SIZE(delay) - 1)
Casey Leedom16f8bd42010-06-25 12:12:54 +0000167 delay_idx++;
168 msleep(ms);
169 } else
170 mdelay(ms);
171
172 /*
173 * If we're the owner, see if this is the reply we wanted.
174 */
175 v = t4_read_reg(adapter, mbox_ctl);
176 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
177 /*
178 * If the Message Valid bit isn't on, revoke ownership
179 * of the mailbox and continue waiting for our reply.
180 */
181 if ((v & MBMSGVALID) == 0) {
182 t4_write_reg(adapter, mbox_ctl,
183 MBOWNER(MBOX_OWNER_NONE));
184 continue;
185 }
186
187 /*
188 * We now have our reply. Extract the command return
189 * value, copy the reply back to our caller's buffer
190 * (if specified) and revoke ownership of the mailbox.
191 * We return the (negated) firmware command return
192 * code (this depends on FW_SUCCESS == 0).
193 */
194
195 /* return value in low-order little-endian word */
196 v = t4_read_reg(adapter, mbox_data);
197 if (FW_CMD_RETVAL_GET(v))
198 dump_mbox(adapter, "FW Error", mbox_data);
199
200 if (rpl) {
201 /* request bit in high-order BE word */
202 WARN_ON((be32_to_cpu(*(const u32 *)cmd)
203 & FW_CMD_REQUEST) == 0);
204 get_mbox_rpl(adapter, rpl, size, mbox_data);
205 WARN_ON((be32_to_cpu(*(u32 *)rpl)
206 & FW_CMD_REQUEST) != 0);
207 }
208 t4_write_reg(adapter, mbox_ctl,
209 MBOWNER(MBOX_OWNER_NONE));
210 return -FW_CMD_RETVAL_GET(v);
211 }
212 }
213
214 /*
215 * We timed out. Return the error ...
216 */
217 dump_mbox(adapter, "FW Timeout", mbox_data);
218 return -ETIMEDOUT;
219}
220
221/**
222 * hash_mac_addr - return the hash value of a MAC address
223 * @addr: the 48-bit Ethernet MAC address
224 *
225 * Hashes a MAC address according to the hash function used by hardware
226 * inexact (hash) address matching.
227 */
228static int hash_mac_addr(const u8 *addr)
229{
230 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
231 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
232 a ^= b;
233 a ^= (a >> 12);
234 a ^= (a >> 6);
235 return a & 0x3f;
236}
237
238/**
239 * init_link_config - initialize a link's SW state
240 * @lc: structure holding the link state
241 * @caps: link capabilities
242 *
243 * Initializes the SW state maintained for each link, including the link's
244 * capabilities and default speed/flow-control/autonegotiation settings.
245 */
246static void __devinit init_link_config(struct link_config *lc,
247 unsigned int caps)
248{
249 lc->supported = caps;
250 lc->requested_speed = 0;
251 lc->speed = 0;
252 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
253 if (lc->supported & SUPPORTED_Autoneg) {
254 lc->advertising = lc->supported;
255 lc->autoneg = AUTONEG_ENABLE;
256 lc->requested_fc |= PAUSE_AUTONEG;
257 } else {
258 lc->advertising = 0;
259 lc->autoneg = AUTONEG_DISABLE;
260 }
261}
262
263/**
264 * t4vf_port_init - initialize port hardware/software state
265 * @adapter: the adapter
266 * @pidx: the adapter port index
267 */
268int __devinit t4vf_port_init(struct adapter *adapter, int pidx)
269{
270 struct port_info *pi = adap2pinfo(adapter, pidx);
271 struct fw_vi_cmd vi_cmd, vi_rpl;
272 struct fw_port_cmd port_cmd, port_rpl;
273 int v;
274 u32 word;
275
276 /*
277 * Execute a VI Read command to get our Virtual Interface information
278 * like MAC address, etc.
279 */
280 memset(&vi_cmd, 0, sizeof(vi_cmd));
281 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
282 FW_CMD_REQUEST |
283 FW_CMD_READ);
284 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
285 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
286 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
287 if (v)
288 return v;
289
290 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
291 pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
292 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
293
294 /*
295 * If we don't have read access to our port information, we're done
296 * now. Otherwise, execute a PORT Read command to get it ...
