Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | |
| 4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 2 of the License, or (at your option) |
| 9 | any later version. |
| 10 | |
| 11 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 14 | more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License along with |
| 17 | this program; if not, write to the Free Software Foundation, Inc., 59 |
| 18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 19 | |
| 20 | The full GNU General Public License is included in this distribution in the |
| 21 | file called LICENSE. |
| 22 | |
| 23 | Contact Information: |
| 24 | Linux NICS <linux.nics@intel.com> |
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | /* ethtool support for e1000 */ |
| 30 | |
| 31 | #include "e1000.h" |
| 32 | |
| 33 | #include <asm/uaccess.h> |
| 34 | |
| 35 | extern char e1000_driver_name[]; |
| 36 | extern char e1000_driver_version[]; |
| 37 | |
| 38 | extern int e1000_up(struct e1000_adapter *adapter); |
| 39 | extern void e1000_down(struct e1000_adapter *adapter); |
| 40 | extern void e1000_reset(struct e1000_adapter *adapter); |
| 41 | extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); |
| 42 | extern int e1000_setup_rx_resources(struct e1000_adapter *adapter); |
| 43 | extern int e1000_setup_tx_resources(struct e1000_adapter *adapter); |
| 44 | extern void e1000_free_rx_resources(struct e1000_adapter *adapter); |
| 45 | extern void e1000_free_tx_resources(struct e1000_adapter *adapter); |
| 46 | extern void e1000_update_stats(struct e1000_adapter *adapter); |
| 47 | |
| 48 | struct e1000_stats { |
| 49 | char stat_string[ETH_GSTRING_LEN]; |
| 50 | int sizeof_stat; |
| 51 | int stat_offset; |
| 52 | }; |
| 53 | |
| 54 | #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ |
| 55 | offsetof(struct e1000_adapter, m) |
| 56 | static const struct e1000_stats e1000_gstrings_stats[] = { |
| 57 | { "rx_packets", E1000_STAT(net_stats.rx_packets) }, |
| 58 | { "tx_packets", E1000_STAT(net_stats.tx_packets) }, |
| 59 | { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, |
| 60 | { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, |
| 61 | { "rx_errors", E1000_STAT(net_stats.rx_errors) }, |
| 62 | { "tx_errors", E1000_STAT(net_stats.tx_errors) }, |
| 63 | { "rx_dropped", E1000_STAT(net_stats.rx_dropped) }, |
| 64 | { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, |
| 65 | { "multicast", E1000_STAT(net_stats.multicast) }, |
| 66 | { "collisions", E1000_STAT(net_stats.collisions) }, |
| 67 | { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, |
| 68 | { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, |
| 69 | { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, |
| 70 | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, |
| 71 | { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, |
| 72 | { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, |
| 73 | { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, |
| 74 | { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, |
| 75 | { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, |
| 76 | { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, |
| 77 | { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, |
| 78 | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, |
| 79 | { "tx_deferred_ok", E1000_STAT(stats.dc) }, |
| 80 | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, |
| 81 | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, |
| 82 | { "rx_long_length_errors", E1000_STAT(stats.roc) }, |
| 83 | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, |
| 84 | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, |
| 85 | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, |
| 86 | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, |
| 87 | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, |
| 88 | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, |
| 89 | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, |
| 90 | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, |
| 91 | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, |
| 92 | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, |
| 93 | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) } |
| 94 | }; |
| 95 | #define E1000_STATS_LEN \ |
| 96 | sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) |
| 97 | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { |
| 98 | "Register test (offline)", "Eeprom test (offline)", |
| 99 | "Interrupt test (offline)", "Loopback test (offline)", |
| 100 | "Link test (on/offline)" |
| 101 | }; |
| 102 | #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN |
| 103 | |
| 104 | static int |
| 105 | e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) |
| 106 | { |
| 107 | struct e1000_adapter *adapter = netdev->priv; |
| 108 | struct e1000_hw *hw = &adapter->hw; |
| 109 | |
| 110 | if(hw->media_type == e1000_media_type_copper) { |
| 111 | |
| 112 | ecmd->supported = (SUPPORTED_10baseT_Half | |
| 113 | SUPPORTED_10baseT_Full | |
| 114 | SUPPORTED_100baseT_Half | |
| 115 | SUPPORTED_100baseT_Full | |
| 116 | SUPPORTED_1000baseT_Full| |
| 117 | SUPPORTED_Autoneg | |
| 118 | SUPPORTED_TP); |
| 119 | |
| 120 | ecmd->advertising = ADVERTISED_TP; |
| 121 | |
| 122 | if(hw->autoneg == 1) { |
| 123 | ecmd->advertising |= ADVERTISED_Autoneg; |
| 124 | |
| 125 | /* the e1000 autoneg seems to match ethtool nicely */ |
| 126 | |
| 127 | ecmd->advertising |= hw->autoneg_advertised; |
| 128 | } |
| 129 | |
| 130 | ecmd->port = PORT_TP; |
| 131 | ecmd->phy_address = hw->phy_addr; |
| 132 | |
| 133 | if(hw->mac_type == e1000_82543) |
| 134 | ecmd->transceiver = XCVR_EXTERNAL; |
| 135 | else |
| 136 | ecmd->transceiver = XCVR_INTERNAL; |
| 137 | |
| 138 | } else { |
| 139 | ecmd->supported = (SUPPORTED_1000baseT_Full | |
| 140 | SUPPORTED_FIBRE | |
| 141 | SUPPORTED_Autoneg); |
| 142 | |
| 143 | ecmd->advertising = (SUPPORTED_1000baseT_Full | |
| 144 | SUPPORTED_FIBRE | |
| 145 | SUPPORTED_Autoneg); |
| 146 | |
| 147 | ecmd->port = PORT_FIBRE; |
| 148 | |
| 149 | if(hw->mac_type >= e1000_82545) |
| 150 | ecmd->transceiver = XCVR_INTERNAL; |
| 151 | else |
| 152 | ecmd->transceiver = XCVR_EXTERNAL; |
| 153 | } |
| 154 | |
| 155 | if(netif_carrier_ok(adapter->netdev)) { |
| 156 | |
| 157 | e1000_get_speed_and_duplex(hw, &adapter->link_speed, |
| 158 | &adapter->link_duplex); |
| 159 | ecmd->speed = adapter->link_speed; |
| 160 | |
| 161 | /* unfortunatly FULL_DUPLEX != DUPLEX_FULL |
| 162 | * and HALF_DUPLEX != DUPLEX_HALF */ |
| 163 | |
| 164 | if(adapter->link_duplex == FULL_DUPLEX) |
| 165 | ecmd->duplex = DUPLEX_FULL; |
| 166 | else |
| 167 | ecmd->duplex = DUPLEX_HALF; |
| 168 | } else { |
| 169 | ecmd->speed = -1; |
| 170 | ecmd->duplex = -1; |
| 171 | } |
| 172 | |
| 173 | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || |
| 174 | hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
| 175 | return 0; |
| 176 | } |
| 177 | |
| 178 | static int |
| 179 | e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) |
| 180 | { |
| 181 | struct e1000_adapter *adapter = netdev->priv; |
| 182 | struct e1000_hw *hw = &adapter->hw; |
| 183 | |
| 184 | if(ecmd->autoneg == AUTONEG_ENABLE) { |
| 185 | hw->autoneg = 1; |
| 186 | hw->autoneg_advertised = 0x002F; |
| 187 | ecmd->advertising = 0x002F; |
| 188 | } else |
| 189 | if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) |
| 190 | return -EINVAL; |
| 191 | |
| 192 | /* reset the link */ |
| 193 | |
| 194 | if(netif_running(adapter->netdev)) { |
| 195 | e1000_down(adapter); |
| 196 | e1000_reset(adapter); |
| 197 | e1000_up(adapter); |
| 198 | } else |
| 199 | e1000_reset(adapter); |
| 200 | |
| 201 | return 0; |
| 202 | } |
| 203 | |
| 204 | static void |
| 205 | e1000_get_pauseparam(struct net_device *netdev, |
| 206 | struct ethtool_pauseparam *pause) |
| 207 | { |
| 208 | struct e1000_adapter *adapter = netdev->priv; |
| 209 | struct e1000_hw *hw = &adapter->hw; |
| 210 | |
| 211 | pause->autoneg = |
