Pravin B Shelar | e644571 | 2013-10-03 18:16:47 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2007-2013 Nicira, Inc. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of version 2 of the GNU General Public |
| 6 | * License as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public License |
| 14 | * along with this program; if not, write to the Free Software |
| 15 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 16 | * 02110-1301, USA |
| 17 | */ |
| 18 | |
| 19 | #include "flow.h" |
| 20 | #include "datapath.h" |
| 21 | #include <linux/uaccess.h> |
| 22 | #include <linux/netdevice.h> |
| 23 | #include <linux/etherdevice.h> |
| 24 | #include <linux/if_ether.h> |
| 25 | #include <linux/if_vlan.h> |
| 26 | #include <net/llc_pdu.h> |
| 27 | #include <linux/kernel.h> |
| 28 | #include <linux/jhash.h> |
| 29 | #include <linux/jiffies.h> |
| 30 | #include <linux/llc.h> |
| 31 | #include <linux/module.h> |
| 32 | #include <linux/in.h> |
| 33 | #include <linux/rcupdate.h> |
| 34 | #include <linux/if_arp.h> |
| 35 | #include <linux/ip.h> |
| 36 | #include <linux/ipv6.h> |
| 37 | #include <linux/sctp.h> |
| 38 | #include <linux/tcp.h> |
| 39 | #include <linux/udp.h> |
| 40 | #include <linux/icmp.h> |
| 41 | #include <linux/icmpv6.h> |
| 42 | #include <linux/rculist.h> |
| 43 | #include <net/ip.h> |
| 44 | #include <net/ipv6.h> |
| 45 | #include <net/ndisc.h> |
| 46 | |
| 47 | #include "flow_netlink.h" |
| 48 | |
| 49 | static void update_range__(struct sw_flow_match *match, |
| 50 | size_t offset, size_t size, bool is_mask) |
| 51 | { |
| 52 | struct sw_flow_key_range *range = NULL; |
| 53 | size_t start = rounddown(offset, sizeof(long)); |
| 54 | size_t end = roundup(offset + size, sizeof(long)); |
| 55 | |
| 56 | if (!is_mask) |
| 57 | range = &match->range; |
| 58 | else if (match->mask) |
| 59 | range = &match->mask->range; |
| 60 | |
| 61 | if (!range) |
| 62 | return; |
| 63 | |
| 64 | if (range->start == range->end) { |
| 65 | range->start = start; |
| 66 | range->end = end; |
| 67 | return; |
| 68 | } |
| 69 | |
| 70 | if (range->start > start) |
| 71 | range->start = start; |
| 72 | |
| 73 | if (range->end < end) |
| 74 | range->end = end; |
| 75 | } |
| 76 | |
| 77 | #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ |
| 78 | do { \ |
| 79 | update_range__(match, offsetof(struct sw_flow_key, field), \ |
| 80 | sizeof((match)->key->field), is_mask); \ |
| 81 | if (is_mask) { \ |
| 82 | if ((match)->mask) \ |
| 83 | (match)->mask->key.field = value; \ |
| 84 | } else { \ |
| 85 | (match)->key->field = value; \ |
| 86 | } \ |
| 87 | } while (0) |
| 88 | |
| 89 | #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ |
| 90 | do { \ |
| 91 | update_range__(match, offsetof(struct sw_flow_key, field), \ |
| 92 | len, is_mask); \ |
| 93 | if (is_mask) { \ |
| 94 | if ((match)->mask) \ |
| 95 | memcpy(&(match)->mask->key.field, value_p, len);\ |
| 96 | } else { \ |
| 97 | memcpy(&(match)->key->field, value_p, len); \ |
| 98 | } \ |
| 99 | } while (0) |
| 100 | |
| 101 | static u16 range_n_bytes(const struct sw_flow_key_range *range) |
| 102 | { |
| 103 | return range->end - range->start; |
| 104 | } |
| 105 | |
| 106 | static bool match_validate(const struct sw_flow_match *match, |
| 107 | u64 key_attrs, u64 mask_attrs) |
| 108 | { |
| 109 | u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; |
| 110 | u64 mask_allowed = key_attrs; /* At most allow all key attributes */ |
| 111 | |
| 112 | /* The following mask attributes allowed only if they |
| 113 | * pass the validation tests. */ |
| 114 | mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) |
| 115 | | (1 << OVS_KEY_ATTR_IPV6) |
| 116 | | (1 << OVS_KEY_ATTR_TCP) |
| 117 | | (1 << OVS_KEY_ATTR_UDP) |
| 118 | | (1 << OVS_KEY_ATTR_SCTP) |
| 119 | | (1 << OVS_KEY_ATTR_ICMP) |
| 120 | | (1 << OVS_KEY_ATTR_ICMPV6) |
| 121 | | (1 << OVS_KEY_ATTR_ARP) |
| 122 | | (1 << OVS_KEY_ATTR_ND)); |
| 123 | |
| 124 | /* Always allowed mask fields. */ |
| 125 | mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) |
| 126 | | (1 << OVS_KEY_ATTR_IN_PORT) |
| 127 | | (1 << OVS_KEY_ATTR_ETHERTYPE)); |
| 128 | |
| 129 | /* Check key attributes. */ |
| 130 | if (match->key->eth.type == htons(ETH_P_ARP) |
| 131 | || match->key->eth.type == htons(ETH_P_RARP)) { |
| 132 | key_expected |= 1 << OVS_KEY_ATTR_ARP; |
| 133 | if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| 134 | mask_allowed |= 1 << OVS_KEY_ATTR_ARP; |
| 135 | } |
| 136 | |
| 137 | if (match->key->eth.type == htons(ETH_P_IP)) { |
| 138 | key_expected |= 1 << OVS_KEY_ATTR_IPV4; |
| 139 | if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| 140 | mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; |
| 141 | |
| 142 | if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { |
| 143 | if (match->key->ip.proto == IPPROTO_UDP) { |
| 144 | key_expected |= 1 << OVS_KEY_ATTR_UDP; |
| 145 | if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| 146 | mask_allowed |= 1 << OVS_KEY_ATTR_UDP; |
| 147 | } |
| 148 | |
| 149 | if (match->key->ip.proto == IPPROTO_SCTP) { |
| 150 | key_expected |= 1 << OVS_KEY_ATTR_SCTP; |
| 151 | if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| 152 | mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; |
| 153 | } |
| 154 | |
| 155 | if (match->key->ip.proto == IPPROTO_TCP) { |
| 156 | key_expected |= 1 << OVS_KEY_ATTR_TCP; |
| 157 | if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| 158 | mask_allowed |= 1 << OVS_KEY_ATTR_TCP; |
| 159 | } |
| 160 | |
| 161 | if (match->key->ip.proto == IPPROTO_ICMP) { |
| 162 | key_expected |= 1 << OVS_KEY_ATTR_ICMP; |
| 163 | if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| 164 | mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; |
| 165 | } |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | if (match->key->eth.type == htons(ETH_P_IPV6)) { |
| 170 | key_expected |= 1 << OVS_KEY_ATTR_IPV6; |
| 171 | if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| 172 | mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; |
| 173 | |
| 174 | if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { |
| 175 | if (match->key->ip.proto == IPPROTO_UDP) { |
| 176 | key_expected |= 1 << OVS_KEY_ATTR_UDP; |
| 177 | if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| 178 | mask_allowed |= 1 << OVS_KEY_ATTR_UDP; |
| 179 | } |
| 180 | |
| 181 | if (match->key->ip.proto == IPPROTO_SCTP) { |
| 182 | key_expected |= 1 << OVS_KEY_ATTR_SCTP; |
| 183 | if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| 184 | mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; |
| 185 | } |
| 186 | |
| 187 | if (match->key->ip.proto == IPPROTO_TCP) { |
| 188 | key_expected |= 1 << OVS_KEY_ATTR_TCP; |
| 189 | if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| 190 | mask_allowed |= 1 << OVS_KEY_ATTR_TCP; |
| 191 | } |
| 192 | |
| 193 | if (match->key->ip.proto == IPPROTO_ICMPV6) { |
| 194 | key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; |
| 195 | if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| 196 | mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; |
| 197 | |
| 198 | if (match->key->ipv6.tp.src == |
