Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 1 | /* vi: set sw = 4 ts = 4: */ |
| 2 | /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). |
| 3 | |
| 4 | Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), |
| 5 | which also acknowledges contributions by Mike Burrows, David Wheeler, |
| 6 | Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, |
| 7 | Robert Sedgewick, and Jon L. Bentley. |
| 8 | |
| 9 | This code is licensed under the LGPLv2: |
| 10 | LGPL (http://www.gnu.org/copyleft/lgpl.html |
| 11 | */ |
| 12 | |
| 13 | /* |
| 14 | Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). |
| 15 | |
| 16 | More efficient reading of Huffman codes, a streamlined read_bunzip() |
| 17 | function, and various other tweaks. In (limited) tests, approximately |
| 18 | 20% faster than bzcat on x86 and about 10% faster on arm. |
| 19 | |
| 20 | Note that about 2/3 of the time is spent in read_unzip() reversing |
| 21 | the Burrows-Wheeler transformation. Much of that time is delay |
| 22 | resulting from cache misses. |
| 23 | |
| 24 | I would ask that anyone benefiting from this work, especially those |
| 25 | using it in commercial products, consider making a donation to my local |
| 26 | non-profit hospice organization in the name of the woman I loved, who |
| 27 | passed away Feb. 12, 2003. |
| 28 | |
| 29 | In memory of Toni W. Hagan |
| 30 | |
| 31 | Hospice of Acadiana, Inc. |
| 32 | 2600 Johnston St., Suite 200 |
| 33 | Lafayette, LA 70503-3240 |
| 34 | |
| 35 | Phone (337) 232-1234 or 1-800-738-2226 |
| 36 | Fax (337) 232-1297 |
| 37 | |
| 38 | http://www.hospiceacadiana.com/ |
| 39 | |
| 40 | Manuel |
| 41 | */ |
| 42 | |
| 43 | /* |
| 44 | Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) |
| 45 | */ |
| 46 | |
| 47 | |
Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 48 | #ifdef STATIC |
| 49 | #define PREBOOT |
| 50 | #else |
Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 51 | #include <linux/decompress/bunzip2.h> |
Albin Tonnerre | 9e5cf0c | 2009-08-06 15:09:32 -0700 | [diff] [blame] | 52 | #include <linux/slab.h> |
Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 53 | #endif /* STATIC */ |
Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 54 | |
| 55 | #include <linux/decompress/mm.h> |
Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 56 | |
| 57 | #ifndef INT_MAX |
| 58 | #define INT_MAX 0x7fffffff |
| 59 | #endif |
| 60 | |
| 61 | /* Constants for Huffman coding */ |
| 62 | #define MAX_GROUPS 6 |
| 63 | #define GROUP_SIZE 50 /* 64 would have been more efficient */ |
| 64 | #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ |
| 65 | #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ |
| 66 | #define SYMBOL_RUNA 0 |
| 67 | #define SYMBOL_RUNB 1 |
| 68 | |
| 69 | /* Status return values */ |
| 70 | #define RETVAL_OK 0 |
| 71 | #define RETVAL_LAST_BLOCK (-1) |
| 72 | #define RETVAL_NOT_BZIP_DATA (-2) |
| 73 | #define RETVAL_UNEXPECTED_INPUT_EOF (-3) |
| 74 | #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) |
| 75 | #define RETVAL_DATA_ERROR (-5) |
| 76 | #define RETVAL_OUT_OF_MEMORY (-6) |
| 77 | #define RETVAL_OBSOLETE_INPUT (-7) |
| 78 | |
| 79 | /* Other housekeeping constants */ |
| 80 | #define BZIP2_IOBUF_SIZE 4096 |
| 81 | |
| 82 | /* This is what we know about each Huffman coding group */ |
| 83 | struct group_data { |
| 84 | /* We have an extra slot at the end of limit[] for a sentinal value. */ |
| 85 | int limit[MAX_HUFCODE_BITS+1]; |
| 86 | int base[MAX_HUFCODE_BITS]; |
| 87 | int permute[MAX_SYMBOLS]; |
| 88 | int minLen, maxLen; |
| 89 | }; |
| 90 | |
| 91 | /* Structure holding all the housekeeping data, including IO buffers and |
| 92 | memory that persists between calls to bunzip */ |
