blob: 1a7eba4ac33ab7465089f6885e1d4d05b5f12bd8 [file] [log] [blame]
Alex Elder1f27f152014-02-14 12:29:18 -06001/*
2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#ifndef _CLK_KONA_H
16#define _CLK_KONA_H
17
18#include <linux/kernel.h>
19#include <linux/list.h>
20#include <linux/spinlock.h>
21#include <linux/slab.h>
22#include <linux/device.h>
23#include <linux/of.h>
24#include <linux/clk-provider.h>
25
26#define BILLION 1000000000
27
28/* The common clock framework uses u8 to represent a parent index */
29#define PARENT_COUNT_MAX ((u32)U8_MAX)
30
31#define BAD_CLK_INDEX U8_MAX /* Can't ever be valid */
32#define BAD_CLK_NAME ((const char *)-1)
33
34#define BAD_SCALED_DIV_VALUE U64_MAX
35
36/*
37 * Utility macros for object flag management. If possible, flags
38 * should be defined such that 0 is the desired default value.
39 */
40#define FLAG(type, flag) BCM_CLK_ ## type ## _FLAGS_ ## flag
41#define FLAG_SET(obj, type, flag) ((obj)->flags |= FLAG(type, flag))
42#define FLAG_CLEAR(obj, type, flag) ((obj)->flags &= ~(FLAG(type, flag)))
43#define FLAG_FLIP(obj, type, flag) ((obj)->flags ^= FLAG(type, flag))
44#define FLAG_TEST(obj, type, flag) (!!((obj)->flags & FLAG(type, flag)))
45
46/* Clock field state tests */
47
48#define gate_exists(gate) FLAG_TEST(gate, GATE, EXISTS)
49#define gate_is_enabled(gate) FLAG_TEST(gate, GATE, ENABLED)
50#define gate_is_hw_controllable(gate) FLAG_TEST(gate, GATE, HW)
51#define gate_is_sw_controllable(gate) FLAG_TEST(gate, GATE, SW)
52#define gate_is_sw_managed(gate) FLAG_TEST(gate, GATE, SW_MANAGED)
53#define gate_is_no_disable(gate) FLAG_TEST(gate, GATE, NO_DISABLE)
54
55#define gate_flip_enabled(gate) FLAG_FLIP(gate, GATE, ENABLED)
56
57#define divider_exists(div) FLAG_TEST(div, DIV, EXISTS)
58#define divider_is_fixed(div) FLAG_TEST(div, DIV, FIXED)
59#define divider_has_fraction(div) (!divider_is_fixed(div) && \
Alex Eldere813d492014-04-07 08:22:12 -050060 (div)->u.s.frac_width > 0)
Alex Elder1f27f152014-02-14 12:29:18 -060061
62#define selector_exists(sel) ((sel)->width != 0)
63#define trigger_exists(trig) FLAG_TEST(trig, TRIG, EXISTS)
64
65/* Clock type, used to tell common block what it's part of */
66enum bcm_clk_type {
67 bcm_clk_none, /* undefined clock type */
68 bcm_clk_bus,
69 bcm_clk_core,
70 bcm_clk_peri
71};
72
73/*
74 * Each CCU defines a mapped area of memory containing registers
75 * used to manage clocks implemented by the CCU. Access to memory
76 * within the CCU's space is serialized by a spinlock. Before any
77 * (other) address can be written, a special access "password" value
78 * must be written to its WR_ACCESS register (located at the base
79 * address of the range). We keep track of the name of each CCU as
80 * it is set up, and maintain them in a list.
81 */
82struct ccu_data {
83 void __iomem *base; /* base of mapped address space */
84 spinlock_t lock; /* serialization lock */
85 bool write_enabled; /* write access is currently enabled */
86 struct list_head links; /* for ccu_list */
87 struct device_node *node;
88 struct clk_onecell_data data;
89 const char *name;
90 u32 range; /* byte range of address space */
91};
92
93/*
94 * Gating control and status is managed by a 32-bit gate register.
95 *
96 * There are several types of gating available:
97 * - (no gate)
98 * A clock with no gate is assumed to be always enabled.
99 * - hardware-only gating (auto-gating)
100 * Enabling or disabling clocks with this type of gate is
101 * managed automatically by the hardware. Such clocks can be
102 * considered by the software to be enabled. The current status
103 * of auto-gated clocks can be read from the gate status bit.