| 199 | htons(NDISC_NEIGHBOUR_SOLICITATION) || |
| 200 | match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { |
| 201 | key_expected |= 1 << OVS_KEY_ATTR_ND; |
| 202 | if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff))) |
| 203 | mask_allowed |= 1 << OVS_KEY_ATTR_ND; |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | if ((key_attrs & key_expected) != key_expected) { |
| 210 | /* Key attributes check failed. */ |
| 211 | OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n", |
| 212 | key_attrs, key_expected); |
| 213 | return false; |
| 214 | } |
| 215 | |
| 216 | if ((mask_attrs & mask_allowed) != mask_attrs) { |
| 217 | /* Mask attributes check failed. */ |
| 218 | OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n", |
| 219 | mask_attrs, mask_allowed); |
| 220 | return false; |
| 221 | } |
| 222 | |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ |
| 227 | static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { |
| 228 | [OVS_KEY_ATTR_ENCAP] = -1, |
| 229 | [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), |
| 230 | [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), |
| 231 | [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), |
| 232 | [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), |
| 233 | [OVS_KEY_ATTR_VLAN] = sizeof(__be16), |
| 234 | [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), |
| 235 | [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), |
| 236 | [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), |
| 237 | [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), |
| 238 | [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), |
| 239 | [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp), |
| 240 | [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), |
| 241 | [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), |
| 242 | [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), |
| 243 | [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), |
| 244 | [OVS_KEY_ATTR_TUNNEL] = -1, |
| 245 | }; |
| 246 | |
| 247 | static bool is_all_zero(const u8 *fp, size_t size) |
| 248 | { |
| 249 | int i; |
| 250 | |
| 251 | if (!fp) |
| 252 | return false; |
| 253 | |
| 254 | for (i = 0; i < size; i++) |
| 255 | if (fp[i]) |
| 256 | return false; |
| 257 | |
| 258 | return true; |
| 259 | } |
| 260 | |
| 261 | static int __parse_flow_nlattrs(const struct nlattr *attr, |
| 262 | const struct nlattr *a[], |
| 263 | u64 *attrsp, bool nz) |
| 264 | { |
| 265 | const struct nlattr *nla; |
| 266 | u64 attrs; |
| 267 | int rem; |
| 268 | |
| 269 | attrs = *attrsp; |
| 270 | nla_for_each_nested(nla, attr, rem) { |
| 271 | u16 type = nla_type(nla); |
| 272 | int expected_len; |
| 273 | |
| 274 | if (type > OVS_KEY_ATTR_MAX) { |
| 275 | OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n", |
| 276 | type, OVS_KEY_ATTR_MAX); |
| 277 | return -EINVAL; |
| 278 | } |
| 279 | |
| 280 | if (attrs & (1 << type)) { |
| 281 | OVS_NLERR("Duplicate key attribute (type %d).\n", type); |
| 282 | return -EINVAL; |
| 283 | } |
| 284 | |
| 285 | expected_len = ovs_key_lens[type]; |
| 286 | if (nla_len(nla) != expected_len && expected_len != -1) { |
| 287 | OVS_NLERR("Key attribute has unexpected length (type=%d" |
| 288 | ", length=%d, expected=%d).\n", type, |
| 289 | nla_len(nla), expected_len); |
| 290 | return -EINVAL; |
| 291 | } |
| 292 | |
| 293 | if (!nz || !is_all_zero(nla_data(nla), expected_len)) { |
| 294 | attrs |= 1 << type; |
| 295 | a[type] = nla; |
| 296 | } |
| 297 | } |
| 298 | if (rem) { |
| 299 | OVS_NLERR("Message has %d unknown bytes.\n", rem); |
| 300 | return -EINVAL; |
| 301 | } |
| 302 | |
| 303 | *attrsp = attrs; |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | static int parse_flow_mask_nlattrs(const struct nlattr *attr, |
| 308 | const struct nlattr *a[], u64 *attrsp) |
| 309 | { |
| 310 | return __parse_flow_nlattrs(attr, a, attrsp, true); |
| 311 | } |
| 312 | |
| 313 | static int parse_flow_nlattrs(const struct nlattr *attr, |
| 314 | const struct nlattr *a[], u64 *attrsp) |
| 315 | { |
| 316 | return __parse_flow_nlattrs(attr, a, attrsp, false); |
| 317 | } |
| 318 | |
| 319 | static int ipv4_tun_from_nlattr(const struct nlattr *attr, |
| 320 | struct sw_flow_match *match, bool is_mask) |
| 321 | { |
| 322 | struct nlattr *a; |
| 323 | int rem; |
| 324 | bool ttl = false; |
| 325 | __be16 tun_flags = 0; |
| 326 | |
| 327 | nla_for_each_nested(a, attr, rem) { |
| 328 | int type = nla_type(a); |
| 329 | static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { |
| 330 | [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64), |
| 331 | [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32), |
| 332 | [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32), |
| 333 | [OVS_TUNNEL_KEY_ATTR_TOS] = 1, |
| 334 | [OVS_TUNNEL_KEY_ATTR_TTL] = 1, |
| 335 | [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0, |
| 336 | [OVS_TUNNEL_KEY_ATTR_CSUM] = 0, |
| 337 | }; |
| 338 | |
| 339 | if (type > OVS_TUNNEL_KEY_ATTR_MAX) { |
| 340 | OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n", |
| 341 | type, OVS_TUNNEL_KEY_ATTR_MAX); |
| 342 | return -EINVAL; |
| 343 | } |
| 344 | |
| 345 | if (ovs_tunnel_key_lens[type] != nla_len(a)) { |
| 346 | OVS_NLERR("IPv4 tunnel attribute type has unexpected " |
| 347 | " length (type=%d, length=%d, expected=%d).\n", |
| 348 | type, nla_len(a), ovs_tunnel_key_lens[type]); |
| 349 | return -EINVAL; |
| 350 | } |
| 351 | |
| 352 | switch (type) { |
| 353 | case OVS_TUNNEL_KEY_ATTR_ID: |
| 354 | SW_FLOW_KEY_PUT(match, tun_key.tun_id, |
| 355 | nla_get_be64(a), is_mask); |
| 356 | tun_flags |= TUNNEL_KEY; |
| 357 | break; |
| 358 | case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: |
| 359 | SW_FLOW_KEY_PUT(match, tun_key.ipv4_src, |
| 360 | nla_get_be32(a), is_mask); |
| 361 | break; |
| 362 | case OVS_TUNNEL_KEY_ATTR_IPV4_DST: |
| 363 | SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst, |
| 364 | nla_get_be32(a), is_mask); |
| 365 | break; |
| 366 | case OVS_TUNNEL_KEY_ATTR_TOS: |
| 367 | SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos, |
| 368 | nla_get_u8(a), is_mask); |
| 369 | break; |
| 370 | case OVS_TUNNEL_KEY_ATTR_TTL: |
| 371 | SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl, |
| 372 | nla_get_u8(a), is_mask); |
| 373 | ttl = true; |
| 374 | break; |
| 375 | case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: |
| 376 | tun_flags |= TUNNEL_DONT_FRAGMENT; |
| 377 | break; |
| 378 | case OVS_TUNNEL_KEY_ATTR_CSUM: |
| 379 | tun_flags |= TUNNEL_CSUM; |
| 380 | break; |
| 381 | default: |
| 382 | return -EINVAL; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); |
| 387 | |
| 388 | if (rem > 0) { |
| 389 | OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem); |
| 390 | return -EINVAL; |
| 391 | } |
| 392 | |
| 393 | if (!is_mask) { |
| 394 | if (!match->key->tun_key.ipv4_dst) { |
| 395 | OVS_NLERR("IPv4 tunnel destination address is zero.\n"); |
| 396 | return -EINVAL; |
| 397 | } |
| 398 | |
| 399 | if (!ttl) { |
| 400 | OVS_NLERR("IPv4 tunnel TTL not specified.\n"); |
