blob: 620cad48bdea98a8ab4302b6c9119b71b7a471ee [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ixgb_hw.c
30 * Shared functions for accessing and configuring the adapter
31 */
32
33#include "ixgb_hw.h"
34#include "ixgb_ids.h"
35
36/* Local function prototypes */
37
38static uint32_t ixgb_hash_mc_addr(struct ixgb_hw *hw, uint8_t * mc_addr);
39
40static void ixgb_mta_set(struct ixgb_hw *hw, uint32_t hash_value);
41
42static void ixgb_get_bus_info(struct ixgb_hw *hw);
43
44static boolean_t ixgb_link_reset(struct ixgb_hw *hw);
45
46static void ixgb_optics_reset(struct ixgb_hw *hw);
47
48static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
49
Adrian Bunke9ab1d12005-10-30 16:53:30 +010050static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070051
Adrian Bunke9ab1d12005-10-30 16:53:30 +010052static void ixgb_clear_vfta(struct ixgb_hw *hw);
53
54static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
55
56static uint16_t ixgb_read_phy_reg(struct ixgb_hw *hw,
57 uint32_t reg_address,
58 uint32_t phy_address,
59 uint32_t device_type);
60
61static boolean_t ixgb_setup_fc(struct ixgb_hw *hw);
62
63static boolean_t mac_addr_valid(uint8_t *mac_addr);
64
65static uint32_t ixgb_mac_reset(struct ixgb_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -070066{
67 uint32_t ctrl_reg;
68
69 ctrl_reg = IXGB_CTRL0_RST |
70 IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */
71 IXGB_CTRL0_SDP2_DIR |
72 IXGB_CTRL0_SDP1_DIR |
73 IXGB_CTRL0_SDP0_DIR |
74 IXGB_CTRL0_SDP3 | /* Initial value 1101 */
75 IXGB_CTRL0_SDP2 |
76 IXGB_CTRL0_SDP0;
77
78#ifdef HP_ZX1
79 /* Workaround for 82597EX reset errata */
80 IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
81#else
82 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
83#endif
84
85 /* Delay a few ms just to allow the reset to complete */
86 msec_delay(IXGB_DELAY_AFTER_RESET);
87 ctrl_reg = IXGB_READ_REG(hw, CTRL0);
88#ifdef DBG
89 /* Make sure the self-clearing global reset bit did self clear */
90 ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
91#endif
92
93 if (hw->phy_type == ixgb_phy_type_txn17401) {
94 ixgb_optics_reset(hw);
95 }
96
97 return ctrl_reg;
98}
99
100/******************************************************************************
101 * Reset the transmit and receive units; mask and clear all interrupts.
102 *
103 * hw - Struct containing variables accessed by shared code
104 *****************************************************************************/
105boolean_t
106ixgb_adapter_stop(struct ixgb_hw *hw)
107{
108 uint32_t ctrl_reg;
109 uint32_t icr_reg;
110
111 DEBUGFUNC("ixgb_adapter_stop");
112
113 /* If we are stopped or resetting exit gracefully and wait to be
114 * started again before accessing the hardware.
115 */
116 if(hw->adapter_stopped) {
117 DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
118 return FALSE;
119 }
120
121 /* Set the Adapter Stopped flag so other driver functions stop
122 * touching the Hardware.
123 */
124 hw->adapter_stopped = TRUE;
125
126 /* Clear interrupt mask to stop board from generating interrupts */
127 DEBUGOUT("Masking off all interrupts\n");
128 IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
129
130 /* Disable the Transmit and Receive units. Then delay to allow
131 * any pending transactions to complete before we hit the MAC with
132 * the global reset.
133 */
134 IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
135 IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
136 msec_delay(IXGB_DELAY_BEFORE_RESET);
137
138 /* Issue a global reset to the MAC. This will reset the chip's
139 * transmit, receive, DMA, and link units. It will not effect
140 * the current PCI configuration. The global reset bit is self-
141 * clearing, and should clear within a microsecond.
142 */
143 DEBUGOUT("Issuing a global reset to MAC\n");
144
145 ctrl_reg = ixgb_mac_reset(hw);
146
147 /* Clear interrupt mask to stop board from generating interrupts */
148 DEBUGOUT("Masking off all interrupts\n");
149 IXGB_WRITE_REG(hw, IMC, 0xffffffff);
150
151 /* Clear any pending interrupt events. */
152 icr_reg = IXGB_READ_REG(hw, ICR);
153
154 return (ctrl_reg & IXGB_CTRL0_RST);
155}
156
157
158/******************************************************************************
159 * Identifies the vendor of the optics module on the adapter. The SR adapters
160 * support two different types of XPAK optics, so it is necessary to determine
161 * which optics are present before applying any optics-specific workarounds.
162 *
163 * hw - Struct containing variables accessed by shared code.
164 *
165 * Returns: the vendor of the XPAK optics module.