297 */
298 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
299 return 0;
300
301 memset(&port_cmd, 0, sizeof(port_cmd));
302 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
303 FW_CMD_REQUEST |
304 FW_CMD_READ |
305 FW_PORT_CMD_PORTID(pi->port_id));
306 port_cmd.action_to_len16 =
307 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
308 FW_LEN16(port_cmd));
309 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
310 if (v)
311 return v;
312
313 v = 0;
314 word = be16_to_cpu(port_rpl.u.info.pcap);
315 if (word & FW_PORT_CAP_SPEED_100M)
316 v |= SUPPORTED_100baseT_Full;
317 if (word & FW_PORT_CAP_SPEED_1G)
318 v |= SUPPORTED_1000baseT_Full;
319 if (word & FW_PORT_CAP_SPEED_10G)
320 v |= SUPPORTED_10000baseT_Full;
321 if (word & FW_PORT_CAP_ANEG)
322 v |= SUPPORTED_Autoneg;
323 init_link_config(&pi->link_cfg, v);
324
325 return 0;
326}
327
328/**
Casey Leedome68e6132010-11-11 09:06:53 +0000329 * t4vf_fw_reset - issue a reset to FW
330 * @adapter: the adapter
331 *
332 * Issues a reset command to FW. For a Physical Function this would
333 * result in the Firmware reseting all of its state. For a Virtual
334 * Function this just resets the state associated with the VF.
335 */
336int t4vf_fw_reset(struct adapter *adapter)
337{
338 struct fw_reset_cmd cmd;
339
340 memset(&cmd, 0, sizeof(cmd));
341 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
342 FW_CMD_WRITE);
343 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
344 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
345}
346
347/**
Casey Leedom16f8bd42010-06-25 12:12:54 +0000348 * t4vf_query_params - query FW or device parameters
349 * @adapter: the adapter
350 * @nparams: the number of parameters
351 * @params: the parameter names
352 * @vals: the parameter values
353 *
354 * Reads the values of firmware or device parameters. Up to 7 parameters
355 * can be queried at once.
356 */
357int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
358 const u32 *params, u32 *vals)
359{
360 int i, ret;
361 struct fw_params_cmd cmd, rpl;
362 struct fw_params_param *p;
363 size_t len16;
364
365 if (nparams > 7)
366 return -EINVAL;
367
368 memset(&cmd, 0, sizeof(cmd));
369 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
370 FW_CMD_REQUEST |
371 FW_CMD_READ);
372 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
373 param[nparams].mnem), 16);
374 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
375 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
376 p->mnem = htonl(*params++);
377
378 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
379 if (ret == 0)
380 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
381 *vals++ = be32_to_cpu(p->val);
382 return ret;
383}
384
385/**
386 * t4vf_set_params - sets FW or device parameters
387 * @adapter: the adapter
388 * @nparams: the number of parameters
389 * @params: the parameter names
390 * @vals: the parameter values
391 *
392 * Sets the values of firmware or device parameters. Up to 7 parameters
393 * can be specified at once.
394 */
395int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
396 const u32 *params, const u32 *vals)
397{
398 int i;
399 struct fw_params_cmd cmd;
400 struct fw_params_param *p;
401 size_t len16;
402
403 if (nparams > 7)
404 return -EINVAL;
405
406 memset(&cmd, 0, sizeof(cmd));
407 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
408 FW_CMD_REQUEST |
409 FW_CMD_WRITE);
410 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
411 param[nparams]), 16);
412 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
413 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
414 p->mnem = cpu_to_be32(*params++);
415 p->val = cpu_to_be32(*vals++);
416 }
417
418 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
419}
420
421/**
422 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
423 * @adapter: the adapter
424 *
425 * Retrieves various core SGE parameters in the form of hardware SGE
426 * register values. The caller is responsible for decoding these as
427 * needed. The SGE parameters are stored in @adapter->params.sge.
428 */
429int t4vf_get_sge_params(struct adapter *adapter)
430{
431 struct sge_params *sge_params = &adapter->params.sge;
432 u32 params[7], vals[7];
433 int v;
434
435 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
436 FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
437 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
438 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
439 params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
440 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
441 params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
442 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
443 params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
444 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
445 params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
446 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
447 params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
448 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
449 v = t4vf_query_params(adapter, 7, params, vals);
450 if (v)
451 return v;
452 sge_params->sge_control = vals[0];
453 sge_params->sge_host_page_size = vals[1];
454 sge_params->sge_fl_buffer_size[0] = vals[2];
455 sge_params->sge_fl_buffer_size[1] = vals[3];
456 sge_params->sge_timer_value_0_and_1 = vals[4];
457 sge_params->sge_timer_value_2_and_3 = vals[5];
458 sge_params->sge_timer_value_4_and_5 = vals[6];
459
460 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
461 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
462 v = t4vf_query_params(adapter, 1, params, vals);
463 if (v)
464 return v;
465 sge_params->sge_ingress_rx_threshold = vals[0];
466
467 return 0;
468}
469
470/**
471 * t4vf_get_vpd_params - retrieve device VPD paremeters
472 * @adapter: the adapter
473 *
474 * Retrives various device Vital Product Data parameters. The parameters
475 * are stored in @adapter->params.vpd.