| 401 | return -EINVAL; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | static int ipv4_tun_to_nlattr(struct sk_buff *skb, |
| 409 | const struct ovs_key_ipv4_tunnel *tun_key, |
| 410 | const struct ovs_key_ipv4_tunnel *output) |
| 411 | { |
| 412 | struct nlattr *nla; |
| 413 | |
| 414 | nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); |
| 415 | if (!nla) |
| 416 | return -EMSGSIZE; |
| 417 | |
| 418 | if (output->tun_flags & TUNNEL_KEY && |
| 419 | nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id)) |
| 420 | return -EMSGSIZE; |
| 421 | if (output->ipv4_src && |
| 422 | nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src)) |
| 423 | return -EMSGSIZE; |
| 424 | if (output->ipv4_dst && |
| 425 | nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst)) |
| 426 | return -EMSGSIZE; |
| 427 | if (output->ipv4_tos && |
| 428 | nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos)) |
| 429 | return -EMSGSIZE; |
| 430 | if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl)) |
| 431 | return -EMSGSIZE; |
| 432 | if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && |
| 433 | nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) |
| 434 | return -EMSGSIZE; |
| 435 | if ((output->tun_flags & TUNNEL_CSUM) && |
| 436 | nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) |
| 437 | return -EMSGSIZE; |
| 438 | |
| 439 | nla_nest_end(skb, nla); |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | |
| 444 | static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs, |
| 445 | const struct nlattr **a, bool is_mask) |
| 446 | { |
| 447 | if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { |
| 448 | SW_FLOW_KEY_PUT(match, phy.priority, |
| 449 | nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); |
| 450 | *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); |
| 451 | } |
| 452 | |
| 453 | if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { |
| 454 | u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); |
| 455 | |
| 456 | if (is_mask) |
| 457 | in_port = 0xffffffff; /* Always exact match in_port. */ |
| 458 | else if (in_port >= DP_MAX_PORTS) |
| 459 | return -EINVAL; |
| 460 | |
| 461 | SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); |
| 462 | *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); |
| 463 | } else if (!is_mask) { |
| 464 | SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); |
| 465 | } |
| 466 | |
| 467 | if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { |
| 468 | uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); |
| 469 | |
| 470 | SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); |
| 471 | *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); |
| 472 | } |
| 473 | if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { |
| 474 | if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, |
| 475 | is_mask)) |
| 476 | return -EINVAL; |
| 477 | *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); |
| 478 | } |
| 479 | return 0; |
| 480 | } |
| 481 | |
| 482 | static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs, |
| 483 | const struct nlattr **a, bool is_mask) |
| 484 | { |
| 485 | int err; |
| 486 | u64 orig_attrs = attrs; |
| 487 | |
| 488 | err = metadata_from_nlattrs(match, &attrs, a, is_mask); |
| 489 | if (err) |
| 490 | return err; |
| 491 | |
| 492 | if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { |
| 493 | const struct ovs_key_ethernet *eth_key; |
| 494 | |
| 495 | eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); |
| 496 | SW_FLOW_KEY_MEMCPY(match, eth.src, |
| 497 | eth_key->eth_src, ETH_ALEN, is_mask); |
| 498 | SW_FLOW_KEY_MEMCPY(match, eth.dst, |
| 499 | eth_key->eth_dst, ETH_ALEN, is_mask); |
| 500 | attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); |
| 501 | } |
| 502 | |
| 503 | if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { |
| 504 | __be16 tci; |
| 505 | |
| 506 | tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| 507 | if (!(tci & htons(VLAN_TAG_PRESENT))) { |
| 508 | if (is_mask) |
| 509 | OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n"); |
| 510 | else |
| 511 | OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n"); |
| 512 | |
| 513 | return -EINVAL; |
| 514 | } |
| 515 | |
| 516 | SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); |
| 517 | attrs &= ~(1 << OVS_KEY_ATTR_VLAN); |
| 518 | } else if (!is_mask) |
| 519 | SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); |
| 520 | |
| 521 | if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { |
| 522 | __be16 eth_type; |
| 523 | |
| 524 | eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| 525 | if (is_mask) { |
| 526 | /* Always exact match EtherType. */ |
| 527 | eth_type = htons(0xffff); |
| 528 | } else if (ntohs(eth_type) < ETH_P_802_3_MIN) { |
| 529 | OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n", |
| 530 | ntohs(eth_type), ETH_P_802_3_MIN); |
| 531 | return -EINVAL; |
| 532 | } |
| 533 | |
| 534 | SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); |
| 535 | attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| 536 | } else if (!is_mask) { |
| 537 | SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); |
| 538 | } |
| 539 | |
| 540 | if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| 541 | const struct ovs_key_ipv4 *ipv4_key; |
| 542 | |
| 543 | ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); |
| 544 | if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { |
| 545 | OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n", |
| 546 | ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); |
| 547 | return -EINVAL; |
| 548 | } |
| 549 | SW_FLOW_KEY_PUT(match, ip.proto, |
| 550 | ipv4_key->ipv4_proto, is_mask); |
| 551 | SW_FLOW_KEY_PUT(match, ip.tos, |
| 552 | ipv4_key->ipv4_tos, is_mask); |
| 553 | SW_FLOW_KEY_PUT(match, ip.ttl, |
| 554 | ipv4_key->ipv4_ttl, is_mask); |
| 555 | SW_FLOW_KEY_PUT(match, ip.frag, |
| 556 | ipv4_key->ipv4_frag, is_mask); |
| 557 | SW_FLOW_KEY_PUT(match, ipv4.addr.src, |
| 558 | ipv4_key->ipv4_src, is_mask); |
| 559 | SW_FLOW_KEY_PUT(match, ipv4.addr.dst, |
| 560 | ipv4_key->ipv4_dst, is_mask); |
| 561 | attrs &= ~(1 << OVS_KEY_ATTR_IPV4); |
| 562 | } |
| 563 | |
| 564 | if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { |
| 565 | const struct ovs_key_ipv6 *ipv6_key; |
| 566 | |
| 567 | ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); |
| 568 | if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { |
| 569 | OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n", |
| 570 | ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); |
| 571 | return -EINVAL; |
| 572 | } |
| 573 | SW_FLOW_KEY_PUT(match, ipv6.label, |
| 574 | ipv6_key->ipv6_label, is_mask); |
| 575 | SW_FLOW_KEY_PUT(match, ip.proto, |
| 576 | ipv6_key->ipv6_proto, is_mask); |
| 577 | SW_FLOW_KEY_PUT(match, ip.tos, |
| 578 | ipv6_key->ipv6_tclass, is_mask); |
| 579 | SW_FLOW_KEY_PUT(match, ip.ttl, |
| 580 | ipv6_key->ipv6_hlimit, is_mask); |
| 581 | SW_FLOW_KEY_PUT(match, ip.frag, |
| 582 | ipv6_key->ipv6_frag, is_mask); |
| 583 | SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, |
| 584 | ipv6_key->ipv6_src, |