166 *****************************************************************************/
167static ixgb_xpak_vendor
168ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
169{
170 uint32_t i;
171 uint16_t vendor_name[5];
172 ixgb_xpak_vendor xpak_vendor;
173
174 DEBUGFUNC("ixgb_identify_xpak_vendor");
175
176 /* Read the first few bytes of the vendor string from the XPAK NVR
177 * registers. These are standard XENPAK/XPAK registers, so all XPAK
178 * devices should implement them. */
179 for (i = 0; i < 5; i++) {
180 vendor_name[i] = ixgb_read_phy_reg(hw,
181 MDIO_PMA_PMD_XPAK_VENDOR_NAME
182 + i, IXGB_PHY_ADDRESS,
183 MDIO_PMA_PMD_DID);
184 }
185
186 /* Determine the actual vendor */
187 if (vendor_name[0] == 'I' &&
188 vendor_name[1] == 'N' &&
189 vendor_name[2] == 'T' &&
190 vendor_name[3] == 'E' && vendor_name[4] == 'L') {
191 xpak_vendor = ixgb_xpak_vendor_intel;
192 } else {
193 xpak_vendor = ixgb_xpak_vendor_infineon;
194 }
195
196 return (xpak_vendor);
197}
198
199/******************************************************************************
200 * Determine the physical layer module on the adapter.
201 *
202 * hw - Struct containing variables accessed by shared code. The device_id
203 * field must be (correctly) populated before calling this routine.
204 *
205 * Returns: the phy type of the adapter.
206 *****************************************************************************/
207static ixgb_phy_type
208ixgb_identify_phy(struct ixgb_hw *hw)
209{
210 ixgb_phy_type phy_type;
211 ixgb_xpak_vendor xpak_vendor;
212
213 DEBUGFUNC("ixgb_identify_phy");
214
215 /* Infer the transceiver/phy type from the device id */
216 switch (hw->device_id) {
217 case IXGB_DEVICE_ID_82597EX:
218 DEBUGOUT("Identified TXN17401 optics\n");
219 phy_type = ixgb_phy_type_txn17401;
220 break;
221
222 case IXGB_DEVICE_ID_82597EX_SR:
223 /* The SR adapters carry two different types of XPAK optics
224 * modules; read the vendor identifier to determine the exact
225 * type of optics. */
226 xpak_vendor = ixgb_identify_xpak_vendor(hw);
227 if (xpak_vendor == ixgb_xpak_vendor_intel) {
228 DEBUGOUT("Identified TXN17201 optics\n");
229 phy_type = ixgb_phy_type_txn17201;
230 } else {
231 DEBUGOUT("Identified G6005 optics\n");
232 phy_type = ixgb_phy_type_g6005;
233 }
234 break;
235 case IXGB_DEVICE_ID_82597EX_LR:
236 DEBUGOUT("Identified G6104 optics\n");
237 phy_type = ixgb_phy_type_g6104;
238 break;
239 default:
240 DEBUGOUT("Unknown physical layer module\n");
241 phy_type = ixgb_phy_type_unknown;
242 break;
243 }
244
245 return (phy_type);
246}
247
248/******************************************************************************
249 * Performs basic configuration of the adapter.
250 *
251 * hw - Struct containing variables accessed by shared code
252 *
253 * Resets the controller.
254 * Reads and validates the EEPROM.
255 * Initializes the receive address registers.
256 * Initializes the multicast table.
257 * Clears all on-chip counters.
258 * Calls routine to setup flow control settings.
259 * Leaves the transmit and receive units disabled and uninitialized.
260 *
261 * Returns:
262 * TRUE if successful,
263 * FALSE if unrecoverable problems were encountered.
264 *****************************************************************************/
265boolean_t
266ixgb_init_hw(struct ixgb_hw *hw)
267{
268 uint32_t i;
269 uint32_t ctrl_reg;
270 boolean_t status;
271
272 DEBUGFUNC("ixgb_init_hw");
273
274 /* Issue a global reset to the MAC. This will reset the chip's
275 * transmit, receive, DMA, and link units. It will not effect
276 * the current PCI configuration. The global reset bit is self-
277 * clearing, and should clear within a microsecond.
278 */
279 DEBUGOUT("Issuing a global reset to MAC\n");
280
281 ctrl_reg = ixgb_mac_reset(hw);
282
283 DEBUGOUT("Issuing an EE reset to MAC\n");
284#ifdef HP_ZX1
285 /* Workaround for 82597EX reset errata */
286 IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
287#else
288 IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
289#endif
290
291 /* Delay a few ms just to allow the reset to complete */
292 msec_delay(IXGB_DELAY_AFTER_EE_RESET);
293
294 if (ixgb_get_eeprom_data(hw) == FALSE) {
295 return(FALSE);
296 }
297
298 /* Use the device id to determine the type of phy/transceiver. */
299 hw->device_id = ixgb_get_ee_device_id(hw);
300 hw->phy_type = ixgb_identify_phy(hw);
301
302 /* Setup the receive addresses.
303 * Receive Address Registers (RARs 0 - 15).
304 */
305 ixgb_init_rx_addrs(hw);
306
307 /*
308 * Check that a valid MAC address has been set.
309 * If it is not valid, we fail hardware init.