476 */
477int t4vf_get_vpd_params(struct adapter *adapter)
478{
479 struct vpd_params *vpd_params = &adapter->params.vpd;
480 u32 params[7], vals[7];
481 int v;
482
483 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
484 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
485 v = t4vf_query_params(adapter, 1, params, vals);
486 if (v)
487 return v;
488 vpd_params->cclk = vals[0];
489
490 return 0;
491}
492
493/**
494 * t4vf_get_dev_params - retrieve device paremeters
495 * @adapter: the adapter
496 *
497 * Retrives various device parameters. The parameters are stored in
498 * @adapter->params.dev.
499 */
500int t4vf_get_dev_params(struct adapter *adapter)
501{
502 struct dev_params *dev_params = &adapter->params.dev;
503 u32 params[7], vals[7];
504 int v;
505
506 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
507 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
508 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
509 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
510 v = t4vf_query_params(adapter, 2, params, vals);
511 if (v)
512 return v;
513 dev_params->fwrev = vals[0];
514 dev_params->tprev = vals[1];
515
516 return 0;
517}
518
519/**
520 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
521 * @adapter: the adapter
522 *
523 * Retrieves global RSS mode and parameters with which we have to live
524 * and stores them in the @adapter's RSS parameters.
525 */
526int t4vf_get_rss_glb_config(struct adapter *adapter)
527{
528 struct rss_params *rss = &adapter->params.rss;
529 struct fw_rss_glb_config_cmd cmd, rpl;
530 int v;
531
532 /*
533 * Execute an RSS Global Configuration read command to retrieve
534 * our RSS configuration.
535 */
536 memset(&cmd, 0, sizeof(cmd));
537 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
538 FW_CMD_REQUEST |
539 FW_CMD_READ);
540 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
541 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
542 if (v)
543 return v;
544
545 /*
546 * Transate the big-endian RSS Global Configuration into our
547 * cpu-endian format based on the RSS mode. We also do first level
548 * filtering at this point to weed out modes which don't support
549 * VF Drivers ...
550 */
551 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
552 be32_to_cpu(rpl.u.manual.mode_pkd));
553 switch (rss->mode) {
554 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
555 u32 word = be32_to_cpu(
556 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
557
558 rss->u.basicvirtual.synmapen =
559 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
560 rss->u.basicvirtual.syn4tupenipv6 =
561 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
562 rss->u.basicvirtual.syn2tupenipv6 =
563 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
564 rss->u.basicvirtual.syn4tupenipv4 =
565 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
566 rss->u.basicvirtual.syn2tupenipv4 =
567 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
568
569 rss->u.basicvirtual.ofdmapen =
570 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
571
572 rss->u.basicvirtual.tnlmapen =
573 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
574 rss->u.basicvirtual.tnlalllookup =
575 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
576
577 rss->u.basicvirtual.hashtoeplitz =
578 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
579
580 /* we need at least Tunnel Map Enable to be set */
581 if (!rss->u.basicvirtual.tnlmapen)
582 return -EINVAL;
583 break;
584 }
585
586 default:
587 /* all unknown/unsupported RSS modes result in an error */
588 return -EINVAL;
589 }
590
591 return 0;
592}
593
594/**
595 * t4vf_get_vfres - retrieve VF resource limits
596 * @adapter: the adapter
597 *
598 * Retrieves configured resource limits and capabilities for a virtual
599 * function. The results are stored in @adapter->vfres.
600 */
601int t4vf_get_vfres(struct adapter *adapter)
602{
603 struct vf_resources *vfres = &adapter->params.vfres;
604 struct fw_pfvf_cmd cmd, rpl;
605 int v;
606 u32 word;
607
608 /*
609 * Execute PFVF Read command to get VF resource limits; bail out early
610 * with error on command failure.
611 */
612 memset(&cmd, 0, sizeof(cmd));
613 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
614 FW_CMD_REQUEST |
615 FW_CMD_READ);
616 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
617 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
618 if (v)
619 return v;
620
621 /*
622 * Extract VF resource limits and return success.
