Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | | |
| 2 | | bindec.sa 3.4 1/3/91 |
| 3 | | |
| 4 | | bindec |
| 5 | | |
| 6 | | Description: |
| 7 | | Converts an input in extended precision format |
| 8 | | to bcd format. |
| 9 | | |
| 10 | | Input: |
| 11 | | a0 points to the input extended precision value |
| 12 | | value in memory; d0 contains the k-factor sign-extended |
| 13 | | to 32-bits. The input may be either normalized, |
| 14 | | unnormalized, or denormalized. |
| 15 | | |
| 16 | | Output: result in the FP_SCR1 space on the stack. |
| 17 | | |
| 18 | | Saves and Modifies: D2-D7,A2,FP2 |
| 19 | | |
| 20 | | Algorithm: |
| 21 | | |
| 22 | | A1. Set RM and size ext; Set SIGMA = sign of input. |
| 23 | | The k-factor is saved for use in d7. Clear the |
| 24 | | BINDEC_FLG for separating normalized/denormalized |
| 25 | | input. If input is unnormalized or denormalized, |
| 26 | | normalize it. |
| 27 | | |
| 28 | | A2. Set X = abs(input). |
| 29 | | |
| 30 | | A3. Compute ILOG. |
| 31 | | ILOG is the log base 10 of the input value. It is |
| 32 | | approximated by adding e + 0.f when the original |
| 33 | | value is viewed as 2^^e * 1.f in extended precision. |
| 34 | | This value is stored in d6. |
| 35 | | |
| 36 | | A4. Clr INEX bit. |
| 37 | | The operation in A3 above may have set INEX2. |
| 38 | | |
| 39 | | A5. Set ICTR = 0; |
| 40 | | ICTR is a flag used in A13. It must be set before the |
| 41 | | loop entry A6. |
| 42 | | |
| 43 | | A6. Calculate LEN. |
| 44 | | LEN is the number of digits to be displayed. The |
| 45 | | k-factor can dictate either the total number of digits, |
| 46 | | if it is a positive number, or the number of digits |
| 47 | | after the decimal point which are to be included as |
| 48 | | significant. See the 68882 manual for examples. |
| 49 | | If LEN is computed to be greater than 17, set OPERR in |
| 50 | | USER_FPSR. LEN is stored in d4. |
| 51 | | |
| 52 | | A7. Calculate SCALE. |
| 53 | | SCALE is equal to 10^ISCALE, where ISCALE is the number |
| 54 | | of decimal places needed to insure LEN integer digits |
| 55 | | in the output before conversion to bcd. LAMBDA is the |
| 56 | | sign of ISCALE, used in A9. Fp1 contains |
| 57 | | 10^^(abs(ISCALE)) using a rounding mode which is a |
| 58 | | function of the original rounding mode and the signs |
| 59 | | of ISCALE and X. A table is given in the code. |
| 60 | | |
| 61 | | A8. Clr INEX; Force RZ. |
| 62 | | The operation in A3 above may have set INEX2. |
| 63 | | RZ mode is forced for the scaling operation to insure |
| 64 | | only one rounding error. The grs bits are collected in |
| 65 | | the INEX flag for use in A10. |
| 66 | | |
| 67 | | A9. Scale X -> Y. |
| 68 | | The mantissa is scaled to the desired number of |
| 69 | | significant digits. The excess digits are collected |
| 70 | | in INEX2. |
| 71 | | |
| 72 | | A10. Or in INEX. |
| 73 | | If INEX is set, round error occurred. This is |
| 74 | | compensated for by 'or-ing' in the INEX2 flag to |
| 75 | | the lsb of Y. |
| 76 | | |
| 77 | | A11. Restore original FPCR; set size ext. |
| 78 | | Perform FINT operation in the user's rounding mode. |
| 79 | | Keep the size to extended. |
| 80 | | |
| 81 | | A12. Calculate YINT = FINT(Y) according to user's rounding |
| 82 | | mode. The FPSP routine sintd0 is used. The output |
| 83 | | is in fp0. |
| 84 | | |
| 85 | | A13. Check for LEN digits. |
| 86 | | If the int operation results in more than LEN digits, |
| 87 | | or less than LEN -1 digits, adjust ILOG and repeat from |
| 88 | | A6. This test occurs only on the first pass. If the |
| 89 | | result is exactly 10^LEN, decrement ILOG and divide |
| 90 | | the mantissa by 10. |
| 91 | | |
| 92 | | A14. Convert the mantissa to bcd. |
| 93 | | The binstr routine is used to convert the LEN digit |
| 94 | | mantissa to bcd in memory. The input to binstr is |
| 95 | | to be a fraction; i.e. (mantissa)/10^LEN and adjusted |
| 96 | | such that the decimal point is to the left of bit 63. |
| 97 | | The bcd digits are stored in the correct position in |
| 98 | | the final string area in memory. |
| 99 | | |
| 100 | | A15. Convert the exponent to bcd. |
| 101 | | As in A14 above, the exp is converted to bcd and the |
| 102 | | digits are stored in the final string. |
| 103 | | Test the length of the final exponent string. If the |
| 104 | | length is 4, set operr. |
| 105 | | |
| 106 | | A16. Write sign bits to final string. |
| 107 | | |
| 108 | | Implementation Notes: |
| 109 | | |
| 110 | | The registers are used as follows: |