104 * - software-only gating
105 * Auto-gating is not available for this type of clock.
106 * Instead, software manages whether it's enabled by setting or
107 * clearing the enable bit. The current gate status of a gate
108 * under software control can be read from the gate status bit.
109 * To ensure a change to the gating status is complete, the
110 * status bit can be polled to verify that the gate has entered
111 * the desired state.
112 * - selectable hardware or software gating
113 * Gating for this type of clock can be configured to be either
114 * under software or hardware control. Which type is in use is
115 * determined by the hw_sw_sel bit of the gate register.
116 */
117struct bcm_clk_gate {
118 u32 offset; /* gate register offset */
119 u32 status_bit; /* 0: gate is disabled; 0: gatge is enabled */
120 u32 en_bit; /* 0: disable; 1: enable */
121 u32 hw_sw_sel_bit; /* 0: hardware gating; 1: software gating */
122 u32 flags; /* BCM_CLK_GATE_FLAGS_* below */
123};
124
125/*
126 * Gate flags:
127 * HW means this gate can be auto-gated
128 * SW means the state of this gate can be software controlled
129 * NO_DISABLE means this gate is (only) enabled if under software control
130 * SW_MANAGED means the status of this gate is under software control
131 * ENABLED means this software-managed gate is *supposed* to be enabled
132 */
133#define BCM_CLK_GATE_FLAGS_EXISTS ((u32)1 << 0) /* Gate is valid */
134#define BCM_CLK_GATE_FLAGS_HW ((u32)1 << 1) /* Can auto-gate */
135#define BCM_CLK_GATE_FLAGS_SW ((u32)1 << 2) /* Software control */
136#define BCM_CLK_GATE_FLAGS_NO_DISABLE ((u32)1 << 3) /* HW or enabled */
137#define BCM_CLK_GATE_FLAGS_SW_MANAGED ((u32)1 << 4) /* SW now in control */
138#define BCM_CLK_GATE_FLAGS_ENABLED ((u32)1 << 5) /* If SW_MANAGED */
139
140/*
141 * Gate initialization macros.
142 *
143 * Any gate initially under software control will be enabled.
144 */
145
146/* A hardware/software gate initially under software control */
147#define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
148 { \
149 .offset = (_offset), \
150 .status_bit = (_status_bit), \
151 .en_bit = (_en_bit), \
152 .hw_sw_sel_bit = (_hw_sw_sel_bit), \
153 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
154 FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)| \
155 FLAG(GATE, EXISTS), \
156 }
157
158/* A hardware/software gate initially under hardware control */
159#define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
160 { \
161 .offset = (_offset), \
162 .status_bit = (_status_bit), \
163 .en_bit = (_en_bit), \
164 .hw_sw_sel_bit = (_hw_sw_sel_bit), \
165 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
166 FLAG(GATE, EXISTS), \
167 }
168
169/* A hardware-or-enabled gate (enabled if not under hardware control) */
170#define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
171 { \
172 .offset = (_offset), \
173 .status_bit = (_status_bit), \
174 .en_bit = (_en_bit), \
175 .hw_sw_sel_bit = (_hw_sw_sel_bit), \
176 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
177 FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS), \
178 }
179
180/* A software-only gate */
181#define SW_ONLY_GATE(_offset, _status_bit, _en_bit) \
182 { \
183 .offset = (_offset), \
184 .status_bit = (_status_bit), \
185 .en_bit = (_en_bit), \
186 .flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)| \
187 FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS), \
188 }
189
190/* A hardware-only gate */
191#define HW_ONLY_GATE(_offset, _status_bit) \
192 { \
193 .offset = (_offset), \
194 .status_bit = (_status_bit), \
195 .flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS), \
196 }
197
198/*
199 * Each clock can have zero, one, or two dividers which change the
200 * output rate of the clock. Each divider can be either fixed or
201 * variable. If there are two dividers, they are the "pre-divider"
202 * and the "regular" or "downstream" divider. If there is only one,
203 * there is no pre-divider.
204 *
205 * A fixed divider is any non-zero (positive) value, and it
206 * indicates how the input rate is affected by the divider.
207 *
208 * The value of a variable divider is maintained in a sub-field of a
209 * 32-bit divider register. The position of the field in the
210 * register is defined by its offset and width. The value recorded
211 * in this field is always 1 less than the value it represents.