| 93 | struct bunzip_data { |
| 94 | /* State for interrupting output loop */ |
| 95 | int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; |
| 96 | /* I/O tracking data (file handles, buffers, positions, etc.) */ |
| 97 | int (*fill)(void*, unsigned int); |
| 98 | int inbufCount, inbufPos /*, outbufPos*/; |
| 99 | unsigned char *inbuf /*,*outbuf*/; |
| 100 | unsigned int inbufBitCount, inbufBits; |
| 101 | /* The CRC values stored in the block header and calculated from the |
| 102 | data */ |
| 103 | unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; |
| 104 | /* Intermediate buffer and its size (in bytes) */ |
| 105 | unsigned int *dbuf, dbufSize; |
| 106 | /* These things are a bit too big to go on the stack */ |
| 107 | unsigned char selectors[32768]; /* nSelectors = 15 bits */ |
| 108 | struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ |
| 109 | int io_error; /* non-zero if we have IO error */ |
| 110 | }; |
| 111 | |
| 112 | |
| 113 | /* Return the next nnn bits of input. All reads from the compressed input |
| 114 | are done through this function. All reads are big endian */ |
| 115 | static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) |
| 116 | { |
| 117 | unsigned int bits = 0; |
| 118 | |
| 119 | /* If we need to get more data from the byte buffer, do so. |
| 120 | (Loop getting one byte at a time to enforce endianness and avoid |
| 121 | unaligned access.) */ |
| 122 | while (bd->inbufBitCount < bits_wanted) { |
| 123 | /* If we need to read more data from file into byte buffer, do |
| 124 | so */ |
| 125 | if (bd->inbufPos == bd->inbufCount) { |
| 126 | if (bd->io_error) |
| 127 | return 0; |
| 128 | bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); |
| 129 | if (bd->inbufCount <= 0) { |
| 130 | bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; |
| 131 | return 0; |
| 132 | } |
| 133 | bd->inbufPos = 0; |
| 134 | } |
| 135 | /* Avoid 32-bit overflow (dump bit buffer to top of output) */ |
| 136 | if (bd->inbufBitCount >= 24) { |
| 137 | bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); |
| 138 | bits_wanted -= bd->inbufBitCount; |
| 139 | bits <<= bits_wanted; |
| 140 | bd->inbufBitCount = 0; |
| 141 | } |
| 142 | /* Grab next 8 bits of input from buffer. */ |
| 143 | bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; |
| 144 | bd->inbufBitCount += 8; |
| 145 | } |
| 146 | /* Calculate result */ |
| 147 | bd->inbufBitCount -= bits_wanted; |
| 148 | bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); |
| 149 | |
| 150 | return bits; |
| 151 | } |
| 152 | |
| 153 | /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ |
| 154 | |
| 155 | static int INIT get_next_block(struct bunzip_data *bd) |
| 156 | { |
| 157 | struct group_data *hufGroup = NULL; |
| 158 | int *base = NULL; |
| 159 | int *limit = NULL; |
| 160 | int dbufCount, nextSym, dbufSize, groupCount, selector, |
| 161 | i, j, k, t, runPos, symCount, symTotal, nSelectors, |
| 162 | byteCount[256]; |
| 163 | unsigned char uc, symToByte[256], mtfSymbol[256], *selectors; |
| 164 | unsigned int *dbuf, origPtr; |
| 165 | |
| 166 | dbuf = bd->dbuf; |
| 167 | dbufSize = bd->dbufSize; |
| 168 | selectors = bd->selectors; |
| 169 | |
| 170 | /* Read in header signature and CRC, then validate signature. |
| 171 | (last block signature means CRC is for whole file, return now) */ |
| 172 | i = get_bits(bd, 24); |
| 173 | j = get_bits(bd, 24); |
| 174 | bd->headerCRC = get_bits(bd, 32); |
| 175 | if ((i == 0x177245) && (j == 0x385090)) |
| 176 | return RETVAL_LAST_BLOCK; |
| 177 | if ((i != 0x314159) || (j != 0x265359)) |
| 178 | return RETVAL_NOT_BZIP_DATA; |
| 179 | /* We can add support for blockRandomised if anybody complains. |