| 111 | | |
| 112 | | d0: scratch; LEN input to binstr |
| 113 | | d1: scratch |
| 114 | | d2: upper 32-bits of mantissa for binstr |
| 115 | | d3: scratch;lower 32-bits of mantissa for binstr |
| 116 | | d4: LEN |
| 117 | | d5: LAMBDA/ICTR |
| 118 | | d6: ILOG |
| 119 | | d7: k-factor |
| 120 | | a0: ptr for original operand/final result |
| 121 | | a1: scratch pointer |
| 122 | | a2: pointer to FP_X; abs(original value) in ext |
| 123 | | fp0: scratch |
| 124 | | fp1: scratch |
| 125 | | fp2: scratch |
| 126 | | F_SCR1: |
| 127 | | F_SCR2: |
| 128 | | L_SCR1: |
| 129 | | L_SCR2: |
| 130 | |
| 131 | | Copyright (C) Motorola, Inc. 1990 |
| 132 | | All Rights Reserved |
| 133 | | |
Matt Waddel | e00d82d | 2006-02-11 17:55:48 -0800 | [diff] [blame] | 134 | | For details on the license for this file, please see the |
| 135 | | file, README, in this same directory. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 136 | |
| 137 | |BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package |
| 138 | |
| 139 | #include "fpsp.h" |
| 140 | |
| 141 | |section 8 |
| 142 | |
| 143 | | Constants in extended precision |
| 144 | LOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 |
| 145 | LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 |
| 146 | |
| 147 | | Constants in single precision |
| 148 | FONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 |
| 149 | FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 |
| 150 | FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 |
| 151 | F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 |
| 152 | |
| 153 | RBDTBL: .byte 0,0,0,0 |
| 154 | .byte 3,3,2,2 |
| 155 | .byte 3,2,2,3 |
| 156 | .byte 2,3,3,2 |
| 157 | |
| 158 | |xref binstr |
| 159 | |xref sintdo |
| 160 | |xref ptenrn,ptenrm,ptenrp |
| 161 | |
| 162 | .global bindec |
| 163 | .global sc_mul |
| 164 | bindec: |
| 165 | moveml %d2-%d7/%a2,-(%a7) |
| 166 | fmovemx %fp0-%fp2,-(%a7) |
| 167 | |
| 168 | | A1. Set RM and size ext. Set SIGMA = sign input; |
| 169 | | The k-factor is saved for use in d7. Clear BINDEC_FLG for |
| 170 | | separating normalized/denormalized input. If the input |
| 171 | | is a denormalized number, set the BINDEC_FLG memory word |
| 172 | | to signal denorm. If the input is unnormalized, normalize |
| 173 | | the input and test for denormalized result. |
| 174 | | |
| 175 | fmovel #rm_mode,%FPCR |set RM and ext |
| 176 | movel (%a0),L_SCR2(%a6) |save exponent for sign check |
| 177 | movel %d0,%d7 |move k-factor to d7 |
| 178 | clrb BINDEC_FLG(%a6) |clr norm/denorm flag |
| 179 | movew STAG(%a6),%d0 |get stag |
| 180 | andiw #0xe000,%d0 |isolate stag bits |
| 181 | beq A2_str |if zero, input is norm |
| 182 | | |
| 183 | | Normalize the denorm |
| 184 | | |
| 185 | un_de_norm: |
| 186 | movew (%a0),%d0 |
| 187 | andiw #0x7fff,%d0 |strip sign of normalized exp |
| 188 | movel 4(%a0),%d1 |
| 189 | movel 8(%a0),%d2 |
| 190 | norm_loop: |
| 191 | subw #1,%d0 |
| 192 | lsll #1,%d2 |
| 193 | roxll #1,%d1 |
| 194 | tstl %d1 |
| 195 | bges norm_loop |
| 196 | | |
| 197 | | Test if the normalized input is denormalized |
| 198 | | |
| 199 | tstw %d0 |
| 200 | bgts pos_exp |if greater than zero, it is a norm |
| 201 | st BINDEC_FLG(%a6) |set flag for denorm |
| 202 | pos_exp: |
| 203 | andiw #0x7fff,%d0 |strip sign of normalized exp |
| 204 | movew %d0,(%a0) |
| 205 | movel %d1,4(%a0) |
| 206 | movel %d2,8(%a0) |
| 207 | |
| 208 | | A2. Set X = abs(input). |
| 209 | | |
| 210 | A2_str: |
| 211 | movel (%a0),FP_SCR2(%a6) | move input to work space |
| 212 | movel 4(%a0),FP_SCR2+4(%a6) | move input to work space |
| 213 | movel 8(%a0),FP_SCR2+8(%a6) | move input to work space |
| 214 | andil #0x7fffffff,FP_SCR2(%a6) |create abs(X) |
| 215 | |
| 216 | | A3. Compute ILOG. |
| 217 | | ILOG is the log base 10 of the input value. It is approx- |
| 218 | | imated by adding e + 0.f when the original value is viewed |
| 219 | | as 2^^e * 1.f in extended precision. This value is stored |
| 220 | | in d6. |
| 221 | | |
| 222 | | Register usage: |
| 223 | | Input/Output |
| 224 | | d0: k-factor/exponent |
| 225 | | d2: x/x |
| 226 | | d3: x/x |
| 227 | | d4: x/x |
| 228 | | d5: x/x |
| 229 | | d6: x/ILOG |
| 230 | | d7: k-factor/Unchanged |
| 231 | | a0: ptr for original operand/final result |
| 232 | | a1: x/x |
| 233 | | a2: x/x |
| 234 | | fp0: x/float(ILOG) |
| 235 | | fp1: x/x |
| 236 | | fp2: x/x |
| 237 | | F_SCR1:x/x |
| 238 | | F_SCR2:Abs(X)/Abs(X) with $3fff exponent |
| 239 | | L_SCR1:x/x |
| 240 | | L_SCR2:first word of X packed/Unchanged |