623 */
624 word = be32_to_cpu(rpl.niqflint_niq);
625 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
626 vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
627
628 word = be32_to_cpu(rpl.type_to_neq);
629 vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
630 vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
631
632 word = be32_to_cpu(rpl.tc_to_nexactf);
633 vfres->tc = FW_PFVF_CMD_TC_GET(word);
634 vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
635 vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
636
637 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
638 vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
639 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
640 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
641
642 return 0;
643}
644
645/**
646 * t4vf_read_rss_vi_config - read a VI's RSS configuration
647 * @adapter: the adapter
648 * @viid: Virtual Interface ID
649 * @config: pointer to host-native VI RSS Configuration buffer
650 *
651 * Reads the Virtual Interface's RSS configuration information and
652 * translates it into CPU-native format.
653 */
654int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
655 union rss_vi_config *config)
656{
657 struct fw_rss_vi_config_cmd cmd, rpl;
658 int v;
659
660 memset(&cmd, 0, sizeof(cmd));
661 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
662 FW_CMD_REQUEST |
663 FW_CMD_READ |
664 FW_RSS_VI_CONFIG_CMD_VIID(viid));
665 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
666 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
667 if (v)
668 return v;
669
670 switch (adapter->params.rss.mode) {
671 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
672 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
673
674 config->basicvirtual.ip6fourtupen =
675 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
676 config->basicvirtual.ip6twotupen =
677 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
678 config->basicvirtual.ip4fourtupen =
679 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
680 config->basicvirtual.ip4twotupen =
681 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
682 config->basicvirtual.udpen =
683 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
684 config->basicvirtual.defaultq =
685 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
686 break;
687 }
688
689 default:
690 return -EINVAL;
691 }
692
693 return 0;
694}
695
696/**
697 * t4vf_write_rss_vi_config - write a VI's RSS configuration
698 * @adapter: the adapter
699 * @viid: Virtual Interface ID
700 * @config: pointer to host-native VI RSS Configuration buffer
701 *
702 * Write the Virtual Interface's RSS configuration information
703 * (translating it into firmware-native format before writing).
704 */
705int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
706 union rss_vi_config *config)
707{
708 struct fw_rss_vi_config_cmd cmd, rpl;
709
710 memset(&cmd, 0, sizeof(cmd));
711 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
712 FW_CMD_REQUEST |
713 FW_CMD_WRITE |
714 FW_RSS_VI_CONFIG_CMD_VIID(viid));
715 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
716 switch (adapter->params.rss.mode) {
717 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
718 u32 word = 0;
719
720 if (config->basicvirtual.ip6fourtupen)
721 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
722 if (config->basicvirtual.ip6twotupen)
723 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
724 if (config->basicvirtual.ip4fourtupen)
725 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
726 if (config->basicvirtual.ip4twotupen)
727 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
728 if (config->basicvirtual.udpen)
729 word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
730 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
731 config->basicvirtual.defaultq);
732 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
733 break;
734 }
735
736 default:
737 return -EINVAL;
738 }
739
740 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
741}
742
743/**
744 * t4vf_config_rss_range - configure a portion of the RSS mapping table
745 * @adapter: the adapter
746 * @viid: Virtual Interface of RSS Table Slice
747 * @start: starting entry in the table to write
748 * @n: how many table entries to write
749 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
750 * @nrspq: number of values in @rspq
751 *
752 * Programs the selected part of the VI's RSS mapping table with the
753 * provided values. If @nrspq < @n the supplied values are used repeatedly
754 * until the full table range is populated.
755 *
756 * The caller must ensure the values in @rspq are in the range 0..1023.
757 */
758int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
759 int start, int n, const u16 *rspq, int nrspq)
760{
761 const u16 *rsp = rspq;
762 const u16 *rsp_end = rspq+nrspq;
763 struct fw_rss_ind_tbl_cmd cmd;
764
765 /*
766 * Initialize firmware command template to write the RSS table.
767 */
768 memset(&cmd, 0, sizeof(cmd));
769 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
770 FW_CMD_REQUEST |
771 FW_CMD_WRITE |
772 FW_RSS_IND_TBL_CMD_VIID(viid));
773 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
774
775 /*
776 * Each firmware RSS command can accommodate up to 32 RSS Ingress
777 * Queue Identifiers. These Ingress Queue IDs are packed three to
778 * a 32-bit word as 10-bit values with the upper remaining 2 bits
779 * reserved.
780 */
781 while (n > 0) {
782 __be32 *qp = &cmd.iq0_to_iq2;
783 int nq = min(n, 32);
784 int ret;
785
786 /*
787 * Set up the firmware RSS command header to send the next
788 * "nq" Ingress Queue IDs to the firmware.