| 212 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); |
| 213 | |
| 214 | if(hw->fc == e1000_fc_rx_pause) |
| 215 | pause->rx_pause = 1; |
| 216 | else if(hw->fc == e1000_fc_tx_pause) |
| 217 | pause->tx_pause = 1; |
| 218 | else if(hw->fc == e1000_fc_full) { |
| 219 | pause->rx_pause = 1; |
| 220 | pause->tx_pause = 1; |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | static int |
| 225 | e1000_set_pauseparam(struct net_device *netdev, |
| 226 | struct ethtool_pauseparam *pause) |
| 227 | { |
| 228 | struct e1000_adapter *adapter = netdev->priv; |
| 229 | struct e1000_hw *hw = &adapter->hw; |
| 230 | |
| 231 | adapter->fc_autoneg = pause->autoneg; |
| 232 | |
| 233 | if(pause->rx_pause && pause->tx_pause) |
| 234 | hw->fc = e1000_fc_full; |
| 235 | else if(pause->rx_pause && !pause->tx_pause) |
| 236 | hw->fc = e1000_fc_rx_pause; |
| 237 | else if(!pause->rx_pause && pause->tx_pause) |
| 238 | hw->fc = e1000_fc_tx_pause; |
| 239 | else if(!pause->rx_pause && !pause->tx_pause) |
| 240 | hw->fc = e1000_fc_none; |
| 241 | |
| 242 | hw->original_fc = hw->fc; |
| 243 | |
| 244 | if(adapter->fc_autoneg == AUTONEG_ENABLE) { |
| 245 | if(netif_running(adapter->netdev)) { |
| 246 | e1000_down(adapter); |
| 247 | e1000_up(adapter); |
| 248 | } else |
| 249 | e1000_reset(adapter); |
| 250 | } |
| 251 | else |
| 252 | return ((hw->media_type == e1000_media_type_fiber) ? |
| 253 | e1000_setup_link(hw) : e1000_force_mac_fc(hw)); |
| 254 | |
| 255 | return 0; |
| 256 | } |
| 257 | |
| 258 | static uint32_t |
| 259 | e1000_get_rx_csum(struct net_device *netdev) |
| 260 | { |
| 261 | struct e1000_adapter *adapter = netdev->priv; |
| 262 | return adapter->rx_csum; |
| 263 | } |
| 264 | |
| 265 | static int |
| 266 | e1000_set_rx_csum(struct net_device *netdev, uint32_t data) |
| 267 | { |
| 268 | struct e1000_adapter *adapter = netdev->priv; |
| 269 | adapter->rx_csum = data; |
| 270 | |
| 271 | if(netif_running(netdev)) { |
| 272 | e1000_down(adapter); |
| 273 | e1000_up(adapter); |
| 274 | } else |
| 275 | e1000_reset(adapter); |
| 276 | return 0; |
| 277 | } |
| 278 | |
| 279 | static uint32_t |
| 280 | e1000_get_tx_csum(struct net_device *netdev) |
| 281 | { |
| 282 | return (netdev->features & NETIF_F_HW_CSUM) != 0; |
| 283 | } |
| 284 | |
| 285 | static int |
| 286 | e1000_set_tx_csum(struct net_device *netdev, uint32_t data) |
| 287 | { |
| 288 | struct e1000_adapter *adapter = netdev->priv; |
| 289 | |
| 290 | if(adapter->hw.mac_type < e1000_82543) { |
| 291 | if (!data) |
| 292 | return -EINVAL; |
| 293 | return 0; |
| 294 | } |
| 295 | |
| 296 | if (data) |
| 297 | netdev->features |= NETIF_F_HW_CSUM; |
| 298 | else |
| 299 | netdev->features &= ~NETIF_F_HW_CSUM; |
| 300 | |
| 301 | return 0; |
| 302 | } |
| 303 | |
| 304 | #ifdef NETIF_F_TSO |
| 305 | static int |
| 306 | e1000_set_tso(struct net_device *netdev, uint32_t data) |
| 307 | { |
| 308 | struct e1000_adapter *adapter = netdev->priv; |
| 309 | if ((adapter->hw.mac_type < e1000_82544) || |
| 310 | (adapter->hw.mac_type == e1000_82547)) |
| 311 | return data ? -EINVAL : 0; |
| 312 | |
| 313 | if (data) |
| 314 | netdev->features |= NETIF_F_TSO; |
| 315 | else |
| 316 | netdev->features &= ~NETIF_F_TSO; |
| 317 | return 0; |
| 318 | } |
| 319 | #endif /* NETIF_F_TSO */ |
| 320 | |
| 321 | static uint32_t |
| 322 | e1000_get_msglevel(struct net_device *netdev) |
| 323 | { |
| 324 | struct e1000_adapter *adapter = netdev->priv; |
| 325 | return adapter->msg_enable; |
| 326 | } |
| 327 | |
| 328 | static void |
| 329 | e1000_set_msglevel(struct net_device *netdev, uint32_t data) |
| 330 | { |
| 331 | struct e1000_adapter *adapter = netdev->priv; |
| 332 | adapter->msg_enable = data; |
| 333 | } |
| 334 | |
| 335 | static int |
| 336 | e1000_get_regs_len(struct net_device *netdev) |
| 337 | { |
| 338 | #define E1000_REGS_LEN 32 |
| 339 | return E1000_REGS_LEN * sizeof(uint32_t); |
| 340 | } |
| 341 | |
| 342 | static void |
| 343 | e1000_get_regs(struct net_device *netdev, |
| 344 | struct ethtool_regs *regs, void *p) |
| 345 | { |
| 346 | struct e1000_adapter *adapter = netdev->priv; |
| 347 | struct e1000_hw *hw = &adapter->hw; |
| 348 | uint32_t *regs_buff = p; |
| 349 | uint16_t phy_data; |
| 350 | |
| 351 | memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); |
| 352 | |
| 353 | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; |
| 354 | |
| 355 | regs_buff[0] = E1000_READ_REG(hw, CTRL); |
| 356 | regs_buff[1] = E1000_READ_REG(hw, STATUS); |
| 357 | |
| 358 | regs_buff[2] = E1000_READ_REG(hw, RCTL); |
| 359 | regs_buff[3] = E1000_READ_REG(hw, RDLEN); |
| 360 | regs_buff[4] = E1000_READ_REG(hw, RDH); |
| 361 | regs_buff[5] = E1000_READ_REG(hw, RDT); |
| 362 | regs_buff[6] = E1000_READ_REG(hw, RDTR); |
| 363 | |
| 364 | regs_buff[7] = E1000_READ_REG(hw, TCTL); |
| 365 | regs_buff[8] = E1000_READ_REG(hw, TDLEN); |
| 366 | regs_buff[9] = E1000_READ_REG(hw, TDH); |
| 367 | regs_buff[10] = E1000_READ_REG(hw, TDT); |
| 368 | regs_buff[11] = E1000_READ_REG(hw, TIDV); |
| 369 | |
| 370 | regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ |
| 371 | if(hw->phy_type == e1000_phy_igp) { |
| 372 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| 373 | IGP01E1000_PHY_AGC_A); |
| 374 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & |
| 375 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| 376 | regs_buff[13] = (uint32_t)phy_data; /* cable length */ |
| 377 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| 378 | IGP01E1000_PHY_AGC_B); |
| 379 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & |
| 380 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| 381 | regs_buff[14] = (uint32_t)phy_data; /* cable length */ |
| 382 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| 383 | IGP01E1000_PHY_AGC_C); |
| 384 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & |
| 385 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| 386 | regs_buff[15] = (uint32_t)phy_data; /* cable length */ |
| 387 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| 388 | IGP01E1000_PHY_AGC_D); |
| 389 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & |
| 390 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| 391 | regs_buff[16] = (uint32_t)phy_data; /* cable length */ |
| 392 | regs_buff[17] = 0; /* extended 10bt distance (not needed) */ |
| 393 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); |
| 394 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & |
| 395 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| 396 | regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ |
| 397 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| 398 | IGP01E1000_PHY_PCS_INIT_REG); |
| 399 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & |
| 400 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| 401 | regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ |
| 402 | regs_buff[20] = 0; /* polarity correction enabled (always) */ |
| 403 | regs_buff[22] = 0; /* phy receive errors (unavailable) */ |
| 404 | regs_buff[23] = regs_buff[18]; /* mdix mode */ |
| 405 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); |
| 406 | } else { |
| 407 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| 408 | regs_buff[13] = (uint32_t)phy_data; /* cable length */ |
| 409 | regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| 410 | regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| 411 | regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| 412 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 413 | regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ |
| 414 | regs_buff[18] = regs_buff[13]; /* cable polarity */ |
| 415 | regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| 416 | regs_buff[20] = regs_buff[17]; /* polarity correction */ |
| 417 | /* phy receive errors */ |
| 418 | regs_buff[22] = adapter->phy_stats.receive_errors; |
| 419 | regs_buff[23] = regs_buff[13]; /* mdix mode */ |
| 420 | } |
| 421 | regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ |
| 422 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
| 423 | regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ |
| 424 | regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ |
| 425 | if(hw->mac_type >= e1000_82540 && |
| 426 | hw->media_type == e1000_media_type_copper) { |
| 427 | regs_buff[26] = E1000_READ_REG(hw, MANC); |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | static int |
| 432 | e1000_get_eeprom_len(struct net_device *netdev) |
| 433 | { |
| 434 | struct e1000_adapter *adapter = netdev->priv; |
| 435 | return adapter->hw.eeprom.word_size * 2; |
| 436 | } |
| 437 | |
| 438 | static int |
| 439 | e1000_get_eeprom(struct net_device *netdev, |
| 440 | struct ethtool_eeprom *eeprom, uint8_t *bytes) |
| 441 | { |
| 442 | struct e1000_adapter *adapter = netdev->priv; |
| 443 | struct e1000_hw *hw = &adapter->hw; |
| 444 | uint16_t *eeprom_buff; |
| 445 | int first_word, last_word; |
| 446 | int ret_val = 0; |
| 447 | uint16_t i; |
| 448 | |
| 449 | if(eeprom->len == 0) |
| 450 | return -EINVAL; |
| 451 | |
| 452 | eeprom->magic = hw->vendor_id | (hw->device_id << 16); |
| 453 | |
| 454 | first_word = eeprom->offset >> 1; |
| 455 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| 456 | |
| 457 | eeprom_buff = kmalloc(sizeof(uint16_t) * |
| 458 | (last_word - first_word + 1), GFP_KERNEL); |
| 459 | if(!eeprom_buff) |
| 460 | return -ENOMEM; |
| 461 | |
| 462 | if(hw->eeprom.type == e1000_eeprom_spi) |
| 463 | ret_val = e1000_read_eeprom(hw, first_word, |
| 464 | last_word - first_word + 1, |
| 465 | eeprom_buff); |
| 466 | else { |
| 467 | for (i = 0; i < last_word - first_word + 1; i++) |
| 468 | if((ret_val = e1000_read_eeprom(hw, first_word + i, 1, |
| 469 | &eeprom_buff[i]))) |
| 470 | break; |
| 471 | } |
| 472 | |
| 473 | /* Device's eeprom is always little-endian, word addressable */ |
| 474 | for (i = 0; i < last_word - first_word + 1; i++) |
| 475 | le16_to_cpus(&eeprom_buff[i]); |
| 476 | |
| 477 | memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), |
| 478 | eeprom->len); |
| 479 | kfree(eeprom_buff); |
| 480 | |
| 481 | return ret_val; |
| 482 | } |
| 483 | |
| 484 | static int |
| 485 | e1000_set_eeprom(struct net_device *netdev, |
| 486 | struct ethtool_eeprom *eeprom, uint8_t *bytes) |
| 487 | { |
| 488 | struct e1000_adapter *adapter = netdev->priv; |
| 489 | struct e1000_hw *hw = &adapter->hw; |
| 490 | uint16_t *eeprom_buff; |
| 491 | void *ptr; |
| 492 | int max_len, first_word, last_word, ret_val = 0; |
| 493 | uint16_t i; |
| 494 | |
| 495 | if(eeprom->len == 0) |
| 496 | return -EOPNOTSUPP; |
| 497 | |
| 498 | if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) |
| 499 | return -EFAULT; |
| 500 | |
| 501 | max_len = hw->eeprom.word_size * 2; |
| 502 | |
| 503 | first_word = eeprom->offset >> 1; |
| 504 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| 505 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); |
| 506 | if(!eeprom_buff) |
| 507 | return -ENOMEM; |
| 508 | |
| 509 | ptr = (void *)eeprom_buff; |
| 510 | |
| 511 | if(eeprom->offset & 1) { |
| 512 | /* need read/modify/write of first changed EEPROM word */ |
| 513 | /* only the second byte of the word is being modified */ |
| 514 | ret_val = e1000_read_eeprom(hw, first_word, 1, |
| 515 | &eeprom_buff[0]); |
| 516 | ptr++; |
| 517 | } |
| 518 | if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { |
| 519 | /* need read/modify/write of last changed EEPROM word */ |
| 520 | /* only the first byte of the word is being modified */ |
| 521 | ret_val = e1000_read_eeprom(hw, last_word, 1, |
| 522 | &eeprom_buff[last_word - first_word]); |
| 523 | } |
| 524 | |
| 525 | /* Device's eeprom is always little-endian, word addressable */ |
| 526 | for (i = 0; i < last_word - first_word + 1; i++) |
| 527 | le16_to_cpus(&eeprom_buff[i]); |
| 528 | |
| 529 | memcpy(ptr, bytes, eeprom->len); |
| 530 | |
| 531 | for (i = 0; i < last_word - first_word + 1; i++) |
| 532 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); |
| 533 | |
| 534 | ret_val = e1000_write_eeprom(hw, first_word, |
| 535 | last_word - first_word + 1, eeprom_buff); |
| 536 | |
| 537 | /* Update the checksum over the first part of the EEPROM if needed */ |
| 538 | if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG) |
| 539 | e1000_update_eeprom_checksum(hw); |
| 540 | |
| 541 | kfree(eeprom_buff); |
| 542 | return ret_val; |
| 543 | } |
| 544 | |
| 545 | static void |
| 546 | e1000_get_drvinfo(struct net_device *netdev, |
| 547 | struct ethtool_drvinfo *drvinfo) |
| 548 | { |
| 549 | struct e1000_adapter *adapter = netdev->priv; |
| 550 | |
| 551 | strncpy(drvinfo->driver, e1000_driver_name, 32); |
| 552 | strncpy(drvinfo->version, e1000_driver_version, 32); |
| 553 | strncpy(drvinfo->fw_version, "N/A", 32); |
| 554 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); |
| 555 | drvinfo->n_stats = E1000_STATS_LEN; |
| 556 | drvinfo->testinfo_len = E1000_TEST_LEN; |
| 557 | drvinfo->regdump_len = e1000_get_regs_len(netdev); |
| 558 | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); |
| 559 | } |
| 560 | |
| 561 | static void |
| 562 | e1000_get_ringparam(struct net_device *netdev, |
| 563 | struct ethtool_ringparam *ring) |
| 564 | { |
| 565 | struct e1000_adapter *adapter = netdev->priv; |
| 566 | e1000_mac_type mac_type = adapter->hw.mac_type; |
| 567 | struct e1000_desc_ring *txdr = &adapter->tx_ring; |
| 568 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; |
| 569 | |
| 570 | ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : |
| 571 | E1000_MAX_82544_RXD; |
| 572 | ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : |
| 573 | E1000_MAX_82544_TXD; |
| 574 | ring->rx_mini_max_pending = 0; |
| 575 | ring->rx_jumbo_max_pending = 0; |
| 576 | ring->rx_pending = rxdr->count; |
| 577 | ring->tx_pending = txdr->count; |
| 578 | ring->rx_mini_pending = 0; |
| 579 | ring->rx_jumbo_pending = 0; |
| 580 | } |
| 581 | |
| 582 | static int |
| 583 | e1000_set_ringparam(struct net_device *netdev, |
| 584 | struct ethtool_ringparam *ring) |
| 585 | { |
| 586 | struct e1000_adapter *adapter = netdev->priv; |
| 587 | e1000_mac_type mac_type = adapter->hw.mac_type; |
| 588 | struct e1000_desc_ring *txdr = &adapter->tx_ring; |
| 589 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; |
| 590 | struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new; |
| 591 | int err; |
| 592 | |
| 593 | tx_old = adapter->tx_ring; |
| 594 | rx_old = adapter->rx_ring; |
| 595 | |
| 596 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
| 597 | return -EINVAL; |
| 598 | |
| 599 | if(netif_running(adapter->netdev)) |
| 600 | e1000_down(adapter); |
| 601 | |
| 602 | rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); |
| 603 | rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? |
| 604 | E1000_MAX_RXD : E1000_MAX_82544_RXD)); |
| 605 | E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); |
| 606 | |
| 607 | txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); |
| 608 | txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? |
| 609 | E1000_MAX_TXD : E1000_MAX_82544_TXD)); |
| 610 | E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); |
| 611 | |
| 612 | if(netif_running(adapter->netdev)) { |
| 613 | /* Try to get new resources before deleting old */ |
| 614 | if((err = e1000_setup_rx_resources(adapter))) |
| 615 | goto err_setup_rx; |
| 616 | if((err = e1000_setup_tx_resources(adapter))) |
| 617 | goto err_setup_tx; |
| 618 | |
| 619 | /* save the new, restore the old in order to free it, |
| 620 | * then restore the new back again */ |
| 621 | |
| 622 | rx_new = adapter->rx_ring; |
| 623 | tx_new = adapter->tx_ring; |
| 624 | adapter->rx_ring = rx_old; |
| 625 | adapter->tx_ring = tx_old; |
| 626 | e1000_free_rx_resources(adapter); |
| 627 | e1000_free_tx_resources(adapter); |
| 628 | adapter->rx_ring = rx_new; |
| 629 | adapter->tx_ring = tx_new; |
| 630 | if((err = e1000_up(adapter))) |
| 631 | return err; |
| 632 | } |
| 633 | |
| 634 | return 0; |
| 635 | err_setup_tx: |