310 */
311 if (!mac_addr_valid(hw->curr_mac_addr)) {
312 DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
313 return(FALSE);
314 }
315
316 /* tell the routines in this file they can access hardware again */
317 hw->adapter_stopped = FALSE;
318
319 /* Fill in the bus_info structure */
320 ixgb_get_bus_info(hw);
321
322 /* Zero out the Multicast HASH table */
323 DEBUGOUT("Zeroing the MTA\n");
324 for(i = 0; i < IXGB_MC_TBL_SIZE; i++)
325 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
326
327 /* Zero out the VLAN Filter Table Array */
328 ixgb_clear_vfta(hw);
329
330 /* Zero all of the hardware counters */
331 ixgb_clear_hw_cntrs(hw);
332
333 /* Call a subroutine to setup flow control. */
334 status = ixgb_setup_fc(hw);
335
336 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
337 ixgb_check_for_link(hw);
338
339 return (status);
340}
341
342/******************************************************************************
343 * Initializes receive address filters.
344 *
345 * hw - Struct containing variables accessed by shared code
346 *
347 * Places the MAC address in receive address register 0 and clears the rest
348 * of the receive addresss registers. Clears the multicast table. Assumes
349 * the receiver is in reset when the routine is called.
350 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100351static void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352ixgb_init_rx_addrs(struct ixgb_hw *hw)
353{
354 uint32_t i;
355
356 DEBUGFUNC("ixgb_init_rx_addrs");
357
358 /*
359 * If the current mac address is valid, assume it is a software override
360 * to the permanent address.
361 * Otherwise, use the permanent address from the eeprom.
362 */
363 if (!mac_addr_valid(hw->curr_mac_addr)) {
364
365 /* Get the MAC address from the eeprom for later reference */
366 ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
367
368 DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
369 hw->curr_mac_addr[0],
370 hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
371 DEBUGOUT3("%.2X %.2X %.2X\n",
372 hw->curr_mac_addr[3],
373 hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
374 } else {
375
376 /* Setup the receive address. */
377 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
378 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
379 hw->curr_mac_addr[0],
380 hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
381 DEBUGOUT3("%.2X %.2X %.2X\n",
382 hw->curr_mac_addr[3],
383 hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
384
385 ixgb_rar_set(hw, hw->curr_mac_addr, 0);
386 }
387
388 /* Zero out the other 15 receive addresses. */
389 DEBUGOUT("Clearing RAR[1-15]\n");
390 for(i = 1; i < IXGB_RAR_ENTRIES; i++) {
391 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
392 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
393 }
394
395 return;
396}
397
398/******************************************************************************
399 * Updates the MAC's list of multicast addresses.
400 *
401 * hw - Struct containing variables accessed by shared code
402 * mc_addr_list - the list of new multicast addresses
403 * mc_addr_count - number of addresses
404 * pad - number of bytes between addresses in the list
405 *
406 * The given list replaces any existing list. Clears the last 15 receive
407 * address registers and the multicast table. Uses receive address registers
408 * for the first 15 multicast addresses, and hashes the rest into the
409 * multicast table.
410 *****************************************************************************/
411void
412ixgb_mc_addr_list_update(struct ixgb_hw *hw,
413 uint8_t *mc_addr_list,
414 uint32_t mc_addr_count,
415 uint32_t pad)
416{
417 uint32_t hash_value;
418 uint32_t i;
419 uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */
420
421 DEBUGFUNC("ixgb_mc_addr_list_update");
422
423 /* Set the new number of MC addresses that we are being requested to use. */
424 hw->num_mc_addrs = mc_addr_count;
425
426 /* Clear RAR[1-15] */
427 DEBUGOUT(" Clearing RAR[1-15]\n");
428 for(i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
429 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
430 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
431 }
432
433 /* Clear the MTA */
434 DEBUGOUT(" Clearing MTA\n");
435 for(i = 0; i < IXGB_MC_TBL_SIZE; i++) {
436 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
437 }
438
439 /* Add the new addresses */
440 for(i = 0; i < mc_addr_count; i++) {
441 DEBUGOUT(" Adding the multicast addresses:\n");
442 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
443 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)],
444 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
445 1],
446 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
447 2],
448 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
449 3],
450 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
451 4],
452 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
453 5]);
454
455 /* Place this multicast address in the RAR if there is room, *
456 * else put it in the MTA
457 */
458 if(rar_used_count < IXGB_RAR_ENTRIES) {
459 ixgb_rar_set(hw,
460 mc_addr_list +
461 (i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)),
462 rar_used_count);
463 DEBUGOUT1("Added a multicast address to RAR[%d]\n", i);
464 rar_used_count++;
465 } else {
466 hash_value = ixgb_hash_mc_addr(hw,
467 mc_addr_list +
468 (i *
469 (IXGB_ETH_LENGTH_OF_ADDRESS
470 + pad)));
471
472 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
473
474 ixgb_mta_set(hw, hash_value);
475 }
476 }
477
478 DEBUGOUT("MC Update Complete\n");
479 return;
480}
481
482/******************************************************************************
483 * Hashes an address to determine its location in the multicast table
484 *
485 * hw - Struct containing variables accessed by shared code
486 * mc_addr - the multicast address to hash
487 *
488 * Returns:
489 * The hash value
490 *****************************************************************************/
491static uint32_t
492ixgb_hash_mc_addr(struct ixgb_hw *hw,
493 uint8_t *mc_addr)
494{
495 uint32_t hash_value = 0;
496
497 DEBUGFUNC("ixgb_hash_mc_addr");
498
499 /* The portion of the address that is used for the hash table is
500 * determined by the mc_filter_type setting.