212 *
213 * In addition, a variable divider can indicate that some subset
214 * of its bits represent a "fractional" part of the divider. Such
215 * bits comprise the low-order portion of the divider field, and can
216 * be viewed as representing the portion of the divider that lies to
217 * the right of the decimal point. Most variable dividers have zero
218 * fractional bits. Variable dividers with non-zero fraction width
219 * still record a value 1 less than the value they represent; the
220 * added 1 does *not* affect the low-order bit in this case, it
221 * affects the bits above the fractional part only. (Often in this
222 * code a divider field value is distinguished from the value it
223 * represents by referring to the latter as a "divisor".)
224 *
225 * In order to avoid dealing with fractions, divider arithmetic is
226 * performed using "scaled" values. A scaled value is one that's
227 * been left-shifted by the fractional width of a divider. Dividing
228 * a scaled value by a scaled divisor produces the desired quotient
229 * without loss of precision and without any other special handling
230 * for fractions.
231 *
232 * The recorded value of a variable divider can be modified. To
233 * modify either divider (or both), a clock must be enabled (i.e.,
234 * using its gate). In addition, a trigger register (described
235 * below) must be used to commit the change, and polled to verify
236 * the change is complete.
237 */
238struct bcm_clk_div {
239 union {
240 struct { /* variable divider */
241 u32 offset; /* divider register offset */
242 u32 shift; /* field shift */
243 u32 width; /* field width */
244 u32 frac_width; /* field fraction width */
245
246 u64 scaled_div; /* scaled divider value */
Alex Eldere813d492014-04-07 08:22:12 -0500247 } s;
Alex Elder1f27f152014-02-14 12:29:18 -0600248 u32 fixed; /* non-zero fixed divider value */
Alex Eldere813d492014-04-07 08:22:12 -0500249 } u;
Alex Elder1f27f152014-02-14 12:29:18 -0600250 u32 flags; /* BCM_CLK_DIV_FLAGS_* below */
251};
252
253/*
254 * Divider flags:
255 * EXISTS means this divider exists
256 * FIXED means it is a fixed-rate divider
257 */
258#define BCM_CLK_DIV_FLAGS_EXISTS ((u32)1 << 0) /* Divider is valid */
259#define BCM_CLK_DIV_FLAGS_FIXED ((u32)1 << 1) /* Fixed-value */
260
261/* Divider initialization macros */
262
263/* A fixed (non-zero) divider */
264#define FIXED_DIVIDER(_value) \
265 { \
Alex Eldere813d492014-04-07 08:22:12 -0500266 .u.fixed = (_value), \
Alex Elder1f27f152014-02-14 12:29:18 -0600267 .flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED), \
268 }
269
270/* A divider with an integral divisor */
271#define DIVIDER(_offset, _shift, _width) \
272 { \
Alex Eldere813d492014-04-07 08:22:12 -0500273 .u.s.offset = (_offset), \
274 .u.s.shift = (_shift), \
275 .u.s.width = (_width), \
276 .u.s.scaled_div = BAD_SCALED_DIV_VALUE, \
Alex Elder1f27f152014-02-14 12:29:18 -0600277 .flags = FLAG(DIV, EXISTS), \
278 }
279
280/* A divider whose divisor has an integer and fractional part */
281#define FRAC_DIVIDER(_offset, _shift, _width, _frac_width) \
282 { \
Alex Eldere813d492014-04-07 08:22:12 -0500283 .u.s.offset = (_offset), \
284 .u.s.shift = (_shift), \
285 .u.s.width = (_width), \
286 .u.s.frac_width = (_frac_width), \
287 .u.s.scaled_div = BAD_SCALED_DIV_VALUE, \
Alex Elder1f27f152014-02-14 12:29:18 -0600288 .flags = FLAG(DIV, EXISTS), \
289 }
290
291/*
292 * Clocks may have multiple "parent" clocks. If there is more than
293 * one, a selector must be specified to define which of the parent
294 * clocks is currently in use. The selected clock is indicated in a
295 * sub-field of a 32-bit selector register. The range of
296 * representable selector values typically exceeds the number of
297 * available parent clocks. Occasionally the reset value of a
298 * selector field is explicitly set to a (specific) value that does
299 * not correspond to a defined input clock.