| 585 | sizeof(match->key->ipv6.addr.src), |
| 586 | is_mask); |
| 587 | SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, |
| 588 | ipv6_key->ipv6_dst, |
| 589 | sizeof(match->key->ipv6.addr.dst), |
| 590 | is_mask); |
| 591 | |
| 592 | attrs &= ~(1 << OVS_KEY_ATTR_IPV6); |
| 593 | } |
| 594 | |
| 595 | if (attrs & (1 << OVS_KEY_ATTR_ARP)) { |
| 596 | const struct ovs_key_arp *arp_key; |
| 597 | |
| 598 | arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); |
| 599 | if (!is_mask && (arp_key->arp_op & htons(0xff00))) { |
| 600 | OVS_NLERR("Unknown ARP opcode (opcode=%d).\n", |
| 601 | arp_key->arp_op); |
| 602 | return -EINVAL; |
| 603 | } |
| 604 | |
| 605 | SW_FLOW_KEY_PUT(match, ipv4.addr.src, |
| 606 | arp_key->arp_sip, is_mask); |
| 607 | SW_FLOW_KEY_PUT(match, ipv4.addr.dst, |
| 608 | arp_key->arp_tip, is_mask); |
| 609 | SW_FLOW_KEY_PUT(match, ip.proto, |
| 610 | ntohs(arp_key->arp_op), is_mask); |
| 611 | SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, |
| 612 | arp_key->arp_sha, ETH_ALEN, is_mask); |
| 613 | SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, |
| 614 | arp_key->arp_tha, ETH_ALEN, is_mask); |
| 615 | |
| 616 | attrs &= ~(1 << OVS_KEY_ATTR_ARP); |
| 617 | } |
| 618 | |
| 619 | if (attrs & (1 << OVS_KEY_ATTR_TCP)) { |
| 620 | const struct ovs_key_tcp *tcp_key; |
| 621 | |
| 622 | tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); |
| 623 | if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| 624 | SW_FLOW_KEY_PUT(match, ipv4.tp.src, |
| 625 | tcp_key->tcp_src, is_mask); |
| 626 | SW_FLOW_KEY_PUT(match, ipv4.tp.dst, |
| 627 | tcp_key->tcp_dst, is_mask); |
| 628 | } else { |
| 629 | SW_FLOW_KEY_PUT(match, ipv6.tp.src, |
| 630 | tcp_key->tcp_src, is_mask); |
| 631 | SW_FLOW_KEY_PUT(match, ipv6.tp.dst, |
| 632 | tcp_key->tcp_dst, is_mask); |
| 633 | } |
| 634 | attrs &= ~(1 << OVS_KEY_ATTR_TCP); |
| 635 | } |
| 636 | |
| 637 | if (attrs & (1 << OVS_KEY_ATTR_UDP)) { |
| 638 | const struct ovs_key_udp *udp_key; |
| 639 | |
| 640 | udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); |
| 641 | if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| 642 | SW_FLOW_KEY_PUT(match, ipv4.tp.src, |
| 643 | udp_key->udp_src, is_mask); |
| 644 | SW_FLOW_KEY_PUT(match, ipv4.tp.dst, |
| 645 | udp_key->udp_dst, is_mask); |
| 646 | } else { |
| 647 | SW_FLOW_KEY_PUT(match, ipv6.tp.src, |
| 648 | udp_key->udp_src, is_mask); |
| 649 | SW_FLOW_KEY_PUT(match, ipv6.tp.dst, |
| 650 | udp_key->udp_dst, is_mask); |
| 651 | } |
| 652 | attrs &= ~(1 << OVS_KEY_ATTR_UDP); |
| 653 | } |
| 654 | |
| 655 | if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { |
| 656 | const struct ovs_key_sctp *sctp_key; |
| 657 | |
| 658 | sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); |
| 659 | if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| 660 | SW_FLOW_KEY_PUT(match, ipv4.tp.src, |
| 661 | sctp_key->sctp_src, is_mask); |
| 662 | SW_FLOW_KEY_PUT(match, ipv4.tp.dst, |
| 663 | sctp_key->sctp_dst, is_mask); |
| 664 | } else { |
| 665 | SW_FLOW_KEY_PUT(match, ipv6.tp.src, |
| 666 | sctp_key->sctp_src, is_mask); |
| 667 | SW_FLOW_KEY_PUT(match, ipv6.tp.dst, |
| 668 | sctp_key->sctp_dst, is_mask); |
| 669 | } |
| 670 | attrs &= ~(1 << OVS_KEY_ATTR_SCTP); |
| 671 | } |
| 672 | |
| 673 | if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { |
| 674 | const struct ovs_key_icmp *icmp_key; |
| 675 | |
| 676 | icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); |
| 677 | SW_FLOW_KEY_PUT(match, ipv4.tp.src, |
| 678 | htons(icmp_key->icmp_type), is_mask); |
| 679 | SW_FLOW_KEY_PUT(match, ipv4.tp.dst, |
| 680 | htons(icmp_key->icmp_code), is_mask); |
| 681 | attrs &= ~(1 << OVS_KEY_ATTR_ICMP); |
| 682 | } |
| 683 | |
| 684 | if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { |
| 685 | const struct ovs_key_icmpv6 *icmpv6_key; |
| 686 | |
| 687 | icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); |
| 688 | SW_FLOW_KEY_PUT(match, ipv6.tp.src, |
| 689 | htons(icmpv6_key->icmpv6_type), is_mask); |
| 690 | SW_FLOW_KEY_PUT(match, ipv6.tp.dst, |
| 691 | htons(icmpv6_key->icmpv6_code), is_mask); |
| 692 | attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); |
| 693 | } |
| 694 | |
| 695 | if (attrs & (1 << OVS_KEY_ATTR_ND)) { |
| 696 | const struct ovs_key_nd *nd_key; |
| 697 | |
| 698 | nd_key = nla_data(a[OVS_KEY_ATTR_ND]); |
| 699 | SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, |
| 700 | nd_key->nd_target, |
| 701 | sizeof(match->key->ipv6.nd.target), |
| 702 | is_mask); |
| 703 | SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, |
| 704 | nd_key->nd_sll, ETH_ALEN, is_mask); |
| 705 | SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, |
| 706 | nd_key->nd_tll, ETH_ALEN, is_mask); |
| 707 | attrs &= ~(1 << OVS_KEY_ATTR_ND); |
| 708 | } |
| 709 | |
| 710 | if (attrs != 0) |
| 711 | return -EINVAL; |
| 712 | |
| 713 | return 0; |
| 714 | } |
| 715 | |
| 716 | static void sw_flow_mask_set(struct sw_flow_mask *mask, |
| 717 | struct sw_flow_key_range *range, u8 val) |
| 718 | { |
| 719 | u8 *m = (u8 *)&mask->key + range->start; |
| 720 | |
| 721 | mask->range = *range; |
| 722 | memset(m, val, range_n_bytes(range)); |
| 723 | } |
| 724 | |
| 725 | /** |
| 726 | * ovs_nla_get_match - parses Netlink attributes into a flow key and |
| 727 | * mask. In case the 'mask' is NULL, the flow is treated as exact match |
| 728 | * flow. Otherwise, it is treated as a wildcarded flow, except the mask |
| 729 | * does not include any don't care bit. |
| 730 | * @match: receives the extracted flow match information. |
| 731 | * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute |
| 732 | * sequence. The fields should of the packet that triggered the creation |
| 733 | * of this flow. |
| 734 | * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink |
| 735 | * attribute specifies the mask field of the wildcarded flow. |
| 736 | */ |
| 737 | int ovs_nla_get_match(struct sw_flow_match *match, |
| 738 | const struct nlattr *key, |
| 739 | const struct nlattr *mask) |
| 740 | { |
| 741 | const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; |
| 742 | const struct nlattr *encap; |
| 743 | u64 key_attrs = 0; |
| 744 | u64 mask_attrs = 0; |
| 745 | bool encap_valid = false; |
| 746 | int err; |
| 747 | |
| 748 | err = parse_flow_nlattrs(key, a, &key_attrs); |
| 749 | if (err) |
| 750 | return err; |
| 751 | |
| 752 | if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && |
| 753 | (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && |
| 754 | (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { |
| 755 | __be16 tci; |
| 756 | |
| 757 | if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && |
| 758 | (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { |
| 759 | OVS_NLERR("Invalid Vlan frame.\n"); |
| 760 | return -EINVAL; |
| 761 | } |
| 762 | |
| 763 | key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| 764 | tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| 765 | encap = a[OVS_KEY_ATTR_ENCAP]; |
| 766 | key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); |
| 767 | encap_valid = true; |
| 768 | |
| 769 | if (tci & htons(VLAN_TAG_PRESENT)) { |