| 636 | e1000_free_rx_resources(adapter); |
| 637 | err_setup_rx: |
| 638 | adapter->rx_ring = rx_old; |
| 639 | adapter->tx_ring = tx_old; |
| 640 | e1000_up(adapter); |
| 641 | return err; |
| 642 | } |
| 643 | |
| 644 | #define REG_PATTERN_TEST(R, M, W) \ |
| 645 | { \ |
| 646 | uint32_t pat, value; \ |
| 647 | uint32_t test[] = \ |
| 648 | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ |
| 649 | for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ |
| 650 | E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ |
| 651 | value = E1000_READ_REG(&adapter->hw, R); \ |
| 652 | if(value != (test[pat] & W & M)) { \ |
| 653 | *data = (adapter->hw.mac_type < e1000_82543) ? \ |
| 654 | E1000_82542_##R : E1000_##R; \ |
| 655 | return 1; \ |
| 656 | } \ |
| 657 | } \ |
| 658 | } |
| 659 | |
| 660 | #define REG_SET_AND_CHECK(R, M, W) \ |
| 661 | { \ |
| 662 | uint32_t value; \ |
| 663 | E1000_WRITE_REG(&adapter->hw, R, W & M); \ |
| 664 | value = E1000_READ_REG(&adapter->hw, R); \ |
| 665 | if ((W & M) != (value & M)) { \ |
| 666 | *data = (adapter->hw.mac_type < e1000_82543) ? \ |
| 667 | E1000_82542_##R : E1000_##R; \ |
| 668 | return 1; \ |
| 669 | } \ |
| 670 | } |
| 671 | |
| 672 | static int |
| 673 | e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) |
| 674 | { |
| 675 | uint32_t value; |
| 676 | uint32_t i; |
| 677 | |
| 678 | /* The status register is Read Only, so a write should fail. |
| 679 | * Some bits that get toggled are ignored. |
| 680 | */ |
| 681 | value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833)); |
| 682 | E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF)); |
| 683 | if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) { |
| 684 | *data = 1; |
| 685 | return 1; |
| 686 | } |
| 687 | |
| 688 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
| 689 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); |
| 690 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); |
| 691 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); |
| 692 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); |
| 693 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| 694 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); |
| 695 | REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); |
| 696 | REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); |
| 697 | REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); |
| 698 | REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); |
| 699 | REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); |
| 700 | REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| 701 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); |
| 702 | |
| 703 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); |
| 704 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); |
| 705 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); |
| 706 | |
| 707 | if(adapter->hw.mac_type >= e1000_82543) { |
| 708 | |
| 709 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); |
| 710 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
| 711 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); |
| 712 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
| 713 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); |
| 714 | |
| 715 | for(i = 0; i < E1000_RAR_ENTRIES; i++) { |
| 716 | REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, |
| 717 | 0xFFFFFFFF); |
| 718 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, |
| 719 | 0xFFFFFFFF); |
| 720 | } |
| 721 | |
| 722 | } else { |
| 723 | |
| 724 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); |
| 725 | REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); |
| 726 | REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); |
| 727 | REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); |
| 728 | |
| 729 | } |
| 730 | |
| 731 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) |
| 732 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); |
| 733 | |
| 734 | *data = 0; |
| 735 | return 0; |
| 736 | } |
| 737 | |
| 738 | static int |
| 739 | e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) |
| 740 | { |
| 741 | uint16_t temp; |
| 742 | uint16_t checksum = 0; |
| 743 | uint16_t i; |
| 744 | |
| 745 | *data = 0; |
| 746 | /* Read and add up the contents of the EEPROM */ |
| 747 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
| 748 | if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { |
| 749 | *data = 1; |
| 750 | break; |
| 751 | } |
| 752 | checksum += temp; |
| 753 | } |
| 754 | |
| 755 | /* If Checksum is not Correct return error else test passed */ |
| 756 | if((checksum != (uint16_t) EEPROM_SUM) && !(*data)) |
| 757 | *data = 2; |
| 758 | |
| 759 | return *data; |
| 760 | } |
| 761 | |
| 762 | static irqreturn_t |
| 763 | e1000_test_intr(int irq, |
| 764 | void *data, |
| 765 | struct pt_regs *regs) |
| 766 | { |
| 767 | struct net_device *netdev = (struct net_device *) data; |
| 768 | struct e1000_adapter *adapter = netdev->priv; |
| 769 | |
| 770 | adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); |
| 771 | |
| 772 | return IRQ_HANDLED; |
| 773 | } |
| 774 | |
| 775 | static int |
| 776 | e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) |
| 777 | { |
| 778 | struct net_device *netdev = adapter->netdev; |
| 779 | uint32_t mask, i=0, shared_int = TRUE; |
| 780 | uint32_t irq = adapter->pdev->irq; |
| 781 | |
| 782 | *data = 0; |
| 783 | |
| 784 | /* Hook up test interrupt handler just for this test */ |
| 785 | if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { |
| 786 | shared_int = FALSE; |
| 787 | } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, |
| 788 | netdev->name, netdev)){ |
| 789 | *data = 1; |
| 790 | return -1; |
| 791 | } |
| 792 | |
| 793 | /* Disable all the interrupts */ |
| 794 | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); |
| 795 | msec_delay(10); |
| 796 | |
| 797 | /* Test each interrupt */ |
| 798 | for(; i < 10; i++) { |
| 799 | |
| 800 | /* Interrupt to test */ |
| 801 | mask = 1 << i; |
| 802 | |
| 803 | if(!shared_int) { |
| 804 | /* Disable the interrupt to be reported in |
| 805 | * the cause register and then force the same |
| 806 | * interrupt and see if one gets posted. If |
| 807 | * an interrupt was posted to the bus, the |
| 808 | * test failed. |
| 809 | */ |
| 810 | adapter->test_icr = 0; |
| 811 | E1000_WRITE_REG(&adapter->hw, IMC, mask); |
| 812 | E1000_WRITE_REG(&adapter->hw, ICS, mask); |
| 813 | msec_delay(10); |
| 814 | |
| 815 | if(adapter->test_icr & mask) { |
| 816 | *data = 3; |
| 817 | break; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | /* Enable the interrupt to be reported in |
| 822 | * the cause register and then force the same |
| 823 | * interrupt and see if one gets posted. If |
| 824 | * an interrupt was not posted to the bus, the |
| 825 | * test failed. |
| 826 | */ |
| 827 | adapter->test_icr = 0; |
| 828 | E1000_WRITE_REG(&adapter->hw, IMS, mask); |
| 829 | E1000_WRITE_REG(&adapter->hw, ICS, mask); |
| 830 | msec_delay(10); |
| 831 | |
| 832 | if(!(adapter->test_icr & mask)) { |
| 833 | *data = 4; |
| 834 | break; |
| 835 | } |
| 836 | |
| 837 | if(!shared_int) { |
| 838 | /* Disable the other interrupts to be reported in |
| 839 | * the cause register and then force the other |
| 840 | * interrupts and see if any get posted. If |
| 841 | * an interrupt was posted to the bus, the |
| 842 | * test failed. |
| 843 | */ |
| 844 | adapter->test_icr = 0; |
| 845 | E1000_WRITE_REG(&adapter->hw, IMC, |
| 846 | (~mask & 0x00007FFF)); |
| 847 | E1000_WRITE_REG(&adapter->hw, ICS, |
| 848 | (~mask & 0x00007FFF)); |
| 849 | msec_delay(10); |
| 850 | |
| 851 | if(adapter->test_icr) { |
| 852 | *data = 5; |
| 853 | break; |
| 854 | } |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | /* Disable all the interrupts */ |
| 859 | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); |
| 860 | msec_delay(10); |
| 861 | |
| 862 | /* Unhook test interrupt handler */ |
| 863 | free_irq(irq, netdev); |
| 864 | |