501 */
502 switch (hw->mc_filter_type) {
503 /* [0] [1] [2] [3] [4] [5]
504 * 01 AA 00 12 34 56
505 * LSB MSB - According to H/W docs */
506 case 0:
507 /* [47:36] i.e. 0x563 for above example address */
508 hash_value =
509 ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
510 break;
511 case 1: /* [46:35] i.e. 0xAC6 for above example address */
512 hash_value =
513 ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
514 break;
515 case 2: /* [45:34] i.e. 0x5D8 for above example address */
516 hash_value =
517 ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
518 break;
519 case 3: /* [43:32] i.e. 0x634 for above example address */
520 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
521 break;
522 default:
523 /* Invalid mc_filter_type, what should we do? */
524 DEBUGOUT("MC filter type param set incorrectly\n");
525 ASSERT(0);
526 break;
527 }
528
529 hash_value &= 0xFFF;
530 return (hash_value);
531}
532
533/******************************************************************************
534 * Sets the bit in the multicast table corresponding to the hash value.
535 *
536 * hw - Struct containing variables accessed by shared code
537 * hash_value - Multicast address hash value
538 *****************************************************************************/
539static void
540ixgb_mta_set(struct ixgb_hw *hw,
541 uint32_t hash_value)
542{
543 uint32_t hash_bit, hash_reg;
544 uint32_t mta_reg;
545
546 /* The MTA is a register array of 128 32-bit registers.
547 * It is treated like an array of 4096 bits. We want to set
548 * bit BitArray[hash_value]. So we figure out what register
549 * the bit is in, read it, OR in the new bit, then write
550 * back the new value. The register is determined by the
551 * upper 7 bits of the hash value and the bit within that
552 * register are determined by the lower 5 bits of the value.
553 */
554 hash_reg = (hash_value >> 5) & 0x7F;
555 hash_bit = hash_value & 0x1F;
556
557 mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
558
559 mta_reg |= (1 << hash_bit);
560
561 IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
562
563 return;
564}
565
566/******************************************************************************
567 * Puts an ethernet address into a receive address register.
568 *
569 * hw - Struct containing variables accessed by shared code
570 * addr - Address to put into receive address register
571 * index - Receive address register to write
572 *****************************************************************************/
573void
574ixgb_rar_set(struct ixgb_hw *hw,
575 uint8_t *addr,
576 uint32_t index)
577{
578 uint32_t rar_low, rar_high;
579
580 DEBUGFUNC("ixgb_rar_set");
581
582 /* HW expects these in little endian so we reverse the byte order
583 * from network order (big endian) to little endian
584 */
585 rar_low = ((uint32_t) addr[0] |
586 ((uint32_t)addr[1] << 8) |
587 ((uint32_t)addr[2] << 16) |
588 ((uint32_t)addr[3] << 24));
589
590 rar_high = ((uint32_t) addr[4] |
591 ((uint32_t)addr[5] << 8) |
592 IXGB_RAH_AV);
593
594 IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
595 IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
596 return;
597}
598
599/******************************************************************************
600 * Writes a value to the specified offset in the VLAN filter table.
601 *
602 * hw - Struct containing variables accessed by shared code
603 * offset - Offset in VLAN filer table to write
604 * value - Value to write into VLAN filter table
605 *****************************************************************************/
606void
607ixgb_write_vfta(struct ixgb_hw *hw,
608 uint32_t offset,
609 uint32_t value)
610{
611 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
612 return;
613}
614
615/******************************************************************************
616 * Clears the VLAN filer table
617 *
618 * hw - Struct containing variables accessed by shared code
619 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100620static void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621ixgb_clear_vfta(struct ixgb_hw *hw)
622{
623 uint32_t offset;
624
625 for(offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
626 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
627 return;
628}
629
630/******************************************************************************
631 * Configures the flow control settings based on SW configuration.
632 *
633 * hw - Struct containing variables accessed by shared code
634 *****************************************************************************/
635
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100636static boolean_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637ixgb_setup_fc(struct ixgb_hw *hw)
638{
639 uint32_t ctrl_reg;
640 uint32_t pap_reg = 0; /* by default, assume no pause time */
641 boolean_t status = TRUE;
642
643 DEBUGFUNC("ixgb_setup_fc");
644
645 /* Get the current control reg 0 settings */
646 ctrl_reg = IXGB_READ_REG(hw, CTRL0);
647
648 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
649 ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
650
651 /* The possible values of the "flow_control" parameter are:
652 * 0: Flow control is completely disabled
653 * 1: Rx flow control is enabled (we can receive pause frames
654 * but not send pause frames).