| 770 | err = parse_flow_nlattrs(encap, a, &key_attrs); |
| 771 | if (err) |
| 772 | return err; |
| 773 | } else if (!tci) { |
| 774 | /* Corner case for truncated 802.1Q header. */ |
| 775 | if (nla_len(encap)) { |
| 776 | OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n"); |
| 777 | return -EINVAL; |
| 778 | } |
| 779 | } else { |
| 780 | OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n"); |
| 781 | return -EINVAL; |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | err = ovs_key_from_nlattrs(match, key_attrs, a, false); |
| 786 | if (err) |
| 787 | return err; |
| 788 | |
| 789 | if (mask) { |
| 790 | err = parse_flow_mask_nlattrs(mask, a, &mask_attrs); |
| 791 | if (err) |
| 792 | return err; |
| 793 | |
| 794 | if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) { |
| 795 | __be16 eth_type = 0; |
| 796 | __be16 tci = 0; |
| 797 | |
| 798 | if (!encap_valid) { |
| 799 | OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n"); |
| 800 | return -EINVAL; |
| 801 | } |
| 802 | |
| 803 | mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); |
| 804 | if (a[OVS_KEY_ATTR_ETHERTYPE]) |
| 805 | eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| 806 | |
| 807 | if (eth_type == htons(0xffff)) { |
| 808 | mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| 809 | encap = a[OVS_KEY_ATTR_ENCAP]; |
| 810 | err = parse_flow_mask_nlattrs(encap, a, &mask_attrs); |
| 811 | } else { |
| 812 | OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n", |
| 813 | ntohs(eth_type)); |
| 814 | return -EINVAL; |
| 815 | } |
| 816 | |
| 817 | if (a[OVS_KEY_ATTR_VLAN]) |
| 818 | tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| 819 | |
| 820 | if (!(tci & htons(VLAN_TAG_PRESENT))) { |
| 821 | OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci)); |
| 822 | return -EINVAL; |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | err = ovs_key_from_nlattrs(match, mask_attrs, a, true); |
| 827 | if (err) |
| 828 | return err; |
| 829 | } else { |
| 830 | /* Populate exact match flow's key mask. */ |
| 831 | if (match->mask) |
| 832 | sw_flow_mask_set(match->mask, &match->range, 0xff); |
| 833 | } |
| 834 | |
| 835 | if (!match_validate(match, key_attrs, mask_attrs)) |
| 836 | return -EINVAL; |
| 837 | |
| 838 | return 0; |
| 839 | } |
| 840 | |
| 841 | /** |
| 842 | * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. |
| 843 | * @flow: Receives extracted in_port, priority, tun_key and skb_mark. |
| 844 | * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute |
| 845 | * sequence. |
| 846 | * |
| 847 | * This parses a series of Netlink attributes that form a flow key, which must |
| 848 | * take the same form accepted by flow_from_nlattrs(), but only enough of it to |
| 849 | * get the metadata, that is, the parts of the flow key that cannot be |
| 850 | * extracted from the packet itself. |
| 851 | */ |
| 852 | |
| 853 | int ovs_nla_get_flow_metadata(struct sw_flow *flow, |
| 854 | const struct nlattr *attr) |
| 855 | { |
| 856 | struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key; |
| 857 | const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; |
| 858 | u64 attrs = 0; |
| 859 | int err; |
| 860 | struct sw_flow_match match; |
| 861 | |
| 862 | flow->key.phy.in_port = DP_MAX_PORTS; |
| 863 | flow->key.phy.priority = 0; |
| 864 | flow->key.phy.skb_mark = 0; |
| 865 | memset(tun_key, 0, sizeof(flow->key.tun_key)); |
| 866 | |
| 867 | err = parse_flow_nlattrs(attr, a, &attrs); |
| 868 | if (err) |
| 869 | return -EINVAL; |
| 870 | |
| 871 | memset(&match, 0, sizeof(match)); |
| 872 | match.key = &flow->key; |
| 873 | |
| 874 | err = metadata_from_nlattrs(&match, &attrs, a, false); |
| 875 | if (err) |
| 876 | return err; |
| 877 | |
| 878 | return 0; |
| 879 | } |
| 880 | |
| 881 | int ovs_nla_put_flow(const struct sw_flow_key *swkey, |
| 882 | const struct sw_flow_key *output, struct sk_buff *skb) |
| 883 | { |
| 884 | struct ovs_key_ethernet *eth_key; |
| 885 | struct nlattr *nla, *encap; |
| 886 | bool is_mask = (swkey != output); |
| 887 | |
| 888 | if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) |
| 889 | goto nla_put_failure; |
| 890 | |
| 891 | if ((swkey->tun_key.ipv4_dst || is_mask) && |
| 892 | ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key)) |
| 893 | goto nla_put_failure; |
| 894 | |
| 895 | if (swkey->phy.in_port == DP_MAX_PORTS) { |
| 896 | if (is_mask && (output->phy.in_port == 0xffff)) |
| 897 | if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) |
| 898 | goto nla_put_failure; |
| 899 | } else { |
| 900 | u16 upper_u16; |
| 901 | upper_u16 = !is_mask ? 0 : 0xffff; |
| 902 | |
| 903 | if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, |
| 904 | (upper_u16 << 16) | output->phy.in_port)) |
| 905 | goto nla_put_failure; |
| 906 | } |
| 907 | |
| 908 | if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) |
| 909 | goto nla_put_failure; |
| 910 | |
| 911 | nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); |
| 912 | if (!nla) |
| 913 | goto nla_put_failure; |
| 914 | |
| 915 | eth_key = nla_data(nla); |
| 916 | memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN); |
| 917 | memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN); |
| 918 | |
| 919 | if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { |
| 920 | __be16 eth_type; |
| 921 | eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); |
| 922 | if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || |
| 923 | nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) |
| 924 | goto nla_put_failure; |
| 925 | encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); |
| 926 | if (!swkey->eth.tci) |
| 927 | goto unencap; |
| 928 | } else |
| 929 | encap = NULL; |
| 930 | |
| 931 | if (swkey->eth.type == htons(ETH_P_802_2)) { |
| 932 | /* |
| 933 | * Ethertype 802.2 is represented in the netlink with omitted |
| 934 | * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and |
| 935 | * 0xffff in the mask attribute. Ethertype can also |
| 936 | * be wildcarded. |
| 937 | */ |
| 938 | if (is_mask && output->eth.type) |
| 939 | if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, |
| 940 | output->eth.type)) |
| 941 | goto nla_put_failure; |
| 942 | goto unencap; |
| 943 | } |
| 944 | |
| 945 | if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) |
| 946 | goto nla_put_failure; |
| 947 | |
| 948 | if (swkey->eth.type == htons(ETH_P_IP)) { |
| 949 | struct ovs_key_ipv4 *ipv4_key; |
| 950 | |
| 951 | nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); |
| 952 | if (!nla) |
| 953 | goto nla_put_failure; |
| 954 | ipv4_key = nla_data(nla); |
| 955 | ipv4_key->ipv4_src = output->ipv4.addr.src; |
| 956 | ipv4_key->ipv4_dst = output->ipv4.addr.dst; |
| 957 | ipv4_key->ipv4_proto = output->ip.proto; |
| 958 | ipv4_key->ipv4_tos = output->ip.tos; |
| 959 | ipv4_key->ipv4_ttl = output->ip.ttl; |
| 960 | ipv4_key->ipv4_frag = output->ip.frag; |
| 961 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| 962 | struct ovs_key_ipv6 *ipv6_key; |
| 963 | |
| 964 | nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); |
| 965 | if (!nla) |
