blob: e81baff4f54b3293d18290088af1e1ac1f65fabe [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/include/asm-arm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_CACHEFLUSH_H
11#define _ASMARM_CACHEFLUSH_H
12
13#include <linux/config.h>
14#include <linux/sched.h>
15#include <linux/mm.h>
16
17#include <asm/mman.h>
18#include <asm/glue.h>
Russell Kingb8a9b662005-06-20 11:31:09 +010019#include <asm/shmparam.h>
20
21#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
Linus Torvalds1da177e2005-04-16 15:20:36 -070022
23/*
24 * Cache Model
25 * ===========
26 */
27#undef _CACHE
28#undef MULTI_CACHE
29
30#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
31# ifdef _CACHE
32# define MULTI_CACHE 1
33# else
34# define _CACHE v3
35# endif
36#endif
37
38#if defined(CONFIG_CPU_ARM720T)
39# ifdef _CACHE
40# define MULTI_CACHE 1
41# else
42# define _CACHE v4
43# endif
44#endif
45
46#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
47 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
48# define MULTI_CACHE 1
49#endif
50
51#if defined(CONFIG_CPU_ARM926T)
52# ifdef _CACHE
53# define MULTI_CACHE 1
54# else
55# define _CACHE arm926
56# endif
57#endif
58
59#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100)
60# ifdef _CACHE
61# define MULTI_CACHE 1
62# else
63# define _CACHE v4wb
64# endif
65#endif
66
67#if defined(CONFIG_CPU_XSCALE)
68# ifdef _CACHE
69# define MULTI_CACHE 1
70# else
71# define _CACHE xscale
72# endif
73#endif
74
75#if defined(CONFIG_CPU_V6)
76//# ifdef _CACHE
77# define MULTI_CACHE 1
78//# else
79//# define _CACHE v6
80//# endif
81#endif
82
83#if !defined(_CACHE) && !defined(MULTI_CACHE)
84#error Unknown cache maintainence model
85#endif
86
87/*
88 * This flag is used to indicate that the page pointed to by a pte
89 * is dirty and requires cleaning before returning it to the user.
90 */
91#define PG_dcache_dirty PG_arch_1
92
93/*
94 * MM Cache Management
95 * ===================
96 *
97 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
98 * implement these methods.
99 *
100 * Start addresses are inclusive and end addresses are exclusive;
101 * start addresses should be rounded down, end addresses up.
102 *
103 * See Documentation/cachetlb.txt for more information.
104 * Please note that the implementation of these, and the required
105 * effects are cache-type (VIVT/VIPT/PIPT) specific.
106 *
107 * flush_cache_kern_all()
108 *
109 * Unconditionally clean and invalidate the entire cache.
110 *
111 * flush_cache_user_mm(mm)
112 *
113 * Clean and invalidate all user space cache entries
114 * before a change of page tables.
115 *
116 * flush_cache_user_range(start, end, flags)
117 *
118 * Clean and invalidate a range of cache entries in the
119 * specified address space before a change of page tables.
120 * - start - user start address (inclusive, page aligned)
121 * - end - user end address (exclusive, page aligned)
122 * - flags - vma->vm_flags field
123 *
124 * coherent_kern_range(start, end)
125 *
126 * Ensure coherency between the Icache and the Dcache in the
127 * region described by start, end. If you have non-snooping
128 * Harvard caches, you need to implement this function.
129 * - start - virtual start address
130 * - end - virtual end address
131 *
132 * DMA Cache Coherency
133 * ===================
134 *
135 * dma_inv_range(start, end)
136 *
137 * Invalidate (discard) the specified virtual address range.
138 * May not write back any entries. If 'start' or 'end'
139 * are not cache line aligned, those lines must be written
140 * back.
141 * - start - virtual start address
142 * - end - virtual end address
143 *
144 * dma_clean_range(start, end)
145 *
146 * Clean (write back) the specified virtual address range.
147 * - start - virtual start address
148 * - end - virtual end address
149 *
150 * dma_flush_range(start, end)
151 *
152 * Clean and invalidate the specified virtual address range.
153 * - start - virtual start address
154 * - end - virtual end address
155 */
156
157struct cpu_cache_fns {
158 void (*flush_kern_all)(void);
159 void (*flush_user_all)(void);
160 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
161
162 void (*coherent_kern_range)(unsigned long, unsigned long);
163 void (*coherent_user_range)(unsigned long, unsigned long);
164 void (*flush_kern_dcache_page)(void *);
165
166 void (*dma_inv_range)(unsigned long, unsigned long);
167 void (*dma_clean_range)(unsigned long, unsigned long);
168 void (*dma_flush_range)(unsigned long, unsigned long);
169};
170
171/*
172 * Select the calling method
173 */
174#ifdef MULTI_CACHE
175
176extern struct cpu_cache_fns cpu_cache;
177
178#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
179#define __cpuc_flush_user_all cpu_cache.flush_user_all
180#define __cpuc_flush_user_range cpu_cache.flush_user_range
181#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
182#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
183#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
184
185/*
186 * These are private to the dma-mapping API. Do not use directly.
187 * Their sole purpose is to ensure that data held in the cache
188 * is visible to DMA, or data written by DMA to system memory is
189 * visible to the CPU.
190 */
191#define dmac_inv_range cpu_cache.dma_inv_range
192#define dmac_clean_range cpu_cache.dma_clean_range
193#define dmac_flush_range cpu_cache.dma_flush_range
194
195#else
196
197#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
198#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
199#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
200#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
201#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
202#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
203
204extern void __cpuc_flush_kern_all(void);
205extern void __cpuc_flush_user_all(void);
206extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
207extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
208extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
209extern void __cpuc_flush_dcache_page(void *);
210
211/*
212 * These are private to the dma-mapping API. Do not use directly.