| 865 | return *data; |
| 866 | } |
| 867 | |
| 868 | static void |
| 869 | e1000_free_desc_rings(struct e1000_adapter *adapter) |
| 870 | { |
| 871 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; |
| 872 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; |
| 873 | struct pci_dev *pdev = adapter->pdev; |
| 874 | int i; |
| 875 | |
| 876 | if(txdr->desc && txdr->buffer_info) { |
| 877 | for(i = 0; i < txdr->count; i++) { |
| 878 | if(txdr->buffer_info[i].dma) |
| 879 | pci_unmap_single(pdev, txdr->buffer_info[i].dma, |
| 880 | txdr->buffer_info[i].length, |
| 881 | PCI_DMA_TODEVICE); |
| 882 | if(txdr->buffer_info[i].skb) |
| 883 | dev_kfree_skb(txdr->buffer_info[i].skb); |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | if(rxdr->desc && rxdr->buffer_info) { |
| 888 | for(i = 0; i < rxdr->count; i++) { |
| 889 | if(rxdr->buffer_info[i].dma) |
| 890 | pci_unmap_single(pdev, rxdr->buffer_info[i].dma, |
| 891 | rxdr->buffer_info[i].length, |
| 892 | PCI_DMA_FROMDEVICE); |
| 893 | if(rxdr->buffer_info[i].skb) |
| 894 | dev_kfree_skb(rxdr->buffer_info[i].skb); |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | if(txdr->desc) |
| 899 | pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); |
| 900 | if(rxdr->desc) |
| 901 | pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); |
| 902 | |
| 903 | if(txdr->buffer_info) |
| 904 | kfree(txdr->buffer_info); |
| 905 | if(rxdr->buffer_info) |
| 906 | kfree(rxdr->buffer_info); |
| 907 | |
| 908 | return; |
| 909 | } |
| 910 | |
| 911 | static int |
| 912 | e1000_setup_desc_rings(struct e1000_adapter *adapter) |
| 913 | { |
| 914 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; |
| 915 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; |
| 916 | struct pci_dev *pdev = adapter->pdev; |
| 917 | uint32_t rctl; |
| 918 | int size, i, ret_val; |
| 919 | |
| 920 | /* Setup Tx descriptor ring and Tx buffers */ |
| 921 | |
Malli Chilakala | e4eff72 | 2005-04-28 19:38:30 -0700 | [diff] [blame^] | 922 | if(!txdr->count) |
| 923 | txdr->count = E1000_DEFAULT_TXD; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 924 | |
| 925 | size = txdr->count * sizeof(struct e1000_buffer); |
| 926 | if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { |
| 927 | ret_val = 1; |
| 928 | goto err_nomem; |
| 929 | } |
| 930 | memset(txdr->buffer_info, 0, size); |
| 931 | |
| 932 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
| 933 | E1000_ROUNDUP(txdr->size, 4096); |
| 934 | if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { |
| 935 | ret_val = 2; |
| 936 | goto err_nomem; |
| 937 | } |
| 938 | memset(txdr->desc, 0, txdr->size); |
| 939 | txdr->next_to_use = txdr->next_to_clean = 0; |
| 940 | |
| 941 | E1000_WRITE_REG(&adapter->hw, TDBAL, |
| 942 | ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); |
| 943 | E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); |
| 944 | E1000_WRITE_REG(&adapter->hw, TDLEN, |
| 945 | txdr->count * sizeof(struct e1000_tx_desc)); |
| 946 | E1000_WRITE_REG(&adapter->hw, TDH, 0); |
| 947 | E1000_WRITE_REG(&adapter->hw, TDT, 0); |
| 948 | E1000_WRITE_REG(&adapter->hw, TCTL, |
| 949 | E1000_TCTL_PSP | E1000_TCTL_EN | |
| 950 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | |
| 951 | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); |
| 952 | |
| 953 | for(i = 0; i < txdr->count; i++) { |
| 954 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); |
| 955 | struct sk_buff *skb; |
| 956 | unsigned int size = 1024; |
| 957 | |
| 958 | if(!(skb = alloc_skb(size, GFP_KERNEL))) { |
| 959 | ret_val = 3; |
| 960 | goto err_nomem; |
| 961 | } |
| 962 | skb_put(skb, size); |
| 963 | txdr->buffer_info[i].skb = skb; |
| 964 | txdr->buffer_info[i].length = skb->len; |
| 965 | txdr->buffer_info[i].dma = |
| 966 | pci_map_single(pdev, skb->data, skb->len, |
| 967 | PCI_DMA_TODEVICE); |
| 968 | tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); |
| 969 | tx_desc->lower.data = cpu_to_le32(skb->len); |
| 970 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | |
| 971 | E1000_TXD_CMD_IFCS | |
| 972 | E1000_TXD_CMD_RPS); |
| 973 | tx_desc->upper.data = 0; |
| 974 | } |
| 975 | |
| 976 | /* Setup Rx descriptor ring and Rx buffers */ |
| 977 | |
Malli Chilakala | e4eff72 | 2005-04-28 19:38:30 -0700 | [diff] [blame^] | 978 | if(!rxdr->count) |
| 979 | rxdr->count = E1000_DEFAULT_RXD; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 980 | |
| 981 | size = rxdr->count * sizeof(struct e1000_buffer); |
| 982 | if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { |
| 983 | ret_val = 4; |
| 984 | goto err_nomem; |
| 985 | } |
| 986 | memset(rxdr->buffer_info, 0, size); |
| 987 | |
| 988 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); |
| 989 | if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { |
| 990 | ret_val = 5; |
| 991 | goto err_nomem; |
| 992 | } |
| 993 | memset(rxdr->desc, 0, rxdr->size); |
| 994 | rxdr->next_to_use = rxdr->next_to_clean = 0; |
| 995 | |
| 996 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| 997 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); |
| 998 | E1000_WRITE_REG(&adapter->hw, RDBAL, |
| 999 | ((uint64_t) rxdr->dma & 0xFFFFFFFF)); |
| 1000 | E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); |
| 1001 | E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); |
| 1002 | E1000_WRITE_REG(&adapter->hw, RDH, 0); |
| 1003 | E1000_WRITE_REG(&adapter->hw, RDT, 0); |
| 1004 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | |
| 1005 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| 1006 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| 1007 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| 1008 | |
| 1009 | for(i = 0; i < rxdr->count; i++) { |
| 1010 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); |
| 1011 | struct sk_buff *skb; |
| 1012 | |
| 1013 | if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, |
| 1014 | GFP_KERNEL))) { |
| 1015 | ret_val = 6; |
| 1016 | goto err_nomem; |
| 1017 | } |
| 1018 | skb_reserve(skb, NET_IP_ALIGN); |
| 1019 | rxdr->buffer_info[i].skb = skb; |
| 1020 | rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; |
| 1021 | rxdr->buffer_info[i].dma = |
| 1022 | pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, |
| 1023 | PCI_DMA_FROMDEVICE); |
| 1024 | rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); |
| 1025 | memset(skb->data, 0x00, skb->len); |
| 1026 | } |
| 1027 | |
| 1028 | return 0; |
| 1029 | |
| 1030 | err_nomem: |
| 1031 | e1000_free_desc_rings(adapter); |
| 1032 | return ret_val; |
| 1033 | } |
| 1034 | |
| 1035 | static void |
| 1036 | e1000_phy_disable_receiver(struct e1000_adapter *adapter) |
| 1037 | { |
| 1038 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
| 1039 | e1000_write_phy_reg(&adapter->hw, 29, 0x001F); |
| 1040 | e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); |
| 1041 | e1000_write_phy_reg(&adapter->hw, 29, 0x001A); |
| 1042 | e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); |
| 1043 | } |
| 1044 | |
| 1045 | static void |
| 1046 | e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) |
| 1047 | { |
| 1048 | uint16_t phy_reg; |
| 1049 | |
| 1050 | /* Because we reset the PHY above, we need to re-force TX_CLK in the |
| 1051 | * Extended PHY Specific Control Register to 25MHz clock. This |
| 1052 | * value defaults back to a 2.5MHz clock when the PHY is reset. |
| 1053 | */ |
| 1054 | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); |
| 1055 | phy_reg |= M88E1000_EPSCR_TX_CLK_25; |
| 1056 | e1000_write_phy_reg(&adapter->hw, |
| 1057 | M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); |
| 1058 | |
| 1059 | /* In addition, because of the s/w reset above, we need to enable |
| 1060 | * CRS on TX. This must be set for both full and half duplex |
| 1061 | * operation. |
| 1062 | */ |
| 1063 | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); |
| 1064 | phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| 1065 | e1000_write_phy_reg(&adapter->hw, |
| 1066 | M88E1000_PHY_SPEC_CTRL, phy_reg); |
