blob: 9f8cd561250a8d53140635047095fe6327fff487 [file] [log] [blame]
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
Anish Bhattce100b8b2014-06-19 21:37:15 -07004 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00005 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
Dimitris Michailidis56d36be2010-04-01 15:28:23 +000035#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
Hariprasad Shenaif612b812015-01-05 16:30:43 +053038#include "t4_values.h"
Dimitris Michailidis56d36be2010-04-01 15:28:23 +000039#include "t4fw_api.h"
40
41/**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
50 *
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
55 */
Roland Dreierde498c82010-04-21 08:59:17 +000056static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +000058{
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
61
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
66 }
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
71 }
72}
73
74static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
76{
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
79}
80
81/**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
87 *
88 * Sets a register field specified by the supplied mask to the
89 * given value.
90 */
91void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
93{
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
98}
99
100/**
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
108 *
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
111 */
Vipul Pandyaf2b7e782012-12-10 09:30:52 +0000112void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
Roland Dreierde498c82010-04-21 08:59:17 +0000113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000115{
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
120 }
121}
122
Vipul Pandya13ee15d2012-09-26 02:39:40 +0000123/**
124 * t4_write_indirect - write indirectly addressed registers
125 * @adap: the adapter
126 * @addr_reg: register holding the indirect addresses
127 * @data_reg: register holding the value for the indirect registers
128 * @vals: values to write
129 * @nregs: how many indirect registers to write
130 * @start_idx: address of first indirect register to write
131 *
132 * Writes a sequential block of registers that are accessed indirectly
133 * through an address/data register pair.
134 */
135void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 unsigned int data_reg, const u32 *vals,
137 unsigned int nregs, unsigned int start_idx)
138{
139 while (nregs--) {
140 t4_write_reg(adap, addr_reg, start_idx++);
141 t4_write_reg(adap, data_reg, *vals++);
142 }
143}
144
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000145/*
Hariprasad Shenai0abfd152014-06-27 19:23:48 +0530146 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147 * mechanism. This guarantees that we get the real value even if we're
148 * operating within a Virtual Machine and the Hypervisor is trapping our
149 * Configuration Space accesses.
150 */
151void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
152{
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530153 u32 req = ENABLE_F | FUNCTION_V(adap->fn) | REGISTER_V(reg);
Hariprasad Shenai0abfd152014-06-27 19:23:48 +0530154
155 if (is_t4(adap->params.chip))
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530156 req |= LOCALCFG_F;
Hariprasad Shenai0abfd152014-06-27 19:23:48 +0530157
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530158 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
159 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
Hariprasad Shenai0abfd152014-06-27 19:23:48 +0530160
161 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
162 * Configuration Space read. (None of the other fields matter when
163 * ENABLE is 0 so a simple register write is easier than a
164 * read-modify-write via t4_set_reg_field().)
165 */
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530166 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
Hariprasad Shenai0abfd152014-06-27 19:23:48 +0530167}
168
169/*
Hariprasad Shenai31d55c22014-09-01 19:54:58 +0530170 * t4_report_fw_error - report firmware error
171 * @adap: the adapter
172 *
173 * The adapter firmware can indicate error conditions to the host.
174 * If the firmware has indicated an error, print out the reason for
175 * the firmware error.
176 */
177static void t4_report_fw_error(struct adapter *adap)
178{
179 static const char *const reason[] = {
180 "Crash", /* PCIE_FW_EVAL_CRASH */
181 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
182 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
183 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
184 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
185 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
186 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
187 "Reserved", /* reserved */
188 };
189 u32 pcie_fw;
190
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530191 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
192 if (pcie_fw & PCIE_FW_ERR_F)
Hariprasad Shenai31d55c22014-09-01 19:54:58 +0530193 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +0530194 reason[PCIE_FW_EVAL_G(pcie_fw)]);
Hariprasad Shenai31d55c22014-09-01 19:54:58 +0530195}
196
197/*
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000198 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
199 */
200static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
201 u32 mbox_addr)
202{
203 for ( ; nflit; nflit--, mbox_addr += 8)
204 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
205}
206
207/*
208 * Handle a FW assertion reported in a mailbox.
209 */
210static void fw_asrt(struct adapter *adap, u32 mbox_addr)
211{
212 struct fw_debug_cmd asrt;
213
214 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
215 dev_alert(adap->pdev_dev,
216 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
217 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
218 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
219}
220
221static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
222{
223 dev_err(adap->pdev_dev,
224 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
225 (unsigned long long)t4_read_reg64(adap, data_reg),
226 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
227 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
228 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
229 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
230 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
231 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
233}
234
235/**
236 * t4_wr_mbox_meat - send a command to FW through the given mailbox
237 * @adap: the adapter
238 * @mbox: index of the mailbox to use
239 * @cmd: the command to write
240 * @size: command length in bytes
241 * @rpl: where to optionally store the reply
242 * @sleep_ok: if true we may sleep while awaiting command completion
243 *
244 * Sends the given command to FW through the selected mailbox and waits
245 * for the FW to execute the command. If @rpl is not %NULL it is used to
246 * store the FW's reply to the command. The command and its optional
247 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
248 * to respond. @sleep_ok determines whether we may sleep while awaiting
249 * the response. If sleeping is allowed we use progressive backoff
250 * otherwise we spin.
251 *
252 * The return value is 0 on success or a negative errno on failure. A
253 * failure can happen either because we are not able to execute the
254 * command or FW executes it but signals an error. In the latter case
255 * the return value is the error code indicated by FW (negated).
256 */
257int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
258 void *rpl, bool sleep_ok)
259{
Joe Perches005b5712010-12-14 21:36:53 +0000260 static const int delay[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000261 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
262 };
263
264 u32 v;
265 u64 res;
266 int i, ms, delay_idx;
267 const __be64 *p = cmd;
268 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
269 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
270
271 if ((size & 15) || size > MBOX_LEN)
272 return -EINVAL;
273
Dimitris Michailidis204dc3c2010-06-18 10:05:29 +0000274 /*
275 * If the device is off-line, as in EEH, commands will time out.
276 * Fail them early so we don't waste time waiting.
277 */
278 if (adap->pdev->error_state != pci_channel_io_normal)
279 return -EIO;
280
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000281 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
282 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
283 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
284
285 if (v != MBOX_OWNER_DRV)
286 return v ? -EBUSY : -ETIMEDOUT;
287
288 for (i = 0; i < size; i += 8)
289 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
290
291 t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
292 t4_read_reg(adap, ctl_reg); /* flush write */
293
294 delay_idx = 0;
295 ms = delay[0];
296
297 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
298 if (sleep_ok) {
299 ms = delay[delay_idx]; /* last element may repeat */
300 if (delay_idx < ARRAY_SIZE(delay) - 1)
301 delay_idx++;
302 msleep(ms);
303 } else
304 mdelay(ms);
305
306 v = t4_read_reg(adap, ctl_reg);
307 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
308 if (!(v & MBMSGVALID)) {
309 t4_write_reg(adap, ctl_reg, 0);
310 continue;
311 }
312
313 res = t4_read_reg64(adap, data_reg);
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +0530314 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000315 fw_asrt(adap, data_reg);
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +0530316 res = FW_CMD_RETVAL_V(EIO);
317 } else if (rpl) {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000318 get_mbox_rpl(adap, rpl, size / 8, data_reg);
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +0530319 }
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000320
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +0530321 if (FW_CMD_RETVAL_G((int)res))
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000322 dump_mbox(adap, mbox, data_reg);
323 t4_write_reg(adap, ctl_reg, 0);
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +0530324 return -FW_CMD_RETVAL_G((int)res);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000325 }
326 }
327
328 dump_mbox(adap, mbox, data_reg);
329 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
330 *(const u8 *)cmd, mbox);
Hariprasad Shenai31d55c22014-09-01 19:54:58 +0530331 t4_report_fw_error(adap);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000332 return -ETIMEDOUT;
333}
334
335/**
336 * t4_mc_read - read from MC through backdoor accesses
337 * @adap: the adapter
338 * @addr: address of first byte requested
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000339 * @idx: which MC to access
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000340 * @data: 64 bytes of data containing the requested address
341 * @ecc: where to store the corresponding 64-bit ECC word
342 *
343 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
344 * that covers the requested address @addr. If @parity is not %NULL it
345 * is assigned the 64-bit ECC word for the read data.
346 */
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000347int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000348{
349 int i;
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000350 u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
351 u32 mc_bist_status_rdata, mc_bist_data_pattern;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000352
Hariprasad Shenaid14807d2013-12-03 17:05:56 +0530353 if (is_t4(adap->params.chip)) {
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000354 mc_bist_cmd = MC_BIST_CMD;
355 mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
356 mc_bist_cmd_len = MC_BIST_CMD_LEN;
357 mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
358 mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
359 } else {
360 mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
361 mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
362 mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
363 mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
364 mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
365 }
366
367 if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000368 return -EBUSY;
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000369 t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
370 t4_write_reg(adap, mc_bist_cmd_len, 64);
371 t4_write_reg(adap, mc_bist_data_pattern, 0xc);
372 t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000373 BIST_CMD_GAP(1));
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000374 i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000375 if (i)
376 return i;
377
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000378#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000379
380 for (i = 15; i >= 0; i--)
381 *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
382 if (ecc)
383 *ecc = t4_read_reg64(adap, MC_DATA(16));
384#undef MC_DATA
385 return 0;
386}
387
388/**
389 * t4_edc_read - read from EDC through backdoor accesses
390 * @adap: the adapter
391 * @idx: which EDC to access
392 * @addr: address of first byte requested
393 * @data: 64 bytes of data containing the requested address
394 * @ecc: where to store the corresponding 64-bit ECC word
395 *
396 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
397 * that covers the requested address @addr. If @parity is not %NULL it
398 * is assigned the 64-bit ECC word for the read data.
399 */
400int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
401{
402 int i;
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000403 u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
404 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000405
Hariprasad Shenaid14807d2013-12-03 17:05:56 +0530406 if (is_t4(adap->params.chip)) {
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000407 edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
408 edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
409 edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
410 edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
411 idx);
412 edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
413 idx);
414 } else {
415 edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
416 edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
417 edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
418 edc_bist_cmd_data_pattern =
419 EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
420 edc_bist_status_rdata =
421 EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
422 }
423
424 if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000425 return -EBUSY;
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000426 t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
427 t4_write_reg(adap, edc_bist_cmd_len, 64);
428 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
429 t4_write_reg(adap, edc_bist_cmd,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000430 BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000431 i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000432 if (i)
433 return i;
434
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000435#define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000436
437 for (i = 15; i >= 0; i--)
438 *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
439 if (ecc)
440 *ecc = t4_read_reg64(adap, EDC_DATA(16));
441#undef EDC_DATA
442 return 0;
443}
444
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000445/**
446 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
447 * @adap: the adapter
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530448 * @win: PCI-E Memory Window to use
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000449 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
450 * @addr: address within indicated memory type
451 * @len: amount of memory to transfer
452 * @buf: host memory buffer
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530453 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000454 *
455 * Reads/writes an [almost] arbitrary memory region in the firmware: the
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530456 * firmware memory address and host buffer must be aligned on 32-bit
457 * boudaries; the length may be arbitrary. The memory is transferred as
458 * a raw byte sequence from/to the firmware's memory. If this memory
459 * contains data structures which contain multi-byte integers, it's the
460 * caller's responsibility to perform appropriate byte order conversions.
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000461 */
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530462int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
463 u32 len, __be32 *buf, int dir)
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000464{
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530465 u32 pos, offset, resid, memoffset;
466 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000467
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530468 /* Argument sanity checks ...
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000469 */
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530470 if (addr & 0x3)
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000471 return -EINVAL;
472
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530473 /* It's convenient to be able to handle lengths which aren't a
474 * multiple of 32-bits because we often end up transferring files to
475 * the firmware. So we'll handle that by normalizing the length here
476 * and then handling any residual transfer at the end.
477 */
478 resid = len & 0x3;
479 len -= resid;
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000480
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000481 /* Offset into the region of memory which is being accessed
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000482 * MEM_EDC0 = 0
483 * MEM_EDC1 = 1
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000484 * MEM_MC = 2 -- T4
485 * MEM_MC0 = 2 -- For T5
486 * MEM_MC1 = 3 -- For T5
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000487 */
Hariprasad Shenai6559a7e2014-11-07 09:35:24 +0530488 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000489 if (mtype != MEM_MC1)
490 memoffset = (mtype * (edc_size * 1024 * 1024));
491 else {
Hariprasad Shenai6559a7e2014-11-07 09:35:24 +0530492 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
493 MA_EXT_MEMORY1_BAR_A));
Santosh Rastapur19dd37b2013-03-14 05:08:53 +0000494 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
495 }
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000496
497 /* Determine the PCIE_MEM_ACCESS_OFFSET */
498 addr = addr + memoffset;
499
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530500 /* Each PCI-E Memory Window is programmed with a window size -- or
501 * "aperture" -- which controls the granularity of its mapping onto
502 * adapter memory. We need to grab that aperture in order to know
503 * how to use the specified window. The window is also programmed
504 * with the base address of the Memory Window in BAR0's address
505 * space. For T4 this is an absolute PCI-E Bus Address. For T5
506 * the address is relative to BAR0.
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000507 */
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530508 mem_reg = t4_read_reg(adap,
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530509 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530510 win));
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530511 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
512 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530513 if (is_t4(adap->params.chip))
514 mem_base -= adap->t4_bar0;
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530515 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->fn);
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000516
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530517 /* Calculate our initial PCI-E Memory Window Position and Offset into
518 * that Window.
519 */
520 pos = addr & ~(mem_aperture-1);
521 offset = addr - pos;
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000522
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530523 /* Set up initial PCI-E Memory Window to cover the start of our
524 * transfer. (Read it back to ensure that changes propagate before we
525 * attempt to use the new value.)
526 */
527 t4_write_reg(adap,
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530528 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530529 pos | win_pf);
530 t4_read_reg(adap,
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530531 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530532
533 /* Transfer data to/from the adapter as long as there's an integral
534 * number of 32-bit transfers to complete.
535 */
536 while (len > 0) {
537 if (dir == T4_MEMORY_READ)
538 *buf++ = (__force __be32) t4_read_reg(adap,
539 mem_base + offset);
540 else
541 t4_write_reg(adap, mem_base + offset,
542 (__force u32) *buf++);
543 offset += sizeof(__be32);
544 len -= sizeof(__be32);
545
546 /* If we've reached the end of our current window aperture,
547 * move the PCI-E Memory Window on to the next. Note that
548 * doing this here after "len" may be 0 allows us to set up
549 * the PCI-E Memory Window for a possible final residual
550 * transfer below ...
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000551 */
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530552 if (offset == mem_aperture) {
553 pos += mem_aperture;
554 offset = 0;
555 t4_write_reg(adap,
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530556 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
557 win), pos | win_pf);
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530558 t4_read_reg(adap,
Hariprasad Shenaif061de42015-01-05 16:30:44 +0530559 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
560 win));
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000561 }
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000562 }
563
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530564 /* If the original transfer had a length which wasn't a multiple of
565 * 32-bits, now's where we need to finish off the transfer of the
566 * residual amount. The PCI-E Memory Window has already been moved
567 * above (if necessary) to cover this final transfer.