655 * 2: Tx flow control is enabled (we can send pause frames
656 * but we do not support receiving pause frames).
657 * 3: Both Rx and TX flow control (symmetric) are enabled.
658 * other: Invalid.
659 */
660 switch (hw->fc.type) {
661 case ixgb_fc_none: /* 0 */
662 /* Set CMDC bit to disable Rx Flow control */
663 ctrl_reg |= (IXGB_CTRL0_CMDC);
664 break;
665 case ixgb_fc_rx_pause: /* 1 */
666 /* RX Flow control is enabled, and TX Flow control is
667 * disabled.
668 */
669 ctrl_reg |= (IXGB_CTRL0_RPE);
670 break;
671 case ixgb_fc_tx_pause: /* 2 */
672 /* TX Flow control is enabled, and RX Flow control is
673 * disabled, by a software over-ride.
674 */
675 ctrl_reg |= (IXGB_CTRL0_TPE);
676 pap_reg = hw->fc.pause_time;
677 break;
678 case ixgb_fc_full: /* 3 */
679 /* Flow control (both RX and TX) is enabled by a software
680 * over-ride.
681 */
682 ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
683 pap_reg = hw->fc.pause_time;
684 break;
685 default:
686 /* We should never get here. The value should be 0-3. */
687 DEBUGOUT("Flow control param set incorrectly\n");
688 ASSERT(0);
689 break;
690 }
691
692 /* Write the new settings */
693 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
694
695 if (pap_reg != 0) {
696 IXGB_WRITE_REG(hw, PAP, pap_reg);
697 }
698
699 /* Set the flow control receive threshold registers. Normally,
700 * these registers will be set to a default threshold that may be
701 * adjusted later by the driver's runtime code. However, if the
702 * ability to transmit pause frames in not enabled, then these
703 * registers will be set to 0.
704 */
705 if(!(hw->fc.type & ixgb_fc_tx_pause)) {
706 IXGB_WRITE_REG(hw, FCRTL, 0);
707 IXGB_WRITE_REG(hw, FCRTH, 0);
708 } else {
709 /* We need to set up the Receive Threshold high and low water
710 * marks as well as (optionally) enabling the transmission of XON
711 * frames. */
712 if(hw->fc.send_xon) {
713 IXGB_WRITE_REG(hw, FCRTL,
714 (hw->fc.low_water | IXGB_FCRTL_XONE));
715 } else {
716 IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
717 }
718 IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
719 }
720 return (status);
721}
722
723/******************************************************************************
724 * Reads a word from a device over the Management Data Interface (MDI) bus.
725 * This interface is used to manage Physical layer devices.
726 *
727 * hw - Struct containing variables accessed by hw code
728 * reg_address - Offset of device register being read.
729 * phy_address - Address of device on MDI.
730 *
731 * Returns: Data word (16 bits) from MDI device.
732 *
733 * The 82597EX has support for several MDI access methods. This routine
734 * uses the new protocol MDI Single Command and Address Operation.
735 * This requires that first an address cycle command is sent, followed by a
736 * read command.
737 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100738static uint16_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700739ixgb_read_phy_reg(struct ixgb_hw *hw,
740 uint32_t reg_address,
741 uint32_t phy_address,
742 uint32_t device_type)
743{
744 uint32_t i;
745 uint32_t data;
746 uint32_t command = 0;
747
748 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
749 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
750 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
751
752 /* Setup and write the address cycle command */
753 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
754 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
755 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
756 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
757
758 IXGB_WRITE_REG(hw, MSCA, command);
759
760 /**************************************************************
761 ** Check every 10 usec to see if the address cycle completed
762 ** The COMMAND bit will clear when the operation is complete.
763 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
764 ** from the CPU Write to the Ready bit assertion.
765 **************************************************************/
766
767 for(i = 0; i < 10; i++)
768 {
769 udelay(10);
770
771 command = IXGB_READ_REG(hw, MSCA);
772
773 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
774 break;
775 }
776
777 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
778
779 /* Address cycle complete, setup and write the read command */
780 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
781 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
782 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
783 (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
784
785 IXGB_WRITE_REG(hw, MSCA, command);
786
787 /**************************************************************
788 ** Check every 10 usec to see if the read command completed
789 ** The COMMAND bit will clear when the operation is complete.
790 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
791 ** from the CPU Write to the Ready bit assertion.
792 **************************************************************/
793
794 for(i = 0; i < 10; i++)
795 {
796 udelay(10);
797
798 command = IXGB_READ_REG(hw, MSCA);
799
800 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
801 break;
802 }
803
804 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
805
806 /* Operation is complete, get the data from the MDIO Read/Write Data
807 * register and return.
808 */
809 data = IXGB_READ_REG(hw, MSRWD);
810 data >>= IXGB_MSRWD_READ_DATA_SHIFT;
811 return((uint16_t) data);
812}
813
814/******************************************************************************
815 * Writes a word to a device over the Management Data Interface (MDI) bus.