| 1067 | } |
| 1068 | |
| 1069 | static int |
| 1070 | e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) |
| 1071 | { |
| 1072 | uint32_t ctrl_reg; |
| 1073 | uint16_t phy_reg; |
| 1074 | |
| 1075 | /* Setup the Device Control Register for PHY loopback test. */ |
| 1076 | |
| 1077 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); |
| 1078 | ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ |
| 1079 | E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| 1080 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| 1081 | E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ |
| 1082 | E1000_CTRL_FD); /* Force Duplex to FULL */ |
| 1083 | |
| 1084 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); |
| 1085 | |
| 1086 | /* Read the PHY Specific Control Register (0x10) */ |
| 1087 | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); |
| 1088 | |
| 1089 | /* Clear Auto-Crossover bits in PHY Specific Control Register |
| 1090 | * (bits 6:5). |
| 1091 | */ |
| 1092 | phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; |
| 1093 | e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); |
| 1094 | |
| 1095 | /* Perform software reset on the PHY */ |
| 1096 | e1000_phy_reset(&adapter->hw); |
| 1097 | |
| 1098 | /* Have to setup TX_CLK and TX_CRS after software reset */ |
| 1099 | e1000_phy_reset_clk_and_crs(adapter); |
| 1100 | |
| 1101 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); |
| 1102 | |
| 1103 | /* Wait for reset to complete. */ |
| 1104 | udelay(500); |
| 1105 | |
| 1106 | /* Have to setup TX_CLK and TX_CRS after software reset */ |
| 1107 | e1000_phy_reset_clk_and_crs(adapter); |
| 1108 | |
| 1109 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
| 1110 | e1000_phy_disable_receiver(adapter); |
| 1111 | |
| 1112 | /* Set the loopback bit in the PHY control register. */ |
| 1113 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); |
| 1114 | phy_reg |= MII_CR_LOOPBACK; |
| 1115 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); |
| 1116 | |
| 1117 | /* Setup TX_CLK and TX_CRS one more time. */ |
| 1118 | e1000_phy_reset_clk_and_crs(adapter); |
| 1119 | |
| 1120 | /* Check Phy Configuration */ |
| 1121 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); |
| 1122 | if(phy_reg != 0x4100) |
| 1123 | return 9; |
| 1124 | |
| 1125 | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); |
| 1126 | if(phy_reg != 0x0070) |
| 1127 | return 10; |
| 1128 | |
| 1129 | e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); |
| 1130 | if(phy_reg != 0x001A) |
| 1131 | return 11; |
| 1132 | |
| 1133 | return 0; |
| 1134 | } |
| 1135 | |
| 1136 | static int |
| 1137 | e1000_integrated_phy_loopback(struct e1000_adapter *adapter) |
| 1138 | { |
| 1139 | uint32_t ctrl_reg = 0; |
| 1140 | uint32_t stat_reg = 0; |
| 1141 | |
| 1142 | adapter->hw.autoneg = FALSE; |
| 1143 | |
| 1144 | if(adapter->hw.phy_type == e1000_phy_m88) { |
| 1145 | /* Auto-MDI/MDIX Off */ |
| 1146 | e1000_write_phy_reg(&adapter->hw, |
| 1147 | M88E1000_PHY_SPEC_CTRL, 0x0808); |
| 1148 | /* reset to update Auto-MDI/MDIX */ |
| 1149 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); |
| 1150 | /* autoneg off */ |
| 1151 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); |
| 1152 | } |
| 1153 | /* force 1000, set loopback */ |
| 1154 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); |
| 1155 | |
| 1156 | /* Now set up the MAC to the same speed/duplex as the PHY. */ |
| 1157 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); |
| 1158 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
| 1159 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| 1160 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| 1161 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ |
| 1162 | E1000_CTRL_FD); /* Force Duplex to FULL */ |
| 1163 | |
| 1164 | if(adapter->hw.media_type == e1000_media_type_copper && |
| 1165 | adapter->hw.phy_type == e1000_phy_m88) { |
| 1166 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ |
| 1167 | } else { |
| 1168 | /* Set the ILOS bit on the fiber Nic is half |
| 1169 | * duplex link is detected. */ |
| 1170 | stat_reg = E1000_READ_REG(&adapter->hw, STATUS); |
| 1171 | if((stat_reg & E1000_STATUS_FD) == 0) |
| 1172 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); |
| 1173 | } |
| 1174 | |
| 1175 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); |
| 1176 | |
| 1177 | /* Disable the receiver on the PHY so when a cable is plugged in, the |
| 1178 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. |
| 1179 | */ |
| 1180 | if(adapter->hw.phy_type == e1000_phy_m88) |
| 1181 | e1000_phy_disable_receiver(adapter); |
| 1182 | |
| 1183 | udelay(500); |
| 1184 | |
| 1185 | return 0; |
| 1186 | } |
| 1187 | |
| 1188 | static int |
| 1189 | e1000_set_phy_loopback(struct e1000_adapter *adapter) |
| 1190 | { |
| 1191 | uint16_t phy_reg = 0; |
| 1192 | uint16_t count = 0; |
| 1193 | |
| 1194 | switch (adapter->hw.mac_type) { |
| 1195 | case e1000_82543: |
| 1196 | if(adapter->hw.media_type == e1000_media_type_copper) { |
| 1197 | /* Attempt to setup Loopback mode on Non-integrated PHY. |
| 1198 | * Some PHY registers get corrupted at random, so |
| 1199 | * attempt this 10 times. |
| 1200 | */ |
| 1201 | while(e1000_nonintegrated_phy_loopback(adapter) && |
| 1202 | count++ < 10); |
| 1203 | if(count < 11) |
| 1204 | return 0; |
| 1205 | } |
| 1206 | break; |
| 1207 | |
| 1208 | case e1000_82544: |
| 1209 | case e1000_82540: |
| 1210 | case e1000_82545: |
| 1211 | case e1000_82545_rev_3: |
| 1212 | case e1000_82546: |
| 1213 | case e1000_82546_rev_3: |
| 1214 | case e1000_82541: |
| 1215 | case e1000_82541_rev_2: |
| 1216 | case e1000_82547: |
| 1217 | case e1000_82547_rev_2: |
| 1218 | return e1000_integrated_phy_loopback(adapter); |
| 1219 | break; |
| 1220 | |
| 1221 | default: |
| 1222 | /* Default PHY loopback work is to read the MII |
| 1223 | * control register and assert bit 14 (loopback mode). |
| 1224 | */ |
| 1225 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); |
| 1226 | phy_reg |= MII_CR_LOOPBACK; |
| 1227 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); |
| 1228 | return 0; |
| 1229 | break; |
| 1230 | } |
| 1231 | |
| 1232 | return 8; |
| 1233 | } |
| 1234 | |
| 1235 | static int |
| 1236 | e1000_setup_loopback_test(struct e1000_adapter *adapter) |
| 1237 | { |
| 1238 | uint32_t rctl; |
| 1239 | |
| 1240 | if(adapter->hw.media_type == e1000_media_type_fiber || |
| 1241 | adapter->hw.media_type == e1000_media_type_internal_serdes) { |
| 1242 | if(adapter->hw.mac_type == e1000_82545 || |
| 1243 | adapter->hw.mac_type == e1000_82546 || |
| 1244 | adapter->hw.mac_type == e1000_82545_rev_3 || |
| 1245 | adapter->hw.mac_type == e1000_82546_rev_3) |
| 1246 | return e1000_set_phy_loopback(adapter); |
| 1247 | else { |
| 1248 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| 1249 | rctl |= E1000_RCTL_LBM_TCVR; |
| 1250 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| 1251 | return 0; |
| 1252 | } |
| 1253 | } else if(adapter->hw.media_type == e1000_media_type_copper) |
| 1254 | return e1000_set_phy_loopback(adapter); |
| 1255 | |
| 1256 | return 7; |
| 1257 | } |
| 1258 | |
| 1259 | static void |
| 1260 | e1000_loopback_cleanup(struct e1000_adapter *adapter) |
| 1261 | { |
| 1262 | uint32_t rctl; |
| 1263 | uint16_t phy_reg; |
| 1264 | |
| 1265 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| 1266 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
| 1267 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| 1268 | |
| 1269 | if(adapter->hw.media_type == e1000_media_type_copper || |
| 1270 | ((adapter->hw.media_type == e1000_media_type_fiber || |
| 1271 | adapter->hw.media_type == e1000_media_type_internal_serdes) && |
| 1272 | (adapter->hw.mac_type == e1000_82545 || |
| 1273 | adapter->hw.mac_type == e1000_82546 || |
| 1274 | adapter->hw.mac_type == e1000_82545_rev_3 || |
| 1275 | adapter->hw.mac_type == e1000_82546_rev_3))) { |
| 1276 | adapter->hw.autoneg = TRUE; |