789 */
790 cmd.niqid = cpu_to_be16(nq);
791 cmd.startidx = cpu_to_be16(start);
792
793 /*
794 * "nq" more done for the start of the next loop.
795 */
796 start += nq;
797 n -= nq;
798
799 /*
800 * While there are still Ingress Queue IDs to stuff into the
801 * current firmware RSS command, retrieve them from the
802 * Ingress Queue ID array and insert them into the command.
803 */
804 while (nq > 0) {
805 /*
806 * Grab up to the next 3 Ingress Queue IDs (wrapping
807 * around the Ingress Queue ID array if necessary) and
808 * insert them into the firmware RSS command at the
809 * current 3-tuple position within the commad.
810 */
811 u16 qbuf[3];
812 u16 *qbp = qbuf;
813 int nqbuf = min(3, nq);
814
815 nq -= nqbuf;
816 qbuf[0] = qbuf[1] = qbuf[2] = 0;
817 while (nqbuf) {
818 nqbuf--;
819 *qbp++ = *rsp++;
820 if (rsp >= rsp_end)
821 rsp = rspq;
822 }
823 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
824 FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
825 FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
826 }
827
828 /*
829 * Send this portion of the RRS table update to the firmware;
830 * bail out on any errors.
831 */
832 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
833 if (ret)
834 return ret;
835 }
836 return 0;
837}
838
839/**
840 * t4vf_alloc_vi - allocate a virtual interface on a port
841 * @adapter: the adapter
842 * @port_id: physical port associated with the VI
843 *
844 * Allocate a new Virtual Interface and bind it to the indicated
845 * physical port. Return the new Virtual Interface Identifier on
846 * success, or a [negative] error number on failure.
847 */
848int t4vf_alloc_vi(struct adapter *adapter, int port_id)
849{
850 struct fw_vi_cmd cmd, rpl;
851 int v;
852
853 /*
854 * Execute a VI command to allocate Virtual Interface and return its
855 * VIID.
856 */
857 memset(&cmd, 0, sizeof(cmd));
858 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
859 FW_CMD_REQUEST |
860 FW_CMD_WRITE |
861 FW_CMD_EXEC);
862 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
863 FW_VI_CMD_ALLOC);
864 cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
865 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
866 if (v)
867 return v;
868
869 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
870}
871
872/**
873 * t4vf_free_vi -- free a virtual interface
874 * @adapter: the adapter
875 * @viid: the virtual interface identifier
876 *
877 * Free a previously allocated Virtual Interface. Return an error on
878 * failure.
879 */
880int t4vf_free_vi(struct adapter *adapter, int viid)
881{
882 struct fw_vi_cmd cmd;
883
884 /*
885 * Execute a VI command to free the Virtual Interface.
886 */
887 memset(&cmd, 0, sizeof(cmd));
888 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
889 FW_CMD_REQUEST |
890 FW_CMD_EXEC);
891 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
892 FW_VI_CMD_FREE);
893 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
894 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
895}
896
897/**
898 * t4vf_enable_vi - enable/disable a virtual interface
899 * @adapter: the adapter
900 * @viid: the Virtual Interface ID
901 * @rx_en: 1=enable Rx, 0=disable Rx
902 * @tx_en: 1=enable Tx, 0=disable Tx
903 *
904 * Enables/disables a virtual interface.
905 */
906int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
907 bool rx_en, bool tx_en)
908{
909 struct fw_vi_enable_cmd cmd;
910
911 memset(&cmd, 0, sizeof(cmd));
912 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
913 FW_CMD_REQUEST |
914 FW_CMD_EXEC |
915 FW_VI_ENABLE_CMD_VIID(viid));
916 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
917 FW_VI_ENABLE_CMD_EEN(tx_en) |
918 FW_LEN16(cmd));
919 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
920}
921
922/**
923 * t4vf_identify_port - identify a VI's port by blinking its LED
924 * @adapter: the adapter
925 * @viid: the Virtual Interface ID
926 * @nblinks: how many times to blink LED at 2.5 Hz
927 *
928 * Identifies a VI's port by blinking its LED.