| 966 | goto nla_put_failure; |
| 967 | ipv6_key = nla_data(nla); |
| 968 | memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, |
| 969 | sizeof(ipv6_key->ipv6_src)); |
| 970 | memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, |
| 971 | sizeof(ipv6_key->ipv6_dst)); |
| 972 | ipv6_key->ipv6_label = output->ipv6.label; |
| 973 | ipv6_key->ipv6_proto = output->ip.proto; |
| 974 | ipv6_key->ipv6_tclass = output->ip.tos; |
| 975 | ipv6_key->ipv6_hlimit = output->ip.ttl; |
| 976 | ipv6_key->ipv6_frag = output->ip.frag; |
| 977 | } else if (swkey->eth.type == htons(ETH_P_ARP) || |
| 978 | swkey->eth.type == htons(ETH_P_RARP)) { |
| 979 | struct ovs_key_arp *arp_key; |
| 980 | |
| 981 | nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); |
| 982 | if (!nla) |
| 983 | goto nla_put_failure; |
| 984 | arp_key = nla_data(nla); |
| 985 | memset(arp_key, 0, sizeof(struct ovs_key_arp)); |
| 986 | arp_key->arp_sip = output->ipv4.addr.src; |
| 987 | arp_key->arp_tip = output->ipv4.addr.dst; |
| 988 | arp_key->arp_op = htons(output->ip.proto); |
| 989 | memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN); |
| 990 | memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN); |
| 991 | } |
| 992 | |
| 993 | if ((swkey->eth.type == htons(ETH_P_IP) || |
| 994 | swkey->eth.type == htons(ETH_P_IPV6)) && |
| 995 | swkey->ip.frag != OVS_FRAG_TYPE_LATER) { |
| 996 | |
| 997 | if (swkey->ip.proto == IPPROTO_TCP) { |
| 998 | struct ovs_key_tcp *tcp_key; |
| 999 | |
| 1000 | nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); |
| 1001 | if (!nla) |
| 1002 | goto nla_put_failure; |
| 1003 | tcp_key = nla_data(nla); |
| 1004 | if (swkey->eth.type == htons(ETH_P_IP)) { |
| 1005 | tcp_key->tcp_src = output->ipv4.tp.src; |
| 1006 | tcp_key->tcp_dst = output->ipv4.tp.dst; |
| 1007 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| 1008 | tcp_key->tcp_src = output->ipv6.tp.src; |
| 1009 | tcp_key->tcp_dst = output->ipv6.tp.dst; |
| 1010 | } |
| 1011 | } else if (swkey->ip.proto == IPPROTO_UDP) { |
| 1012 | struct ovs_key_udp *udp_key; |
| 1013 | |
| 1014 | nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); |
| 1015 | if (!nla) |
| 1016 | goto nla_put_failure; |
| 1017 | udp_key = nla_data(nla); |
| 1018 | if (swkey->eth.type == htons(ETH_P_IP)) { |
| 1019 | udp_key->udp_src = output->ipv4.tp.src; |
| 1020 | udp_key->udp_dst = output->ipv4.tp.dst; |
| 1021 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| 1022 | udp_key->udp_src = output->ipv6.tp.src; |
| 1023 | udp_key->udp_dst = output->ipv6.tp.dst; |
| 1024 | } |
| 1025 | } else if (swkey->ip.proto == IPPROTO_SCTP) { |
| 1026 | struct ovs_key_sctp *sctp_key; |
| 1027 | |
| 1028 | nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); |
| 1029 | if (!nla) |
| 1030 | goto nla_put_failure; |
| 1031 | sctp_key = nla_data(nla); |
| 1032 | if (swkey->eth.type == htons(ETH_P_IP)) { |
| 1033 | sctp_key->sctp_src = swkey->ipv4.tp.src; |
| 1034 | sctp_key->sctp_dst = swkey->ipv4.tp.dst; |
| 1035 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| 1036 | sctp_key->sctp_src = swkey->ipv6.tp.src; |
| 1037 | sctp_key->sctp_dst = swkey->ipv6.tp.dst; |
| 1038 | } |
| 1039 | } else if (swkey->eth.type == htons(ETH_P_IP) && |
| 1040 | swkey->ip.proto == IPPROTO_ICMP) { |
| 1041 | struct ovs_key_icmp *icmp_key; |
| 1042 | |
| 1043 | nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); |
| 1044 | if (!nla) |
| 1045 | goto nla_put_failure; |
| 1046 | icmp_key = nla_data(nla); |
| 1047 | icmp_key->icmp_type = ntohs(output->ipv4.tp.src); |
| 1048 | icmp_key->icmp_code = ntohs(output->ipv4.tp.dst); |
| 1049 | } else if (swkey->eth.type == htons(ETH_P_IPV6) && |
| 1050 | swkey->ip.proto == IPPROTO_ICMPV6) { |
| 1051 | struct ovs_key_icmpv6 *icmpv6_key; |
| 1052 | |
| 1053 | nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, |
| 1054 | sizeof(*icmpv6_key)); |
| 1055 | if (!nla) |
| 1056 | goto nla_put_failure; |
| 1057 | icmpv6_key = nla_data(nla); |
| 1058 | icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src); |
| 1059 | icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst); |
| 1060 | |
| 1061 | if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || |
| 1062 | icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { |
| 1063 | struct ovs_key_nd *nd_key; |
| 1064 | |
| 1065 | nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); |
| 1066 | if (!nla) |
| 1067 | goto nla_put_failure; |
| 1068 | nd_key = nla_data(nla); |
| 1069 | memcpy(nd_key->nd_target, &output->ipv6.nd.target, |
| 1070 | sizeof(nd_key->nd_target)); |
| 1071 | memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN); |
| 1072 | memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN); |
| 1073 | } |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | unencap: |
| 1078 | if (encap) |
| 1079 | nla_nest_end(skb, encap); |
| 1080 | |
| 1081 | return 0; |
| 1082 | |
| 1083 | nla_put_failure: |
| 1084 | return -EMSGSIZE; |
| 1085 | } |
| 1086 | |
| 1087 | #define MAX_ACTIONS_BUFSIZE (32 * 1024) |
| 1088 | |
| 1089 | struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size) |
| 1090 | { |
| 1091 | struct sw_flow_actions *sfa; |
| 1092 | |
| 1093 | if (size > MAX_ACTIONS_BUFSIZE) |
| 1094 | return ERR_PTR(-EINVAL); |
| 1095 | |
| 1096 | sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); |
| 1097 | if (!sfa) |
| 1098 | return ERR_PTR(-ENOMEM); |
| 1099 | |
| 1100 | sfa->actions_len = 0; |
| 1101 | return sfa; |
| 1102 | } |
| 1103 | |
| 1104 | /* RCU callback used by ovs_nla_free_flow_actions. */ |
| 1105 | static void rcu_free_acts_callback(struct rcu_head *rcu) |
| 1106 | { |
| 1107 | struct sw_flow_actions *sf_acts = container_of(rcu, |
| 1108 | struct sw_flow_actions, rcu); |
| 1109 | kfree(sf_acts); |
| 1110 | } |
| 1111 | |
| 1112 | /* Schedules 'sf_acts' to be freed after the next RCU grace period. |
| 1113 | * The caller must hold rcu_read_lock for this to be sensible. */ |
| 1114 | void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) |
| 1115 | { |
| 1116 | call_rcu(&sf_acts->rcu, rcu_free_acts_callback); |
| 1117 | } |
| 1118 | |
| 1119 | static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, |
| 1120 | int attr_len) |
| 1121 | { |
| 1122 | |
| 1123 | struct sw_flow_actions *acts; |
| 1124 | int new_acts_size; |
| 1125 | int req_size = NLA_ALIGN(attr_len); |
| 1126 | int next_offset = offsetof(struct sw_flow_actions, actions) + |
| 1127 | (*sfa)->actions_len; |
| 1128 | |
| 1129 | if (req_size <= (ksize(*sfa) - next_offset)) |
| 1130 | goto out; |
| 1131 | |
| 1132 | new_acts_size = ksize(*sfa) * 2; |
| 1133 | |
| 1134 | if (new_acts_size > MAX_ACTIONS_BUFSIZE) { |
| 1135 | if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) |
| 1136 | return ERR_PTR(-EMSGSIZE); |
| 1137 | new_acts_size = MAX_ACTIONS_BUFSIZE; |
| 1138 | } |
| 1139 | |
| 1140 | acts = ovs_nla_alloc_flow_actions(new_acts_size); |
| 1141 | if (IS_ERR(acts)) |
| 1142 | return (void *)acts; |
| 1143 | |
| 1144 | memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); |
| 1145 | acts->actions_len = (*sfa)->actions_len; |
| 1146 | kfree(*sfa); |
| 1147 | *sfa = acts; |
| 1148 | |
| 1149 | out: |