816 * This interface is used to manage Physical layer devices.
817 *
818 * hw - Struct containing variables accessed by hw code
819 * reg_address - Offset of device register being read.
820 * phy_address - Address of device on MDI.
821 * device_type - Also known as the Device ID or DID.
822 * data - 16-bit value to be written
823 *
824 * Returns: void.
825 *
826 * The 82597EX has support for several MDI access methods. This routine
827 * uses the new protocol MDI Single Command and Address Operation.
828 * This requires that first an address cycle command is sent, followed by a
829 * write command.
830 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100831static void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700832ixgb_write_phy_reg(struct ixgb_hw *hw,
833 uint32_t reg_address,
834 uint32_t phy_address,
835 uint32_t device_type,
836 uint16_t data)
837{
838 uint32_t i;
839 uint32_t command = 0;
840
841 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
842 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
843 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
844
845 /* Put the data in the MDIO Read/Write Data register */
846 IXGB_WRITE_REG(hw, MSRWD, (uint32_t)data);
847
848 /* Setup and write the address cycle command */
849 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
850 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
851 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
852 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
853
854 IXGB_WRITE_REG(hw, MSCA, command);
855
856 /**************************************************************
857 ** Check every 10 usec to see if the address cycle completed
858 ** The COMMAND bit will clear when the operation is complete.
859 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
860 ** from the CPU Write to the Ready bit assertion.
861 **************************************************************/
862
863 for(i = 0; i < 10; i++)
864 {
865 udelay(10);
866
867 command = IXGB_READ_REG(hw, MSCA);
868
869 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
870 break;
871 }
872
873 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
874
875 /* Address cycle complete, setup and write the write command */
876 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
877 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
878 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
879 (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
880
881 IXGB_WRITE_REG(hw, MSCA, command);
882
883 /**************************************************************
884 ** Check every 10 usec to see if the read command completed
885 ** The COMMAND bit will clear when the operation is complete.
886 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
887 ** from the CPU Write to the Ready bit assertion.
888 **************************************************************/
889
890 for(i = 0; i < 10; i++)
891 {
892 udelay(10);
893
894 command = IXGB_READ_REG(hw, MSCA);
895
896 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
897 break;
898 }
899
900 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
901
902 /* Operation is complete, return. */
903}
904
905/******************************************************************************
906 * Checks to see if the link status of the hardware has changed.
907 *
908 * hw - Struct containing variables accessed by hw code
909 *
910 * Called by any function that needs to check the link status of the adapter.
911 *****************************************************************************/
912void
913ixgb_check_for_link(struct ixgb_hw *hw)
914{
915 uint32_t status_reg;
916 uint32_t xpcss_reg;
917
918 DEBUGFUNC("ixgb_check_for_link");
919
920 xpcss_reg = IXGB_READ_REG(hw, XPCSS);
921 status_reg = IXGB_READ_REG(hw, STATUS);
922
923 if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
924 (status_reg & IXGB_STATUS_LU)) {
925 hw->link_up = TRUE;
926 } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
927 (status_reg & IXGB_STATUS_LU)) {
928 DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
929 hw->link_up = ixgb_link_reset(hw);
930 } else {
931 /*
932 * 82597EX errata. Since the lane deskew problem may prevent
933 * link, reset the link before reporting link down.
934 */
935 hw->link_up = ixgb_link_reset(hw);
936 }
937 /* Anything else for 10 Gig?? */
938}
939
940/******************************************************************************
941 * Check for a bad link condition that may have occured.
942 * The indication is that the RFC / LFC registers may be incrementing
943 * continually. A full adapter reset is required to recover.
944 *
945 * hw - Struct containing variables accessed by hw code
946 *
947 * Called by any function that needs to check the link status of the adapter.
948 *****************************************************************************/
949boolean_t ixgb_check_for_bad_link(struct ixgb_hw *hw)
950{
951 uint32_t newLFC, newRFC;
952 boolean_t bad_link_returncode = FALSE;
953
954 if (hw->phy_type == ixgb_phy_type_txn17401) {
955 newLFC = IXGB_READ_REG(hw, LFC);
956 newRFC = IXGB_READ_REG(hw, RFC);
957 if ((hw->lastLFC + 250 < newLFC)
958 || (hw->lastRFC + 250 < newRFC)) {
959 DEBUGOUT
960 ("BAD LINK! too many LFC/RFC since last check\n");
961 bad_link_returncode = TRUE;
962 }
963 hw->lastLFC = newLFC;
964 hw->lastRFC = newRFC;
965 }
966
967 return bad_link_returncode;
968}
969
970/******************************************************************************
971 * Clears all hardware statistics counters.