929 */
930int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
931 unsigned int nblinks)
932{
933 struct fw_vi_enable_cmd cmd;
934
935 memset(&cmd, 0, sizeof(cmd));
936 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
937 FW_CMD_REQUEST |
938 FW_CMD_EXEC |
939 FW_VI_ENABLE_CMD_VIID(viid));
940 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
941 FW_LEN16(cmd));
942 cmd.blinkdur = cpu_to_be16(nblinks);
943 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
944}
945
946/**
947 * t4vf_set_rxmode - set Rx properties of a virtual interface
948 * @adapter: the adapter
949 * @viid: the VI id
950 * @mtu: the new MTU or -1 for no change
951 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
952 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
953 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
954 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
955 * -1 no change
956 *
957 * Sets Rx properties of a virtual interface.
958 */
959int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
960 int mtu, int promisc, int all_multi, int bcast, int vlanex,
961 bool sleep_ok)
962{
963 struct fw_vi_rxmode_cmd cmd;
964
965 /* convert to FW values */
966 if (mtu < 0)
967 mtu = FW_VI_RXMODE_CMD_MTU_MASK;
968 if (promisc < 0)
969 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
970 if (all_multi < 0)
971 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
972 if (bcast < 0)
973 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
974 if (vlanex < 0)
975 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
976
977 memset(&cmd, 0, sizeof(cmd));
978 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
979 FW_CMD_REQUEST |
980 FW_CMD_WRITE |
981 FW_VI_RXMODE_CMD_VIID(viid));
982 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
983 cmd.mtu_to_vlanexen =
984 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
985 FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
986 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
987 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
988 FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
989 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
990}
991
992/**
993 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
994 * @adapter: the adapter
995 * @viid: the Virtual Interface Identifier
996 * @free: if true any existing filters for this VI id are first removed
997 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
998 * @addr: the MAC address(es)
999 * @idx: where to store the index of each allocated filter
1000 * @hash: pointer to hash address filter bitmap
1001 * @sleep_ok: call is allowed to sleep
1002 *
1003 * Allocates an exact-match filter for each of the supplied addresses and
1004 * sets it to the corresponding address. If @idx is not %NULL it should
1005 * have at least @naddr entries, each of which will be set to the index of
1006 * the filter allocated for the corresponding MAC address. If a filter
1007 * could not be allocated for an address its index is set to 0xffff.
1008 * If @hash is not %NULL addresses that fail to allocate an exact filter
1009 * are hashed and update the hash filter bitmap pointed at by @hash.
1010 *
1011 * Returns a negative error number or the number of filters allocated.
1012 */
1013int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1014 unsigned int naddr, const u8 **addr, u16 *idx,
1015 u64 *hash, bool sleep_ok)
1016{
Casey Leedom42eb59d2010-11-24 12:23:57 +00001017 int offset, ret = 0;
1018 unsigned nfilters = 0;
1019 unsigned int rem = naddr;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001020 struct fw_vi_mac_cmd cmd, rpl;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001021
Casey Leedom42eb59d2010-11-24 12:23:57 +00001022 if (naddr > FW_CLS_TCAM_NUM_ENTRIES)
Casey Leedom16f8bd42010-06-25 12:12:54 +00001023 return -EINVAL;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001024
Casey Leedom42eb59d2010-11-24 12:23:57 +00001025 for (offset = 0; offset < naddr; /**/) {
1026 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1027 ? rem
1028 : ARRAY_SIZE(cmd.u.exact));
1029 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1030 u.exact[fw_naddr]), 16);
1031 struct fw_vi_mac_exact *p;
1032 int i;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001033
Casey Leedom42eb59d2010-11-24 12:23:57 +00001034 memset(&cmd, 0, sizeof(cmd));
1035 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1036 FW_CMD_REQUEST |
1037 FW_CMD_WRITE |
1038 (free ? FW_CMD_EXEC : 0) |
1039 FW_VI_MAC_CMD_VIID(viid));
1040 cmd.freemacs_to_len16 =
1041 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1042 FW_CMD_LEN16(len16));
1043
1044 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1045 p->valid_to_idx = cpu_to_be16(
1046 FW_VI_MAC_CMD_VALID |
1047 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1048 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1049 }
1050
1051
1052 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1053 sleep_ok);
1054 if (ret && ret != -ENOMEM)
1055 break;
1056
1057 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1058 u16 index = FW_VI_MAC_CMD_IDX_GET(
1059 be16_to_cpu(p->valid_to_idx));
1060
1061 if (idx)
1062 idx[offset+i] =
1063 (index >= FW_CLS_TCAM_NUM_ENTRIES
1064 ? 0xffff
1065 : index);
1066 if (index < FW_CLS_TCAM_NUM_ENTRIES)
1067 nfilters++;
1068 else if (hash)
1069 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1070 }
1071
1072 free = false;
1073 offset += fw_naddr;
1074 rem -= fw_naddr;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001075 }
1076
Casey Leedom42eb59d2010-11-24 12:23:57 +00001077 /*
1078 * If there were no errors or we merely ran out of room in our MAC
1079 * address arena, return the number of filters actually written.