| 241 | |
| 242 | tstb BINDEC_FLG(%a6) |check for denorm |
| 243 | beqs A3_cont |if clr, continue with norm |
| 244 | movel #-4933,%d6 |force ILOG = -4933 |
| 245 | bras A4_str |
| 246 | A3_cont: |
| 247 | movew FP_SCR2(%a6),%d0 |move exp to d0 |
| 248 | movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff |
| 249 | fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f |
| 250 | subw #0x3fff,%d0 |strip off bias |
| 251 | faddw %d0,%fp0 |add in exp |
| 252 | fsubs FONE,%fp0 |subtract off 1.0 |
| 253 | fbge pos_res |if pos, branch |
| 254 | fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 |
| 255 | fmovel %fp0,%d6 |put ILOG in d6 as a lword |
| 256 | bras A4_str |go move out ILOG |
| 257 | pos_res: |
| 258 | fmulx LOG2,%fp0 |if pos, mul by LOG2 |
| 259 | fmovel %fp0,%d6 |put ILOG in d6 as a lword |
| 260 | |
| 261 | |
| 262 | | A4. Clr INEX bit. |
| 263 | | The operation in A3 above may have set INEX2. |
| 264 | |
| 265 | A4_str: |
| 266 | fmovel #0,%FPSR |zero all of fpsr - nothing needed |
| 267 | |
| 268 | |
| 269 | | A5. Set ICTR = 0; |
| 270 | | ICTR is a flag used in A13. It must be set before the |
| 271 | | loop entry A6. The lower word of d5 is used for ICTR. |
| 272 | |
| 273 | clrw %d5 |clear ICTR |
| 274 | |
| 275 | |
| 276 | | A6. Calculate LEN. |
| 277 | | LEN is the number of digits to be displayed. The k-factor |
| 278 | | can dictate either the total number of digits, if it is |
| 279 | | a positive number, or the number of digits after the |
| 280 | | original decimal point which are to be included as |
| 281 | | significant. See the 68882 manual for examples. |
| 282 | | If LEN is computed to be greater than 17, set OPERR in |
| 283 | | USER_FPSR. LEN is stored in d4. |
| 284 | | |
| 285 | | Register usage: |
| 286 | | Input/Output |
| 287 | | d0: exponent/Unchanged |
| 288 | | d2: x/x/scratch |
| 289 | | d3: x/x |
| 290 | | d4: exc picture/LEN |
| 291 | | d5: ICTR/Unchanged |
| 292 | | d6: ILOG/Unchanged |
| 293 | | d7: k-factor/Unchanged |
| 294 | | a0: ptr for original operand/final result |
| 295 | | a1: x/x |
| 296 | | a2: x/x |
| 297 | | fp0: float(ILOG)/Unchanged |
| 298 | | fp1: x/x |
| 299 | | fp2: x/x |
| 300 | | F_SCR1:x/x |
| 301 | | F_SCR2:Abs(X) with $3fff exponent/Unchanged |
| 302 | | L_SCR1:x/x |
| 303 | | L_SCR2:first word of X packed/Unchanged |
| 304 | |
| 305 | A6_str: |
| 306 | tstl %d7 |branch on sign of k |
| 307 | bles k_neg |if k <= 0, LEN = ILOG + 1 - k |
| 308 | movel %d7,%d4 |if k > 0, LEN = k |
| 309 | bras len_ck |skip to LEN check |
| 310 | k_neg: |
| 311 | movel %d6,%d4 |first load ILOG to d4 |
| 312 | subl %d7,%d4 |subtract off k |
| 313 | addql #1,%d4 |add in the 1 |
| 314 | len_ck: |
| 315 | tstl %d4 |LEN check: branch on sign of LEN |
| 316 | bles LEN_ng |if neg, set LEN = 1 |
| 317 | cmpl #17,%d4 |test if LEN > 17 |
| 318 | bles A7_str |if not, forget it |
| 319 | movel #17,%d4 |set max LEN = 17 |
| 320 | tstl %d7 |if negative, never set OPERR |
| 321 | bles A7_str |if positive, continue |
| 322 | orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR |
| 323 | bras A7_str |finished here |
| 324 | LEN_ng: |
| 325 | moveql #1,%d4 |min LEN is 1 |
| 326 | |
| 327 | |
| 328 | | A7. Calculate SCALE. |
| 329 | | SCALE is equal to 10^ISCALE, where ISCALE is the number |
| 330 | | of decimal places needed to insure LEN integer digits |
| 331 | | in the output before conversion to bcd. LAMBDA is the sign |
| 332 | | of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using |
| 333 | | the rounding mode as given in the following table (see |
| 334 | | Coonen, p. 7.23 as ref.; however, the SCALE variable is |
| 335 | | of opposite sign in bindec.sa from Coonen). |
| 336 | | |
| 337 | | Initial USE |
| 338 | | FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] |
| 339 | | ---------------------------------------------- |
| 340 | | RN 00 0 0 00/0 RN |
| 341 | | RN 00 0 1 00/0 RN |
| 342 | | RN 00 1 0 00/0 RN |
| 343 | | RN 00 1 1 00/0 RN |
| 344 | | RZ 01 0 0 11/3 RP |
| 345 | | RZ 01 0 1 11/3 RP |
| 346 | | RZ 01 1 0 10/2 RM |
| 347 | | RZ 01 1 1 10/2 RM |
| 348 | | RM 10 0 0 11/3 RP |
| 349 | | RM 10 0 1 10/2 RM |
| 350 | | RM 10 1 0 10/2 RM |
| 351 | | RM 10 1 1 11/3 RP |
| 352 | | RP 11 0 0 10/2 RM |
| 353 | | RP 11 0 1 11/3 RP |
| 354 | | RP 11 1 0 11/3 RP |
| 355 | | RP 11 1 1 10/2 RM |
| 356 | | |
| 357 | | Register usage: |
| 358 | | Input/Output |
| 359 | | d0: exponent/scratch - final is 0 |
| 360 | | d2: x/0 or 24 for A9 |
| 361 | | d3: x/scratch - offset ptr into PTENRM array |
| 362 | | d4: LEN/Unchanged |