| 1277 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); |
| 1278 | if(phy_reg & MII_CR_LOOPBACK) { |
| 1279 | phy_reg &= ~MII_CR_LOOPBACK; |
| 1280 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); |
| 1281 | e1000_phy_reset(&adapter->hw); |
| 1282 | } |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | static void |
| 1287 | e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) |
| 1288 | { |
| 1289 | memset(skb->data, 0xFF, frame_size); |
| 1290 | frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; |
| 1291 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); |
| 1292 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); |
| 1293 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); |
| 1294 | } |
| 1295 | |
| 1296 | static int |
| 1297 | e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) |
| 1298 | { |
| 1299 | frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; |
| 1300 | if(*(skb->data + 3) == 0xFF) { |
| 1301 | if((*(skb->data + frame_size / 2 + 10) == 0xBE) && |
| 1302 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) { |
| 1303 | return 0; |
| 1304 | } |
| 1305 | } |
| 1306 | return 13; |
| 1307 | } |
| 1308 | |
| 1309 | static int |
| 1310 | e1000_run_loopback_test(struct e1000_adapter *adapter) |
| 1311 | { |
| 1312 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; |
| 1313 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; |
| 1314 | struct pci_dev *pdev = adapter->pdev; |
Malli Chilakala | e4eff72 | 2005-04-28 19:38:30 -0700 | [diff] [blame^] | 1315 | int i, j, k, l, lc, good_cnt, ret_val=0; |
| 1316 | unsigned long time; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1317 | |
| 1318 | E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); |
| 1319 | |
Malli Chilakala | e4eff72 | 2005-04-28 19:38:30 -0700 | [diff] [blame^] | 1320 | /* Calculate the loop count based on the largest descriptor ring |
| 1321 | * The idea is to wrap the largest ring a number of times using 64 |
| 1322 | * send/receive pairs during each loop |
| 1323 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1324 | |
Malli Chilakala | e4eff72 | 2005-04-28 19:38:30 -0700 | [diff] [blame^] | 1325 | if(rxdr->count <= txdr->count) |
| 1326 | lc = ((txdr->count / 64) * 2) + 1; |
| 1327 | else |
| 1328 | lc = ((rxdr->count / 64) * 2) + 1; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1329 | |
Malli Chilakala | e4eff72 | 2005-04-28 19:38:30 -0700 | [diff] [blame^] | 1330 | k = l = 0; |
| 1331 | for(j = 0; j <= lc; j++) { /* loop count loop */ |
| 1332 | for(i = 0; i < 64; i++) { /* send the packets */ |
| 1333 | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, |
| 1334 | 1024); |
| 1335 | pci_dma_sync_single_for_device(pdev, |
| 1336 | txdr->buffer_info[k].dma, |
| 1337 | txdr->buffer_info[k].length, |
| 1338 | PCI_DMA_TODEVICE); |
| 1339 | if(unlikely(++k == txdr->count)) k = 0; |
| 1340 | } |
| 1341 | E1000_WRITE_REG(&adapter->hw, TDT, k); |
| 1342 | msec_delay(200); |
| 1343 | time = jiffies; /* set the start time for the receive */ |
| 1344 | good_cnt = 0; |
| 1345 | do { /* receive the sent packets */ |
| 1346 | pci_dma_sync_single_for_cpu(pdev, |
| 1347 | rxdr->buffer_info[l].dma, |
| 1348 | rxdr->buffer_info[l].length, |
| 1349 | PCI_DMA_FROMDEVICE); |
| 1350 | |
| 1351 | ret_val = e1000_check_lbtest_frame( |
| 1352 | rxdr->buffer_info[l].skb, |
| 1353 | 1024); |
| 1354 | if(!ret_val) |
| 1355 | good_cnt++; |
| 1356 | if(unlikely(++l == rxdr->count)) l = 0; |
| 1357 | /* time + 20 msecs (200 msecs on 2.4) is more than |
| 1358 | * enough time to complete the receives, if it's |
| 1359 | * exceeded, break and error off |
| 1360 | */ |
| 1361 | } while (good_cnt < 64 && jiffies < (time + 20)); |
| 1362 | if(good_cnt != 64) { |
| 1363 | ret_val = 13; /* ret_val is the same as mis-compare */ |
| 1364 | break; |
| 1365 | } |
| 1366 | if(jiffies >= (time + 2)) { |
| 1367 | ret_val = 14; /* error code for time out error */ |
| 1368 | break; |
| 1369 | } |
| 1370 | } /* end loop count loop */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1371 | return ret_val; |
| 1372 | } |
| 1373 | |
| 1374 | static int |
| 1375 | e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) |
| 1376 | { |
| 1377 | if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback; |
| 1378 | if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback; |
| 1379 | *data = e1000_run_loopback_test(adapter); |
| 1380 | e1000_loopback_cleanup(adapter); |
| 1381 | e1000_free_desc_rings(adapter); |
| 1382 | err_loopback: |
| 1383 | return *data; |
| 1384 | } |
| 1385 | |
| 1386 | static int |
| 1387 | e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) |
| 1388 | { |
| 1389 | *data = 0; |
| 1390 | |
| 1391 | if (adapter->hw.media_type == e1000_media_type_internal_serdes) { |
| 1392 | int i = 0; |
| 1393 | adapter->hw.serdes_link_down = TRUE; |
| 1394 | |
| 1395 | /* on some blade server designs link establishment */ |
| 1396 | /* could take as long as 2-3 minutes. */ |
| 1397 | do { |
| 1398 | e1000_check_for_link(&adapter->hw); |
| 1399 | if (adapter->hw.serdes_link_down == FALSE) |
| 1400 | return *data; |
| 1401 | msec_delay(20); |
| 1402 | } while (i++ < 3750); |
| 1403 | |
| 1404 | *data = 1; |
| 1405 | } else { |
| 1406 | e1000_check_for_link(&adapter->hw); |
Malli Chilakala | e4eff72 | 2005-04-28 19:38:30 -0700 | [diff] [blame^] | 1407 | if(adapter->hw.autoneg) /* if auto_neg is set wait for it */ |
| 1408 | msec_delay(4000); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1409 | |
| 1410 | if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { |
| 1411 | *data = 1; |
| 1412 | } |
| 1413 | } |
| 1414 | return *data; |
| 1415 | } |
| 1416 | |
| 1417 | static int |
| 1418 | e1000_diag_test_count(struct net_device *netdev) |
| 1419 | { |
| 1420 | return E1000_TEST_LEN; |
| 1421 | } |
| 1422 | |
| 1423 | static void |
| 1424 | e1000_diag_test(struct net_device *netdev, |
| 1425 | struct ethtool_test *eth_test, uint64_t *data) |
| 1426 | { |
| 1427 | struct e1000_adapter *adapter = netdev->priv; |
| 1428 | boolean_t if_running = netif_running(netdev); |
| 1429 | |
| 1430 | if(eth_test->flags == ETH_TEST_FL_OFFLINE) { |
| 1431 | /* Offline tests */ |
| 1432 | |
| 1433 | /* save speed, duplex, autoneg settings */ |
| 1434 | uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; |
| 1435 | uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; |
| 1436 | uint8_t autoneg = adapter->hw.autoneg; |
| 1437 | |
| 1438 | /* Link test performed before hardware reset so autoneg doesn't |
| 1439 | * interfere with test result */ |
| 1440 | if(e1000_link_test(adapter, &data[4])) |
| 1441 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1442 | |
| 1443 | if(if_running) |
| 1444 | e1000_down(adapter); |
| 1445 | else |
| 1446 | e1000_reset(adapter); |
| 1447 | |
| 1448 | if(e1000_reg_test(adapter, &data[0])) |
| 1449 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1450 | |
| 1451 | e1000_reset(adapter); |
| 1452 | if(e1000_eeprom_test(adapter, &data[1])) |
| 1453 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1454 | |
| 1455 | e1000_reset(adapter); |
| 1456 | if(e1000_intr_test(adapter, &data[2])) |
| 1457 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1458 | |
| 1459 | e1000_reset(adapter); |
| 1460 | if(e1000_loopback_test(adapter, &data[3])) |
| 1461 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1462 | |
| 1463 | /* restore speed, duplex, autoneg settings */ |
| 1464 | adapter->hw.autoneg_advertised = autoneg_advertised; |
| 1465 | adapter->hw.forced_speed_duplex = forced_speed_duplex; |
| 1466 | adapter->hw.autoneg = autoneg; |
| 1467 | |
| 1468 | e1000_reset(adapter); |
| 1469 | if(if_running) |
| 1470 | e1000_up(adapter); |
| 1471 | } else { |
| 1472 | /* Online tests */ |
| 1473 | if(e1000_link_test(adapter, &data[4])) |
| 1474 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1475 | |
| 1476 | /* Offline tests aren't run; pass by default */ |
| 1477 | data[0] = 0; |
| 1478 | data[1] = 0; |
| 1479 | data[2] = 0; |