568 */
569 if (resid) {
570 union {
571 __be32 word;
572 char byte[4];
573 } last;
574 unsigned char *bp;
575 int i;
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000576
Hariprasad Shenaic81576c2014-07-24 17:16:30 +0530577 if (dir == T4_MEMORY_READ) {
Hariprasad Shenaifc5ab022014-06-27 19:23:49 +0530578 last.word = (__force __be32) t4_read_reg(adap,
579 mem_base + offset);
580 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
581 bp[i] = last.byte[i];
582 } else {
583 last.word = *buf;
584 for (i = resid; i < 4; i++)
585 last.byte[i] = 0;
586 t4_write_reg(adap, mem_base + offset,
587 (__force u32) last.word);
588 }
589 }
590
591 return 0;
Vipul Pandya5afc8b82012-09-26 02:39:37 +0000592}
593
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000594#define EEPROM_STAT_ADDR 0x7bfc
Santosh Rastapur47ce9c42013-03-08 03:35:29 +0000595#define VPD_BASE 0x400
596#define VPD_BASE_OLD 0
Santosh Rastapur0a57a532013-03-14 05:08:49 +0000597#define VPD_LEN 1024
Hariprasad Shenai63a92fe2014-09-01 19:54:56 +0530598#define CHELSIO_VPD_UNIQUE_ID 0x82
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000599
600/**
601 * t4_seeprom_wp - enable/disable EEPROM write protection
602 * @adapter: the adapter
603 * @enable: whether to enable or disable write protection
604 *
605 * Enables or disables write protection on the serial EEPROM.
606 */
607int t4_seeprom_wp(struct adapter *adapter, bool enable)
608{
609 unsigned int v = enable ? 0xc : 0;
610 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
611 return ret < 0 ? ret : 0;
612}
613
614/**
615 * get_vpd_params - read VPD parameters from VPD EEPROM
616 * @adapter: adapter to read
617 * @p: where to store the parameters
618 *
619 * Reads card parameters stored in VPD EEPROM.
620 */
Vipul Pandya636f9d32012-09-26 02:39:39 +0000621int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000622{
Vipul Pandya636f9d32012-09-26 02:39:39 +0000623 u32 cclk_param, cclk_val;
Santosh Rastapur47ce9c42013-03-08 03:35:29 +0000624 int i, ret, addr;
Kumar Sanghvia94cd702014-02-18 17:56:09 +0530625 int ec, sn, pn;
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000626 u8 *vpd, csum;
Dimitris Michailidis23d88e12010-12-14 21:36:54 +0000627 unsigned int vpdr_len, kw_offset, id_len;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000628
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000629 vpd = vmalloc(VPD_LEN);
630 if (!vpd)
631 return -ENOMEM;
632
Santosh Rastapur47ce9c42013-03-08 03:35:29 +0000633 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
634 if (ret < 0)
635 goto out;
Hariprasad Shenai63a92fe2014-09-01 19:54:56 +0530636
637 /* The VPD shall have a unique identifier specified by the PCI SIG.
638 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
639 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
640 * is expected to automatically put this entry at the
641 * beginning of the VPD.
642 */
643 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
Santosh Rastapur47ce9c42013-03-08 03:35:29 +0000644
645 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000646 if (ret < 0)
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000647 goto out;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000648
Dimitris Michailidis23d88e12010-12-14 21:36:54 +0000649 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
650 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000651 ret = -EINVAL;
652 goto out;
Dimitris Michailidis23d88e12010-12-14 21:36:54 +0000653 }
654
655 id_len = pci_vpd_lrdt_size(vpd);
656 if (id_len > ID_LEN)
657 id_len = ID_LEN;
658
659 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
660 if (i < 0) {
661 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000662 ret = -EINVAL;
663 goto out;
Dimitris Michailidis23d88e12010-12-14 21:36:54 +0000664 }
665
666 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
667 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
668 if (vpdr_len + kw_offset > VPD_LEN) {
Dimitris Michailidis226ec5f2010-04-27 12:24:15 +0000669 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000670 ret = -EINVAL;
671 goto out;
Dimitris Michailidis226ec5f2010-04-27 12:24:15 +0000672 }
673
674#define FIND_VPD_KW(var, name) do { \
Dimitris Michailidis23d88e12010-12-14 21:36:54 +0000675 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
Dimitris Michailidis226ec5f2010-04-27 12:24:15 +0000676 if (var < 0) { \
677 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000678 ret = -EINVAL; \
679 goto out; \
Dimitris Michailidis226ec5f2010-04-27 12:24:15 +0000680 } \
681 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
682} while (0)
683
684 FIND_VPD_KW(i, "RV");
685 for (csum = 0; i >= 0; i--)
686 csum += vpd[i];
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000687
688 if (csum) {
689 dev_err(adapter->pdev_dev,
690 "corrupted VPD EEPROM, actual csum %u\n", csum);
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000691 ret = -EINVAL;
692 goto out;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000693 }
694
Dimitris Michailidis226ec5f2010-04-27 12:24:15 +0000695 FIND_VPD_KW(ec, "EC");
696 FIND_VPD_KW(sn, "SN");
Kumar Sanghvia94cd702014-02-18 17:56:09 +0530697 FIND_VPD_KW(pn, "PN");
Dimitris Michailidis226ec5f2010-04-27 12:24:15 +0000698#undef FIND_VPD_KW
699
Dimitris Michailidis23d88e12010-12-14 21:36:54 +0000700 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000701 strim(p->id);
Dimitris Michailidis226ec5f2010-04-27 12:24:15 +0000702 memcpy(p->ec, vpd + ec, EC_LEN);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000703 strim(p->ec);
Dimitris Michailidis226ec5f2010-04-27 12:24:15 +0000704 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
705 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000706 strim(p->sn);
Hariprasad Shenai63a92fe2014-09-01 19:54:56 +0530707 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
Kumar Sanghvia94cd702014-02-18 17:56:09 +0530708 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
709 strim(p->pn);
Vipul Pandya636f9d32012-09-26 02:39:39 +0000710
711 /*
712 * Ask firmware for the Core Clock since it knows how to translate the
713 * Reference Clock ('V2') VPD field into a Core Clock value ...
714 */
Hariprasad Shenai51678652014-11-21 12:52:02 +0530715 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
716 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
Vipul Pandya636f9d32012-09-26 02:39:39 +0000717 ret = t4_query_params(adapter, adapter->mbox, 0, 0,
718 1, &cclk_param, &cclk_val);
Vipul Pandya8c357eb2012-10-03 03:22:32 +0000719
720out:
721 vfree(vpd);
Vipul Pandya636f9d32012-09-26 02:39:39 +0000722 if (ret)
723 return ret;
724 p->cclk = cclk_val;
725
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000726 return 0;
727}
728
729/* serial flash and firmware constants */
730enum {
731 SF_ATTEMPTS = 10, /* max retries for SF operations */
732
733 /* flash command opcodes */
734 SF_PROG_PAGE = 2, /* program page */
735 SF_WR_DISABLE = 4, /* disable writes */
736 SF_RD_STATUS = 5, /* read status register */
737 SF_WR_ENABLE = 6, /* enable writes */
738 SF_RD_DATA_FAST = 0xb, /* read flash */
Dimitris Michailidis900a6592010-06-18 10:05:27 +0000739 SF_RD_ID = 0x9f, /* read ID */
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000740 SF_ERASE_SECTOR = 0xd8, /* erase sector */
741
Steve Wise6f1d7212014-04-15 14:22:34 -0500742 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000743};
744
745/**
746 * sf1_read - read data from the serial flash
747 * @adapter: the adapter
748 * @byte_cnt: number of bytes to read
749 * @cont: whether another operation will be chained
750 * @lock: whether to lock SF for PL access only
751 * @valp: where to store the read data
752 *
753 * Reads up to 4 bytes of data from the serial flash. The location of
754 * the read needs to be specified prior to calling this by issuing the
755 * appropriate commands to the serial flash.
756 */
757static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
758 int lock, u32 *valp)
759{
760 int ret;
761
762 if (!byte_cnt || byte_cnt > 4)
763 return -EINVAL;
Naresh Kumar Innace91a922012-11-15 22:41:17 +0530764 if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000765 return -EBUSY;
766 cont = cont ? SF_CONT : 0;
767 lock = lock ? SF_LOCK : 0;
768 t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
Naresh Kumar Innace91a922012-11-15 22:41:17 +0530769 ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000770 if (!ret)
771 *valp = t4_read_reg(adapter, SF_DATA);
772 return ret;
773}
774
775/**
776 * sf1_write - write data to the serial flash
777 * @adapter: the adapter
778 * @byte_cnt: number of bytes to write
779 * @cont: whether another operation will be chained
780 * @lock: whether to lock SF for PL access only
781 * @val: value to write
782 *
783 * Writes up to 4 bytes of data to the serial flash. The location of
784 * the write needs to be specified prior to calling this by issuing the
785 * appropriate commands to the serial flash.
786 */
787static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
788 int lock, u32 val)
789{
790 if (!byte_cnt || byte_cnt > 4)
791 return -EINVAL;
Naresh Kumar Innace91a922012-11-15 22:41:17 +0530792 if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000793 return -EBUSY;
794 cont = cont ? SF_CONT : 0;
795 lock = lock ? SF_LOCK : 0;
796 t4_write_reg(adapter, SF_DATA, val);
797 t4_write_reg(adapter, SF_OP, lock |
798 cont | BYTECNT(byte_cnt - 1) | OP_WR);
Naresh Kumar Innace91a922012-11-15 22:41:17 +0530799 return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000800}
801
802/**
803 * flash_wait_op - wait for a flash operation to complete
804 * @adapter: the adapter
805 * @attempts: max number of polls of the status register
806 * @delay: delay between polls in ms
807 *
808 * Wait for a flash operation to complete by polling the status register.
809 */
810static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
811{
812 int ret;
813 u32 status;
814
815 while (1) {
816 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
817 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
818 return ret;
819 if (!(status & 1))
820 return 0;
821 if (--attempts == 0)
822 return -EAGAIN;
823 if (delay)
824 msleep(delay);
825 }
826}
827
828/**
829 * t4_read_flash - read words from serial flash
830 * @adapter: the adapter
831 * @addr: the start address for the read
832 * @nwords: how many 32-bit words to read
833 * @data: where to store the read data
834 * @byte_oriented: whether to store data as bytes or as words
835 *
836 * Read the specified number of 32-bit words from the serial flash.
837 * If @byte_oriented is set the read data is stored as a byte array
838 * (i.e., big-endian), otherwise as 32-bit words in the platform's
839 * natural endianess.
840 */
Roland Dreierde498c82010-04-21 08:59:17 +0000841static int t4_read_flash(struct adapter *adapter, unsigned int addr,
842 unsigned int nwords, u32 *data, int byte_oriented)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000843{
844 int ret;
845
Dimitris Michailidis900a6592010-06-18 10:05:27 +0000846 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000847 return -EINVAL;
848
849 addr = swab32(addr) | SF_RD_DATA_FAST;
850
851 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
852 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
853 return ret;
854
855 for ( ; nwords; nwords--, data++) {
856 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
857 if (nwords == 1)
858 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
859 if (ret)
860 return ret;
861 if (byte_oriented)
Vipul Pandya404d9e32012-10-08 02:59:43 +0000862 *data = (__force __u32) (htonl(*data));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000863 }
864 return 0;
865}
866
867/**
868 * t4_write_flash - write up to a page of data to the serial flash
869 * @adapter: the adapter
870 * @addr: the start address to write
871 * @n: length of data to write in bytes
872 * @data: the data to write
873 *
874 * Writes up to a page of data (256 bytes) to the serial flash starting
875 * at the given address. All the data must be written to the same page.
876 */
877static int t4_write_flash(struct adapter *adapter, unsigned int addr,
878 unsigned int n, const u8 *data)
879{
880 int ret;
881 u32 buf[64];
882 unsigned int i, c, left, val, offset = addr & 0xff;
883
Dimitris Michailidis900a6592010-06-18 10:05:27 +0000884 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000885 return -EINVAL;
886
887 val = swab32(addr) | SF_PROG_PAGE;
888
889 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
890 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
891 goto unlock;
892
893 for (left = n; left; left -= c) {
894 c = min(left, 4U);
895 for (val = 0, i = 0; i < c; ++i)
896 val = (val << 8) + *data++;
897
898 ret = sf1_write(adapter, c, c != left, 1, val);
899 if (ret)
900 goto unlock;
901 }
Dimitris Michailidis900a6592010-06-18 10:05:27 +0000902 ret = flash_wait_op(adapter, 8, 1);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000903 if (ret)
904 goto unlock;
905
906 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
907
908 /* Read the page to verify the write succeeded */
909 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
910 if (ret)
911 return ret;
912
913 if (memcmp(data - n, (u8 *)buf + offset, n)) {
914 dev_err(adapter->pdev_dev,
915 "failed to correctly write the flash page at %#x\n",
916 addr);
917 return -EIO;
918 }
919 return 0;
920
921unlock:
922 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
923 return ret;
924}
925
926/**
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530927 * t4_get_fw_version - read the firmware version
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000928 * @adapter: the adapter
929 * @vers: where to place the version
930 *
931 * Reads the FW version from flash.
932 */
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530933int t4_get_fw_version(struct adapter *adapter, u32 *vers)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000934{
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530935 return t4_read_flash(adapter, FLASH_FW_START +
936 offsetof(struct fw_hdr, fw_ver), 1,
937 vers, 0);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000938}
939
940/**
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530941 * t4_get_tp_version - read the TP microcode version
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000942 * @adapter: the adapter
943 * @vers: where to place the version
944 *
945 * Reads the TP microcode version from flash.
946 */
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530947int t4_get_tp_version(struct adapter *adapter, u32 *vers)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000948{
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530949 return t4_read_flash(adapter, FLASH_FW_START +
Dimitris Michailidis900a6592010-06-18 10:05:27 +0000950 offsetof(struct fw_hdr, tp_microcode_ver),
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000951 1, vers, 0);
952}
953
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530954/* Is the given firmware API compatible with the one the driver was compiled
955 * with?
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000956 */
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530957static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000958{
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000959
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530960 /* short circuit if it's the exact same firmware version */
961 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
962 return 1;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000963
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530964#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
965 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
966 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
967 return 1;
968#undef SAME_INTF
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000969
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530970 return 0;
971}
972
973/* The firmware in the filesystem is usable, but should it be installed?
974 * This routine explains itself in detail if it indicates the filesystem
975 * firmware should be installed.
976 */
977static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
978 int k, int c)
979{
980 const char *reason;
981
982 if (!card_fw_usable) {
983 reason = "incompatible or unusable";
984 goto install;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +0000985 }
986
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530987 if (k > c) {
988 reason = "older than the version supported with this driver";
989 goto install;
Jay Hernandeze69972f2013-05-30 03:24:14 +0000990 }
991
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530992 return 0;
Santosh Rastapur0a57a532013-03-14 05:08:49 +0000993
Hariprasad Shenai16e47622013-12-03 17:05:58 +0530994install:
995 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
996 "installing firmware %u.%u.%u.%u on card.\n",
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +0530997 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
998 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
999 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1000 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001001
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001002 return 1;
1003}
1004
Hariprasad Shenai16e47622013-12-03 17:05:58 +05301005int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
1006 const u8 *fw_data, unsigned int fw_size,
1007 struct fw_hdr *card_fw, enum dev_state state,
1008 int *reset)
1009{
1010 int ret, card_fw_usable, fs_fw_usable;
1011 const struct fw_hdr *fs_fw;
1012 const struct fw_hdr *drv_fw;
1013
1014 drv_fw = &fw_info->fw_hdr;
1015
1016 /* Read the header of the firmware on the card */
1017 ret = -t4_read_flash(adap, FLASH_FW_START,
1018 sizeof(*card_fw) / sizeof(uint32_t),
1019 (uint32_t *)card_fw, 1);
1020 if (ret == 0) {
1021 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1022 } else {
1023 dev_err(adap->pdev_dev,
1024 "Unable to read card's firmware header: %d\n", ret);
1025 card_fw_usable = 0;
1026 }
1027
1028 if (fw_data != NULL) {
1029 fs_fw = (const void *)fw_data;
1030 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1031 } else {
1032 fs_fw = NULL;
1033 fs_fw_usable = 0;
1034 }
1035
1036 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1037 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1038 /* Common case: the firmware on the card is an exact match and
1039 * the filesystem one is an exact match too, or the filesystem
1040 * one is absent/incompatible.