300 *
301 * We register all known parent clocks with the common clock code
302 * using a packed array (i.e., no empty slots) of (parent) clock
303 * names, and refer to them later using indexes into that array.
304 * We maintain an array of selector values indexed by common clock
305 * index values in order to map between these common clock indexes
306 * and the selector values used by the hardware.
307 *
308 * Like dividers, a selector can be modified, but to do so a clock
309 * must be enabled, and a trigger must be used to commit the change.
310 */
311struct bcm_clk_sel {
312 u32 offset; /* selector register offset */
313 u32 shift; /* field shift */
314 u32 width; /* field width */
315
316 u32 parent_count; /* number of entries in parent_sel[] */
317 u32 *parent_sel; /* array of parent selector values */
318 u8 clk_index; /* current selected index in parent_sel[] */
319};
320
321/* Selector initialization macro */
322#define SELECTOR(_offset, _shift, _width) \
323 { \
324 .offset = (_offset), \
325 .shift = (_shift), \
326 .width = (_width), \
327 .clk_index = BAD_CLK_INDEX, \
328 }
329
330/*
331 * Making changes to a variable divider or a selector for a clock
332 * requires the use of a trigger. A trigger is defined by a single
333 * bit within a register. To signal a change, a 1 is written into
334 * that bit. To determine when the change has been completed, that
335 * trigger bit is polled; the read value will be 1 while the change
336 * is in progress, and 0 when it is complete.
337 *
338 * Occasionally a clock will have more than one trigger. In this
339 * case, the "pre-trigger" will be used when changing a clock's
340 * selector and/or its pre-divider.
341 */
342struct bcm_clk_trig {
343 u32 offset; /* trigger register offset */
344 u32 bit; /* trigger bit */
345 u32 flags; /* BCM_CLK_TRIG_FLAGS_* below */
346};
347
348/*
349 * Trigger flags:
350 * EXISTS means this trigger exists
351 */
352#define BCM_CLK_TRIG_FLAGS_EXISTS ((u32)1 << 0) /* Trigger is valid */
353
354/* Trigger initialization macro */
355#define TRIGGER(_offset, _bit) \
356 { \
357 .offset = (_offset), \
358 .bit = (_bit), \
359 .flags = FLAG(TRIG, EXISTS), \
360 }
361
362struct peri_clk_data {
363 struct bcm_clk_gate gate;
364 struct bcm_clk_trig pre_trig;
365 struct bcm_clk_div pre_div;
366 struct bcm_clk_trig trig;
367 struct bcm_clk_div div;
368 struct bcm_clk_sel sel;
369 const char *clocks[]; /* must be last; use CLOCKS() to declare */
370};
371#define CLOCKS(...) { __VA_ARGS__, NULL, }
372#define NO_CLOCKS { NULL, } /* Must use of no parent clocks */
373
374struct kona_clk {
375 struct clk_hw hw;
Alex Eldere7563252014-04-21 16:11:38 -0500376 struct clk_init_data init_data; /* includes name of this clock */
Alex Elder1f27f152014-02-14 12:29:18 -0600377 struct ccu_data *ccu; /* ccu this clock is associated with */
378 enum bcm_clk_type type;
379 union {
380 void *data;
381 struct peri_clk_data *peri;
Alex Eldere813d492014-04-07 08:22:12 -0500382 } u;
Alex Elder1f27f152014-02-14 12:29:18 -0600383};
384#define to_kona_clk(_hw) \
385 container_of(_hw, struct kona_clk, hw)
386
387/* Exported globals */
388
389extern struct clk_ops kona_peri_clk_ops;
390
391/* Help functions */
392
393#define PERI_CLK_SETUP(clks, ccu, id, name) \
394 clks[id] = kona_clk_setup(ccu, #name, bcm_clk_peri, &name ## _data)
395
396/* Externally visible functions */
397
398extern u64 do_div_round_closest(u64 dividend, unsigned long divisor);
399extern u64 scaled_div_max(struct bcm_clk_div *div);
400extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value,
401 u32 billionths);
402
403extern struct clk *kona_clk_setup(struct ccu_data *ccu, const char *name,
404 enum bcm_clk_type type, void *data);
405extern void __init kona_dt_ccu_setup(struct device_node *node,
406 int (*ccu_clks_setup)(struct ccu_data *));
407extern bool __init kona_ccu_init(struct ccu_data *ccu);
408
409#endif /* _CLK_KONA_H */