| 180 | There was some code for this in busybox 1.0.0-pre3, but nobody ever |
| 181 | noticed that it didn't actually work. */ |
| 182 | if (get_bits(bd, 1)) |
| 183 | return RETVAL_OBSOLETE_INPUT; |
| 184 | origPtr = get_bits(bd, 24); |
| 185 | if (origPtr > dbufSize) |
| 186 | return RETVAL_DATA_ERROR; |
| 187 | /* mapping table: if some byte values are never used (encoding things |
| 188 | like ascii text), the compression code removes the gaps to have fewer |
| 189 | symbols to deal with, and writes a sparse bitfield indicating which |
| 190 | values were present. We make a translation table to convert the |
| 191 | symbols back to the corresponding bytes. */ |
| 192 | t = get_bits(bd, 16); |
| 193 | symTotal = 0; |
| 194 | for (i = 0; i < 16; i++) { |
| 195 | if (t&(1 << (15-i))) { |
| 196 | k = get_bits(bd, 16); |
| 197 | for (j = 0; j < 16; j++) |
| 198 | if (k&(1 << (15-j))) |
| 199 | symToByte[symTotal++] = (16*i)+j; |
| 200 | } |
| 201 | } |
| 202 | /* How many different Huffman coding groups does this block use? */ |
| 203 | groupCount = get_bits(bd, 3); |
| 204 | if (groupCount < 2 || groupCount > MAX_GROUPS) |
| 205 | return RETVAL_DATA_ERROR; |
| 206 | /* nSelectors: Every GROUP_SIZE many symbols we select a new |
| 207 | Huffman coding group. Read in the group selector list, |
| 208 | which is stored as MTF encoded bit runs. (MTF = Move To |
| 209 | Front, as each value is used it's moved to the start of the |
| 210 | list.) */ |
| 211 | nSelectors = get_bits(bd, 15); |
| 212 | if (!nSelectors) |
| 213 | return RETVAL_DATA_ERROR; |
| 214 | for (i = 0; i < groupCount; i++) |
| 215 | mtfSymbol[i] = i; |
| 216 | for (i = 0; i < nSelectors; i++) { |
| 217 | /* Get next value */ |
| 218 | for (j = 0; get_bits(bd, 1); j++) |
| 219 | if (j >= groupCount) |
| 220 | return RETVAL_DATA_ERROR; |
| 221 | /* Decode MTF to get the next selector */ |
| 222 | uc = mtfSymbol[j]; |
| 223 | for (; j; j--) |
| 224 | mtfSymbol[j] = mtfSymbol[j-1]; |
| 225 | mtfSymbol[0] = selectors[i] = uc; |
| 226 | } |
| 227 | /* Read the Huffman coding tables for each group, which code |
| 228 | for symTotal literal symbols, plus two run symbols (RUNA, |
| 229 | RUNB) */ |
| 230 | symCount = symTotal+2; |
| 231 | for (j = 0; j < groupCount; j++) { |
| 232 | unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; |
| 233 | int minLen, maxLen, pp; |
| 234 | /* Read Huffman code lengths for each symbol. They're |
| 235 | stored in a way similar to mtf; record a starting |
| 236 | value for the first symbol, and an offset from the |
| 237 | previous value for everys symbol after that. |
| 238 | (Subtracting 1 before the loop and then adding it |
| 239 | back at the end is an optimization that makes the |
| 240 | test inside the loop simpler: symbol length 0 |
| 241 | becomes negative, so an unsigned inequality catches |
| 242 | it.) */ |
| 243 | t = get_bits(bd, 5)-1; |
| 244 | for (i = 0; i < symCount; i++) { |
| 245 | for (;;) { |
| 246 | if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) |
| 247 | return RETVAL_DATA_ERROR; |
| 248 | |
| 249 | /* If first bit is 0, stop. Else |
| 250 | second bit indicates whether to |
| 251 | increment or decrement the value. |
| 252 | Optimization: grab 2 bits and unget |
| 253 | the second if the first was 0. */ |
| 254 | |
| 255 | k = get_bits(bd, 2); |
| 256 | if (k < 2) { |
| 257 | bd->inbufBitCount++; |
| 258 | break; |
| 259 | } |
| 260 | /* Add one if second bit 1, else |
| 261 | * subtract 1. Avoids if/else */ |
| 262 | t += (((k+1)&2)-1); |
| 263 | } |
| 264 | /* Correct for the initial -1, to get the |
| 265 | * final symbol length */ |
| 266 | length[i] = t+1; |
| 267 | } |
| 268 | /* Find largest and smallest lengths in this group */ |