| 363 | | d5: 0/ICTR:LAMBDA |
| 364 | | d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) |
| 365 | | d7: k-factor/Unchanged |
| 366 | | a0: ptr for original operand/final result |
| 367 | | a1: x/ptr to PTENRM array |
| 368 | | a2: x/x |
| 369 | | fp0: float(ILOG)/Unchanged |
| 370 | | fp1: x/10^ISCALE |
| 371 | | fp2: x/x |
| 372 | | F_SCR1:x/x |
| 373 | | F_SCR2:Abs(X) with $3fff exponent/Unchanged |
| 374 | | L_SCR1:x/x |
| 375 | | L_SCR2:first word of X packed/Unchanged |
| 376 | |
| 377 | A7_str: |
| 378 | tstl %d7 |test sign of k |
| 379 | bgts k_pos |if pos and > 0, skip this |
| 380 | cmpl %d6,%d7 |test k - ILOG |
| 381 | blts k_pos |if ILOG >= k, skip this |
| 382 | movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = k |
| 383 | k_pos: |
| 384 | movel %d6,%d0 |calc ILOG + 1 - LEN in d0 |
| 385 | addql #1,%d0 |add the 1 |
| 386 | subl %d4,%d0 |sub off LEN |
| 387 | swap %d5 |use upper word of d5 for LAMBDA |
| 388 | clrw %d5 |set it zero initially |
| 389 | clrw %d2 |set up d2 for very small case |
| 390 | tstl %d0 |test sign of ISCALE |
| 391 | bges iscale |if pos, skip next inst |
| 392 | addqw #1,%d5 |if neg, set LAMBDA true |
| 393 | cmpl #0xffffecd4,%d0 |test iscale <= -4908 |
| 394 | bgts no_inf |if false, skip rest |
| 395 | addil #24,%d0 |add in 24 to iscale |
| 396 | movel #24,%d2 |put 24 in d2 for A9 |
| 397 | no_inf: |
| 398 | negl %d0 |and take abs of ISCALE |
| 399 | iscale: |
| 400 | fmoves FONE,%fp1 |init fp1 to 1 |
| 401 | bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits |
| 402 | lslw #1,%d1 |put them in bits 2:1 |
| 403 | addw %d5,%d1 |add in LAMBDA |
| 404 | lslw #1,%d1 |put them in bits 3:1 |
| 405 | tstl L_SCR2(%a6) |test sign of original x |
| 406 | bges x_pos |if pos, don't set bit 0 |
| 407 | addql #1,%d1 |if neg, set bit 0 |
| 408 | x_pos: |
| 409 | leal RBDTBL,%a2 |load rbdtbl base |
| 410 | moveb (%a2,%d1),%d3 |load d3 with new rmode |
| 411 | lsll #4,%d3 |put bits in proper position |
| 412 | fmovel %d3,%fpcr |load bits into fpu |
| 413 | lsrl #4,%d3 |put bits in proper position |
| 414 | tstb %d3 |decode new rmode for pten table |
| 415 | bnes not_rn |if zero, it is RN |
| 416 | leal PTENRN,%a1 |load a1 with RN table base |
| 417 | bras rmode |exit decode |
| 418 | not_rn: |
| 419 | lsrb #1,%d3 |get lsb in carry |
| 420 | bccs not_rp |if carry clear, it is RM |
| 421 | leal PTENRP,%a1 |load a1 with RP table base |
| 422 | bras rmode |exit decode |
| 423 | not_rp: |
| 424 | leal PTENRM,%a1 |load a1 with RM table base |
| 425 | rmode: |
| 426 | clrl %d3 |clr table index |
| 427 | e_loop: |
| 428 | lsrl #1,%d0 |shift next bit into carry |
| 429 | bccs e_next |if zero, skip the mul |
| 430 | fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) |
| 431 | e_next: |
| 432 | addl #12,%d3 |inc d3 to next pwrten table entry |
| 433 | tstl %d0 |test if ISCALE is zero |
| 434 | bnes e_loop |if not, loop |
| 435 | |
| 436 | |
| 437 | | A8. Clr INEX; Force RZ. |
| 438 | | The operation in A3 above may have set INEX2. |
| 439 | | RZ mode is forced for the scaling operation to insure |
| 440 | | only one rounding error. The grs bits are collected in |
| 441 | | the INEX flag for use in A10. |
| 442 | | |
| 443 | | Register usage: |
| 444 | | Input/Output |
| 445 | |
| 446 | fmovel #0,%FPSR |clr INEX |
| 447 | fmovel #rz_mode,%FPCR |set RZ rounding mode |
| 448 | |
| 449 | |
| 450 | | A9. Scale X -> Y. |
| 451 | | The mantissa is scaled to the desired number of significant |
| 452 | | digits. The excess digits are collected in INEX2. If mul, |
| 453 | | Check d2 for excess 10 exponential value. If not zero, |
| 454 | | the iscale value would have caused the pwrten calculation |
| 455 | | to overflow. Only a negative iscale can cause this, so |
| 456 | | multiply by 10^(d2), which is now only allowed to be 24, |
| 457 | | with a multiply by 10^8 and 10^16, which is exact since |
| 458 | | 10^24 is exact. If the input was denormalized, we must |
| 459 | | create a busy stack frame with the mul command and the |
| 460 | | two operands, and allow the fpu to complete the multiply. |
| 461 | | |
| 462 | | Register usage: |
| 463 | | Input/Output |
| 464 | | d0: FPCR with RZ mode/Unchanged |
| 465 | | d2: 0 or 24/unchanged |
| 466 | | d3: x/x |
| 467 | | d4: LEN/Unchanged |
| 468 | | d5: ICTR:LAMBDA |
| 469 | | d6: ILOG/Unchanged |
| 470 | | d7: k-factor/Unchanged |
| 471 | | a0: ptr for original operand/final result |
| 472 | | a1: ptr to PTENRM array/Unchanged |
| 473 | | a2: x/x |
| 474 | | fp0: float(ILOG)/X adjusted for SCALE (Y) |