1041 */
1042 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
1043 should_install_fs_fw(adap, card_fw_usable,
1044 be32_to_cpu(fs_fw->fw_ver),
1045 be32_to_cpu(card_fw->fw_ver))) {
1046 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
1047 fw_size, 0);
1048 if (ret != 0) {
1049 dev_err(adap->pdev_dev,
1050 "failed to install firmware: %d\n", ret);
1051 goto bye;
1052 }
1053
1054 /* Installed successfully, update the cached header too. */
1055 memcpy(card_fw, fs_fw, sizeof(*card_fw));
1056 card_fw_usable = 1;
1057 *reset = 0; /* already reset as part of load_fw */
1058 }
1059
1060 if (!card_fw_usable) {
1061 uint32_t d, c, k;
1062
1063 d = be32_to_cpu(drv_fw->fw_ver);
1064 c = be32_to_cpu(card_fw->fw_ver);
1065 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1066
1067 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
1068 "chip state %d, "
1069 "driver compiled with %d.%d.%d.%d, "
1070 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1071 state,
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05301072 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1073 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1074 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1075 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1076 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1077 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
Hariprasad Shenai16e47622013-12-03 17:05:58 +05301078 ret = EINVAL;
1079 goto bye;
1080 }
1081
1082 /* We're using whatever's on the card and it's known to be good. */
1083 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
1084 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
1085
1086bye:
1087 return ret;
1088}
1089
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001090/**
1091 * t4_flash_erase_sectors - erase a range of flash sectors
1092 * @adapter: the adapter
1093 * @start: the first sector to erase
1094 * @end: the last sector to erase
1095 *
1096 * Erases the sectors in the given inclusive range.
1097 */
1098static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
1099{
1100 int ret = 0;
1101
Hariprasad Shenaic0d5b8c2014-09-10 17:44:29 +05301102 if (end >= adapter->params.sf_nsec)
1103 return -EINVAL;
1104
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001105 while (start <= end) {
1106 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
1107 (ret = sf1_write(adapter, 4, 0, 1,
1108 SF_ERASE_SECTOR | (start << 8))) != 0 ||
Dimitris Michailidis900a6592010-06-18 10:05:27 +00001109 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001110 dev_err(adapter->pdev_dev,
1111 "erase of flash sector %d failed, error %d\n",
1112 start, ret);
1113 break;
1114 }
1115 start++;
1116 }
1117 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
1118 return ret;
1119}
1120
1121/**
Vipul Pandya636f9d32012-09-26 02:39:39 +00001122 * t4_flash_cfg_addr - return the address of the flash configuration file
1123 * @adapter: the adapter
1124 *
1125 * Return the address within the flash where the Firmware Configuration
1126 * File is stored.
1127 */
1128unsigned int t4_flash_cfg_addr(struct adapter *adapter)
1129{
1130 if (adapter->params.sf_size == 0x100000)
1131 return FLASH_FPGA_CFG_START;
1132 else
1133 return FLASH_CFG_START;
1134}
1135
Hariprasad Shenai79af2212014-12-03 11:49:50 +05301136/* Return TRUE if the specified firmware matches the adapter. I.e. T4
1137 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
1138 * and emit an error message for mismatched firmware to save our caller the
1139 * effort ...
1140 */
1141static bool t4_fw_matches_chip(const struct adapter *adap,
1142 const struct fw_hdr *hdr)
1143{
1144 /* The expression below will return FALSE for any unsupported adapter
1145 * which will keep us "honest" in the future ...
1146 */
1147 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
1148 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5))
1149 return true;
1150
1151 dev_err(adap->pdev_dev,
1152 "FW image (%d) is not suitable for this adapter (%d)\n",
1153 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
1154 return false;
1155}
1156
Vipul Pandya636f9d32012-09-26 02:39:39 +00001157/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001158 * t4_load_fw - download firmware
1159 * @adap: the adapter
1160 * @fw_data: the firmware image to write
1161 * @size: image size
1162 *
1163 * Write the supplied firmware image to the card's serial flash.
1164 */
1165int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1166{
1167 u32 csum;
1168 int ret, addr;
1169 unsigned int i;
1170 u8 first_page[SF_PAGE_SIZE];
Vipul Pandya404d9e32012-10-08 02:59:43 +00001171 const __be32 *p = (const __be32 *)fw_data;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001172 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
Dimitris Michailidis900a6592010-06-18 10:05:27 +00001173 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1174 unsigned int fw_img_start = adap->params.sf_fw_start;
1175 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001176
1177 if (!size) {
1178 dev_err(adap->pdev_dev, "FW image has no data\n");
1179 return -EINVAL;
1180 }
1181 if (size & 511) {
1182 dev_err(adap->pdev_dev,
1183 "FW image size not multiple of 512 bytes\n");
1184 return -EINVAL;
1185 }
1186 if (ntohs(hdr->len512) * 512 != size) {
1187 dev_err(adap->pdev_dev,
1188 "FW image size differs from size in FW header\n");
1189 return -EINVAL;
1190 }
1191 if (size > FW_MAX_SIZE) {
1192 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
1193 FW_MAX_SIZE);
1194 return -EFBIG;
1195 }
Hariprasad Shenai79af2212014-12-03 11:49:50 +05301196 if (!t4_fw_matches_chip(adap, hdr))
1197 return -EINVAL;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001198
1199 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1200 csum += ntohl(p[i]);
1201
1202 if (csum != 0xffffffff) {
1203 dev_err(adap->pdev_dev,
1204 "corrupted firmware image, checksum %#x\n", csum);
1205 return -EINVAL;
1206 }
1207
Dimitris Michailidis900a6592010-06-18 10:05:27 +00001208 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
1209 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001210 if (ret)
1211 goto out;
1212
1213 /*
1214 * We write the correct version at the end so the driver can see a bad
1215 * version if the FW write fails. Start by writing a copy of the
1216 * first page with a bad version.
1217 */
1218 memcpy(first_page, fw_data, SF_PAGE_SIZE);
1219 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
Dimitris Michailidis900a6592010-06-18 10:05:27 +00001220 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001221 if (ret)
1222 goto out;
1223
Dimitris Michailidis900a6592010-06-18 10:05:27 +00001224 addr = fw_img_start;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001225 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1226 addr += SF_PAGE_SIZE;
1227 fw_data += SF_PAGE_SIZE;
1228 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
1229 if (ret)
1230 goto out;
1231 }
1232
1233 ret = t4_write_flash(adap,
Dimitris Michailidis900a6592010-06-18 10:05:27 +00001234 fw_img_start + offsetof(struct fw_hdr, fw_ver),
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001235 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
1236out:
1237 if (ret)
1238 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
1239 ret);
Hariprasad Shenaidff04bc2014-12-03 19:32:54 +05301240 else
1241 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001242 return ret;
1243}
1244
1245#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
Kumar Sanghvi72aca4b2014-02-18 17:56:08 +05301246 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
1247 FW_PORT_CAP_ANEG)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001248
1249/**
1250 * t4_link_start - apply link configuration to MAC/PHY
1251 * @phy: the PHY to setup
1252 * @mac: the MAC to setup
1253 * @lc: the requested link configuration
1254 *
1255 * Set up a port's MAC and PHY according to a desired link configuration.
1256 * - If the PHY can auto-negotiate first decide what to advertise, then
1257 * enable/disable auto-negotiation as desired, and reset.
1258 * - If the PHY does not auto-negotiate just reset it.
1259 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1260 * otherwise do it later based on the outcome of auto-negotiation.
1261 */
1262int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1263 struct link_config *lc)
1264{
1265 struct fw_port_cmd c;
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05301266 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001267
1268 lc->link_ok = 0;
1269 if (lc->requested_fc & PAUSE_RX)
1270 fc |= FW_PORT_CAP_FC_RX;
1271 if (lc->requested_fc & PAUSE_TX)
1272 fc |= FW_PORT_CAP_FC_TX;
1273
1274 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05301275 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05301276 FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
1277 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001278 FW_LEN16(c));
1279
1280 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1281 c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1282 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1283 } else if (lc->autoneg == AUTONEG_DISABLE) {
1284 c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1285 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1286 } else
1287 c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1288
1289 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1290}
1291
1292/**
1293 * t4_restart_aneg - restart autonegotiation
1294 * @adap: the adapter
1295 * @mbox: mbox to use for the FW command
1296 * @port: the port id
1297 *
1298 * Restarts autonegotiation for the selected port.
1299 */
1300int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1301{
1302 struct fw_port_cmd c;
1303
1304 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05301305 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05301306 FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
1307 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001308 FW_LEN16(c));
1309 c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1310 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1311}
1312
Vipul Pandya8caa1e82012-05-18 15:29:25 +05301313typedef void (*int_handler_t)(struct adapter *adap);
1314
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001315struct intr_info {
1316 unsigned int mask; /* bits to check in interrupt status */
1317 const char *msg; /* message to print or NULL */
1318 short stat_idx; /* stat counter to increment or -1 */
1319 unsigned short fatal; /* whether the condition reported is fatal */
Vipul Pandya8caa1e82012-05-18 15:29:25 +05301320 int_handler_t int_handler; /* platform-specific int handler */
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001321};
1322
1323/**
1324 * t4_handle_intr_status - table driven interrupt handler
1325 * @adapter: the adapter that generated the interrupt
1326 * @reg: the interrupt status register to process
1327 * @acts: table of interrupt actions
1328 *
1329 * A table driven interrupt handler that applies a set of masks to an
1330 * interrupt status word and performs the corresponding actions if the
Lucas De Marchi25985ed2011-03-30 22:57:33 -03001331 * interrupts described by the mask have occurred. The actions include
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001332 * optionally emitting a warning or alert message. The table is terminated
1333 * by an entry specifying mask 0. Returns the number of fatal interrupt
1334 * conditions.
1335 */
1336static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1337 const struct intr_info *acts)
1338{
1339 int fatal = 0;
1340 unsigned int mask = 0;
1341 unsigned int status = t4_read_reg(adapter, reg);
1342
1343 for ( ; acts->mask; ++acts) {
1344 if (!(status & acts->mask))
1345 continue;
1346 if (acts->fatal) {
1347 fatal++;
1348 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
1349 status & acts->mask);
1350 } else if (acts->msg && printk_ratelimit())
1351 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
1352 status & acts->mask);
Vipul Pandya8caa1e82012-05-18 15:29:25 +05301353 if (acts->int_handler)
1354 acts->int_handler(adapter);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001355 mask |= acts->mask;
1356 }
1357 status &= mask;
1358 if (status) /* clear processed interrupts */
1359 t4_write_reg(adapter, reg, status);
1360 return fatal;
1361}
1362
1363/*
1364 * Interrupt handler for the PCIE module.
1365 */
1366static void pcie_intr_handler(struct adapter *adapter)
1367{
Joe Perches005b5712010-12-14 21:36:53 +00001368 static const struct intr_info sysbus_intr_info[] = {
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301369 { RNPP_F, "RXNP array parity error", -1, 1 },
1370 { RPCP_F, "RXPC array parity error", -1, 1 },
1371 { RCIP_F, "RXCIF array parity error", -1, 1 },
1372 { RCCP_F, "Rx completions control array parity error", -1, 1 },
1373 { RFTP_F, "RXFT array parity error", -1, 1 },
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001374 { 0 }
1375 };
Joe Perches005b5712010-12-14 21:36:53 +00001376 static const struct intr_info pcie_port_intr_info[] = {
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301377 { TPCP_F, "TXPC array parity error", -1, 1 },
1378 { TNPP_F, "TXNP array parity error", -1, 1 },
1379 { TFTP_F, "TXFT array parity error", -1, 1 },
1380 { TCAP_F, "TXCA array parity error", -1, 1 },
1381 { TCIP_F, "TXCIF array parity error", -1, 1 },
1382 { RCAP_F, "RXCA array parity error", -1, 1 },
1383 { OTDD_F, "outbound request TLP discarded", -1, 1 },
1384 { RDPE_F, "Rx data parity error", -1, 1 },
1385 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001386 { 0 }
1387 };
Joe Perches005b5712010-12-14 21:36:53 +00001388 static const struct intr_info pcie_intr_info[] = {
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301389 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
1390 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
1391 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
1392 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
1393 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
1394 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
1395 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
1396 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
1397 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
1398 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
1399 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
1400 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
1401 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
1402 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
1403 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
1404 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
1405 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
1406 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
1407 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
1408 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
1409 { FIDPERR_F, "PCI FID parity error", -1, 1 },
1410 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
1411 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
1412 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
1413 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
1414 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
1415 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
1416 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
1417 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
1418 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
1419 -1, 0 },
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001420 { 0 }
1421 };
1422
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001423 static struct intr_info t5_pcie_intr_info[] = {
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301424 { MSTGRPPERR_F, "Master Response Read Queue parity error",
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001425 -1, 1 },
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301426 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
1427 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
1428 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
1429 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
1430 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
1431 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
1432 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001433 -1, 1 },
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301434 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001435 -1, 1 },
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301436 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
1437 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
1438 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
1439 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
1440 { DREQWRPERR_F, "PCI DMA channel write request parity error",
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001441 -1, 1 },
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301442 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
1443 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
1444 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
1445 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
1446 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
1447 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
1448 { FIDPERR_F, "PCI FID parity error", -1, 1 },
1449 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
1450 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
1451 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
1452 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001453 -1, 1 },
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301454 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
1455 -1, 1 },
1456 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
1457 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
1458 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
1459 { READRSPERR_F, "Outbound read error", -1, 0 },
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001460 { 0 }
1461 };
1462
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001463 int fat;
1464
Hariprasad Shenai9bb59b92014-09-01 19:54:57 +05301465 if (is_t4(adapter->params.chip))
1466 fat = t4_handle_intr_status(adapter,
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301467 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
1468 sysbus_intr_info) +
Hariprasad Shenai9bb59b92014-09-01 19:54:57 +05301469 t4_handle_intr_status(adapter,
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301470 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
1471 pcie_port_intr_info) +
1472 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
Hariprasad Shenai9bb59b92014-09-01 19:54:57 +05301473 pcie_intr_info);
1474 else
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301475 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
Hariprasad Shenai9bb59b92014-09-01 19:54:57 +05301476 t5_pcie_intr_info);
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001477
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001478 if (fat)
1479 t4_fatal_err(adapter);
1480}
1481
1482/*
1483 * TP interrupt handler.
1484 */
1485static void tp_intr_handler(struct adapter *adapter)
1486{
Joe Perches005b5712010-12-14 21:36:53 +00001487 static const struct intr_info tp_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001488 { 0x3fffffff, "TP parity error", -1, 1 },
1489 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
1490 { 0 }
1491 };
1492
1493 if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
1494 t4_fatal_err(adapter);
1495}
1496
1497/*
1498 * SGE interrupt handler.
1499 */
1500static void sge_intr_handler(struct adapter *adapter)
1501{
1502 u64 v;
1503
Joe Perches005b5712010-12-14 21:36:53 +00001504 static const struct intr_info sge_intr_info[] = {
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301505 { ERR_CPL_EXCEED_IQE_SIZE_F,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001506 "SGE received CPL exceeding IQE size", -1, 1 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301507 { ERR_INVALID_CIDX_INC_F,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001508 "SGE GTS CIDX increment too large", -1, 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301509 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
1510 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
1511 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
1512 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
1513 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001514 "SGE IQID > 1023 received CPL for FL", -1, 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301515 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001516 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301517 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001518 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301519 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001520 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301521 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001522 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301523 { ERR_ING_CTXT_PRIO_F,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001524 "SGE too many priority ingress contexts", -1, 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301525 { ERR_EGR_CTXT_PRIO_F,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001526 "SGE too many priority egress contexts", -1, 0 },
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301527 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
1528 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001529 { 0 }
1530 };
1531
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301532 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
1533 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001534 if (v) {
1535 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
Vipul Pandya8caa1e82012-05-18 15:29:25 +05301536 (unsigned long long)v);
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301537 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
1538 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001539 }
1540
Hariprasad Shenaif612b812015-01-05 16:30:43 +05301541 if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info) ||
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001542 v != 0)
1543 t4_fatal_err(adapter);
1544}
1545
1546/*
1547 * CIM interrupt handler.