| 1150 | (*sfa)->actions_len += req_size; |
| 1151 | return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); |
| 1152 | } |
| 1153 | |
| 1154 | static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len) |
| 1155 | { |
| 1156 | struct nlattr *a; |
| 1157 | |
| 1158 | a = reserve_sfa_size(sfa, nla_attr_size(len)); |
| 1159 | if (IS_ERR(a)) |
| 1160 | return PTR_ERR(a); |
| 1161 | |
| 1162 | a->nla_type = attrtype; |
| 1163 | a->nla_len = nla_attr_size(len); |
| 1164 | |
| 1165 | if (data) |
| 1166 | memcpy(nla_data(a), data, len); |
| 1167 | memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); |
| 1168 | |
| 1169 | return 0; |
| 1170 | } |
| 1171 | |
| 1172 | static inline int add_nested_action_start(struct sw_flow_actions **sfa, |
| 1173 | int attrtype) |
| 1174 | { |
| 1175 | int used = (*sfa)->actions_len; |
| 1176 | int err; |
| 1177 | |
| 1178 | err = add_action(sfa, attrtype, NULL, 0); |
| 1179 | if (err) |
| 1180 | return err; |
| 1181 | |
| 1182 | return used; |
| 1183 | } |
| 1184 | |
| 1185 | static inline void add_nested_action_end(struct sw_flow_actions *sfa, |
| 1186 | int st_offset) |
| 1187 | { |
| 1188 | struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + |
| 1189 | st_offset); |
| 1190 | |
| 1191 | a->nla_len = sfa->actions_len - st_offset; |
| 1192 | } |
| 1193 | |
| 1194 | static int validate_and_copy_sample(const struct nlattr *attr, |
| 1195 | const struct sw_flow_key *key, int depth, |
| 1196 | struct sw_flow_actions **sfa) |
| 1197 | { |
| 1198 | const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; |
| 1199 | const struct nlattr *probability, *actions; |
| 1200 | const struct nlattr *a; |
| 1201 | int rem, start, err, st_acts; |
| 1202 | |
| 1203 | memset(attrs, 0, sizeof(attrs)); |
| 1204 | nla_for_each_nested(a, attr, rem) { |
| 1205 | int type = nla_type(a); |
| 1206 | if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) |
| 1207 | return -EINVAL; |
| 1208 | attrs[type] = a; |
| 1209 | } |
| 1210 | if (rem) |
| 1211 | return -EINVAL; |
| 1212 | |
| 1213 | probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; |
| 1214 | if (!probability || nla_len(probability) != sizeof(u32)) |
| 1215 | return -EINVAL; |
| 1216 | |
| 1217 | actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; |
| 1218 | if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) |
| 1219 | return -EINVAL; |
| 1220 | |
| 1221 | /* validation done, copy sample action. */ |
| 1222 | start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE); |
| 1223 | if (start < 0) |
| 1224 | return start; |
| 1225 | err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY, |
| 1226 | nla_data(probability), sizeof(u32)); |
| 1227 | if (err) |
| 1228 | return err; |
| 1229 | st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS); |
| 1230 | if (st_acts < 0) |
| 1231 | return st_acts; |
| 1232 | |
| 1233 | err = ovs_nla_copy_actions(actions, key, depth + 1, sfa); |
| 1234 | if (err) |
| 1235 | return err; |
| 1236 | |
| 1237 | add_nested_action_end(*sfa, st_acts); |
| 1238 | add_nested_action_end(*sfa, start); |
| 1239 | |
| 1240 | return 0; |
| 1241 | } |
| 1242 | |
| 1243 | static int validate_tp_port(const struct sw_flow_key *flow_key) |
| 1244 | { |
| 1245 | if (flow_key->eth.type == htons(ETH_P_IP)) { |
| 1246 | if (flow_key->ipv4.tp.src || flow_key->ipv4.tp.dst) |
| 1247 | return 0; |
| 1248 | } else if (flow_key->eth.type == htons(ETH_P_IPV6)) { |
| 1249 | if (flow_key->ipv6.tp.src || flow_key->ipv6.tp.dst) |
| 1250 | return 0; |
| 1251 | } |
| 1252 | |
| 1253 | return -EINVAL; |
| 1254 | } |
| 1255 | |
| 1256 | void ovs_match_init(struct sw_flow_match *match, |
| 1257 | struct sw_flow_key *key, |
| 1258 | struct sw_flow_mask *mask) |
| 1259 | { |
| 1260 | memset(match, 0, sizeof(*match)); |
| 1261 | match->key = key; |
| 1262 | match->mask = mask; |
| 1263 | |
| 1264 | memset(key, 0, sizeof(*key)); |
| 1265 | |
| 1266 | if (mask) { |
| 1267 | memset(&mask->key, 0, sizeof(mask->key)); |
| 1268 | mask->range.start = mask->range.end = 0; |
| 1269 | } |
| 1270 | } |
| 1271 | |
| 1272 | static int validate_and_copy_set_tun(const struct nlattr *attr, |
| 1273 | struct sw_flow_actions **sfa) |
| 1274 | { |
| 1275 | struct sw_flow_match match; |
| 1276 | struct sw_flow_key key; |
| 1277 | int err, start; |
| 1278 | |
| 1279 | ovs_match_init(&match, &key, NULL); |
| 1280 | err = ipv4_tun_from_nlattr(nla_data(attr), &match, false); |
| 1281 | if (err) |
| 1282 | return err; |
| 1283 | |
| 1284 | start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET); |
| 1285 | if (start < 0) |
| 1286 | return start; |
| 1287 | |
| 1288 | err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key, |
| 1289 | sizeof(match.key->tun_key)); |
| 1290 | add_nested_action_end(*sfa, start); |
| 1291 | |
| 1292 | return err; |
| 1293 | } |
| 1294 | |
| 1295 | static int validate_set(const struct nlattr *a, |
| 1296 | const struct sw_flow_key *flow_key, |
| 1297 | struct sw_flow_actions **sfa, |
| 1298 | bool *set_tun) |
| 1299 | { |
| 1300 | const struct nlattr *ovs_key = nla_data(a); |
| 1301 | int key_type = nla_type(ovs_key); |
| 1302 | |
| 1303 | /* There can be only one key in a action */ |
| 1304 | if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) |
| 1305 | return -EINVAL; |
| 1306 | |
| 1307 | if (key_type > OVS_KEY_ATTR_MAX || |
| 1308 | (ovs_key_lens[key_type] != nla_len(ovs_key) && |
| 1309 | ovs_key_lens[key_type] != -1)) |
| 1310 | return -EINVAL; |
| 1311 | |
| 1312 | switch (key_type) { |
| 1313 | const struct ovs_key_ipv4 *ipv4_key; |
| 1314 | const struct ovs_key_ipv6 *ipv6_key; |
| 1315 | int err; |
| 1316 | |
| 1317 | case OVS_KEY_ATTR_PRIORITY: |
| 1318 | case OVS_KEY_ATTR_SKB_MARK: |
| 1319 | case OVS_KEY_ATTR_ETHERNET: |
| 1320 | break; |
| 1321 | |
| 1322 | case OVS_KEY_ATTR_TUNNEL: |
| 1323 | *set_tun = true; |
| 1324 | err = validate_and_copy_set_tun(a, sfa); |
| 1325 | if (err) |
| 1326 | return err; |
| 1327 | break; |
| 1328 | |
| 1329 | case OVS_KEY_ATTR_IPV4: |
| 1330 | if (flow_key->eth.type != htons(ETH_P_IP)) |
| 1331 | return -EINVAL; |
| 1332 | |
| 1333 | if (!flow_key->ip.proto) |
| 1334 | return -EINVAL; |
| 1335 | |
| 1336 | ipv4_key = nla_data(ovs_key); |
| 1337 | if (ipv4_key->ipv4_proto != flow_key->ip.proto) |
| 1338 | return -EINVAL; |
| 1339 | |
| 1340 | if (ipv4_key->ipv4_frag != flow_key->ip.frag) |
| 1341 | return -EINVAL; |
| 1342 | |
| 1343 | break; |
| 1344 | |
| 1345 | case OVS_KEY_ATTR_IPV6: |
| 1346 | if (flow_key->eth.type != htons(ETH_P_IPV6)) |
| 1347 | return -EINVAL; |
| 1348 | |
| 1349 | if (!flow_key->ip.proto) |
| 1350 | return -EINVAL; |
| 1351 | |
| 1352 | ipv6_key = nla_data(ovs_key); |
| 1353 | if (ipv6_key->ipv6_proto != flow_key->ip.proto) |
| 1354 | return -EINVAL; |
| 1355 | |
| 1356 | if (ipv6_key->ipv6_frag != flow_key->ip.frag) |
| 1357 | return -EINVAL; |
| 1358 | |
| 1359 | if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) |
| 1360 | return -EINVAL; |
| 1361 | |
| 1362 | break; |
| 1363 | |
| 1364 | case OVS_KEY_ATTR_TCP: |
| 1365 | if (flow_key->ip.proto != IPPROTO_TCP) |
| 1366 | return -EINVAL; |
| 1367 | |