| 475 | | fp1: 10^ISCALE/Unchanged |
| 476 | | fp2: x/x |
| 477 | | F_SCR1:x/x |
| 478 | | F_SCR2:Abs(X) with $3fff exponent/Unchanged |
| 479 | | L_SCR1:x/x |
| 480 | | L_SCR2:first word of X packed/Unchanged |
| 481 | |
| 482 | A9_str: |
| 483 | fmovex (%a0),%fp0 |load X from memory |
| 484 | fabsx %fp0 |use abs(X) |
| 485 | tstw %d5 |LAMBDA is in lower word of d5 |
| 486 | bne sc_mul |if neg (LAMBDA = 1), scale by mul |
| 487 | fdivx %fp1,%fp0 |calculate X / SCALE -> Y to fp0 |
| 488 | bras A10_st |branch to A10 |
| 489 | |
| 490 | sc_mul: |
| 491 | tstb BINDEC_FLG(%a6) |check for denorm |
| 492 | beqs A9_norm |if norm, continue with mul |
| 493 | fmovemx %fp1-%fp1,-(%a7) |load ETEMP with 10^ISCALE |
| 494 | movel 8(%a0),-(%a7) |load FPTEMP with input arg |
| 495 | movel 4(%a0),-(%a7) |
| 496 | movel (%a0),-(%a7) |
| 497 | movel #18,%d3 |load count for busy stack |
| 498 | A9_loop: |
| 499 | clrl -(%a7) |clear lword on stack |
| 500 | dbf %d3,A9_loop |
| 501 | moveb VER_TMP(%a6),(%a7) |write current version number |
| 502 | moveb #BUSY_SIZE-4,1(%a7) |write current busy size |
| 503 | moveb #0x10,0x44(%a7) |set fcefpte[15] bit |
| 504 | movew #0x0023,0x40(%a7) |load cmdreg1b with mul command |
| 505 | moveb #0xfe,0x8(%a7) |load all 1s to cu savepc |
| 506 | frestore (%a7)+ |restore frame to fpu for completion |
| 507 | fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 |
| 508 | fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 |
| 509 | bras A10_st |
| 510 | A9_norm: |
| 511 | tstw %d2 |test for small exp case |
| 512 | beqs A9_con |if zero, continue as normal |
| 513 | fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 |
| 514 | fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 |
| 515 | A9_con: |
| 516 | fmulx %fp1,%fp0 |calculate X * SCALE -> Y to fp0 |
| 517 | |
| 518 | |
| 519 | | A10. Or in INEX. |
| 520 | | If INEX is set, round error occurred. This is compensated |
| 521 | | for by 'or-ing' in the INEX2 flag to the lsb of Y. |
| 522 | | |
| 523 | | Register usage: |
| 524 | | Input/Output |
| 525 | | d0: FPCR with RZ mode/FPSR with INEX2 isolated |
| 526 | | d2: x/x |
| 527 | | d3: x/x |
| 528 | | d4: LEN/Unchanged |
| 529 | | d5: ICTR:LAMBDA |
| 530 | | d6: ILOG/Unchanged |
| 531 | | d7: k-factor/Unchanged |
| 532 | | a0: ptr for original operand/final result |
| 533 | | a1: ptr to PTENxx array/Unchanged |
| 534 | | a2: x/ptr to FP_SCR2(a6) |
| 535 | | fp0: Y/Y with lsb adjusted |
| 536 | | fp1: 10^ISCALE/Unchanged |
| 537 | | fp2: x/x |
| 538 | |
| 539 | A10_st: |
| 540 | fmovel %FPSR,%d0 |get FPSR |
| 541 | fmovex %fp0,FP_SCR2(%a6) |move Y to memory |
| 542 | leal FP_SCR2(%a6),%a2 |load a2 with ptr to FP_SCR2 |
| 543 | btstl #9,%d0 |check if INEX2 set |
| 544 | beqs A11_st |if clear, skip rest |
| 545 | oril #1,8(%a2) |or in 1 to lsb of mantissa |
| 546 | fmovex FP_SCR2(%a6),%fp0 |write adjusted Y back to fpu |
| 547 | |
| 548 | |
| 549 | | A11. Restore original FPCR; set size ext. |
| 550 | | Perform FINT operation in the user's rounding mode. Keep |
| 551 | | the size to extended. The sintdo entry point in the sint |
| 552 | | routine expects the FPCR value to be in USER_FPCR for |
| 553 | | mode and precision. The original FPCR is saved in L_SCR1. |
| 554 | |
| 555 | A11_st: |
| 556 | movel USER_FPCR(%a6),L_SCR1(%a6) |save it for later |
| 557 | andil #0x00000030,USER_FPCR(%a6) |set size to ext, |
| 558 | | ;block exceptions |
| 559 | |
| 560 | |
| 561 | | A12. Calculate YINT = FINT(Y) according to user's rounding mode. |
| 562 | | The FPSP routine sintd0 is used. The output is in fp0. |
| 563 | | |
| 564 | | Register usage: |
| 565 | | Input/Output |
| 566 | | d0: FPSR with AINEX cleared/FPCR with size set to ext |
| 567 | | d2: x/x/scratch |
| 568 | | d3: x/x |
| 569 | | d4: LEN/Unchanged |
| 570 | | d5: ICTR:LAMBDA/Unchanged |
| 571 | | d6: ILOG/Unchanged |
| 572 | | d7: k-factor/Unchanged |
| 573 | | a0: ptr for original operand/src ptr for sintdo |
| 574 | | a1: ptr to PTENxx array/Unchanged |
| 575 | | a2: ptr to FP_SCR2(a6)/Unchanged |
| 576 | | a6: temp pointer to FP_SCR2(a6) - orig value saved and restored |
| 577 | | fp0: Y/YINT |
| 578 | | fp1: 10^ISCALE/Unchanged |
| 579 | | fp2: x/x |
| 580 | | F_SCR1:x/x |
| 581 | | F_SCR2:Y adjusted for inex/Y with original exponent |
| 582 | | L_SCR1:x/original USER_FPCR |
| 583 | | L_SCR2:first word of X packed/Unchanged |
| 584 | |
| 585 | A12_st: |
| 586 | moveml %d0-%d1/%a0-%a1,-(%a7) |save regs used by sintd0 |
| 587 | movel L_SCR1(%a6),-(%a7) |
| 588 | movel L_SCR2(%a6),-(%a7) |