| 1480 | data[3] = 0; |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | static void |
| 1485 | e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
| 1486 | { |
| 1487 | struct e1000_adapter *adapter = netdev->priv; |
| 1488 | struct e1000_hw *hw = &adapter->hw; |
| 1489 | |
| 1490 | switch(adapter->hw.device_id) { |
| 1491 | case E1000_DEV_ID_82542: |
| 1492 | case E1000_DEV_ID_82543GC_FIBER: |
| 1493 | case E1000_DEV_ID_82543GC_COPPER: |
| 1494 | case E1000_DEV_ID_82544EI_FIBER: |
| 1495 | case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| 1496 | case E1000_DEV_ID_82545EM_FIBER: |
| 1497 | case E1000_DEV_ID_82545EM_COPPER: |
| 1498 | wol->supported = 0; |
| 1499 | wol->wolopts = 0; |
| 1500 | return; |
| 1501 | |
| 1502 | case E1000_DEV_ID_82546EB_FIBER: |
| 1503 | case E1000_DEV_ID_82546GB_FIBER: |
| 1504 | /* Wake events only supported on port A for dual fiber */ |
| 1505 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { |
| 1506 | wol->supported = 0; |
| 1507 | wol->wolopts = 0; |
| 1508 | return; |
| 1509 | } |
| 1510 | /* Fall Through */ |
| 1511 | |
| 1512 | default: |
| 1513 | wol->supported = WAKE_UCAST | WAKE_MCAST | |
| 1514 | WAKE_BCAST | WAKE_MAGIC; |
| 1515 | |
| 1516 | wol->wolopts = 0; |
| 1517 | if(adapter->wol & E1000_WUFC_EX) |
| 1518 | wol->wolopts |= WAKE_UCAST; |
| 1519 | if(adapter->wol & E1000_WUFC_MC) |
| 1520 | wol->wolopts |= WAKE_MCAST; |
| 1521 | if(adapter->wol & E1000_WUFC_BC) |
| 1522 | wol->wolopts |= WAKE_BCAST; |
| 1523 | if(adapter->wol & E1000_WUFC_MAG) |
| 1524 | wol->wolopts |= WAKE_MAGIC; |
| 1525 | return; |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | static int |
| 1530 | e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
| 1531 | { |
| 1532 | struct e1000_adapter *adapter = netdev->priv; |
| 1533 | struct e1000_hw *hw = &adapter->hw; |
| 1534 | |
| 1535 | switch(adapter->hw.device_id) { |
| 1536 | case E1000_DEV_ID_82542: |
| 1537 | case E1000_DEV_ID_82543GC_FIBER: |
| 1538 | case E1000_DEV_ID_82543GC_COPPER: |
| 1539 | case E1000_DEV_ID_82544EI_FIBER: |
| 1540 | case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| 1541 | case E1000_DEV_ID_82545EM_FIBER: |
| 1542 | case E1000_DEV_ID_82545EM_COPPER: |
| 1543 | return wol->wolopts ? -EOPNOTSUPP : 0; |
| 1544 | |
| 1545 | case E1000_DEV_ID_82546EB_FIBER: |
| 1546 | case E1000_DEV_ID_82546GB_FIBER: |
| 1547 | /* Wake events only supported on port A for dual fiber */ |
| 1548 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) |
| 1549 | return wol->wolopts ? -EOPNOTSUPP : 0; |
| 1550 | /* Fall Through */ |
| 1551 | |
| 1552 | default: |
| 1553 | if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) |
| 1554 | return -EOPNOTSUPP; |
| 1555 | |
| 1556 | adapter->wol = 0; |
| 1557 | |
| 1558 | if(wol->wolopts & WAKE_UCAST) |
| 1559 | adapter->wol |= E1000_WUFC_EX; |
| 1560 | if(wol->wolopts & WAKE_MCAST) |
| 1561 | adapter->wol |= E1000_WUFC_MC; |
| 1562 | if(wol->wolopts & WAKE_BCAST) |
| 1563 | adapter->wol |= E1000_WUFC_BC; |
| 1564 | if(wol->wolopts & WAKE_MAGIC) |
| 1565 | adapter->wol |= E1000_WUFC_MAG; |
| 1566 | } |
| 1567 | |
| 1568 | return 0; |
| 1569 | } |
| 1570 | |
| 1571 | /* toggle LED 4 times per second = 2 "blinks" per second */ |
| 1572 | #define E1000_ID_INTERVAL (HZ/4) |
| 1573 | |
| 1574 | /* bit defines for adapter->led_status */ |
| 1575 | #define E1000_LED_ON 0 |
| 1576 | |
| 1577 | static void |
| 1578 | e1000_led_blink_callback(unsigned long data) |
| 1579 | { |
| 1580 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| 1581 | |
| 1582 | if(test_and_change_bit(E1000_LED_ON, &adapter->led_status)) |
| 1583 | e1000_led_off(&adapter->hw); |
| 1584 | else |
| 1585 | e1000_led_on(&adapter->hw); |
| 1586 | |
| 1587 | mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); |
| 1588 | } |
| 1589 | |
| 1590 | static int |
| 1591 | e1000_phys_id(struct net_device *netdev, uint32_t data) |
| 1592 | { |
| 1593 | struct e1000_adapter *adapter = netdev->priv; |
| 1594 | |
| 1595 | if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) |
| 1596 | data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); |
| 1597 | |
| 1598 | if(!adapter->blink_timer.function) { |
| 1599 | init_timer(&adapter->blink_timer); |
| 1600 | adapter->blink_timer.function = e1000_led_blink_callback; |
| 1601 | adapter->blink_timer.data = (unsigned long) adapter; |
| 1602 | } |
| 1603 | |
| 1604 | e1000_setup_led(&adapter->hw); |
| 1605 | mod_timer(&adapter->blink_timer, jiffies); |
| 1606 | |
| 1607 | msleep_interruptible(data * 1000); |
| 1608 | del_timer_sync(&adapter->blink_timer); |
| 1609 | e1000_led_off(&adapter->hw); |
| 1610 | clear_bit(E1000_LED_ON, &adapter->led_status); |
| 1611 | e1000_cleanup_led(&adapter->hw); |
| 1612 | |
| 1613 | return 0; |
| 1614 | } |
| 1615 | |
| 1616 | static int |
| 1617 | e1000_nway_reset(struct net_device *netdev) |
| 1618 | { |
| 1619 | struct e1000_adapter *adapter = netdev->priv; |
| 1620 | if(netif_running(netdev)) { |
| 1621 | e1000_down(adapter); |
| 1622 | e1000_up(adapter); |
| 1623 | } |
| 1624 | return 0; |
| 1625 | } |
| 1626 | |
| 1627 | static int |
| 1628 | e1000_get_stats_count(struct net_device *netdev) |
| 1629 | { |
| 1630 | return E1000_STATS_LEN; |
| 1631 | } |
| 1632 | |
| 1633 | static void |
| 1634 | e1000_get_ethtool_stats(struct net_device *netdev, |
| 1635 | struct ethtool_stats *stats, uint64_t *data) |
| 1636 | { |
| 1637 | struct e1000_adapter *adapter = netdev->priv; |
| 1638 | int i; |
| 1639 | |
| 1640 | e1000_update_stats(adapter); |
| 1641 | for(i = 0; i < E1000_STATS_LEN; i++) { |
| 1642 | char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; |
| 1643 | data[i] = (e1000_gstrings_stats[i].sizeof_stat == |
| 1644 | sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | static void |
| 1649 | e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) |
| 1650 | { |
| 1651 | int i; |
| 1652 | |
| 1653 | switch(stringset) { |
| 1654 | case ETH_SS_TEST: |
| 1655 | memcpy(data, *e1000_gstrings_test, |
| 1656 | E1000_TEST_LEN*ETH_GSTRING_LEN); |
| 1657 | break; |
| 1658 | case ETH_SS_STATS: |
| 1659 | for (i=0; i < E1000_STATS_LEN; i++) { |
| 1660 | memcpy(data + i * ETH_GSTRING_LEN, |
| 1661 | e1000_gstrings_stats[i].stat_string, |
| 1662 | ETH_GSTRING_LEN); |
| 1663 | } |
| 1664 | break; |
| 1665 | } |
| 1666 | } |
| 1667 | |
| 1668 | struct ethtool_ops e1000_ethtool_ops = { |
| 1669 | .get_settings = e1000_get_settings, |
| 1670 | .set_settings = e1000_set_settings, |
| 1671 | .get_drvinfo = e1000_get_drvinfo, |
| 1672 | .get_regs_len = e1000_get_regs_len, |
| 1673 | .get_regs = e1000_get_regs, |
| 1674 | .get_wol = e1000_get_wol, |
| 1675 | .set_wol = e1000_set_wol, |
| 1676 | .get_msglevel = e1000_get_msglevel, |
| 1677 | .set_msglevel = e1000_set_msglevel, |
| 1678 | .nway_reset = e1000_nway_reset, |
| 1679 | .get_link = ethtool_op_get_link, |
| 1680 | .get_eeprom_len = e1000_get_eeprom_len, |
| 1681 | .get_eeprom = e1000_get_eeprom, |
| 1682 | .set_eeprom = e1000_set_eeprom, |
| 1683 | .get_ringparam = e1000_get_ringparam, |
| 1684 | .set_ringparam = e1000_set_ringparam, |
| 1685 | .get_pauseparam = e1000_get_pauseparam, |
| 1686 | .set_pauseparam = e1000_set_pauseparam, |
| 1687 | .get_rx_csum = e1000_get_rx_csum, |
| 1688 | .set_rx_csum = e1000_set_rx_csum, |
| 1689 | .get_tx_csum = e1000_get_tx_csum, |
| 1690 | .set_tx_csum = e1000_set_tx_csum, |
| 1691 | .get_sg = ethtool_op_get_sg, |
| 1692 | .set_sg = ethtool_op_set_sg, |
| 1693 | #ifdef NETIF_F_TSO |
| 1694 | .get_tso = ethtool_op_get_tso, |
| 1695 | .set_tso = e1000_set_tso, |
| 1696 | #endif |
| 1697 | .self_test_count = e1000_diag_test_count, |
| 1698 | .self_test = e1000_diag_test, |
| 1699 | .get_strings = e1000_get_strings, |
| 1700 | .phys_id = e1000_phys_id, |
| 1701 | .get_stats_count = e1000_get_stats_count, |
| 1702 | .get_ethtool_stats = e1000_get_ethtool_stats, |
| 1703 | }; |
| 1704 | |
| 1705 | void e1000_set_ethtool_ops(struct net_device *netdev) |
| 1706 | { |
| 1707 | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); |
| 1708 | } |