1080 */
1081 if (ret == 0 || ret == -ENOMEM)
1082 ret = nfilters;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001083 return ret;
1084}
1085
1086/**
1087 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1088 * @adapter: the adapter
1089 * @viid: the Virtual Interface ID
1090 * @idx: index of existing filter for old value of MAC address, or -1
1091 * @addr: the new MAC address value
1092 * @persist: if idx < 0, the new MAC allocation should be persistent
1093 *
1094 * Modifies an exact-match filter and sets it to the new MAC address.
1095 * Note that in general it is not possible to modify the value of a given
1096 * filter so the generic way to modify an address filter is to free the
1097 * one being used by the old address value and allocate a new filter for
1098 * the new address value. @idx can be -1 if the address is a new
1099 * addition.
1100 *
1101 * Returns a negative error number or the index of the filter with the new
1102 * MAC value.
1103 */
1104int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1105 int idx, const u8 *addr, bool persist)
1106{
1107 int ret;
1108 struct fw_vi_mac_cmd cmd, rpl;
1109 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1110 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1111 u.exact[1]), 16);
1112
1113 /*
1114 * If this is a new allocation, determine whether it should be
1115 * persistent (across a "freemacs" operation) or not.
1116 */
1117 if (idx < 0)
1118 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1119
1120 memset(&cmd, 0, sizeof(cmd));
1121 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1122 FW_CMD_REQUEST |
1123 FW_CMD_WRITE |
1124 FW_VI_MAC_CMD_VIID(viid));
1125 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1126 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1127 FW_VI_MAC_CMD_IDX(idx));
1128 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1129
1130 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1131 if (ret == 0) {
1132 p = &rpl.u.exact[0];
1133 ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1134 if (ret >= FW_CLS_TCAM_NUM_ENTRIES)
1135 ret = -ENOMEM;
1136 }
1137 return ret;
1138}
1139
1140/**
1141 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1142 * @adapter: the adapter
1143 * @viid: the Virtual Interface Identifier
1144 * @ucast: whether the hash filter should also match unicast addresses
1145 * @vec: the value to be written to the hash filter
1146 * @sleep_ok: call is allowed to sleep
1147 *
1148 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1149 */
1150int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1151 bool ucast, u64 vec, bool sleep_ok)
1152{
1153 struct fw_vi_mac_cmd cmd;
1154 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1155 u.exact[0]), 16);
1156
1157 memset(&cmd, 0, sizeof(cmd));
1158 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1159 FW_CMD_REQUEST |
1160 FW_CMD_WRITE |
1161 FW_VI_ENABLE_CMD_VIID(viid));
1162 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1163 FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1164 FW_CMD_LEN16(len16));
1165 cmd.u.hash.hashvec = cpu_to_be64(vec);
1166 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1167}
1168
1169/**
1170 * t4vf_get_port_stats - collect "port" statistics
1171 * @adapter: the adapter
1172 * @pidx: the port index
1173 * @s: the stats structure to fill
1174 *
1175 * Collect statistics for the "port"'s Virtual Interface.
1176 */
1177int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1178 struct t4vf_port_stats *s)
1179{
1180 struct port_info *pi = adap2pinfo(adapter, pidx);
1181 struct fw_vi_stats_vf fwstats;
1182 unsigned int rem = VI_VF_NUM_STATS;
1183 __be64 *fwsp = (__be64 *)&fwstats;
1184
1185 /*
1186 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1187 * commands. We could use a Work Request and get all of them at once
1188 * but that's an asynchronous interface which is awkward to use.
1189 */
1190 while (rem) {
1191 unsigned int ix = VI_VF_NUM_STATS - rem;
1192 unsigned int nstats = min(6U, rem);
1193 struct fw_vi_stats_cmd cmd, rpl;
1194 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1195 sizeof(struct fw_vi_stats_ctl));
1196 size_t len16 = DIV_ROUND_UP(len, 16);
1197 int ret;
1198
1199 memset(&cmd, 0, sizeof(cmd));
1200 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1201 FW_VI_STATS_CMD_VIID(pi->viid) |
1202 FW_CMD_REQUEST |
1203 FW_CMD_READ);
1204 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1205 cmd.u.ctl.nstats_ix =
1206 cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1207 FW_VI_STATS_CMD_NSTATS(nstats));
1208 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1209 if (ret)
1210 return ret;
1211
1212 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1213
1214 rem -= nstats;
1215 fwsp += nstats;
1216 }
1217
1218 /*
1219 * Translate firmware statistics into host native statistics.