| 589 | leal FP_SCR2(%a6),%a0 |a0 is ptr to F_SCR2(a6) |
| 590 | fmovex %fp0,(%a0) |move Y to memory at FP_SCR2(a6) |
| 591 | tstl L_SCR2(%a6) |test sign of original operand |
| 592 | bges do_fint |if pos, use Y |
| 593 | orl #0x80000000,(%a0) |if neg, use -Y |
| 594 | do_fint: |
| 595 | movel USER_FPSR(%a6),-(%a7) |
| 596 | bsr sintdo |sint routine returns int in fp0 |
| 597 | moveb (%a7),USER_FPSR(%a6) |
| 598 | addl #4,%a7 |
| 599 | movel (%a7)+,L_SCR2(%a6) |
| 600 | movel (%a7)+,L_SCR1(%a6) |
| 601 | moveml (%a7)+,%d0-%d1/%a0-%a1 |restore regs used by sint |
| 602 | movel L_SCR2(%a6),FP_SCR2(%a6) |restore original exponent |
| 603 | movel L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR |
| 604 | |
| 605 | |
| 606 | | A13. Check for LEN digits. |
| 607 | | If the int operation results in more than LEN digits, |
| 608 | | or less than LEN -1 digits, adjust ILOG and repeat from |
| 609 | | A6. This test occurs only on the first pass. If the |
| 610 | | result is exactly 10^LEN, decrement ILOG and divide |
| 611 | | the mantissa by 10. The calculation of 10^LEN cannot |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 612 | | be inexact, since all powers of ten up to 10^27 are exact |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 613 | | in extended precision, so the use of a previous power-of-ten |
| 614 | | table will introduce no error. |
| 615 | | |
| 616 | | |
| 617 | | Register usage: |
| 618 | | Input/Output |
| 619 | | d0: FPCR with size set to ext/scratch final = 0 |
| 620 | | d2: x/x |
| 621 | | d3: x/scratch final = x |
| 622 | | d4: LEN/LEN adjusted |
| 623 | | d5: ICTR:LAMBDA/LAMBDA:ICTR |
| 624 | | d6: ILOG/ILOG adjusted |
| 625 | | d7: k-factor/Unchanged |
| 626 | | a0: pointer into memory for packed bcd string formation |
| 627 | | a1: ptr to PTENxx array/Unchanged |
| 628 | | a2: ptr to FP_SCR2(a6)/Unchanged |
| 629 | | fp0: int portion of Y/abs(YINT) adjusted |
| 630 | | fp1: 10^ISCALE/Unchanged |
| 631 | | fp2: x/10^LEN |
| 632 | | F_SCR1:x/x |
| 633 | | F_SCR2:Y with original exponent/Unchanged |
| 634 | | L_SCR1:original USER_FPCR/Unchanged |
| 635 | | L_SCR2:first word of X packed/Unchanged |
| 636 | |
| 637 | A13_st: |
| 638 | swap %d5 |put ICTR in lower word of d5 |
| 639 | tstw %d5 |check if ICTR = 0 |
| 640 | bne not_zr |if non-zero, go to second test |
| 641 | | |
| 642 | | Compute 10^(LEN-1) |
| 643 | | |
| 644 | fmoves FONE,%fp2 |init fp2 to 1.0 |
| 645 | movel %d4,%d0 |put LEN in d0 |
| 646 | subql #1,%d0 |d0 = LEN -1 |
| 647 | clrl %d3 |clr table index |
| 648 | l_loop: |
| 649 | lsrl #1,%d0 |shift next bit into carry |
| 650 | bccs l_next |if zero, skip the mul |
| 651 | fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) |
| 652 | l_next: |
| 653 | addl #12,%d3 |inc d3 to next pwrten table entry |
| 654 | tstl %d0 |test if LEN is zero |
| 655 | bnes l_loop |if not, loop |
| 656 | | |
| 657 | | 10^LEN-1 is computed for this test and A14. If the input was |
| 658 | | denormalized, check only the case in which YINT > 10^LEN. |
| 659 | | |
| 660 | tstb BINDEC_FLG(%a6) |check if input was norm |
| 661 | beqs A13_con |if norm, continue with checking |
| 662 | fabsx %fp0 |take abs of YINT |
| 663 | bra test_2 |
| 664 | | |
| 665 | | Compare abs(YINT) to 10^(LEN-1) and 10^LEN |
| 666 | | |
| 667 | A13_con: |
| 668 | fabsx %fp0 |take abs of YINT |
| 669 | fcmpx %fp2,%fp0 |compare abs(YINT) with 10^(LEN-1) |
| 670 | fbge test_2 |if greater, do next test |
| 671 | subql #1,%d6 |subtract 1 from ILOG |
| 672 | movew #1,%d5 |set ICTR |
| 673 | fmovel #rm_mode,%FPCR |set rmode to RM |
| 674 | fmuls FTEN,%fp2 |compute 10^LEN |
| 675 | bra A6_str |return to A6 and recompute YINT |
| 676 | test_2: |
| 677 | fmuls FTEN,%fp2 |compute 10^LEN |
| 678 | fcmpx %fp2,%fp0 |compare abs(YINT) with 10^LEN |
| 679 | fblt A14_st |if less, all is ok, go to A14 |
| 680 | fbgt fix_ex |if greater, fix and redo |
| 681 | fdivs FTEN,%fp0 |if equal, divide by 10 |
| 682 | addql #1,%d6 | and inc ILOG |
| 683 | bras A14_st | and continue elsewhere |
| 684 | fix_ex: |
| 685 | addql #1,%d6 |increment ILOG by 1 |
| 686 | movew #1,%d5 |set ICTR |
| 687 | fmovel #rm_mode,%FPCR |set rmode to RM |
| 688 | bra A6_str |return to A6 and recompute YINT |
| 689 | | |
| 690 | | Since ICTR <> 0, we have already been through one adjustment, |
| 691 | | and shouldn't have another; this is to check if abs(YINT) = 10^LEN |
| 692 | | 10^LEN is again computed using whatever table is in a1 since the |
| 693 | | value calculated cannot be inexact. |
| 694 | | |
| 695 | not_zr: |