1548 */
1549static void cim_intr_handler(struct adapter *adapter)
1550{
Joe Perches005b5712010-12-14 21:36:53 +00001551 static const struct intr_info cim_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001552 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
1553 { OBQPARERR, "CIM OBQ parity error", -1, 1 },
1554 { IBQPARERR, "CIM IBQ parity error", -1, 1 },
1555 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
1556 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
1557 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
1558 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
1559 { 0 }
1560 };
Joe Perches005b5712010-12-14 21:36:53 +00001561 static const struct intr_info cim_upintr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001562 { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
1563 { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
1564 { ILLWRINT, "CIM illegal write", -1, 1 },
1565 { ILLRDINT, "CIM illegal read", -1, 1 },
1566 { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
1567 { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
1568 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
1569 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
1570 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
1571 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
1572 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
1573 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
1574 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
1575 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
1576 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
1577 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
1578 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
1579 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
1580 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
1581 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
1582 { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
1583 { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
1584 { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
1585 { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
1586 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
1587 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
1588 { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
1589 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
1590 { 0 }
1591 };
1592
1593 int fat;
1594
Hariprasad Shenaif061de42015-01-05 16:30:44 +05301595 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
Hariprasad Shenai31d55c22014-09-01 19:54:58 +05301596 t4_report_fw_error(adapter);
1597
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001598 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
1599 cim_intr_info) +
1600 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
1601 cim_upintr_info);
1602 if (fat)
1603 t4_fatal_err(adapter);
1604}
1605
1606/*
1607 * ULP RX interrupt handler.
1608 */
1609static void ulprx_intr_handler(struct adapter *adapter)
1610{
Joe Perches005b5712010-12-14 21:36:53 +00001611 static const struct intr_info ulprx_intr_info[] = {
Dimitris Michailidis91e9a1e2010-06-18 10:05:33 +00001612 { 0x1800000, "ULPRX context error", -1, 1 },
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001613 { 0x7fffff, "ULPRX parity error", -1, 1 },
1614 { 0 }
1615 };
1616
1617 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
1618 t4_fatal_err(adapter);
1619}
1620
1621/*
1622 * ULP TX interrupt handler.
1623 */
1624static void ulptx_intr_handler(struct adapter *adapter)
1625{
Joe Perches005b5712010-12-14 21:36:53 +00001626 static const struct intr_info ulptx_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001627 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
1628 0 },
1629 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
1630 0 },
1631 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
1632 0 },
1633 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
1634 0 },
1635 { 0xfffffff, "ULPTX parity error", -1, 1 },
1636 { 0 }
1637 };
1638
1639 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
1640 t4_fatal_err(adapter);
1641}
1642
1643/*
1644 * PM TX interrupt handler.
1645 */
1646static void pmtx_intr_handler(struct adapter *adapter)
1647{
Joe Perches005b5712010-12-14 21:36:53 +00001648 static const struct intr_info pmtx_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001649 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
1650 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
1651 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
1652 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
1653 { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
1654 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
1655 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
1656 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
1657 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
1658 { 0 }
1659 };
1660
1661 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
1662 t4_fatal_err(adapter);
1663}
1664
1665/*
1666 * PM RX interrupt handler.
1667 */
1668static void pmrx_intr_handler(struct adapter *adapter)
1669{
Joe Perches005b5712010-12-14 21:36:53 +00001670 static const struct intr_info pmrx_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001671 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
1672 { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
1673 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
1674 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
1675 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
1676 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
1677 { 0 }
1678 };
1679
1680 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
1681 t4_fatal_err(adapter);
1682}
1683
1684/*
1685 * CPL switch interrupt handler.
1686 */
1687static void cplsw_intr_handler(struct adapter *adapter)
1688{
Joe Perches005b5712010-12-14 21:36:53 +00001689 static const struct intr_info cplsw_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001690 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
1691 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
1692 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
1693 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
1694 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
1695 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
1696 { 0 }
1697 };
1698
1699 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
1700 t4_fatal_err(adapter);
1701}
1702
1703/*
1704 * LE interrupt handler.
1705 */
1706static void le_intr_handler(struct adapter *adap)
1707{
Joe Perches005b5712010-12-14 21:36:53 +00001708 static const struct intr_info le_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001709 { LIPMISS, "LE LIP miss", -1, 0 },
1710 { LIP0, "LE 0 LIP error", -1, 0 },
1711 { PARITYERR, "LE parity error", -1, 1 },
1712 { UNKNOWNCMD, "LE unknown command", -1, 1 },
1713 { REQQPARERR, "LE request queue parity error", -1, 1 },
1714 { 0 }
1715 };
1716
1717 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
1718 t4_fatal_err(adap);
1719}
1720
1721/*
1722 * MPS interrupt handler.
1723 */
1724static void mps_intr_handler(struct adapter *adapter)
1725{
Joe Perches005b5712010-12-14 21:36:53 +00001726 static const struct intr_info mps_rx_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001727 { 0xffffff, "MPS Rx parity error", -1, 1 },
1728 { 0 }
1729 };
Joe Perches005b5712010-12-14 21:36:53 +00001730 static const struct intr_info mps_tx_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001731 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
1732 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
1733 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
1734 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
1735 { BUBBLE, "MPS Tx underflow", -1, 1 },
1736 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
1737 { FRMERR, "MPS Tx framing error", -1, 1 },
1738 { 0 }
1739 };
Joe Perches005b5712010-12-14 21:36:53 +00001740 static const struct intr_info mps_trc_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001741 { FILTMEM, "MPS TRC filter parity error", -1, 1 },
1742 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
1743 { MISCPERR, "MPS TRC misc parity error", -1, 1 },
1744 { 0 }
1745 };
Joe Perches005b5712010-12-14 21:36:53 +00001746 static const struct intr_info mps_stat_sram_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001747 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
1748 { 0 }
1749 };
Joe Perches005b5712010-12-14 21:36:53 +00001750 static const struct intr_info mps_stat_tx_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001751 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
1752 { 0 }
1753 };
Joe Perches005b5712010-12-14 21:36:53 +00001754 static const struct intr_info mps_stat_rx_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001755 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
1756 { 0 }
1757 };
Joe Perches005b5712010-12-14 21:36:53 +00001758 static const struct intr_info mps_cls_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001759 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
1760 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
1761 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
1762 { 0 }
1763 };
1764
1765 int fat;
1766
1767 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
1768 mps_rx_intr_info) +
1769 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
1770 mps_tx_intr_info) +
1771 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
1772 mps_trc_intr_info) +
1773 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
1774 mps_stat_sram_intr_info) +
1775 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
1776 mps_stat_tx_intr_info) +
1777 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
1778 mps_stat_rx_intr_info) +
1779 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
1780 mps_cls_intr_info);
1781
1782 t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
1783 RXINT | TXINT | STATINT);
1784 t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
1785 if (fat)
1786 t4_fatal_err(adapter);
1787}
1788
1789#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
1790
1791/*
1792 * EDC/MC interrupt handler.
1793 */
1794static void mem_intr_handler(struct adapter *adapter, int idx)
1795{
Hariprasad Shenai822dd8a2014-07-21 20:55:12 +05301796 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001797
1798 unsigned int addr, cnt_addr, v;
1799
1800 if (idx <= MEM_EDC1) {
1801 addr = EDC_REG(EDC_INT_CAUSE, idx);
1802 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
Hariprasad Shenai822dd8a2014-07-21 20:55:12 +05301803 } else if (idx == MEM_MC) {
1804 if (is_t4(adapter->params.chip)) {
1805 addr = MC_INT_CAUSE;
1806 cnt_addr = MC_ECC_STATUS;
1807 } else {
1808 addr = MC_P_INT_CAUSE;
1809 cnt_addr = MC_P_ECC_STATUS;
1810 }
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001811 } else {
Hariprasad Shenai822dd8a2014-07-21 20:55:12 +05301812 addr = MC_REG(MC_P_INT_CAUSE, 1);
1813 cnt_addr = MC_REG(MC_P_ECC_STATUS, 1);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001814 }
1815
1816 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
1817 if (v & PERR_INT_CAUSE)
1818 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
1819 name[idx]);
1820 if (v & ECC_CE_INT_CAUSE) {
1821 u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
1822
1823 t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
1824 if (printk_ratelimit())
1825 dev_warn(adapter->pdev_dev,
1826 "%u %s correctable ECC data error%s\n",
1827 cnt, name[idx], cnt > 1 ? "s" : "");
1828 }
1829 if (v & ECC_UE_INT_CAUSE)
1830 dev_alert(adapter->pdev_dev,
1831 "%s uncorrectable ECC data error\n", name[idx]);
1832
1833 t4_write_reg(adapter, addr, v);
1834 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
1835 t4_fatal_err(adapter);
1836}
1837
1838/*
1839 * MA interrupt handler.
1840 */
1841static void ma_intr_handler(struct adapter *adap)
1842{
1843 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
1844
Hariprasad Shenai9bb59b92014-09-01 19:54:57 +05301845 if (status & MEM_PERR_INT_CAUSE) {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001846 dev_alert(adap->pdev_dev,
1847 "MA parity error, parity status %#x\n",
1848 t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
Hariprasad Shenai9bb59b92014-09-01 19:54:57 +05301849 if (is_t5(adap->params.chip))
1850 dev_alert(adap->pdev_dev,
1851 "MA parity error, parity status %#x\n",
1852 t4_read_reg(adap,
1853 MA_PARITY_ERROR_STATUS2));
1854 }
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001855 if (status & MEM_WRAP_INT_CAUSE) {
1856 v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
1857 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
1858 "client %u to address %#x\n",
1859 MEM_WRAP_CLIENT_NUM_GET(v),
1860 MEM_WRAP_ADDRESS_GET(v) << 4);
1861 }
1862 t4_write_reg(adap, MA_INT_CAUSE, status);
1863 t4_fatal_err(adap);
1864}
1865
1866/*
1867 * SMB interrupt handler.
1868 */
1869static void smb_intr_handler(struct adapter *adap)
1870{
Joe Perches005b5712010-12-14 21:36:53 +00001871 static const struct intr_info smb_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001872 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
1873 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
1874 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
1875 { 0 }
1876 };
1877
1878 if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
1879 t4_fatal_err(adap);
1880}
1881
1882/*
1883 * NC-SI interrupt handler.
1884 */
1885static void ncsi_intr_handler(struct adapter *adap)
1886{
Joe Perches005b5712010-12-14 21:36:53 +00001887 static const struct intr_info ncsi_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001888 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
1889 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
1890 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
1891 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
1892 { 0 }
1893 };
1894
1895 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
1896 t4_fatal_err(adap);
1897}
1898
1899/*
1900 * XGMAC interrupt handler.
1901 */
1902static void xgmac_intr_handler(struct adapter *adap, int port)
1903{
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001904 u32 v, int_cause_reg;
1905
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05301906 if (is_t4(adap->params.chip))
Santosh Rastapur0a57a532013-03-14 05:08:49 +00001907 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
1908 else
1909 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
1910
1911 v = t4_read_reg(adap, int_cause_reg);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001912
1913 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
1914 if (!v)
1915 return;
1916
1917 if (v & TXFIFO_PRTY_ERR)
1918 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
1919 port);
1920 if (v & RXFIFO_PRTY_ERR)
1921 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
1922 port);
1923 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
1924 t4_fatal_err(adap);
1925}
1926
1927/*
1928 * PL interrupt handler.
1929 */
1930static void pl_intr_handler(struct adapter *adap)
1931{
Joe Perches005b5712010-12-14 21:36:53 +00001932 static const struct intr_info pl_intr_info[] = {
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001933 { FATALPERR, "T4 fatal parity error", -1, 1 },
1934 { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
1935 { 0 }
1936 };
1937
1938 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
1939 t4_fatal_err(adap);
1940}
1941
Dimitris Michailidis63bccee2010-08-02 13:19:16 +00001942#define PF_INTR_MASK (PFSW)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001943#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
1944 EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
1945 CPL_SWITCH | SGE | ULP_TX)
1946
1947/**
1948 * t4_slow_intr_handler - control path interrupt handler
1949 * @adapter: the adapter
1950 *
1951 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
1952 * The designation 'slow' is because it involves register reads, while
1953 * data interrupts typically don't involve any MMIOs.
1954 */
1955int t4_slow_intr_handler(struct adapter *adapter)
1956{
1957 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
1958
1959 if (!(cause & GLBL_INTR_MASK))
1960 return 0;
1961 if (cause & CIM)
1962 cim_intr_handler(adapter);
1963 if (cause & MPS)
1964 mps_intr_handler(adapter);
1965 if (cause & NCSI)
1966 ncsi_intr_handler(adapter);
1967 if (cause & PL)
1968 pl_intr_handler(adapter);
1969 if (cause & SMB)
1970 smb_intr_handler(adapter);
1971 if (cause & XGMAC0)
1972 xgmac_intr_handler(adapter, 0);
1973 if (cause & XGMAC1)
1974 xgmac_intr_handler(adapter, 1);
1975 if (cause & XGMAC_KR0)
1976 xgmac_intr_handler(adapter, 2);
1977 if (cause & XGMAC_KR1)
1978 xgmac_intr_handler(adapter, 3);
1979 if (cause & PCIE)
1980 pcie_intr_handler(adapter);
1981 if (cause & MC)
1982 mem_intr_handler(adapter, MEM_MC);
Hariprasad Shenai822dd8a2014-07-21 20:55:12 +05301983 if (!is_t4(adapter->params.chip) && (cause & MC1))
1984 mem_intr_handler(adapter, MEM_MC1);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00001985 if (cause & EDC0)
1986 mem_intr_handler(adapter, MEM_EDC0);
1987 if (cause & EDC1)
1988 mem_intr_handler(adapter, MEM_EDC1);
1989 if (cause & LE)
1990 le_intr_handler(adapter);
1991 if (cause & TP)
1992 tp_intr_handler(adapter);
1993 if (cause & MA)
1994 ma_intr_handler(adapter);
1995 if (cause & PM_TX)
1996 pmtx_intr_handler(adapter);
1997 if (cause & PM_RX)
1998 pmrx_intr_handler(adapter);
1999 if (cause & ULP_RX)
2000 ulprx_intr_handler(adapter);
2001 if (cause & CPL_SWITCH)
2002 cplsw_intr_handler(adapter);
2003 if (cause & SGE)
2004 sge_intr_handler(adapter);
2005 if (cause & ULP_TX)
2006 ulptx_intr_handler(adapter);
2007
2008 /* Clear the interrupts just processed for which we are the master. */
2009 t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
2010 (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
2011 return 1;
2012}
2013
2014/**
2015 * t4_intr_enable - enable interrupts
2016 * @adapter: the adapter whose interrupts should be enabled
2017 *
2018 * Enable PF-specific interrupts for the calling function and the top-level
2019 * interrupt concentrator for global interrupts. Interrupts are already
2020 * enabled at each module, here we just enable the roots of the interrupt
2021 * hierarchies.
2022 *
2023 * Note: this function should be called only when the driver manages
2024 * non PF-specific interrupts from the various HW modules. Only one PCI
2025 * function at a time should be doing this.
2026 */
2027void t4_intr_enable(struct adapter *adapter)
2028{
2029 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
2030
Hariprasad Shenaif612b812015-01-05 16:30:43 +05302031 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
2032 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
2033 ERR_DROPPED_DB_F | ERR_DATA_CPL_ON_HIGH_QID1_F |
2034 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2035 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2036 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2037 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F |
2038 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F |
2039 EGRESS_SIZE_ERR_F);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002040 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
2041 t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
2042}
2043
2044/**
2045 * t4_intr_disable - disable interrupts
2046 * @adapter: the adapter whose interrupts should be disabled
2047 *
2048 * Disable interrupts. We only disable the top-level interrupt
2049 * concentrators. The caller must be a PCI function managing global
2050 * interrupts.
2051 */
2052void t4_intr_disable(struct adapter *adapter)
2053{
2054 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
2055
2056 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
2057 t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
2058}
2059
2060/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002061 * hash_mac_addr - return the hash value of a MAC address
2062 * @addr: the 48-bit Ethernet MAC address
2063 *
2064 * Hashes a MAC address according to the hash function used by HW inexact
2065 * (hash) address matching.