972 *
973 * hw - Struct containing variables accessed by shared code
974 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +0100975static void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
977{
978 volatile uint32_t temp_reg;
979
980 DEBUGFUNC("ixgb_clear_hw_cntrs");
981
982 /* if we are stopped or resetting exit gracefully */
983 if(hw->adapter_stopped) {
984 DEBUGOUT("Exiting because the adapter is stopped!!!\n");
985 return;
986 }
987
988 temp_reg = IXGB_READ_REG(hw, TPRL);
989 temp_reg = IXGB_READ_REG(hw, TPRH);
990 temp_reg = IXGB_READ_REG(hw, GPRCL);
991 temp_reg = IXGB_READ_REG(hw, GPRCH);
992 temp_reg = IXGB_READ_REG(hw, BPRCL);
993 temp_reg = IXGB_READ_REG(hw, BPRCH);
994 temp_reg = IXGB_READ_REG(hw, MPRCL);
995 temp_reg = IXGB_READ_REG(hw, MPRCH);
996 temp_reg = IXGB_READ_REG(hw, UPRCL);
997 temp_reg = IXGB_READ_REG(hw, UPRCH);
998 temp_reg = IXGB_READ_REG(hw, VPRCL);
999 temp_reg = IXGB_READ_REG(hw, VPRCH);
1000 temp_reg = IXGB_READ_REG(hw, JPRCL);
1001 temp_reg = IXGB_READ_REG(hw, JPRCH);
1002 temp_reg = IXGB_READ_REG(hw, GORCL);
1003 temp_reg = IXGB_READ_REG(hw, GORCH);
1004 temp_reg = IXGB_READ_REG(hw, TORL);
1005 temp_reg = IXGB_READ_REG(hw, TORH);
1006 temp_reg = IXGB_READ_REG(hw, RNBC);
1007 temp_reg = IXGB_READ_REG(hw, RUC);
1008 temp_reg = IXGB_READ_REG(hw, ROC);
1009 temp_reg = IXGB_READ_REG(hw, RLEC);
1010 temp_reg = IXGB_READ_REG(hw, CRCERRS);
1011 temp_reg = IXGB_READ_REG(hw, ICBC);
1012 temp_reg = IXGB_READ_REG(hw, ECBC);
1013 temp_reg = IXGB_READ_REG(hw, MPC);
1014 temp_reg = IXGB_READ_REG(hw, TPTL);
1015 temp_reg = IXGB_READ_REG(hw, TPTH);
1016 temp_reg = IXGB_READ_REG(hw, GPTCL);
1017 temp_reg = IXGB_READ_REG(hw, GPTCH);
1018 temp_reg = IXGB_READ_REG(hw, BPTCL);
1019 temp_reg = IXGB_READ_REG(hw, BPTCH);
1020 temp_reg = IXGB_READ_REG(hw, MPTCL);
1021 temp_reg = IXGB_READ_REG(hw, MPTCH);
1022 temp_reg = IXGB_READ_REG(hw, UPTCL);
1023 temp_reg = IXGB_READ_REG(hw, UPTCH);
1024 temp_reg = IXGB_READ_REG(hw, VPTCL);
1025 temp_reg = IXGB_READ_REG(hw, VPTCH);
1026 temp_reg = IXGB_READ_REG(hw, JPTCL);
1027 temp_reg = IXGB_READ_REG(hw, JPTCH);
1028 temp_reg = IXGB_READ_REG(hw, GOTCL);
1029 temp_reg = IXGB_READ_REG(hw, GOTCH);
1030 temp_reg = IXGB_READ_REG(hw, TOTL);
1031 temp_reg = IXGB_READ_REG(hw, TOTH);
1032 temp_reg = IXGB_READ_REG(hw, DC);
1033 temp_reg = IXGB_READ_REG(hw, PLT64C);
1034 temp_reg = IXGB_READ_REG(hw, TSCTC);
1035 temp_reg = IXGB_READ_REG(hw, TSCTFC);
1036 temp_reg = IXGB_READ_REG(hw, IBIC);
1037 temp_reg = IXGB_READ_REG(hw, RFC);
1038 temp_reg = IXGB_READ_REG(hw, LFC);
1039 temp_reg = IXGB_READ_REG(hw, PFRC);
1040 temp_reg = IXGB_READ_REG(hw, PFTC);
1041 temp_reg = IXGB_READ_REG(hw, MCFRC);
1042 temp_reg = IXGB_READ_REG(hw, MCFTC);
1043 temp_reg = IXGB_READ_REG(hw, XONRXC);
1044 temp_reg = IXGB_READ_REG(hw, XONTXC);
1045 temp_reg = IXGB_READ_REG(hw, XOFFRXC);
1046 temp_reg = IXGB_READ_REG(hw, XOFFTXC);
1047 temp_reg = IXGB_READ_REG(hw, RJC);
1048 return;
1049}
1050
1051/******************************************************************************
1052 * Turns on the software controllable LED
1053 *
1054 * hw - Struct containing variables accessed by shared code
1055 *****************************************************************************/
1056void
1057ixgb_led_on(struct ixgb_hw *hw)
1058{
1059 uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1060
1061 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1062 ctrl0_reg &= ~IXGB_CTRL0_SDP0;
1063 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1064 return;
1065}
1066
1067/******************************************************************************
1068 * Turns off the software controllable LED
1069 *
1070 * hw - Struct containing variables accessed by shared code
1071 *****************************************************************************/
1072void
1073ixgb_led_off(struct ixgb_hw *hw)
1074{
1075 uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1076
1077 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1078 ctrl0_reg |= IXGB_CTRL0_SDP0;
1079 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1080 return;
1081}
1082