| 696 | fmoves FONE,%fp2 |init fp2 to 1.0 |
| 697 | movel %d4,%d0 |put LEN in d0 |
| 698 | clrl %d3 |clr table index |
| 699 | z_loop: |
| 700 | lsrl #1,%d0 |shift next bit into carry |
| 701 | bccs z_next |if zero, skip the mul |
| 702 | fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) |
| 703 | z_next: |
| 704 | addl #12,%d3 |inc d3 to next pwrten table entry |
| 705 | tstl %d0 |test if LEN is zero |
| 706 | bnes z_loop |if not, loop |
| 707 | fabsx %fp0 |get abs(YINT) |
| 708 | fcmpx %fp2,%fp0 |check if abs(YINT) = 10^LEN |
| 709 | fbne A14_st |if not, skip this |
| 710 | fdivs FTEN,%fp0 |divide abs(YINT) by 10 |
| 711 | addql #1,%d6 |and inc ILOG by 1 |
| 712 | addql #1,%d4 | and inc LEN |
| 713 | fmuls FTEN,%fp2 | if LEN++, the get 10^^LEN |
| 714 | |
| 715 | |
| 716 | | A14. Convert the mantissa to bcd. |
| 717 | | The binstr routine is used to convert the LEN digit |
| 718 | | mantissa to bcd in memory. The input to binstr is |
| 719 | | to be a fraction; i.e. (mantissa)/10^LEN and adjusted |
| 720 | | such that the decimal point is to the left of bit 63. |
| 721 | | The bcd digits are stored in the correct position in |
| 722 | | the final string area in memory. |
| 723 | | |
| 724 | | |
| 725 | | Register usage: |
| 726 | | Input/Output |
| 727 | | d0: x/LEN call to binstr - final is 0 |
| 728 | | d1: x/0 |
| 729 | | d2: x/ms 32-bits of mant of abs(YINT) |
| 730 | | d3: x/ls 32-bits of mant of abs(YINT) |
| 731 | | d4: LEN/Unchanged |
| 732 | | d5: ICTR:LAMBDA/LAMBDA:ICTR |
| 733 | | d6: ILOG |
| 734 | | d7: k-factor/Unchanged |
| 735 | | a0: pointer into memory for packed bcd string formation |
| 736 | | /ptr to first mantissa byte in result string |
| 737 | | a1: ptr to PTENxx array/Unchanged |
| 738 | | a2: ptr to FP_SCR2(a6)/Unchanged |
| 739 | | fp0: int portion of Y/abs(YINT) adjusted |
| 740 | | fp1: 10^ISCALE/Unchanged |
| 741 | | fp2: 10^LEN/Unchanged |
| 742 | | F_SCR1:x/Work area for final result |
| 743 | | F_SCR2:Y with original exponent/Unchanged |
| 744 | | L_SCR1:original USER_FPCR/Unchanged |
| 745 | | L_SCR2:first word of X packed/Unchanged |
| 746 | |
| 747 | A14_st: |
| 748 | fmovel #rz_mode,%FPCR |force rz for conversion |
| 749 | fdivx %fp2,%fp0 |divide abs(YINT) by 10^LEN |
| 750 | leal FP_SCR1(%a6),%a0 |
| 751 | fmovex %fp0,(%a0) |move abs(YINT)/10^LEN to memory |
| 752 | movel 4(%a0),%d2 |move 2nd word of FP_RES to d2 |
| 753 | movel 8(%a0),%d3 |move 3rd word of FP_RES to d3 |
| 754 | clrl 4(%a0) |zero word 2 of FP_RES |
| 755 | clrl 8(%a0) |zero word 3 of FP_RES |
| 756 | movel (%a0),%d0 |move exponent to d0 |
| 757 | swap %d0 |put exponent in lower word |
| 758 | beqs no_sft |if zero, don't shift |
| 759 | subil #0x3ffd,%d0 |sub bias less 2 to make fract |
| 760 | tstl %d0 |check if > 1 |
| 761 | bgts no_sft |if so, don't shift |
| 762 | negl %d0 |make exp positive |
| 763 | m_loop: |
| 764 | lsrl #1,%d2 |shift d2:d3 right, add 0s |
| 765 | roxrl #1,%d3 |the number of places |
| 766 | dbf %d0,m_loop |given in d0 |
| 767 | no_sft: |
| 768 | tstl %d2 |check for mantissa of zero |
| 769 | bnes no_zr |if not, go on |
| 770 | tstl %d3 |continue zero check |
| 771 | beqs zer_m |if zero, go directly to binstr |
| 772 | no_zr: |
| 773 | clrl %d1 |put zero in d1 for addx |
| 774 | addil #0x00000080,%d3 |inc at bit 7 |
| 775 | addxl %d1,%d2 |continue inc |
| 776 | andil #0xffffff80,%d3 |strip off lsb not used by 882 |
| 777 | zer_m: |
| 778 | movel %d4,%d0 |put LEN in d0 for binstr call |
| 779 | addql #3,%a0 |a0 points to M16 byte in result |
| 780 | bsr binstr |call binstr to convert mant |
| 781 | |
| 782 | |
| 783 | | A15. Convert the exponent to bcd. |
| 784 | | As in A14 above, the exp is converted to bcd and the |
| 785 | | digits are stored in the final string. |
| 786 | | |
| 787 | | Digits are stored in L_SCR1(a6) on return from BINDEC as: |
| 788 | | |
| 789 | | 32 16 15 0 |
| 790 | | ----------------------------------------- |
| 791 | | | 0 | e3 | e2 | e1 | e4 | X | X | X | |
| 792 | | ----------------------------------------- |
| 793 | | |
| 794 | | And are moved into their proper places in FP_SCR1. If digit e4 |
| 795 | | is non-zero, OPERR is signaled. In all cases, all 4 digits are |
| 796 | | written as specified in the 881/882 manual for packed decimal. |
| 797 | | |
| 798 | | Register usage: |
| 799 | | Input/Output |
| 800 | | d0: x/LEN call to binstr - final is 0 |
| 801 | | d1: x/scratch (0);shift count for final exponent packing |
| 802 | | d2: x/ms 32-bits of exp fraction/scratch |
| 803 | | d3: x/ls 32-bits of exp fraction |