2066 */
2067static int hash_mac_addr(const u8 *addr)
2068{
2069 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
2070 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
2071 a ^= b;
2072 a ^= (a >> 12);
2073 a ^= (a >> 6);
2074 return a & 0x3f;
2075}
2076
2077/**
2078 * t4_config_rss_range - configure a portion of the RSS mapping table
2079 * @adapter: the adapter
2080 * @mbox: mbox to use for the FW command
2081 * @viid: virtual interface whose RSS subtable is to be written
2082 * @start: start entry in the table to write
2083 * @n: how many table entries to write
2084 * @rspq: values for the response queue lookup table
2085 * @nrspq: number of values in @rspq
2086 *
2087 * Programs the selected part of the VI's RSS mapping table with the
2088 * provided values. If @nrspq < @n the supplied values are used repeatedly
2089 * until the full table range is populated.
2090 *
2091 * The caller must ensure the values in @rspq are in the range allowed for
2092 * @viid.
2093 */
2094int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2095 int start, int n, const u16 *rspq, unsigned int nrspq)
2096{
2097 int ret;
2098 const u16 *rsp = rspq;
2099 const u16 *rsp_end = rspq + nrspq;
2100 struct fw_rss_ind_tbl_cmd cmd;
2101
2102 memset(&cmd, 0, sizeof(cmd));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05302103 cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
2104 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302105 FW_RSS_IND_TBL_CMD_VIID_V(viid));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002106 cmd.retval_len16 = htonl(FW_LEN16(cmd));
2107
2108 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
2109 while (n > 0) {
2110 int nq = min(n, 32);
2111 __be32 *qp = &cmd.iq0_to_iq2;
2112
2113 cmd.niqid = htons(nq);
2114 cmd.startidx = htons(start);
2115
2116 start += nq;
2117 n -= nq;
2118
2119 while (nq > 0) {
2120 unsigned int v;
2121
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302122 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002123 if (++rsp >= rsp_end)
2124 rsp = rspq;
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302125 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002126 if (++rsp >= rsp_end)
2127 rsp = rspq;
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302128 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002129 if (++rsp >= rsp_end)
2130 rsp = rspq;
2131
2132 *qp++ = htonl(v);
2133 nq -= 3;
2134 }
2135
2136 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2137 if (ret)
2138 return ret;
2139 }
2140 return 0;
2141}
2142
2143/**
2144 * t4_config_glbl_rss - configure the global RSS mode
2145 * @adapter: the adapter
2146 * @mbox: mbox to use for the FW command
2147 * @mode: global RSS mode
2148 * @flags: mode-specific flags
2149 *
2150 * Sets the global RSS mode.
2151 */
2152int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2153 unsigned int flags)
2154{
2155 struct fw_rss_glb_config_cmd c;
2156
2157 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05302158 c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
2159 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002160 c.retval_len16 = htonl(FW_LEN16(c));
2161 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302162 c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002163 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2164 c.u.basicvirtual.mode_pkd =
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302165 htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002166 c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
2167 } else
2168 return -EINVAL;
2169 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2170}
2171
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002172/**
2173 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
2174 * @adap: the adapter
2175 * @v4: holds the TCP/IP counter values
2176 * @v6: holds the TCP/IPv6 counter values
2177 *
2178 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
2179 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
2180 */
2181void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
2182 struct tp_tcp_stats *v6)
2183{
2184 u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
2185
2186#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
2187#define STAT(x) val[STAT_IDX(x)]
2188#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
2189
2190 if (v4) {
2191 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
2192 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
2193 v4->tcpOutRsts = STAT(OUT_RST);
2194 v4->tcpInSegs = STAT64(IN_SEG);
2195 v4->tcpOutSegs = STAT64(OUT_SEG);
2196 v4->tcpRetransSegs = STAT64(RXT_SEG);
2197 }
2198 if (v6) {
2199 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
2200 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
2201 v6->tcpOutRsts = STAT(OUT_RST);
2202 v6->tcpInSegs = STAT64(IN_SEG);
2203 v6->tcpOutSegs = STAT64(OUT_SEG);
2204 v6->tcpRetransSegs = STAT64(RXT_SEG);
2205 }
2206#undef STAT64
2207#undef STAT
2208#undef STAT_IDX
2209}
2210
2211/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002212 * t4_read_mtu_tbl - returns the values in the HW path MTU table
2213 * @adap: the adapter
2214 * @mtus: where to store the MTU values
2215 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
2216 *
2217 * Reads the HW path MTU table.
2218 */
2219void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
2220{
2221 u32 v;
2222 int i;
2223
2224 for (i = 0; i < NMTUS; ++i) {
2225 t4_write_reg(adap, TP_MTU_TABLE,
2226 MTUINDEX(0xff) | MTUVALUE(i));
2227 v = t4_read_reg(adap, TP_MTU_TABLE);
2228 mtus[i] = MTUVALUE_GET(v);
2229 if (mtu_log)
2230 mtu_log[i] = MTUWIDTH_GET(v);
2231 }
2232}
2233
2234/**
Vipul Pandya636f9d32012-09-26 02:39:39 +00002235 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
2236 * @adap: the adapter
2237 * @addr: the indirect TP register address
2238 * @mask: specifies the field within the register to modify
2239 * @val: new value for the field
2240 *
2241 * Sets a field of an indirect TP register to the given value.
2242 */
2243void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
2244 unsigned int mask, unsigned int val)
2245{
2246 t4_write_reg(adap, TP_PIO_ADDR, addr);
2247 val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
2248 t4_write_reg(adap, TP_PIO_DATA, val);
2249}
2250
2251/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002252 * init_cong_ctrl - initialize congestion control parameters
2253 * @a: the alpha values for congestion control
2254 * @b: the beta values for congestion control
2255 *
2256 * Initialize the congestion control parameters.
2257 */
Bill Pemberton91744942012-12-03 09:23:02 -05002258static void init_cong_ctrl(unsigned short *a, unsigned short *b)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002259{
2260 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2261 a[9] = 2;
2262 a[10] = 3;
2263 a[11] = 4;
2264 a[12] = 5;
2265 a[13] = 6;
2266 a[14] = 7;
2267 a[15] = 8;
2268 a[16] = 9;
2269 a[17] = 10;
2270 a[18] = 14;
2271 a[19] = 17;
2272 a[20] = 21;
2273 a[21] = 25;
2274 a[22] = 30;
2275 a[23] = 35;
2276 a[24] = 45;
2277 a[25] = 60;
2278 a[26] = 80;
2279 a[27] = 100;
2280 a[28] = 200;
2281 a[29] = 300;
2282 a[30] = 400;
2283 a[31] = 500;
2284
2285 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2286 b[9] = b[10] = 1;
2287 b[11] = b[12] = 2;
2288 b[13] = b[14] = b[15] = b[16] = 3;
2289 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2290 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2291 b[28] = b[29] = 6;
2292 b[30] = b[31] = 7;
2293}
2294
2295/* The minimum additive increment value for the congestion control table */
2296#define CC_MIN_INCR 2U
2297
2298/**
2299 * t4_load_mtus - write the MTU and congestion control HW tables
2300 * @adap: the adapter
2301 * @mtus: the values for the MTU table
2302 * @alpha: the values for the congestion control alpha parameter
2303 * @beta: the values for the congestion control beta parameter
2304 *
2305 * Write the HW MTU table with the supplied MTUs and the high-speed
2306 * congestion control table with the supplied alpha, beta, and MTUs.
2307 * We write the two tables together because the additive increments
2308 * depend on the MTUs.
2309 */
2310void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
2311 const unsigned short *alpha, const unsigned short *beta)
2312{
2313 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2314 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2315 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2316 28672, 40960, 57344, 81920, 114688, 163840, 229376
2317 };
2318
2319 unsigned int i, w;
2320
2321 for (i = 0; i < NMTUS; ++i) {
2322 unsigned int mtu = mtus[i];
2323 unsigned int log2 = fls(mtu);
2324
2325 if (!(mtu & ((1 << log2) >> 2))) /* round */
2326 log2--;
2327 t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
2328 MTUWIDTH(log2) | MTUVALUE(mtu));
2329
2330 for (w = 0; w < NCCTRL_WIN; ++w) {
2331 unsigned int inc;
2332
2333 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2334 CC_MIN_INCR);
2335
2336 t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
2337 (w << 16) | (beta[w] << 13) | inc);
2338 }
2339 }
2340}
2341
2342/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002343 * get_mps_bg_map - return the buffer groups associated with a port
2344 * @adap: the adapter
2345 * @idx: the port index
2346 *
2347 * Returns a bitmap indicating which MPS buffer groups are associated
2348 * with the given port. Bit i is set if buffer group i is used by the
2349 * port.
2350 */
2351static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
2352{
2353 u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
2354
2355 if (n == 0)
2356 return idx == 0 ? 0xf : 0;
2357 if (n == 1)
2358 return idx < 2 ? (3 << (2 * idx)) : 0;
2359 return 1 << idx;
2360}
2361
2362/**
Kumar Sanghvi72aca4b2014-02-18 17:56:08 +05302363 * t4_get_port_type_description - return Port Type string description
2364 * @port_type: firmware Port Type enumeration
2365 */
2366const char *t4_get_port_type_description(enum fw_port_type port_type)
2367{
2368 static const char *const port_type_description[] = {
2369 "R XFI",
2370 "R XAUI",
2371 "T SGMII",
2372 "T XFI",
2373 "T XAUI",
2374 "KX4",
2375 "CX4",
2376 "KX",
2377 "KR",
2378 "R SFP+",
2379 "KR/KX",
2380 "KR/KX/KX4",
2381 "R QSFP_10G",
Hariprasad Shenai5aa80e52014-12-17 17:36:00 +05302382 "R QSA",
Kumar Sanghvi72aca4b2014-02-18 17:56:08 +05302383 "R QSFP",
2384 "R BP40_BA",
2385 };
2386
2387 if (port_type < ARRAY_SIZE(port_type_description))
2388 return port_type_description[port_type];
2389 return "UNKNOWN";
2390}
2391
2392/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002393 * t4_get_port_stats - collect port statistics
2394 * @adap: the adapter
2395 * @idx: the port index
2396 * @p: the stats structure to fill
2397 *
2398 * Collect statistics related to the given port from HW.
2399 */
2400void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
2401{
2402 u32 bgmap = get_mps_bg_map(adap, idx);
2403
2404#define GET_STAT(name) \
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002405 t4_read_reg64(adap, \
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05302406 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002407 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002408#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
2409
2410 p->tx_octets = GET_STAT(TX_PORT_BYTES);
2411 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
2412 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
2413 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
2414 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
2415 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
2416 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
2417 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
2418 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
2419 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
2420 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
2421 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
2422 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
2423 p->tx_drop = GET_STAT(TX_PORT_DROP);
2424 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
2425 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
2426 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
2427 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
2428 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
2429 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
2430 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
2431 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
2432 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
2433
2434 p->rx_octets = GET_STAT(RX_PORT_BYTES);
2435 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
2436 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
2437 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
2438 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
2439 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
2440 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
2441 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
2442 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
2443 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
2444 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
2445 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
2446 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
2447 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
2448 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
2449 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
2450 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
2451 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
2452 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
2453 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
2454 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
2455 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
2456 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
2457 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
2458 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
2459 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
2460 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
2461
2462 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
2463 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
2464 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
2465 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
2466 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
2467 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
2468 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
2469 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
2470
2471#undef GET_STAT
2472#undef GET_STAT_COM
2473}
2474
2475/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002476 * t4_wol_magic_enable - enable/disable magic packet WoL
2477 * @adap: the adapter
2478 * @port: the physical port index
2479 * @addr: MAC address expected in magic packets, %NULL to disable
2480 *
2481 * Enables/disables magic packet wake-on-LAN for the selected port.
2482 */
2483void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
2484 const u8 *addr)
2485{
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002486 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
2487
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05302488 if (is_t4(adap->params.chip)) {
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002489 mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
2490 mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
2491 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
2492 } else {
2493 mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
2494 mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
2495 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
2496 }
2497
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002498 if (addr) {
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002499 t4_write_reg(adap, mag_id_reg_l,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002500 (addr[2] << 24) | (addr[3] << 16) |
2501 (addr[4] << 8) | addr[5]);
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002502 t4_write_reg(adap, mag_id_reg_h,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002503 (addr[0] << 8) | addr[1]);
2504 }
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002505 t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002506 addr ? MAGICEN : 0);
2507}
2508
2509/**
2510 * t4_wol_pat_enable - enable/disable pattern-based WoL
2511 * @adap: the adapter
2512 * @port: the physical port index
2513 * @map: bitmap of which HW pattern filters to set
2514 * @mask0: byte mask for bytes 0-63 of a packet
2515 * @mask1: byte mask for bytes 64-127 of a packet
2516 * @crc: Ethernet CRC for selected bytes
2517 * @enable: enable/disable switch
2518 *
2519 * Sets the pattern filters indicated in @map to mask out the bytes
2520 * specified in @mask0/@mask1 in received packets and compare the CRC of
2521 * the resulting packet against @crc. If @enable is %true pattern-based
2522 * WoL is enabled, otherwise disabled.
2523 */
2524int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
2525 u64 mask0, u64 mask1, unsigned int crc, bool enable)
2526{
2527 int i;
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002528 u32 port_cfg_reg;
2529
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05302530 if (is_t4(adap->params.chip))
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002531 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
2532 else
2533 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002534
2535 if (!enable) {
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002536 t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002537 return 0;
2538 }
2539 if (map > 0xff)
2540 return -EINVAL;
2541
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002542#define EPIO_REG(name) \
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05302543 (is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
Santosh Rastapur0a57a532013-03-14 05:08:49 +00002544 T5_PORT_REG(port, MAC_PORT_EPIO_##name))
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002545
2546 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
2547 t4_write_reg(adap, EPIO_REG(DATA2), mask1);
2548 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
2549
2550 for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
2551 if (!(map & 1))
2552 continue;
2553
2554 /* write byte masks */
2555 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
2556 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
2557 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
Naresh Kumar Innace91a922012-11-15 22:41:17 +05302558 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002559 return -ETIMEDOUT;
2560
2561 /* write CRC */
2562 t4_write_reg(adap, EPIO_REG(DATA0), crc);
2563 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
2564 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
Naresh Kumar Innace91a922012-11-15 22:41:17 +05302565 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002566 return -ETIMEDOUT;
2567 }
2568#undef EPIO_REG
2569
2570 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
2571 return 0;
2572}
2573
Vipul Pandyaf2b7e782012-12-10 09:30:52 +00002574/* t4_mk_filtdelwr - create a delete filter WR
2575 * @ftid: the filter ID
2576 * @wr: the filter work request to populate
2577 * @qid: ingress queue to receive the delete notification
2578 *
2579 * Creates a filter work request to delete the supplied filter. If @qid is
2580 * negative the delete notification is suppressed.
2581 */
2582void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
2583{
2584 memset(wr, 0, sizeof(*wr));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05302585 wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
2586 wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16));
Hariprasad Shenai77a80e22014-11-21 12:52:01 +05302587 wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) |
2588 FW_FILTER_WR_NOREPLY_V(qid < 0));
2589 wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F);
Vipul Pandyaf2b7e782012-12-10 09:30:52 +00002590 if (qid >= 0)
Hariprasad Shenai77a80e22014-11-21 12:52:01 +05302591 wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid));
Vipul Pandyaf2b7e782012-12-10 09:30:52 +00002592}
2593
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002594#define INIT_CMD(var, cmd, rd_wr) do { \
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05302595 (var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \
2596 FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002597 (var).retval_len16 = htonl(FW_LEN16(var)); \
2598} while (0)
2599
Vipul Pandya8caa1e82012-05-18 15:29:25 +05302600int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
2601 u32 addr, u32 val)
2602{
2603 struct fw_ldst_cmd c;
2604
2605 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05302606 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
2607 FW_CMD_WRITE_F |
Hariprasad Shenai51678652014-11-21 12:52:02 +05302608 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE));
Vipul Pandya8caa1e82012-05-18 15:29:25 +05302609 c.cycles_to_len16 = htonl(FW_LEN16(c));
2610 c.u.addrval.addr = htonl(addr);
2611 c.u.addrval.val = htonl(val);
2612
2613 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2614}
2615
Ben Hutchings49ce9c22012-07-10 10:56:00 +00002616/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002617 * t4_mdio_rd - read a PHY register through MDIO
2618 * @adap: the adapter
2619 * @mbox: mailbox to use for the FW command
2620 * @phy_addr: the PHY address
2621 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2622 * @reg: the register to read
2623 * @valp: where to store the value
2624 *
2625 * Issues a FW command through the given mailbox to read a PHY register.