1083/******************************************************************************
1084 * Gets the current PCI bus type, speed, and width of the hardware
1085 *
1086 * hw - Struct containing variables accessed by shared code
1087 *****************************************************************************/
1088static void
1089ixgb_get_bus_info(struct ixgb_hw *hw)
1090{
1091 uint32_t status_reg;
1092
1093 status_reg = IXGB_READ_REG(hw, STATUS);
1094
1095 hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
1096 ixgb_bus_type_pcix : ixgb_bus_type_pci;
1097
1098 if (hw->bus.type == ixgb_bus_type_pci) {
1099 hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
1100 ixgb_bus_speed_66 : ixgb_bus_speed_33;
1101 } else {
1102 switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
1103 case IXGB_STATUS_PCIX_SPD_66:
1104 hw->bus.speed = ixgb_bus_speed_66;
1105 break;
1106 case IXGB_STATUS_PCIX_SPD_100:
1107 hw->bus.speed = ixgb_bus_speed_100;
1108 break;
1109 case IXGB_STATUS_PCIX_SPD_133:
1110 hw->bus.speed = ixgb_bus_speed_133;
1111 break;
1112 default:
1113 hw->bus.speed = ixgb_bus_speed_reserved;
1114 break;
1115 }
1116 }
1117
1118 hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
1119 ixgb_bus_width_64 : ixgb_bus_width_32;
1120
1121 return;
1122}
1123
1124/******************************************************************************
1125 * Tests a MAC address to ensure it is a valid Individual Address
1126 *
1127 * mac_addr - pointer to MAC address.
1128 *
1129 *****************************************************************************/
Adrian Bunke9ab1d12005-10-30 16:53:30 +01001130static boolean_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131mac_addr_valid(uint8_t *mac_addr)
1132{
1133 boolean_t is_valid = TRUE;
1134 DEBUGFUNC("mac_addr_valid");
1135
1136 /* Make sure it is not a multicast address */
1137 if (IS_MULTICAST(mac_addr)) {
1138 DEBUGOUT("MAC address is multicast\n");
1139 is_valid = FALSE;
1140 }
1141 /* Not a broadcast address */
1142 else if (IS_BROADCAST(mac_addr)) {
1143 DEBUGOUT("MAC address is broadcast\n");
1144 is_valid = FALSE;
1145 }
1146 /* Reject the zero address */
1147 else if (mac_addr[0] == 0 &&
1148 mac_addr[1] == 0 &&
1149 mac_addr[2] == 0 &&
1150 mac_addr[3] == 0 &&
1151 mac_addr[4] == 0 &&
1152 mac_addr[5] == 0) {
1153 DEBUGOUT("MAC address is all zeros\n");
1154 is_valid = FALSE;
1155 }
1156 return (is_valid);
1157}
1158
1159/******************************************************************************
1160 * Resets the 10GbE link. Waits the settle time and returns the state of
1161 * the link.
1162 *
1163 * hw - Struct containing variables accessed by shared code
1164 *****************************************************************************/
1165boolean_t
1166ixgb_link_reset(struct ixgb_hw *hw)
1167{
1168 boolean_t link_status = FALSE;
1169 uint8_t wait_retries = MAX_RESET_ITERATIONS;
1170 uint8_t lrst_retries = MAX_RESET_ITERATIONS;
1171
1172 do {
1173 /* Reset the link */
1174 IXGB_WRITE_REG(hw, CTRL0,
1175 IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
1176
1177 /* Wait for link-up and lane re-alignment */
1178 do {
1179 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
1180 link_status =
1181 ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
1182 && (IXGB_READ_REG(hw, XPCSS) &
1183 IXGB_XPCSS_ALIGN_STATUS)) ? TRUE : FALSE;
1184 } while (!link_status && --wait_retries);
1185
1186 } while (!link_status && --lrst_retries);
1187
1188 return link_status;
1189}
1190
1191/******************************************************************************
1192 * Resets the 10GbE optics module.
1193 *
1194 * hw - Struct containing variables accessed by shared code
1195 *****************************************************************************/
1196void
1197ixgb_optics_reset(struct ixgb_hw *hw)
1198{
1199 if (hw->phy_type == ixgb_phy_type_txn17401) {
1200 uint16_t mdio_reg;
1201
1202 ixgb_write_phy_reg(hw,
1203 MDIO_PMA_PMD_CR1,
1204 IXGB_PHY_ADDRESS,
1205 MDIO_PMA_PMD_DID,
1206 MDIO_PMA_PMD_CR1_RESET);
1207
1208 mdio_reg = ixgb_read_phy_reg( hw,
1209 MDIO_PMA_PMD_CR1,
1210 IXGB_PHY_ADDRESS,
1211 MDIO_PMA_PMD_DID);
1212 }
1213
1214 return;
1215}