213 * Their sole purpose is to ensure that data held in the cache
214 * is visible to DMA, or data written by DMA to system memory is
215 * visible to the CPU.
216 */
217#define dmac_inv_range __glue(_CACHE,_dma_inv_range)
218#define dmac_clean_range __glue(_CACHE,_dma_clean_range)
219#define dmac_flush_range __glue(_CACHE,_dma_flush_range)
220
221extern void dmac_inv_range(unsigned long, unsigned long);
222extern void dmac_clean_range(unsigned long, unsigned long);
223extern void dmac_flush_range(unsigned long, unsigned long);
224
225#endif
226
227/*
228 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
229 * vmalloc, ioremap etc) in kernel space for pages. Since the
230 * direct-mappings of these pages may contain cached data, we need
231 * to do a full cache flush to ensure that writebacks don't corrupt
232 * data placed into these pages via the new mappings.
233 */
234#define flush_cache_vmap(start, end) flush_cache_all()
235#define flush_cache_vunmap(start, end) flush_cache_all()
236
237/*
238 * Copy user data from/to a page which is mapped into a different
239 * processes address space. Really, we want to allow our "user
240 * space" model to handle this.
241 */
242#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
243 do { \
244 flush_cache_page(vma, vaddr, page_to_pfn(page));\
245 memcpy(dst, src, len); \
246 flush_dcache_page(page); \
247 } while (0)
248
249#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
250 do { \
251 flush_cache_page(vma, vaddr, page_to_pfn(page));\
252 memcpy(dst, src, len); \
253 } while (0)
254
255/*
256 * Convert calls to our calling convention.
257 */
258#define flush_cache_all() __cpuc_flush_kern_all()
Russell Kingd7b6b352005-09-08 15:32:23 +0100259#ifndef CONFIG_CPU_CACHE_VIPT
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260static inline void flush_cache_mm(struct mm_struct *mm)
261{
262 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
263 __cpuc_flush_user_all();
264}
265
266static inline void
267flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
268{
269 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
270 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
271 vma->vm_flags);
272}
273
274static inline void
275flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
276{
277 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
278 unsigned long addr = user_addr & PAGE_MASK;
279 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
280 }
281}
Russell Kingd7b6b352005-09-08 15:32:23 +0100282#else
283extern void flush_cache_mm(struct mm_struct *mm);
284extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
285extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
286#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287
288/*
289 * flush_cache_user_range is used when we want to ensure that the
290 * Harvard caches are synchronised for the user space address range.
291 * This is used for the ARM private sys_cacheflush system call.
292 */
293#define flush_cache_user_range(vma,start,end) \
294 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
295
296/*
297 * Perform necessary cache operations to ensure that data previously
298 * stored within this range of addresses can be executed by the CPU.
299 */
300#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
301
302/*
303 * Perform necessary cache operations to ensure that the TLB will
304 * see data written in the specified area.
305 */
306#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
307
308/*
309 * flush_dcache_page is used when the kernel has written to the page
310 * cache page at virtual address page->virtual.
311 *
312 * If this page isn't mapped (ie, page_mapping == NULL), or it might
313 * have userspace mappings, then we _must_ always clean + invalidate
314 * the dcache entries associated with the kernel mapping.
315 *
316 * Otherwise we can defer the operation, and clean the cache when we are
317 * about to change to user space. This is the same method as used on SPARC64.
318 * See update_mmu_cache for the user space part.
319 */
320extern void flush_dcache_page(struct page *);
321
322#define flush_dcache_mmap_lock(mapping) \
323 write_lock_irq(&(mapping)->tree_lock)
324#define flush_dcache_mmap_unlock(mapping) \
325 write_unlock_irq(&(mapping)->tree_lock)
326
327#define flush_icache_user_range(vma,page,addr,len) \
328 flush_dcache_page(page)
329
330/*
331 * We don't appear to need to do anything here. In fact, if we did, we'd
332 * duplicate cache flushing elsewhere performed by flush_dcache_page().
333 */
334#define flush_icache_page(vma,page) do { } while (0)
335
336#define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
337#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
338#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
339#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
340#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
341
342#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
343
344#define cache_is_vivt() 1
345#define cache_is_vipt() 0
346#define cache_is_vipt_nonaliasing() 0
347#define cache_is_vipt_aliasing() 0
348
349#elif defined(CONFIG_CPU_CACHE_VIPT)
350
351#define cache_is_vivt() 0
352#define cache_is_vipt() 1
353#define cache_is_vipt_nonaliasing() \
354 ({ \
355 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
356 __cacheid_vipt_nonaliasing(__val); \
357 })
358
359#define cache_is_vipt_aliasing() \
360 ({ \
361 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
362 __cacheid_vipt_aliasing(__val); \
363 })
364
365#else
366
367#define cache_is_vivt() \
368 ({ \
369 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
370 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
371 })
372
373#define cache_is_vipt() \
374 ({ \
375 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
376 __cacheid_present(__val) && __cacheid_vipt(__val); \
377 })
378
379#define cache_is_vipt_nonaliasing() \
380 ({ \
381 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
382 __cacheid_present(__val) && \
383 __cacheid_vipt_nonaliasing(__val); \
384 })
385
386#define cache_is_vipt_aliasing() \
387 ({ \
388 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
389 __cacheid_present(__val) && \
390 __cacheid_vipt_aliasing(__val); \
391 })
392
393#endif
394
395#endif