| 269 | minLen = maxLen = length[0]; |
| 270 | |
| 271 | for (i = 1; i < symCount; i++) { |
| 272 | if (length[i] > maxLen) |
| 273 | maxLen = length[i]; |
| 274 | else if (length[i] < minLen) |
| 275 | minLen = length[i]; |
| 276 | } |
| 277 | |
| 278 | /* Calculate permute[], base[], and limit[] tables from |
| 279 | * length[]. |
| 280 | * |
| 281 | * permute[] is the lookup table for converting |
| 282 | * Huffman coded symbols into decoded symbols. base[] |
| 283 | * is the amount to subtract from the value of a |
| 284 | * Huffman symbol of a given length when using |
| 285 | * permute[]. |
| 286 | * |
| 287 | * limit[] indicates the largest numerical value a |
| 288 | * symbol with a given number of bits can have. This |
| 289 | * is how the Huffman codes can vary in length: each |
| 290 | * code with a value > limit[length] needs another |
| 291 | * bit. |
| 292 | */ |
| 293 | hufGroup = bd->groups+j; |
| 294 | hufGroup->minLen = minLen; |
| 295 | hufGroup->maxLen = maxLen; |
| 296 | /* Note that minLen can't be smaller than 1, so we |
| 297 | adjust the base and limit array pointers so we're |
| 298 | not always wasting the first entry. We do this |
| 299 | again when using them (during symbol decoding).*/ |
| 300 | base = hufGroup->base-1; |
| 301 | limit = hufGroup->limit-1; |
André Goddard Rosa | af901ca | 2009-11-14 13:09:05 -0200 | [diff] [blame] | 302 | /* Calculate permute[]. Concurrently, initialize |
Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 303 | * temp[] and limit[]. */ |
| 304 | pp = 0; |
| 305 | for (i = minLen; i <= maxLen; i++) { |
| 306 | temp[i] = limit[i] = 0; |
| 307 | for (t = 0; t < symCount; t++) |
| 308 | if (length[t] == i) |
| 309 | hufGroup->permute[pp++] = t; |
| 310 | } |
| 311 | /* Count symbols coded for at each bit length */ |
| 312 | for (i = 0; i < symCount; i++) |
| 313 | temp[length[i]]++; |
| 314 | /* Calculate limit[] (the largest symbol-coding value |
| 315 | *at each bit length, which is (previous limit << |
| 316 | *1)+symbols at this level), and base[] (number of |
| 317 | *symbols to ignore at each bit length, which is limit |
| 318 | *minus the cumulative count of symbols coded for |
| 319 | *already). */ |
| 320 | pp = t = 0; |
| 321 | for (i = minLen; i < maxLen; i++) { |
| 322 | pp += temp[i]; |
| 323 | /* We read the largest possible symbol size |
| 324 | and then unget bits after determining how |
| 325 | many we need, and those extra bits could be |
| 326 | set to anything. (They're noise from |
| 327 | future symbols.) At each level we're |
| 328 | really only interested in the first few |
| 329 | bits, so here we set all the trailing |
| 330 | to-be-ignored bits to 1 so they don't |
| 331 | affect the value > limit[length] |
| 332 | comparison. */ |
| 333 | limit[i] = (pp << (maxLen - i)) - 1; |
| 334 | pp <<= 1; |
| 335 | base[i+1] = pp-(t += temp[i]); |
| 336 | } |
| 337 | limit[maxLen+1] = INT_MAX; /* Sentinal value for |
| 338 | * reading next sym. */ |
| 339 | limit[maxLen] = pp+temp[maxLen]-1; |
| 340 | base[minLen] = 0; |
| 341 | } |
| 342 | /* We've finished reading and digesting the block header. Now |
| 343 | read this block's Huffman coded symbols from the file and |
| 344 | undo the Huffman coding and run length encoding, saving the |
| 345 | result into dbuf[dbufCount++] = uc */ |
| 346 | |
| 347 | /* Initialize symbol occurrence counters and symbol Move To |
| 348 | * Front table */ |
| 349 | for (i = 0; i < 256; i++) { |
| 350 | byteCount[i] = 0; |
| 351 | mtfSymbol[i] = (unsigned char)i; |
| 352 | } |
| 353 | /* Loop through compressed symbols. */ |
| 354 | runPos = dbufCount = symCount = selector = 0; |
| 355 | for (;;) { |
| 356 | /* Determine which Huffman coding group to use. */ |