| 804 | | d4: LEN/Unchanged |
| 805 | | d5: ICTR:LAMBDA/LAMBDA:ICTR |
| 806 | | d6: ILOG |
| 807 | | d7: k-factor/Unchanged |
| 808 | | a0: ptr to result string/ptr to L_SCR1(a6) |
| 809 | | a1: ptr to PTENxx array/Unchanged |
| 810 | | a2: ptr to FP_SCR2(a6)/Unchanged |
| 811 | | fp0: abs(YINT) adjusted/float(ILOG) |
| 812 | | fp1: 10^ISCALE/Unchanged |
| 813 | | fp2: 10^LEN/Unchanged |
| 814 | | F_SCR1:Work area for final result/BCD result |
| 815 | | F_SCR2:Y with original exponent/ILOG/10^4 |
| 816 | | L_SCR1:original USER_FPCR/Exponent digits on return from binstr |
| 817 | | L_SCR2:first word of X packed/Unchanged |
| 818 | |
| 819 | A15_st: |
| 820 | tstb BINDEC_FLG(%a6) |check for denorm |
| 821 | beqs not_denorm |
| 822 | ftstx %fp0 |test for zero |
| 823 | fbeq den_zero |if zero, use k-factor or 4933 |
| 824 | fmovel %d6,%fp0 |float ILOG |
| 825 | fabsx %fp0 |get abs of ILOG |
| 826 | bras convrt |
| 827 | den_zero: |
| 828 | tstl %d7 |check sign of the k-factor |
| 829 | blts use_ilog |if negative, use ILOG |
| 830 | fmoves F4933,%fp0 |force exponent to 4933 |
| 831 | bras convrt |do it |
| 832 | use_ilog: |
| 833 | fmovel %d6,%fp0 |float ILOG |
| 834 | fabsx %fp0 |get abs of ILOG |
| 835 | bras convrt |
| 836 | not_denorm: |
| 837 | ftstx %fp0 |test for zero |
| 838 | fbne not_zero |if zero, force exponent |
| 839 | fmoves FONE,%fp0 |force exponent to 1 |
| 840 | bras convrt |do it |
| 841 | not_zero: |
| 842 | fmovel %d6,%fp0 |float ILOG |
| 843 | fabsx %fp0 |get abs of ILOG |
| 844 | convrt: |
| 845 | fdivx 24(%a1),%fp0 |compute ILOG/10^4 |
| 846 | fmovex %fp0,FP_SCR2(%a6) |store fp0 in memory |
| 847 | movel 4(%a2),%d2 |move word 2 to d2 |
| 848 | movel 8(%a2),%d3 |move word 3 to d3 |
| 849 | movew (%a2),%d0 |move exp to d0 |
| 850 | beqs x_loop_fin |if zero, skip the shift |
| 851 | subiw #0x3ffd,%d0 |subtract off bias |
| 852 | negw %d0 |make exp positive |
| 853 | x_loop: |
| 854 | lsrl #1,%d2 |shift d2:d3 right |
| 855 | roxrl #1,%d3 |the number of places |
| 856 | dbf %d0,x_loop |given in d0 |
| 857 | x_loop_fin: |
| 858 | clrl %d1 |put zero in d1 for addx |
| 859 | addil #0x00000080,%d3 |inc at bit 6 |
| 860 | addxl %d1,%d2 |continue inc |
| 861 | andil #0xffffff80,%d3 |strip off lsb not used by 882 |
| 862 | movel #4,%d0 |put 4 in d0 for binstr call |
| 863 | leal L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits |
| 864 | bsr binstr |call binstr to convert exp |
| 865 | movel L_SCR1(%a6),%d0 |load L_SCR1 lword to d0 |
| 866 | movel #12,%d1 |use d1 for shift count |
| 867 | lsrl %d1,%d0 |shift d0 right by 12 |
| 868 | bfins %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1 |
| 869 | lsrl %d1,%d0 |shift d0 right by 12 |
| 870 | bfins %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 |
| 871 | tstb %d0 |check if e4 is zero |
| 872 | beqs A16_st |if zero, skip rest |
| 873 | orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR |
| 874 | |
| 875 | |
| 876 | | A16. Write sign bits to final string. |
| 877 | | Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). |
| 878 | | |
| 879 | | Register usage: |
| 880 | | Input/Output |
| 881 | | d0: x/scratch - final is x |
| 882 | | d2: x/x |
| 883 | | d3: x/x |
| 884 | | d4: LEN/Unchanged |
| 885 | | d5: ICTR:LAMBDA/LAMBDA:ICTR |
| 886 | | d6: ILOG/ILOG adjusted |
| 887 | | d7: k-factor/Unchanged |
| 888 | | a0: ptr to L_SCR1(a6)/Unchanged |
| 889 | | a1: ptr to PTENxx array/Unchanged |
| 890 | | a2: ptr to FP_SCR2(a6)/Unchanged |
| 891 | | fp0: float(ILOG)/Unchanged |
| 892 | | fp1: 10^ISCALE/Unchanged |
| 893 | | fp2: 10^LEN/Unchanged |
| 894 | | F_SCR1:BCD result with correct signs |
| 895 | | F_SCR2:ILOG/10^4 |
| 896 | | L_SCR1:Exponent digits on return from binstr |
| 897 | | L_SCR2:first word of X packed/Unchanged |
| 898 | |
| 899 | A16_st: |
| 900 | clrl %d0 |clr d0 for collection of signs |
| 901 | andib #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 |
| 902 | tstl L_SCR2(%a6) |check sign of original mantissa |
| 903 | bges mant_p |if pos, don't set SM |
| 904 | moveql #2,%d0 |move 2 in to d0 for SM |
| 905 | mant_p: |
| 906 | tstl %d6 |check sign of ILOG |
| 907 | bges wr_sgn |if pos, don't set SE |
| 908 | addql #1,%d0 |set bit 0 in d0 for SE |
| 909 | wr_sgn: |
| 910 | bfins %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1 |
| 911 | |
| 912 | | Clean up and restore all registers used. |
| 913 | |
| 914 | fmovel #0,%FPSR |clear possible inex2/ainex bits |
| 915 | fmovemx (%a7)+,%fp0-%fp2 |
| 916 | moveml (%a7)+,%d2-%d7/%a2 |
| 917 | rts |
| 918 | |
| 919 | |end |