2626 */
2627int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2628 unsigned int mmd, unsigned int reg, u16 *valp)
2629{
2630 int ret;
2631 struct fw_ldst_cmd c;
2632
2633 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05302634 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai51678652014-11-21 12:52:02 +05302635 FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002636 c.cycles_to_len16 = htonl(FW_LEN16(c));
Hariprasad Shenai51678652014-11-21 12:52:02 +05302637 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
2638 FW_LDST_CMD_MMD_V(mmd));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002639 c.u.mdio.raddr = htons(reg);
2640
2641 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2642 if (ret == 0)
2643 *valp = ntohs(c.u.mdio.rval);
2644 return ret;
2645}
2646
2647/**
2648 * t4_mdio_wr - write a PHY register through MDIO
2649 * @adap: the adapter
2650 * @mbox: mailbox to use for the FW command
2651 * @phy_addr: the PHY address
2652 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2653 * @reg: the register to write
2654 * @valp: value to write
2655 *
2656 * Issues a FW command through the given mailbox to write a PHY register.
2657 */
2658int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2659 unsigned int mmd, unsigned int reg, u16 val)
2660{
2661 struct fw_ldst_cmd c;
2662
2663 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05302664 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai51678652014-11-21 12:52:02 +05302665 FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002666 c.cycles_to_len16 = htonl(FW_LEN16(c));
Hariprasad Shenai51678652014-11-21 12:52:02 +05302667 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
2668 FW_LDST_CMD_MMD_V(mmd));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002669 c.u.mdio.raddr = htons(reg);
2670 c.u.mdio.rval = htons(val);
2671
2672 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2673}
2674
2675/**
Kumar Sanghvi68bce1922014-03-13 20:50:47 +05302676 * t4_sge_decode_idma_state - decode the idma state
2677 * @adap: the adapter
2678 * @state: the state idma is stuck in
2679 */
2680void t4_sge_decode_idma_state(struct adapter *adapter, int state)
2681{
2682 static const char * const t4_decode[] = {
2683 "IDMA_IDLE",
2684 "IDMA_PUSH_MORE_CPL_FIFO",
2685 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
2686 "Not used",
2687 "IDMA_PHYSADDR_SEND_PCIEHDR",
2688 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
2689 "IDMA_PHYSADDR_SEND_PAYLOAD",
2690 "IDMA_SEND_FIFO_TO_IMSG",
2691 "IDMA_FL_REQ_DATA_FL_PREP",
2692 "IDMA_FL_REQ_DATA_FL",
2693 "IDMA_FL_DROP",
2694 "IDMA_FL_H_REQ_HEADER_FL",
2695 "IDMA_FL_H_SEND_PCIEHDR",
2696 "IDMA_FL_H_PUSH_CPL_FIFO",
2697 "IDMA_FL_H_SEND_CPL",
2698 "IDMA_FL_H_SEND_IP_HDR_FIRST",
2699 "IDMA_FL_H_SEND_IP_HDR",
2700 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
2701 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
2702 "IDMA_FL_H_SEND_IP_HDR_PADDING",
2703 "IDMA_FL_D_SEND_PCIEHDR",
2704 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
2705 "IDMA_FL_D_REQ_NEXT_DATA_FL",
2706 "IDMA_FL_SEND_PCIEHDR",
2707 "IDMA_FL_PUSH_CPL_FIFO",
2708 "IDMA_FL_SEND_CPL",
2709 "IDMA_FL_SEND_PAYLOAD_FIRST",
2710 "IDMA_FL_SEND_PAYLOAD",
2711 "IDMA_FL_REQ_NEXT_DATA_FL",
2712 "IDMA_FL_SEND_NEXT_PCIEHDR",
2713 "IDMA_FL_SEND_PADDING",
2714 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
2715 "IDMA_FL_SEND_FIFO_TO_IMSG",
2716 "IDMA_FL_REQ_DATAFL_DONE",
2717 "IDMA_FL_REQ_HEADERFL_DONE",
2718 };
2719 static const char * const t5_decode[] = {
2720 "IDMA_IDLE",
2721 "IDMA_ALMOST_IDLE",
2722 "IDMA_PUSH_MORE_CPL_FIFO",
2723 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
2724 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
2725 "IDMA_PHYSADDR_SEND_PCIEHDR",
2726 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
2727 "IDMA_PHYSADDR_SEND_PAYLOAD",
2728 "IDMA_SEND_FIFO_TO_IMSG",
2729 "IDMA_FL_REQ_DATA_FL",
2730 "IDMA_FL_DROP",
2731 "IDMA_FL_DROP_SEND_INC",
2732 "IDMA_FL_H_REQ_HEADER_FL",
2733 "IDMA_FL_H_SEND_PCIEHDR",
2734 "IDMA_FL_H_PUSH_CPL_FIFO",
2735 "IDMA_FL_H_SEND_CPL",
2736 "IDMA_FL_H_SEND_IP_HDR_FIRST",
2737 "IDMA_FL_H_SEND_IP_HDR",
2738 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
2739 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
2740 "IDMA_FL_H_SEND_IP_HDR_PADDING",
2741 "IDMA_FL_D_SEND_PCIEHDR",
2742 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
2743 "IDMA_FL_D_REQ_NEXT_DATA_FL",
2744 "IDMA_FL_SEND_PCIEHDR",
2745 "IDMA_FL_PUSH_CPL_FIFO",
2746 "IDMA_FL_SEND_CPL",
2747 "IDMA_FL_SEND_PAYLOAD_FIRST",
2748 "IDMA_FL_SEND_PAYLOAD",
2749 "IDMA_FL_REQ_NEXT_DATA_FL",
2750 "IDMA_FL_SEND_NEXT_PCIEHDR",
2751 "IDMA_FL_SEND_PADDING",
2752 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
2753 };
2754 static const u32 sge_regs[] = {
Hariprasad Shenaif061de42015-01-05 16:30:44 +05302755 SGE_DEBUG_DATA_LOW_INDEX_2_A,
2756 SGE_DEBUG_DATA_LOW_INDEX_3_A,
2757 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
Kumar Sanghvi68bce1922014-03-13 20:50:47 +05302758 };
2759 const char **sge_idma_decode;
2760 int sge_idma_decode_nstates;
2761 int i;
2762
2763 if (is_t4(adapter->params.chip)) {
2764 sge_idma_decode = (const char **)t4_decode;
2765 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
2766 } else {
2767 sge_idma_decode = (const char **)t5_decode;
2768 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
2769 }
2770
2771 if (state < sge_idma_decode_nstates)
2772 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
2773 else
2774 CH_WARN(adapter, "idma state %d unknown\n", state);
2775
2776 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
2777 CH_WARN(adapter, "SGE register %#x value %#x\n",
2778 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
2779}
2780
2781/**
Vipul Pandya636f9d32012-09-26 02:39:39 +00002782 * t4_fw_hello - establish communication with FW
2783 * @adap: the adapter
2784 * @mbox: mailbox to use for the FW command
2785 * @evt_mbox: mailbox to receive async FW events
2786 * @master: specifies the caller's willingness to be the device master
2787 * @state: returns the current device state (if non-NULL)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002788 *
Vipul Pandya636f9d32012-09-26 02:39:39 +00002789 * Issues a command to establish communication with FW. Returns either
2790 * an error (negative integer) or the mailbox of the Master PF.
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002791 */
2792int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
2793 enum dev_master master, enum dev_state *state)
2794{
2795 int ret;
2796 struct fw_hello_cmd c;
Vipul Pandya636f9d32012-09-26 02:39:39 +00002797 u32 v;
2798 unsigned int master_mbox;
2799 int retries = FW_CMD_HELLO_RETRIES;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002800
Vipul Pandya636f9d32012-09-26 02:39:39 +00002801retry:
2802 memset(&c, 0, sizeof(c));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002803 INIT_CMD(c, HELLO, WRITE);
Naresh Kumar Innace91a922012-11-15 22:41:17 +05302804 c.err_to_clearinit = htonl(
Hariprasad Shenai51678652014-11-21 12:52:02 +05302805 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
2806 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
2807 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox :
2808 FW_HELLO_CMD_MBMASTER_M) |
2809 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
2810 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
2811 FW_HELLO_CMD_CLEARINIT_F);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002812
Vipul Pandya636f9d32012-09-26 02:39:39 +00002813 /*
2814 * Issue the HELLO command to the firmware. If it's not successful
2815 * but indicates that we got a "busy" or "timeout" condition, retry
Hariprasad Shenai31d55c22014-09-01 19:54:58 +05302816 * the HELLO until we exhaust our retry limit. If we do exceed our
2817 * retry limit, check to see if the firmware left us any error
2818 * information and report that if so.
Vipul Pandya636f9d32012-09-26 02:39:39 +00002819 */
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002820 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
Vipul Pandya636f9d32012-09-26 02:39:39 +00002821 if (ret < 0) {
2822 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
2823 goto retry;
Hariprasad Shenaif061de42015-01-05 16:30:44 +05302824 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
Hariprasad Shenai31d55c22014-09-01 19:54:58 +05302825 t4_report_fw_error(adap);
Vipul Pandya636f9d32012-09-26 02:39:39 +00002826 return ret;
2827 }
2828
Naresh Kumar Innace91a922012-11-15 22:41:17 +05302829 v = ntohl(c.err_to_clearinit);
Hariprasad Shenai51678652014-11-21 12:52:02 +05302830 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
Vipul Pandya636f9d32012-09-26 02:39:39 +00002831 if (state) {
Hariprasad Shenai51678652014-11-21 12:52:02 +05302832 if (v & FW_HELLO_CMD_ERR_F)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002833 *state = DEV_STATE_ERR;
Hariprasad Shenai51678652014-11-21 12:52:02 +05302834 else if (v & FW_HELLO_CMD_INIT_F)
Vipul Pandya636f9d32012-09-26 02:39:39 +00002835 *state = DEV_STATE_INIT;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002836 else
2837 *state = DEV_STATE_UNINIT;
2838 }
Vipul Pandya636f9d32012-09-26 02:39:39 +00002839
2840 /*
2841 * If we're not the Master PF then we need to wait around for the
2842 * Master PF Driver to finish setting up the adapter.
2843 *
2844 * Note that we also do this wait if we're a non-Master-capable PF and
2845 * there is no current Master PF; a Master PF may show up momentarily
2846 * and we wouldn't want to fail pointlessly. (This can happen when an
2847 * OS loads lots of different drivers rapidly at the same time). In
2848 * this case, the Master PF returned by the firmware will be
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302849 * PCIE_FW_MASTER_M so the test below will work ...
Vipul Pandya636f9d32012-09-26 02:39:39 +00002850 */
Hariprasad Shenai51678652014-11-21 12:52:02 +05302851 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
Vipul Pandya636f9d32012-09-26 02:39:39 +00002852 master_mbox != mbox) {
2853 int waiting = FW_CMD_HELLO_TIMEOUT;
2854
2855 /*
2856 * Wait for the firmware to either indicate an error or
2857 * initialized state. If we see either of these we bail out
2858 * and report the issue to the caller. If we exhaust the
2859 * "hello timeout" and we haven't exhausted our retries, try
2860 * again. Otherwise bail with a timeout error.
2861 */
2862 for (;;) {
2863 u32 pcie_fw;
2864
2865 msleep(50);
2866 waiting -= 50;
2867
2868 /*
2869 * If neither Error nor Initialialized are indicated
2870 * by the firmware keep waiting till we exaust our
2871 * timeout ... and then retry if we haven't exhausted
2872 * our retries ...
2873 */
Hariprasad Shenaif061de42015-01-05 16:30:44 +05302874 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
2875 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
Vipul Pandya636f9d32012-09-26 02:39:39 +00002876 if (waiting <= 0) {
2877 if (retries-- > 0)
2878 goto retry;
2879
2880 return -ETIMEDOUT;
2881 }
2882 continue;
2883 }
2884
2885 /*
2886 * We either have an Error or Initialized condition
2887 * report errors preferentially.
2888 */
2889 if (state) {
Hariprasad Shenaif061de42015-01-05 16:30:44 +05302890 if (pcie_fw & PCIE_FW_ERR_F)
Vipul Pandya636f9d32012-09-26 02:39:39 +00002891 *state = DEV_STATE_ERR;
Hariprasad Shenaif061de42015-01-05 16:30:44 +05302892 else if (pcie_fw & PCIE_FW_INIT_F)
Vipul Pandya636f9d32012-09-26 02:39:39 +00002893 *state = DEV_STATE_INIT;
2894 }
2895
2896 /*
2897 * If we arrived before a Master PF was selected and
2898 * there's not a valid Master PF, grab its identity
2899 * for our caller.
2900 */
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302901 if (master_mbox == PCIE_FW_MASTER_M &&
Hariprasad Shenaif061de42015-01-05 16:30:44 +05302902 (pcie_fw & PCIE_FW_MASTER_VLD_F))
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302903 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
Vipul Pandya636f9d32012-09-26 02:39:39 +00002904 break;
2905 }
2906 }
2907
2908 return master_mbox;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002909}
2910
2911/**
2912 * t4_fw_bye - end communication with FW
2913 * @adap: the adapter
2914 * @mbox: mailbox to use for the FW command
2915 *
2916 * Issues a command to terminate communication with FW.
2917 */
2918int t4_fw_bye(struct adapter *adap, unsigned int mbox)
2919{
2920 struct fw_bye_cmd c;
2921
Vipul Pandya0062b152012-11-06 03:37:09 +00002922 memset(&c, 0, sizeof(c));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002923 INIT_CMD(c, BYE, WRITE);
2924 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2925}
2926
2927/**
2928 * t4_init_cmd - ask FW to initialize the device
2929 * @adap: the adapter
2930 * @mbox: mailbox to use for the FW command
2931 *
2932 * Issues a command to FW to partially initialize the device. This
2933 * performs initialization that generally doesn't depend on user input.
2934 */
2935int t4_early_init(struct adapter *adap, unsigned int mbox)
2936{
2937 struct fw_initialize_cmd c;
2938
Vipul Pandya0062b152012-11-06 03:37:09 +00002939 memset(&c, 0, sizeof(c));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002940 INIT_CMD(c, INITIALIZE, WRITE);
2941 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2942}
2943
2944/**
2945 * t4_fw_reset - issue a reset to FW
2946 * @adap: the adapter
2947 * @mbox: mailbox to use for the FW command
2948 * @reset: specifies the type of reset to perform
2949 *
2950 * Issues a reset command of the specified type to FW.
2951 */
2952int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
2953{
2954 struct fw_reset_cmd c;
2955
Vipul Pandya0062b152012-11-06 03:37:09 +00002956 memset(&c, 0, sizeof(c));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00002957 INIT_CMD(c, RESET, WRITE);
2958 c.val = htonl(reset);
2959 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2960}
2961
2962/**
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00002963 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
2964 * @adap: the adapter
2965 * @mbox: mailbox to use for the FW RESET command (if desired)
2966 * @force: force uP into RESET even if FW RESET command fails
2967 *
2968 * Issues a RESET command to firmware (if desired) with a HALT indication
2969 * and then puts the microprocessor into RESET state. The RESET command
2970 * will only be issued if a legitimate mailbox is provided (mbox <=
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302971 * PCIE_FW_MASTER_M).