| 357 | if (!(symCount--)) { |
| 358 | symCount = GROUP_SIZE-1; |
| 359 | if (selector >= nSelectors) |
| 360 | return RETVAL_DATA_ERROR; |
| 361 | hufGroup = bd->groups+selectors[selector++]; |
| 362 | base = hufGroup->base-1; |
| 363 | limit = hufGroup->limit-1; |
| 364 | } |
| 365 | /* Read next Huffman-coded symbol. */ |
| 366 | /* Note: It is far cheaper to read maxLen bits and |
| 367 | back up than it is to read minLen bits and then an |
| 368 | additional bit at a time, testing as we go. |
| 369 | Because there is a trailing last block (with file |
| 370 | CRC), there is no danger of the overread causing an |
| 371 | unexpected EOF for a valid compressed file. As a |
| 372 | further optimization, we do the read inline |
| 373 | (falling back to a call to get_bits if the buffer |
| 374 | runs dry). The following (up to got_huff_bits:) is |
| 375 | equivalent to j = get_bits(bd, hufGroup->maxLen); |
| 376 | */ |
| 377 | while (bd->inbufBitCount < hufGroup->maxLen) { |
| 378 | if (bd->inbufPos == bd->inbufCount) { |
| 379 | j = get_bits(bd, hufGroup->maxLen); |
| 380 | goto got_huff_bits; |
| 381 | } |
| 382 | bd->inbufBits = |
| 383 | (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; |
| 384 | bd->inbufBitCount += 8; |
| 385 | }; |
| 386 | bd->inbufBitCount -= hufGroup->maxLen; |
| 387 | j = (bd->inbufBits >> bd->inbufBitCount)& |
| 388 | ((1 << hufGroup->maxLen)-1); |
| 389 | got_huff_bits: |
| 390 | /* Figure how how many bits are in next symbol and |
| 391 | * unget extras */ |
| 392 | i = hufGroup->minLen; |
| 393 | while (j > limit[i]) |
| 394 | ++i; |
| 395 | bd->inbufBitCount += (hufGroup->maxLen - i); |
| 396 | /* Huffman decode value to get nextSym (with bounds checking) */ |
| 397 | if ((i > hufGroup->maxLen) |
| 398 | || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) |
| 399 | >= MAX_SYMBOLS)) |
| 400 | return RETVAL_DATA_ERROR; |
| 401 | nextSym = hufGroup->permute[j]; |
| 402 | /* We have now decoded the symbol, which indicates |
| 403 | either a new literal byte, or a repeated run of the |
| 404 | most recent literal byte. First, check if nextSym |
| 405 | indicates a repeated run, and if so loop collecting |
| 406 | how many times to repeat the last literal. */ |
| 407 | if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ |
| 408 | /* If this is the start of a new run, zero out |
| 409 | * counter */ |
| 410 | if (!runPos) { |
| 411 | runPos = 1; |
| 412 | t = 0; |
| 413 | } |
| 414 | /* Neat trick that saves 1 symbol: instead of |
| 415 | or-ing 0 or 1 at each bit position, add 1 |
| 416 | or 2 instead. For example, 1011 is 1 << 0 |
| 417 | + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1 |
| 418 | + 1 << 2. You can make any bit pattern |
| 419 | that way using 1 less symbol than the basic |
| 420 | or 0/1 method (except all bits 0, which |
| 421 | would use no symbols, but a run of length 0 |
| 422 | doesn't mean anything in this context). |
| 423 | Thus space is saved. */ |
| 424 | t += (runPos << nextSym); |
| 425 | /* +runPos if RUNA; +2*runPos if RUNB */ |
| 426 | |
| 427 | runPos <<= 1; |
| 428 | continue; |
| 429 | } |
| 430 | /* When we hit the first non-run symbol after a run, |
| 431 | we now know how many times to repeat the last |
| 432 | literal, so append that many copies to our buffer |
| 433 | of decoded symbols (dbuf) now. (The last literal |
| 434 | used is the one at the head of the mtfSymbol |
| 435 | array.) */ |
| 436 | if (runPos) { |
| 437 | runPos = 0; |
| 438 | if (dbufCount+t >= dbufSize) |
| 439 | return RETVAL_DATA_ERROR; |
| 440 | |
| 441 | uc = symToByte[mtfSymbol[0]]; |
| 442 | byteCount[uc] += t; |
| 443 | while (t--) |
| 444 | dbuf[dbufCount++] = uc; |
| 445 | } |
| 446 | /* Is this the terminating symbol? */ |