| 1368 | return validate_tp_port(flow_key); |
| 1369 | |
| 1370 | case OVS_KEY_ATTR_UDP: |
| 1371 | if (flow_key->ip.proto != IPPROTO_UDP) |
| 1372 | return -EINVAL; |
| 1373 | |
| 1374 | return validate_tp_port(flow_key); |
| 1375 | |
| 1376 | case OVS_KEY_ATTR_SCTP: |
| 1377 | if (flow_key->ip.proto != IPPROTO_SCTP) |
| 1378 | return -EINVAL; |
| 1379 | |
| 1380 | return validate_tp_port(flow_key); |
| 1381 | |
| 1382 | default: |
| 1383 | return -EINVAL; |
| 1384 | } |
| 1385 | |
| 1386 | return 0; |
| 1387 | } |
| 1388 | |
| 1389 | static int validate_userspace(const struct nlattr *attr) |
| 1390 | { |
| 1391 | static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { |
| 1392 | [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, |
| 1393 | [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, |
| 1394 | }; |
| 1395 | struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; |
| 1396 | int error; |
| 1397 | |
| 1398 | error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, |
| 1399 | attr, userspace_policy); |
| 1400 | if (error) |
| 1401 | return error; |
| 1402 | |
| 1403 | if (!a[OVS_USERSPACE_ATTR_PID] || |
| 1404 | !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) |
| 1405 | return -EINVAL; |
| 1406 | |
| 1407 | return 0; |
| 1408 | } |
| 1409 | |
| 1410 | static int copy_action(const struct nlattr *from, |
| 1411 | struct sw_flow_actions **sfa) |
| 1412 | { |
| 1413 | int totlen = NLA_ALIGN(from->nla_len); |
| 1414 | struct nlattr *to; |
| 1415 | |
| 1416 | to = reserve_sfa_size(sfa, from->nla_len); |
| 1417 | if (IS_ERR(to)) |
| 1418 | return PTR_ERR(to); |
| 1419 | |
| 1420 | memcpy(to, from, totlen); |
| 1421 | return 0; |
| 1422 | } |
| 1423 | |
| 1424 | int ovs_nla_copy_actions(const struct nlattr *attr, |
| 1425 | const struct sw_flow_key *key, |
| 1426 | int depth, |
| 1427 | struct sw_flow_actions **sfa) |
| 1428 | { |
| 1429 | const struct nlattr *a; |
| 1430 | int rem, err; |
| 1431 | |
| 1432 | if (depth >= SAMPLE_ACTION_DEPTH) |
| 1433 | return -EOVERFLOW; |
| 1434 | |
| 1435 | nla_for_each_nested(a, attr, rem) { |
| 1436 | /* Expected argument lengths, (u32)-1 for variable length. */ |
| 1437 | static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { |
| 1438 | [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), |
| 1439 | [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, |
| 1440 | [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), |
| 1441 | [OVS_ACTION_ATTR_POP_VLAN] = 0, |
| 1442 | [OVS_ACTION_ATTR_SET] = (u32)-1, |
| 1443 | [OVS_ACTION_ATTR_SAMPLE] = (u32)-1 |
| 1444 | }; |
| 1445 | const struct ovs_action_push_vlan *vlan; |
| 1446 | int type = nla_type(a); |
| 1447 | bool skip_copy; |
| 1448 | |
| 1449 | if (type > OVS_ACTION_ATTR_MAX || |
| 1450 | (action_lens[type] != nla_len(a) && |
| 1451 | action_lens[type] != (u32)-1)) |
| 1452 | return -EINVAL; |
| 1453 | |
| 1454 | skip_copy = false; |
| 1455 | switch (type) { |
| 1456 | case OVS_ACTION_ATTR_UNSPEC: |
| 1457 | return -EINVAL; |
| 1458 | |
| 1459 | case OVS_ACTION_ATTR_USERSPACE: |
| 1460 | err = validate_userspace(a); |
| 1461 | if (err) |
| 1462 | return err; |
| 1463 | break; |
| 1464 | |
| 1465 | case OVS_ACTION_ATTR_OUTPUT: |
| 1466 | if (nla_get_u32(a) >= DP_MAX_PORTS) |
| 1467 | return -EINVAL; |
| 1468 | break; |
| 1469 | |
| 1470 | |
| 1471 | case OVS_ACTION_ATTR_POP_VLAN: |
| 1472 | break; |
| 1473 | |
| 1474 | case OVS_ACTION_ATTR_PUSH_VLAN: |
| 1475 | vlan = nla_data(a); |
| 1476 | if (vlan->vlan_tpid != htons(ETH_P_8021Q)) |
| 1477 | return -EINVAL; |
| 1478 | if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) |
| 1479 | return -EINVAL; |
| 1480 | break; |
| 1481 | |
| 1482 | case OVS_ACTION_ATTR_SET: |
| 1483 | err = validate_set(a, key, sfa, &skip_copy); |
| 1484 | if (err) |
| 1485 | return err; |
| 1486 | break; |
| 1487 | |
| 1488 | case OVS_ACTION_ATTR_SAMPLE: |
| 1489 | err = validate_and_copy_sample(a, key, depth, sfa); |
| 1490 | if (err) |
| 1491 | return err; |
| 1492 | skip_copy = true; |
| 1493 | break; |
| 1494 | |
| 1495 | default: |
| 1496 | return -EINVAL; |
| 1497 | } |
| 1498 | if (!skip_copy) { |
| 1499 | err = copy_action(a, sfa); |
| 1500 | if (err) |
| 1501 | return err; |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | if (rem > 0) |
| 1506 | return -EINVAL; |
| 1507 | |
| 1508 | return 0; |
| 1509 | } |
| 1510 | |
| 1511 | static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) |
| 1512 | { |
| 1513 | const struct nlattr *a; |
| 1514 | struct nlattr *start; |
| 1515 | int err = 0, rem; |
| 1516 | |
| 1517 | start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); |
| 1518 | if (!start) |
| 1519 | return -EMSGSIZE; |
| 1520 | |
| 1521 | nla_for_each_nested(a, attr, rem) { |
| 1522 | int type = nla_type(a); |
| 1523 | struct nlattr *st_sample; |
| 1524 | |
| 1525 | switch (type) { |
| 1526 | case OVS_SAMPLE_ATTR_PROBABILITY: |
| 1527 | if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY, |
| 1528 | sizeof(u32), nla_data(a))) |
| 1529 | return -EMSGSIZE; |
| 1530 | break; |
| 1531 | case OVS_SAMPLE_ATTR_ACTIONS: |
| 1532 | st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); |
| 1533 | if (!st_sample) |
| 1534 | return -EMSGSIZE; |
| 1535 | err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); |
| 1536 | if (err) |
| 1537 | return err; |
| 1538 | nla_nest_end(skb, st_sample); |
| 1539 | break; |
| 1540 | } |
| 1541 | } |
| 1542 | |
| 1543 | nla_nest_end(skb, start); |
| 1544 | return err; |
| 1545 | } |
| 1546 | |
| 1547 | static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) |
| 1548 | { |
| 1549 | const struct nlattr *ovs_key = nla_data(a); |
| 1550 | int key_type = nla_type(ovs_key); |
| 1551 | struct nlattr *start; |
| 1552 | int err; |
| 1553 | |
| 1554 | switch (key_type) { |
| 1555 | case OVS_KEY_ATTR_IPV4_TUNNEL: |
| 1556 | start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); |
| 1557 | if (!start) |
| 1558 | return -EMSGSIZE; |
| 1559 | |
| 1560 | err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key), |
| 1561 | nla_data(ovs_key)); |
| 1562 | if (err) |
| 1563 | return err; |
| 1564 | nla_nest_end(skb, start); |
| 1565 | break; |
| 1566 | default: |
| 1567 | if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) |
| 1568 | return -EMSGSIZE; |
| 1569 | break; |
| 1570 | } |
| 1571 | |
| 1572 | return 0; |
| 1573 | } |
| 1574 | |
| 1575 | int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) |
| 1576 | { |
| 1577 | const struct nlattr *a; |
| 1578 | int rem, err; |
| 1579 | |
| 1580 | nla_for_each_attr(a, attr, len, rem) { |
| 1581 | int type = nla_type(a); |
| 1582 | |
| 1583 | switch (type) { |
| 1584 | case OVS_ACTION_ATTR_SET: |
| 1585 | err = set_action_to_attr(a, skb); |
| 1586 | if (err) |
| 1587 | return err; |
| 1588 | break; |
| 1589 | |
| 1590 | case OVS_ACTION_ATTR_SAMPLE: |
| 1591 | err = sample_action_to_attr(a, skb); |
| 1592 | if (err) |
| 1593 | return err; |
| 1594 | break; |
| 1595 | default: |
| 1596 | if (nla_put(skb, type, nla_len(a), nla_data(a))) |
| 1597 | return -EMSGSIZE; |
| 1598 | break; |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | return 0; |
| 1603 | } |