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00002972 *
2973 * This is generally used in order for the host to safely manipulate the
2974 * adapter without fear of conflicting with whatever the firmware might
2975 * be doing. The only way out of this state is to RESTART the firmware
2976 * ...
2977 */
stephen hemmingerde5b8672013-12-18 14:16:47 -08002978static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00002979{
2980 int ret = 0;
2981
2982 /*
2983 * If a legitimate mailbox is provided, issue a RESET command
2984 * with a HALT indication.
2985 */
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05302986 if (mbox <= PCIE_FW_MASTER_M) {
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00002987 struct fw_reset_cmd c;
2988
2989 memset(&c, 0, sizeof(c));
2990 INIT_CMD(c, RESET, WRITE);
2991 c.val = htonl(PIORST | PIORSTMODE);
Hariprasad Shenai51678652014-11-21 12:52:02 +05302992 c.halt_pkd = htonl(FW_RESET_CMD_HALT_F);
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00002993 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2994 }
2995
2996 /*
2997 * Normally we won't complete the operation if the firmware RESET
2998 * command fails but if our caller insists we'll go ahead and put the
2999 * uP into RESET. This can be useful if the firmware is hung or even
3000 * missing ... We'll have to take the risk of putting the uP into
3001 * RESET without the cooperation of firmware in that case.
3002 *
3003 * We also force the firmware's HALT flag to be on in case we bypassed
3004 * the firmware RESET command above or we're dealing with old firmware
3005 * which doesn't have the HALT capability. This will serve as a flag
3006 * for the incoming firmware to know that it's coming out of a HALT
3007 * rather than a RESET ... if it's new enough to understand that ...
3008 */
3009 if (ret == 0 || force) {
3010 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
Hariprasad Shenaif061de42015-01-05 16:30:44 +05303011 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05303012 PCIE_FW_HALT_F);
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00003013 }
3014
3015 /*
3016 * And we always return the result of the firmware RESET command
3017 * even when we force the uP into RESET ...
3018 */
3019 return ret;
3020}
3021
3022/**
3023 * t4_fw_restart - restart the firmware by taking the uP out of RESET
3024 * @adap: the adapter
3025 * @reset: if we want to do a RESET to restart things
3026 *
3027 * Restart firmware previously halted by t4_fw_halt(). On successful
3028 * return the previous PF Master remains as the new PF Master and there
3029 * is no need to issue a new HELLO command, etc.
3030 *
3031 * We do this in two ways:
3032 *
3033 * 1. If we're dealing with newer firmware we'll simply want to take
3034 * the chip's microprocessor out of RESET. This will cause the
3035 * firmware to start up from its start vector. And then we'll loop
3036 * until the firmware indicates it's started again (PCIE_FW.HALT
3037 * reset to 0) or we timeout.
3038 *
3039 * 2. If we're dealing with older firmware then we'll need to RESET
3040 * the chip since older firmware won't recognize the PCIE_FW.HALT
3041 * flag and automatically RESET itself on startup.
3042 */
stephen hemmingerde5b8672013-12-18 14:16:47 -08003043static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00003044{
3045 if (reset) {
3046 /*
3047 * Since we're directing the RESET instead of the firmware
3048 * doing it automatically, we need to clear the PCIE_FW.HALT
3049 * bit.
3050 */
Hariprasad Shenaif061de42015-01-05 16:30:44 +05303051 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00003052
3053 /*
3054 * If we've been given a valid mailbox, first try to get the
3055 * firmware to do the RESET. If that works, great and we can
3056 * return success. Otherwise, if we haven't been given a
3057 * valid mailbox or the RESET command failed, fall back to
3058 * hitting the chip with a hammer.
3059 */
Hariprasad Shenaib2e1a3f2014-11-21 12:52:05 +05303060 if (mbox <= PCIE_FW_MASTER_M) {
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00003061 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
3062 msleep(100);
3063 if (t4_fw_reset(adap, mbox,
3064 PIORST | PIORSTMODE) == 0)
3065 return 0;
3066 }
3067
3068 t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
3069 msleep(2000);
3070 } else {
3071 int ms;
3072
3073 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
3074 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
Hariprasad Shenaif061de42015-01-05 16:30:44 +05303075 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00003076 return 0;
3077 msleep(100);
3078 ms += 100;
3079 }
3080 return -ETIMEDOUT;
3081 }
3082 return 0;
3083}
3084
3085/**
3086 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
3087 * @adap: the adapter
3088 * @mbox: mailbox to use for the FW RESET command (if desired)
3089 * @fw_data: the firmware image to write
3090 * @size: image size
3091 * @force: force upgrade even if firmware doesn't cooperate
3092 *
3093 * Perform all of the steps necessary for upgrading an adapter's
3094 * firmware image. Normally this requires the cooperation of the
3095 * existing firmware in order to halt all existing activities
3096 * but if an invalid mailbox token is passed in we skip that step
3097 * (though we'll still put the adapter microprocessor into RESET in
3098 * that case).
3099 *
3100 * On successful return the new firmware will have been loaded and
3101 * the adapter will have been fully RESET losing all previous setup
3102 * state. On unsuccessful return the adapter may be completely hosed ...
3103 * positive errno indicates that the adapter is ~probably~ intact, a
3104 * negative errno indicates that things are looking bad ...
3105 */
Hariprasad Shenai22c0b962014-10-15 01:54:14 +05303106int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
3107 const u8 *fw_data, unsigned int size, int force)
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00003108{
3109 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
3110 int reset, ret;
3111
Hariprasad Shenai79af2212014-12-03 11:49:50 +05303112 if (!t4_fw_matches_chip(adap, fw_hdr))
3113 return -EINVAL;
3114
Vipul Pandya26f7cbc2012-09-26 02:39:42 +00003115 ret = t4_fw_halt(adap, mbox, force);
3116 if (ret < 0 && !force)
3117 return ret;
3118
3119 ret = t4_load_fw(adap, fw_data, size);
3120 if (ret < 0)
3121 return ret;
3122
3123 /*
3124 * Older versions of the firmware don't understand the new
3125 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
3126 * restart. So for newly loaded older firmware we'll have to do the
3127 * RESET for it so it starts up on a clean slate. We can tell if
3128 * the newly loaded firmware will handle this right by checking
3129 * its header flags to see if it advertises the capability.
3130 */
3131 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
3132 return t4_fw_restart(adap, mbox, reset);
3133}
3134
Vipul Pandya636f9d32012-09-26 02:39:39 +00003135/**
3136 * t4_fixup_host_params - fix up host-dependent parameters
3137 * @adap: the adapter
3138 * @page_size: the host's Base Page Size
3139 * @cache_line_size: the host's Cache Line Size
3140 *
3141 * Various registers in T4 contain values which are dependent on the
3142 * host's Base Page and Cache Line Sizes. This function will fix all of
3143 * those registers with the appropriate values as passed in ...
3144 */
3145int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3146 unsigned int cache_line_size)
3147{
3148 unsigned int page_shift = fls(page_size) - 1;
3149 unsigned int sge_hps = page_shift - 10;
3150 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3151 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3152 unsigned int fl_align_log = fls(fl_align) - 1;
3153
Hariprasad Shenaif612b812015-01-05 16:30:43 +05303154 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
3155 HOSTPAGESIZEPF0_V(sge_hps) |
3156 HOSTPAGESIZEPF1_V(sge_hps) |
3157 HOSTPAGESIZEPF2_V(sge_hps) |
3158 HOSTPAGESIZEPF3_V(sge_hps) |
3159 HOSTPAGESIZEPF4_V(sge_hps) |
3160 HOSTPAGESIZEPF5_V(sge_hps) |
3161 HOSTPAGESIZEPF6_V(sge_hps) |
3162 HOSTPAGESIZEPF7_V(sge_hps));
Vipul Pandya636f9d32012-09-26 02:39:39 +00003163
Hariprasad Shenaice8f4072014-11-07 17:06:30 +05303164 if (is_t4(adap->params.chip)) {
Hariprasad Shenaif612b812015-01-05 16:30:43 +05303165 t4_set_reg_field(adap, SGE_CONTROL_A,
3166 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
3167 EGRSTATUSPAGESIZE_F,
3168 INGPADBOUNDARY_V(fl_align_log -
3169 INGPADBOUNDARY_SHIFT_X) |
3170 EGRSTATUSPAGESIZE_V(stat_len != 64));
Hariprasad Shenaice8f4072014-11-07 17:06:30 +05303171 } else {
3172 /* T5 introduced the separation of the Free List Padding and
3173 * Packing Boundaries. Thus, we can select a smaller Padding
3174 * Boundary to avoid uselessly chewing up PCIe Link and Memory
3175 * Bandwidth, and use a Packing Boundary which is large enough
3176 * to avoid false sharing between CPUs, etc.
3177 *
3178 * For the PCI Link, the smaller the Padding Boundary the
3179 * better. For the Memory Controller, a smaller Padding
3180 * Boundary is better until we cross under the Memory Line
3181 * Size (the minimum unit of transfer to/from Memory). If we
3182 * have a Padding Boundary which is smaller than the Memory
3183 * Line Size, that'll involve a Read-Modify-Write cycle on the
3184 * Memory Controller which is never good. For T5 the smallest
3185 * Padding Boundary which we can select is 32 bytes which is
3186 * larger than any known Memory Controller Line Size so we'll
3187 * use that.
3188 *
3189 * T5 has a different interpretation of the "0" value for the
3190 * Packing Boundary. This corresponds to 16 bytes instead of
3191 * the expected 32 bytes. We never have a Packing Boundary
3192 * less than 32 bytes so we can't use that special value but
3193 * on the other hand, if we wanted 32 bytes, the best we can
3194 * really do is 64 bytes.
3195 */
3196 if (fl_align <= 32) {
3197 fl_align = 64;
3198 fl_align_log = 6;
3199 }
Hariprasad Shenaif612b812015-01-05 16:30:43 +05303200 t4_set_reg_field(adap, SGE_CONTROL_A,
3201 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
3202 EGRSTATUSPAGESIZE_F,
3203 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
3204 EGRSTATUSPAGESIZE_V(stat_len != 64));
Hariprasad Shenaice8f4072014-11-07 17:06:30 +05303205 t4_set_reg_field(adap, SGE_CONTROL2_A,
3206 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
3207 INGPACKBOUNDARY_V(fl_align_log -
Hariprasad Shenaif612b812015-01-05 16:30:43 +05303208 INGPACKBOUNDARY_SHIFT_X));
Hariprasad Shenaice8f4072014-11-07 17:06:30 +05303209 }
Vipul Pandya636f9d32012-09-26 02:39:39 +00003210 /*
3211 * Adjust various SGE Free List Host Buffer Sizes.
3212 *
3213 * This is something of a crock since we're using fixed indices into
3214 * the array which are also known by the sge.c code and the T4
3215 * Firmware Configuration File. We need to come up with a much better
3216 * approach to managing this array. For now, the first four entries
3217 * are:
3218 *
3219 * 0: Host Page Size
3220 * 1: 64KB
3221 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3222 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3223 *
3224 * For the single-MTU buffers in unpacked mode we need to include
3225 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3226 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3227 * Padding boundry. All of these are accommodated in the Factory
3228 * Default Firmware Configuration File but we need to adjust it for
3229 * this host's cache line size.
3230 */
Hariprasad Shenaif612b812015-01-05 16:30:43 +05303231 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
3232 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
3233 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
Vipul Pandya636f9d32012-09-26 02:39:39 +00003234 & ~(fl_align-1));
Hariprasad Shenaif612b812015-01-05 16:30:43 +05303235 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
3236 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
Vipul Pandya636f9d32012-09-26 02:39:39 +00003237 & ~(fl_align-1));
3238
3239 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
3240
3241 return 0;
3242}
3243
3244/**
3245 * t4_fw_initialize - ask FW to initialize the device
3246 * @adap: the adapter
3247 * @mbox: mailbox to use for the FW command
3248 *
3249 * Issues a command to FW to partially initialize the device. This
3250 * performs initialization that generally doesn't depend on user input.
3251 */
3252int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3253{
3254 struct fw_initialize_cmd c;
3255
3256 memset(&c, 0, sizeof(c));
3257 INIT_CMD(c, INITIALIZE, WRITE);
3258 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3259}
3260
3261/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003262 * t4_query_params - query FW or device parameters
3263 * @adap: the adapter
3264 * @mbox: mailbox to use for the FW command
3265 * @pf: the PF
3266 * @vf: the VF
3267 * @nparams: the number of parameters
3268 * @params: the parameter names
3269 * @val: the parameter values
3270 *
3271 * Reads the value of FW or device parameters. Up to 7 parameters can be
3272 * queried at once.
3273 */
3274int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3275 unsigned int vf, unsigned int nparams, const u32 *params,
3276 u32 *val)
3277{
3278 int i, ret;
3279 struct fw_params_cmd c;
3280 __be32 *p = &c.param[0].mnem;
3281
3282 if (nparams > 7)
3283 return -EINVAL;
3284
3285 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303286 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai51678652014-11-21 12:52:02 +05303287 FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) |
3288 FW_PARAMS_CMD_VFN_V(vf));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003289 c.retval_len16 = htonl(FW_LEN16(c));
3290 for (i = 0; i < nparams; i++, p += 2)
3291 *p = htonl(*params++);
3292
3293 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3294 if (ret == 0)
3295 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3296 *val++ = ntohl(*p);
3297 return ret;
3298}
3299
3300/**
Anish Bhatt688848b2014-06-19 21:37:13 -07003301 * t4_set_params_nosleep - sets FW or device parameters
3302 * @adap: the adapter
3303 * @mbox: mailbox to use for the FW command
3304 * @pf: the PF
3305 * @vf: the VF
3306 * @nparams: the number of parameters
3307 * @params: the parameter names
3308 * @val: the parameter values
3309 *
3310 * Does not ever sleep
3311 * Sets the value of FW or device parameters. Up to 7 parameters can be
3312 * specified at once.
3313 */
3314int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox,
3315 unsigned int pf, unsigned int vf,
3316 unsigned int nparams, const u32 *params,
3317 const u32 *val)
3318{
3319 struct fw_params_cmd c;
3320 __be32 *p = &c.param[0].mnem;
3321
3322 if (nparams > 7)
3323 return -EINVAL;
3324
3325 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303326 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3327 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
Hariprasad Shenai51678652014-11-21 12:52:02 +05303328 FW_PARAMS_CMD_PFN_V(pf) |
3329 FW_PARAMS_CMD_VFN_V(vf));
Anish Bhatt688848b2014-06-19 21:37:13 -07003330 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3331
3332 while (nparams--) {
3333 *p++ = cpu_to_be32(*params++);
3334 *p++ = cpu_to_be32(*val++);
3335 }
3336
3337 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3338}
3339
3340/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003341 * t4_set_params - sets FW or device parameters
3342 * @adap: the adapter
3343 * @mbox: mailbox to use for the FW command
3344 * @pf: the PF
3345 * @vf: the VF
3346 * @nparams: the number of parameters
3347 * @params: the parameter names
3348 * @val: the parameter values
3349 *
3350 * Sets the value of FW or device parameters. Up to 7 parameters can be
3351 * specified at once.