| 447 | if (nextSym > symTotal) |
| 448 | break; |
| 449 | /* At this point, nextSym indicates a new literal |
| 450 | character. Subtract one to get the position in the |
| 451 | MTF array at which this literal is currently to be |
| 452 | found. (Note that the result can't be -1 or 0, |
| 453 | because 0 and 1 are RUNA and RUNB. But another |
| 454 | instance of the first symbol in the mtf array, |
| 455 | position 0, would have been handled as part of a |
| 456 | run above. Therefore 1 unused mtf position minus 2 |
| 457 | non-literal nextSym values equals -1.) */ |
| 458 | if (dbufCount >= dbufSize) |
| 459 | return RETVAL_DATA_ERROR; |
| 460 | i = nextSym - 1; |
| 461 | uc = mtfSymbol[i]; |
| 462 | /* Adjust the MTF array. Since we typically expect to |
| 463 | *move only a small number of symbols, and are bound |
| 464 | *by 256 in any case, using memmove here would |
| 465 | *typically be bigger and slower due to function call |
| 466 | *overhead and other assorted setup costs. */ |
| 467 | do { |
| 468 | mtfSymbol[i] = mtfSymbol[i-1]; |
| 469 | } while (--i); |
| 470 | mtfSymbol[0] = uc; |
| 471 | uc = symToByte[uc]; |
| 472 | /* We have our literal byte. Save it into dbuf. */ |
| 473 | byteCount[uc]++; |
| 474 | dbuf[dbufCount++] = (unsigned int)uc; |
| 475 | } |
| 476 | /* At this point, we've read all the Huffman-coded symbols |
| 477 | (and repeated runs) for this block from the input stream, |
| 478 | and decoded them into the intermediate buffer. There are |
| 479 | dbufCount many decoded bytes in dbuf[]. Now undo the |
| 480 | Burrows-Wheeler transform on dbuf. See |
| 481 | http://dogma.net/markn/articles/bwt/bwt.htm |
| 482 | */ |
| 483 | /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ |
| 484 | j = 0; |
| 485 | for (i = 0; i < 256; i++) { |
| 486 | k = j+byteCount[i]; |
| 487 | byteCount[i] = j; |
| 488 | j = k; |
| 489 | } |
| 490 | /* Figure out what order dbuf would be in if we sorted it. */ |
| 491 | for (i = 0; i < dbufCount; i++) { |
| 492 | uc = (unsigned char)(dbuf[i] & 0xff); |
| 493 | dbuf[byteCount[uc]] |= (i << 8); |
| 494 | byteCount[uc]++; |
| 495 | } |
| 496 | /* Decode first byte by hand to initialize "previous" byte. |
| 497 | Note that it doesn't get output, and if the first three |
| 498 | characters are identical it doesn't qualify as a run (hence |
| 499 | writeRunCountdown = 5). */ |
| 500 | if (dbufCount) { |
| 501 | if (origPtr >= dbufCount) |
| 502 | return RETVAL_DATA_ERROR; |
| 503 | bd->writePos = dbuf[origPtr]; |
| 504 | bd->writeCurrent = (unsigned char)(bd->writePos&0xff); |
| 505 | bd->writePos >>= 8; |
| 506 | bd->writeRunCountdown = 5; |
| 507 | } |
| 508 | bd->writeCount = dbufCount; |
| 509 | |
| 510 | return RETVAL_OK; |
| 511 | } |
| 512 | |
| 513 | /* Undo burrows-wheeler transform on intermediate buffer to produce output. |
| 514 | If start_bunzip was initialized with out_fd =-1, then up to len bytes of |
| 515 | data are written to outbuf. Return value is number of bytes written or |
| 516 | error (all errors are negative numbers). If out_fd!=-1, outbuf and len |
| 517 | are ignored, data is written to out_fd and return is RETVAL_OK or error. |
| 518 | */ |
| 519 | |
| 520 | static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) |
| 521 | { |
| 522 | const unsigned int *dbuf; |
| 523 | int pos, xcurrent, previous, gotcount; |
| 524 | |
| 525 | /* If last read was short due to end of file, return last block now */ |
| 526 | if (bd->writeCount < 0) |
| 527 | return bd->writeCount; |
| 528 | |
| 529 | gotcount = 0; |
| 530 | dbuf = bd->dbuf; |
| 531 | pos = bd->writePos; |
| 532 | xcurrent = bd->writeCurrent; |
| 533 | |
| 534 | /* We will always have pending decoded data to write into the output |