1220 */
1221 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1222 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1223 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1224 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1225 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1226 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1227 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1228 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1229 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1230
1231 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1232 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1233 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1234 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1235 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1236 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1237
1238 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1239
1240 return 0;
1241}
1242
1243/**
1244 * t4vf_iq_free - free an ingress queue and its free lists
1245 * @adapter: the adapter
1246 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1247 * @iqid: ingress queue ID
1248 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1249 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1250 *
1251 * Frees an ingress queue and its associated free lists, if any.
1252 */
1253int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1254 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1255{
1256 struct fw_iq_cmd cmd;
1257
1258 memset(&cmd, 0, sizeof(cmd));
1259 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1260 FW_CMD_REQUEST |
1261 FW_CMD_EXEC);
1262 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1263 FW_LEN16(cmd));
1264 cmd.type_to_iqandstindex =
1265 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1266
1267 cmd.iqid = cpu_to_be16(iqid);
1268 cmd.fl0id = cpu_to_be16(fl0id);
1269 cmd.fl1id = cpu_to_be16(fl1id);
1270 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1271}
1272
1273/**
1274 * t4vf_eth_eq_free - free an Ethernet egress queue
1275 * @adapter: the adapter
1276 * @eqid: egress queue ID
1277 *
1278 * Frees an Ethernet egress queue.
1279 */
1280int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1281{
1282 struct fw_eq_eth_cmd cmd;
1283
1284 memset(&cmd, 0, sizeof(cmd));
1285 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1286 FW_CMD_REQUEST |
1287 FW_CMD_EXEC);
1288 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1289 FW_LEN16(cmd));
1290 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1291 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1292}
1293
1294/**
1295 * t4vf_handle_fw_rpl - process a firmware reply message
1296 * @adapter: the adapter
1297 * @rpl: start of the firmware message
1298 *
1299 * Processes a firmware message, such as link state change messages.
1300 */
1301int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1302{
Casey Leedomcaedda32010-11-11 09:30:40 +00001303 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001304 u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1305
1306 switch (opcode) {
1307 case FW_PORT_CMD: {
1308 /*
1309 * Link/module state change message.
1310 */
Casey Leedomcaedda32010-11-11 09:30:40 +00001311 const struct fw_port_cmd *port_cmd =
1312 (const struct fw_port_cmd *)rpl;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001313 u32 word;
1314 int action, port_id, link_ok, speed, fc, pidx;
1315
1316 /*
1317 * Extract various fields from port status change message.
1318 */
1319 action = FW_PORT_CMD_ACTION_GET(
1320 be32_to_cpu(port_cmd->action_to_len16));
1321 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1322 dev_err(adapter->pdev_dev,
1323 "Unknown firmware PORT reply action %x\n",
1324 action);
1325 break;
1326 }
1327
1328 port_id = FW_PORT_CMD_PORTID_GET(
1329 be32_to_cpu(port_cmd->op_to_portid));
1330
1331 word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1332 link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1333 speed = 0;
1334 fc = 0;
1335 if (word & FW_PORT_CMD_RXPAUSE)
1336 fc |= PAUSE_RX;
1337 if (word & FW_PORT_CMD_TXPAUSE)
1338 fc |= PAUSE_TX;
1339 if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
1340 speed = SPEED_100;
1341 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
1342 speed = SPEED_1000;
1343 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
1344 speed = SPEED_10000;
1345
1346 /*
1347 * Scan all of our "ports" (Virtual Interfaces) looking for
1348 * those bound to the physical port which has changed. If
1349 * our recorded state doesn't match the current state,
1350 * signal that change to the OS code.
1351 */
1352 for_each_port(adapter, pidx) {
1353 struct port_info *pi = adap2pinfo(adapter, pidx);
1354 struct link_config *lc;
1355
1356 if (pi->port_id != port_id)
1357 continue;
1358
1359 lc = &pi->link_cfg;
1360 if (link_ok != lc->link_ok || speed != lc->speed ||
1361 fc != lc->fc) {
1362 /* something changed */
1363 lc->link_ok = link_ok;
1364 lc->speed = speed;
1365 lc->fc = fc;
1366 t4vf_os_link_changed(adapter, pidx, link_ok);
1367 }
1368 }
1369 break;
1370 }
1371
1372 default:
1373 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1374 opcode);
1375 }
1376 return 0;
1377}