| 535 | buffer unless this is the very first call (in which case we haven't |
| 536 | Huffman-decoded a block into the intermediate buffer yet). */ |
| 537 | |
| 538 | if (bd->writeCopies) { |
| 539 | /* Inside the loop, writeCopies means extra copies (beyond 1) */ |
| 540 | --bd->writeCopies; |
| 541 | /* Loop outputting bytes */ |
| 542 | for (;;) { |
| 543 | /* If the output buffer is full, snapshot |
| 544 | * state and return */ |
| 545 | if (gotcount >= len) { |
| 546 | bd->writePos = pos; |
| 547 | bd->writeCurrent = xcurrent; |
| 548 | bd->writeCopies++; |
| 549 | return len; |
| 550 | } |
| 551 | /* Write next byte into output buffer, updating CRC */ |
| 552 | outbuf[gotcount++] = xcurrent; |
| 553 | bd->writeCRC = (((bd->writeCRC) << 8) |
| 554 | ^bd->crc32Table[((bd->writeCRC) >> 24) |
| 555 | ^xcurrent]); |
| 556 | /* Loop now if we're outputting multiple |
| 557 | * copies of this byte */ |
| 558 | if (bd->writeCopies) { |
| 559 | --bd->writeCopies; |
| 560 | continue; |
| 561 | } |
| 562 | decode_next_byte: |
| 563 | if (!bd->writeCount--) |
| 564 | break; |
| 565 | /* Follow sequence vector to undo |
| 566 | * Burrows-Wheeler transform */ |
| 567 | previous = xcurrent; |
| 568 | pos = dbuf[pos]; |
| 569 | xcurrent = pos&0xff; |
| 570 | pos >>= 8; |
| 571 | /* After 3 consecutive copies of the same |
| 572 | byte, the 4th is a repeat count. We count |
| 573 | down from 4 instead *of counting up because |
| 574 | testing for non-zero is faster */ |
| 575 | if (--bd->writeRunCountdown) { |
| 576 | if (xcurrent != previous) |
| 577 | bd->writeRunCountdown = 4; |
| 578 | } else { |
| 579 | /* We have a repeated run, this byte |
| 580 | * indicates the count */ |
| 581 | bd->writeCopies = xcurrent; |
| 582 | xcurrent = previous; |
| 583 | bd->writeRunCountdown = 5; |
| 584 | /* Sometimes there are just 3 bytes |
| 585 | * (run length 0) */ |
| 586 | if (!bd->writeCopies) |
| 587 | goto decode_next_byte; |
| 588 | /* Subtract the 1 copy we'd output |
| 589 | * anyway to get extras */ |
| 590 | --bd->writeCopies; |
| 591 | } |
| 592 | } |
| 593 | /* Decompression of this block completed successfully */ |
| 594 | bd->writeCRC = ~bd->writeCRC; |
| 595 | bd->totalCRC = ((bd->totalCRC << 1) | |
| 596 | (bd->totalCRC >> 31)) ^ bd->writeCRC; |
| 597 | /* If this block had a CRC error, force file level CRC error. */ |
| 598 | if (bd->writeCRC != bd->headerCRC) { |
| 599 | bd->totalCRC = bd->headerCRC+1; |
| 600 | return RETVAL_LAST_BLOCK; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | /* Refill the intermediate buffer by Huffman-decoding next |
| 605 | * block of input */ |
| 606 | /* (previous is just a convenient unused temp variable here) */ |
| 607 | previous = get_next_block(bd); |
| 608 | if (previous) { |
| 609 | bd->writeCount = previous; |
| 610 | return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; |
| 611 | } |
| 612 | bd->writeCRC = 0xffffffffUL; |
| 613 | pos = bd->writePos; |
| 614 | xcurrent = bd->writeCurrent; |
| 615 | goto decode_next_byte; |
| 616 | } |
| 617 | |
| 618 | static int INIT nofill(void *buf, unsigned int len) |
| 619 | { |
| 620 | return -1; |
| 621 | } |
| 622 | |
| 623 | /* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain |
| 624 | a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are |
| 625 | ignored, and data is read from file handle into temporary buffer. */ |
| 626 | static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len, |
| 627 | int (*fill)(void*, unsigned int)) |
| 628 | { |
| 629 | struct bunzip_data *bd; |
| 630 | unsigned int i, j, c; |
| 631 | const unsigned int BZh0 = |
| 632 | (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) |
| 633 | +(((unsigned int)'h') << 8)+(unsigned int)'0'; |
| 634 | |
| 635 | /* Figure out how much data to allocate */ |
| 636 | i = sizeof(struct bunzip_data); |
| 637 | |
| 638 | /* Allocate bunzip_data. Most fields initialize to zero. */ |
| 639 | bd = *bdp = malloc(i); |
| 640 | memset(bd, 0, sizeof(struct bunzip_data)); |
| 641 | /* Setup input buffer */ |
| 642 | bd->inbuf = inbuf; |
| 643 | bd->inbufCount = len; |
| 644 | if (fill != NULL) |
| 645 | bd->fill = fill; |
| 646 | else |
| 647 | bd->fill = nofill; |
| 648 | |
| 649 | /* Init the CRC32 table (big endian) */ |
| 650 | for (i = 0; i < 256; i++) { |
| 651 | c = i << 24; |
| 652 | for (j = 8; j; j--) |
| 653 | c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1); |
| 654 | bd->crc32Table[i] = c; |
| 655 | } |
| 656 | |
| 657 | /* Ensure that file starts with "BZh['1'-'9']." */ |
| 658 | i = get_bits(bd, 32); |
| 659 | if (((unsigned int)(i-BZh0-1)) >= 9) |
| 660 | return RETVAL_NOT_BZIP_DATA; |
| 661 | |
| 662 | /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of |
| 663 | uncompressed data. Allocate intermediate buffer for block. */ |
| 664 | bd->dbufSize = 100000*(i-BZh0); |
| 665 | |
| 666 | bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); |
| 667 | return RETVAL_OK; |
| 668 | } |
| 669 | |
| 670 | /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data, |
| 671 | not end of file.) */ |
| 672 | STATIC int INIT bunzip2(unsigned char *buf, int len, |
| 673 | int(*fill)(void*, unsigned int), |
| 674 | int(*flush)(void*, unsigned int), |
| 675 | unsigned char *outbuf, |
| 676 | int *pos, |
| 677 | void(*error_fn)(char *x)) |
| 678 | { |
| 679 | struct bunzip_data *bd; |
| 680 | int i = -1; |
| 681 | unsigned char *inbuf; |
| 682 | |
| 683 | set_error_fn(error_fn); |
| 684 | if (flush) |
| 685 | outbuf = malloc(BZIP2_IOBUF_SIZE); |
Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 686 | |
Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 687 | if (!outbuf) { |
| 688 | error("Could not allocate output bufer"); |
| 689 | return -1; |
| 690 | } |
| 691 | if (buf) |
| 692 | inbuf = buf; |
| 693 | else |
| 694 | inbuf = malloc(BZIP2_IOBUF_SIZE); |
| 695 | if (!inbuf) { |
| 696 | error("Could not allocate input bufer"); |
| 697 | goto exit_0; |
| 698 | } |
| 699 | i = start_bunzip(&bd, inbuf, len, fill); |
| 700 | if (!i) { |
| 701 | for (;;) { |
| 702 | i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); |
| 703 | if (i <= 0) |
| 704 | break; |
| 705 | if (!flush) |
| 706 | outbuf += i; |
| 707 | else |
| 708 | if (i != flush(outbuf, i)) { |
| 709 | i = RETVAL_UNEXPECTED_OUTPUT_EOF; |
| 710 | break; |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | /* Check CRC and release memory */ |
| 715 | if (i == RETVAL_LAST_BLOCK) { |
| 716 | if (bd->headerCRC != bd->totalCRC) |
| 717 | error("Data integrity error when decompressing."); |
| 718 | else |
| 719 | i = RETVAL_OK; |
| 720 | } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { |
| 721 | error("Compressed file ends unexpectedly"); |
| 722 | } |
| 723 | if (bd->dbuf) |
| 724 | large_free(bd->dbuf); |
| 725 | if (pos) |
| 726 | *pos = bd->inbufPos; |
| 727 | free(bd); |
| 728 | if (!buf) |
| 729 | free(inbuf); |
| 730 | exit_0: |
| 731 | if (flush) |
| 732 | free(outbuf); |
| 733 | return i; |
| 734 | } |
| 735 | |
Phillip Lougher | b1af431 | 2009-08-06 15:09:31 -0700 | [diff] [blame] | 736 | #ifdef PREBOOT |
| 737 | STATIC int INIT decompress(unsigned char *buf, int len, |
| 738 | int(*fill)(void*, unsigned int), |
| 739 | int(*flush)(void*, unsigned int), |
| 740 | unsigned char *outbuf, |
| 741 | int *pos, |
| 742 | void(*error_fn)(char *x)) |
| 743 | { |
| 744 | return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error_fn); |
| 745 | } |
| 746 | #endif |