3352 */
3353int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3354 unsigned int vf, unsigned int nparams, const u32 *params,
3355 const u32 *val)
3356{
3357 struct fw_params_cmd c;
3358 __be32 *p = &c.param[0].mnem;
3359
3360 if (nparams > 7)
3361 return -EINVAL;
3362
3363 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303364 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai51678652014-11-21 12:52:02 +05303365 FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) |
3366 FW_PARAMS_CMD_VFN_V(vf));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003367 c.retval_len16 = htonl(FW_LEN16(c));
3368 while (nparams--) {
3369 *p++ = htonl(*params++);
3370 *p++ = htonl(*val++);
3371 }
3372
3373 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3374}
3375
3376/**
3377 * t4_cfg_pfvf - configure PF/VF resource limits
3378 * @adap: the adapter
3379 * @mbox: mailbox to use for the FW command
3380 * @pf: the PF being configured
3381 * @vf: the VF being configured
3382 * @txq: the max number of egress queues
3383 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
3384 * @rxqi: the max number of interrupt-capable ingress queues
3385 * @rxq: the max number of interruptless ingress queues
3386 * @tc: the PCI traffic class
3387 * @vi: the max number of virtual interfaces
3388 * @cmask: the channel access rights mask for the PF/VF
3389 * @pmask: the port access rights mask for the PF/VF
3390 * @nexact: the maximum number of exact MPS filters
3391 * @rcaps: read capabilities
3392 * @wxcaps: write/execute capabilities
3393 *
3394 * Configures resource limits and capabilities for a physical or virtual
3395 * function.
3396 */
3397int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
3398 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
3399 unsigned int rxqi, unsigned int rxq, unsigned int tc,
3400 unsigned int vi, unsigned int cmask, unsigned int pmask,
3401 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
3402{
3403 struct fw_pfvf_cmd c;
3404
3405 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303406 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai51678652014-11-21 12:52:02 +05303407 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
3408 FW_PFVF_CMD_VFN_V(vf));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003409 c.retval_len16 = htonl(FW_LEN16(c));
Hariprasad Shenai51678652014-11-21 12:52:02 +05303410 c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
3411 FW_PFVF_CMD_NIQ_V(rxq));
3412 c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) |
3413 FW_PFVF_CMD_PMASK_V(pmask) |
3414 FW_PFVF_CMD_NEQ_V(txq));
3415 c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) |
3416 FW_PFVF_CMD_NEXACTF_V(nexact));
3417 c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) |
3418 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
3419 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003420 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3421}
3422
3423/**
3424 * t4_alloc_vi - allocate a virtual interface
3425 * @adap: the adapter
3426 * @mbox: mailbox to use for the FW command
3427 * @port: physical port associated with the VI
3428 * @pf: the PF owning the VI
3429 * @vf: the VF owning the VI
3430 * @nmac: number of MAC addresses needed (1 to 5)
3431 * @mac: the MAC addresses of the VI
3432 * @rss_size: size of RSS table slice associated with this VI
3433 *
3434 * Allocates a virtual interface for the given physical port. If @mac is
3435 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3436 * @mac should be large enough to hold @nmac Ethernet addresses, they are
3437 * stored consecutively so the space needed is @nmac * 6 bytes.
3438 * Returns a negative error number or the non-negative VI id.
3439 */
3440int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3441 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3442 unsigned int *rss_size)
3443{
3444 int ret;
3445 struct fw_vi_cmd c;
3446
3447 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303448 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
3449 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303450 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
3451 c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
3452 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003453 c.nmac = nmac - 1;
3454
3455 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3456 if (ret)
3457 return ret;
3458
3459 if (mac) {
3460 memcpy(mac, c.mac, sizeof(c.mac));
3461 switch (nmac) {
3462 case 5:
3463 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3464 case 4:
3465 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3466 case 3:
3467 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3468 case 2:
3469 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
3470 }
3471 }
3472 if (rss_size)
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303473 *rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd));
3474 return FW_VI_CMD_VIID_G(ntohs(c.type_viid));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003475}
3476
3477/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003478 * t4_set_rxmode - set Rx properties of a virtual interface
3479 * @adap: the adapter
3480 * @mbox: mailbox to use for the FW command
3481 * @viid: the VI id
3482 * @mtu: the new MTU or -1
3483 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3484 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3485 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
Dimitris Michailidisf8f5aaf2010-05-10 15:58:07 +00003486 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003487 * @sleep_ok: if true we may sleep while awaiting command completion
3488 *
3489 * Sets Rx properties of a virtual interface.
3490 */
3491int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
Dimitris Michailidisf8f5aaf2010-05-10 15:58:07 +00003492 int mtu, int promisc, int all_multi, int bcast, int vlanex,
3493 bool sleep_ok)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003494{
3495 struct fw_vi_rxmode_cmd c;
3496
3497 /* convert to FW values */
3498 if (mtu < 0)
3499 mtu = FW_RXMODE_MTU_NO_CHG;
3500 if (promisc < 0)
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303501 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003502 if (all_multi < 0)
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303503 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003504 if (bcast < 0)
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303505 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
Dimitris Michailidisf8f5aaf2010-05-10 15:58:07 +00003506 if (vlanex < 0)
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303507 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003508
3509 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303510 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303511 FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003512 c.retval_len16 = htonl(FW_LEN16(c));
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303513 c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) |
3514 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
3515 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
3516 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
3517 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003518 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3519}
3520
3521/**
3522 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
3523 * @adap: the adapter
3524 * @mbox: mailbox to use for the FW command
3525 * @viid: the VI id
3526 * @free: if true any existing filters for this VI id are first removed
3527 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
3528 * @addr: the MAC address(es)
3529 * @idx: where to store the index of each allocated filter
3530 * @hash: pointer to hash address filter bitmap
3531 * @sleep_ok: call is allowed to sleep
3532 *
3533 * Allocates an exact-match filter for each of the supplied addresses and
3534 * sets it to the corresponding address. If @idx is not %NULL it should
3535 * have at least @naddr entries, each of which will be set to the index of
3536 * the filter allocated for the corresponding MAC address. If a filter
3537 * could not be allocated for an address its index is set to 0xffff.
3538 * If @hash is not %NULL addresses that fail to allocate an exact filter
3539 * are hashed and update the hash filter bitmap pointed at by @hash.
3540 *
3541 * Returns a negative error number or the number of filters allocated.
3542 */
3543int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
3544 unsigned int viid, bool free, unsigned int naddr,
3545 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
3546{
3547 int i, ret;
3548 struct fw_vi_mac_cmd c;
3549 struct fw_vi_mac_exact *p;
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05303550 unsigned int max_naddr = is_t4(adap->params.chip) ?
Santosh Rastapur0a57a532013-03-14 05:08:49 +00003551 NUM_MPS_CLS_SRAM_L_INSTANCES :
3552 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003553
3554 if (naddr > 7)
3555 return -EINVAL;
3556
3557 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303558 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
3559 FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303560 FW_VI_MAC_CMD_VIID_V(viid));
3561 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) |
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303562 FW_CMD_LEN16_V((naddr + 2) / 2));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003563
3564 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303565 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
3566 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003567 memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
3568 }
3569
3570 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
3571 if (ret)
3572 return ret;
3573
3574 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303575 u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003576
3577 if (idx)
Santosh Rastapur0a57a532013-03-14 05:08:49 +00003578 idx[i] = index >= max_naddr ? 0xffff : index;
3579 if (index < max_naddr)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003580 ret++;
3581 else if (hash)
Dimitris Michailidisce9aeb52010-12-03 10:39:04 +00003582 *hash |= (1ULL << hash_mac_addr(addr[i]));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003583 }
3584 return ret;
3585}
3586
3587/**
3588 * t4_change_mac - modifies the exact-match filter for a MAC address
3589 * @adap: the adapter
3590 * @mbox: mailbox to use for the FW command
3591 * @viid: the VI id
3592 * @idx: index of existing filter for old value of MAC address, or -1
3593 * @addr: the new MAC address value
3594 * @persist: whether a new MAC allocation should be persistent
3595 * @add_smt: if true also add the address to the HW SMT
3596 *
3597 * Modifies an exact-match filter and sets it to the new MAC address.
3598 * Note that in general it is not possible to modify the value of a given
3599 * filter so the generic way to modify an address filter is to free the one
3600 * being used by the old address value and allocate a new filter for the
3601 * new address value. @idx can be -1 if the address is a new addition.
3602 *
3603 * Returns a negative error number or the index of the filter with the new
3604 * MAC value.
3605 */
3606int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
3607 int idx, const u8 *addr, bool persist, bool add_smt)
3608{
3609 int ret, mode;
3610 struct fw_vi_mac_cmd c;
3611 struct fw_vi_mac_exact *p = c.u.exact;
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05303612 unsigned int max_mac_addr = is_t4(adap->params.chip) ?
Santosh Rastapur0a57a532013-03-14 05:08:49 +00003613 NUM_MPS_CLS_SRAM_L_INSTANCES :
3614 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003615
3616 if (idx < 0) /* new allocation */
3617 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
3618 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
3619
3620 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303621 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303622 FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303623 c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1));
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303624 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
3625 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
3626 FW_VI_MAC_CMD_IDX_V(idx));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003627 memcpy(p->macaddr, addr, sizeof(p->macaddr));
3628
3629 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3630 if (ret == 0) {
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303631 ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
Santosh Rastapur0a57a532013-03-14 05:08:49 +00003632 if (ret >= max_mac_addr)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003633 ret = -ENOMEM;
3634 }
3635 return ret;
3636}
3637
3638/**
3639 * t4_set_addr_hash - program the MAC inexact-match hash filter
3640 * @adap: the adapter
3641 * @mbox: mailbox to use for the FW command
3642 * @viid: the VI id
3643 * @ucast: whether the hash filter should also match unicast addresses
3644 * @vec: the value to be written to the hash filter
3645 * @sleep_ok: call is allowed to sleep
3646 *
3647 * Sets the 64-bit inexact-match hash filter for a virtual interface.
3648 */
3649int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
3650 bool ucast, u64 vec, bool sleep_ok)
3651{
3652 struct fw_vi_mac_cmd c;
3653
3654 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303655 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303656 FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid));
3657 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F |
3658 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303659 FW_CMD_LEN16_V(1));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003660 c.u.hash.hashvec = cpu_to_be64(vec);
3661 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3662}
3663
3664/**
Anish Bhatt688848b2014-06-19 21:37:13 -07003665 * t4_enable_vi_params - enable/disable a virtual interface
3666 * @adap: the adapter
3667 * @mbox: mailbox to use for the FW command
3668 * @viid: the VI id
3669 * @rx_en: 1=enable Rx, 0=disable Rx
3670 * @tx_en: 1=enable Tx, 0=disable Tx
3671 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
3672 *
3673 * Enables/disables a virtual interface. Note that setting DCB Enable
3674 * only makes sense when enabling a Virtual Interface ...
3675 */
3676int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
3677 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
3678{
3679 struct fw_vi_enable_cmd c;
3680
3681 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303682 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303683 FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
Anish Bhatt688848b2014-06-19 21:37:13 -07003684
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303685 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
3686 FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) |
3687 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en));
Anish Bhatt30f00842014-08-05 16:05:23 -07003688 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
Anish Bhatt688848b2014-06-19 21:37:13 -07003689}
3690
3691/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003692 * t4_enable_vi - enable/disable a virtual interface
3693 * @adap: the adapter
3694 * @mbox: mailbox to use for the FW command
3695 * @viid: the VI id
3696 * @rx_en: 1=enable Rx, 0=disable Rx
3697 * @tx_en: 1=enable Tx, 0=disable Tx
3698 *
3699 * Enables/disables a virtual interface.
3700 */
3701int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
3702 bool rx_en, bool tx_en)
3703{
Anish Bhatt688848b2014-06-19 21:37:13 -07003704 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003705}
3706
3707/**
3708 * t4_identify_port - identify a VI's port by blinking its LED
3709 * @adap: the adapter
3710 * @mbox: mailbox to use for the FW command
3711 * @viid: the VI id
3712 * @nblinks: how many times to blink LED at 2.5 Hz
3713 *
3714 * Identifies a VI's port by blinking its LED.
3715 */
3716int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
3717 unsigned int nblinks)
3718{
3719 struct fw_vi_enable_cmd c;
3720
Vipul Pandya0062b152012-11-06 03:37:09 +00003721 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303722 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303723 FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
3724 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003725 c.blinkdur = htons(nblinks);
3726 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3727}
3728
3729/**
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003730 * t4_iq_free - free an ingress queue and its FLs
3731 * @adap: the adapter
3732 * @mbox: mailbox to use for the FW command
3733 * @pf: the PF owning the queues
3734 * @vf: the VF owning the queues
3735 * @iqtype: the ingress queue type
3736 * @iqid: ingress queue id
3737 * @fl0id: FL0 queue id or 0xffff if no attached FL0
3738 * @fl1id: FL1 queue id or 0xffff if no attached FL1
3739 *
3740 * Frees an ingress queue and its associated FLs, if any.
3741 */
3742int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3743 unsigned int vf, unsigned int iqtype, unsigned int iqid,
3744 unsigned int fl0id, unsigned int fl1id)
3745{
3746 struct fw_iq_cmd c;
3747
3748 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303749 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai6e4b51a2014-11-21 12:52:03 +05303750 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
3751 FW_IQ_CMD_VFN_V(vf));
3752 c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c));
3753 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003754 c.iqid = htons(iqid);
3755 c.fl0id = htons(fl0id);
3756 c.fl1id = htons(fl1id);
3757 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3758}
3759
3760/**
3761 * t4_eth_eq_free - free an Ethernet egress queue
3762 * @adap: the adapter
3763 * @mbox: mailbox to use for the FW command
3764 * @pf: the PF owning the queue
3765 * @vf: the VF owning the queue
3766 * @eqid: egress queue id
3767 *
3768 * Frees an Ethernet egress queue.
3769 */
3770int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3771 unsigned int vf, unsigned int eqid)
3772{
3773 struct fw_eq_eth_cmd c;
3774
3775 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303776 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai6e4b51a2014-11-21 12:52:03 +05303777 FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) |
3778 FW_EQ_ETH_CMD_VFN_V(vf));
3779 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
3780 c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003781 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3782}
3783
3784/**
3785 * t4_ctrl_eq_free - free a control egress queue
3786 * @adap: the adapter
3787 * @mbox: mailbox to use for the FW command
3788 * @pf: the PF owning the queue
3789 * @vf: the VF owning the queue
3790 * @eqid: egress queue id
3791 *
3792 * Frees a control egress queue.
3793 */
3794int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3795 unsigned int vf, unsigned int eqid)
3796{
3797 struct fw_eq_ctrl_cmd c;
3798
3799 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303800 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai6e4b51a2014-11-21 12:52:03 +05303801 FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) |
3802 FW_EQ_CTRL_CMD_VFN_V(vf));
3803 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
3804 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003805 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3806}
3807
3808/**
3809 * t4_ofld_eq_free - free an offload egress queue
3810 * @adap: the adapter
3811 * @mbox: mailbox to use for the FW command
3812 * @pf: the PF owning the queue
3813 * @vf: the VF owning the queue
3814 * @eqid: egress queue id
3815 *
3816 * Frees a control egress queue.
3817 */
3818int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3819 unsigned int vf, unsigned int eqid)
3820{
3821 struct fw_eq_ofld_cmd c;
3822
3823 memset(&c, 0, sizeof(c));
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05303824 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
Hariprasad Shenai6e4b51a2014-11-21 12:52:03 +05303825 FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) |
3826 FW_EQ_OFLD_CMD_VFN_V(vf));
3827 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
3828 c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003829 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3830}
3831
3832/**
3833 * t4_handle_fw_rpl - process a FW reply message
3834 * @adap: the adapter
3835 * @rpl: start of the FW message
3836 *
3837 * Processes a FW message, such as link state change messages.
3838 */
3839int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
3840{
3841 u8 opcode = *(const u8 *)rpl;
3842
3843 if (opcode == FW_PORT_CMD) { /* link/module state change message */
3844 int speed = 0, fc = 0;
3845 const struct fw_port_cmd *p = (void *)rpl;
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303846 int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003847 int port = adap->chan_map[chan];
3848 struct port_info *pi = adap2pinfo(adap, port);
3849 struct link_config *lc = &pi->link_cfg;
3850 u32 stat = ntohl(p->u.info.lstatus_to_modtype);
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303851 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
3852 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003853
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303854 if (stat & FW_PORT_CMD_RXPAUSE_F)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003855 fc |= PAUSE_RX;
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303856 if (stat & FW_PORT_CMD_TXPAUSE_F)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003857 fc |= PAUSE_TX;
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303858 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
Ben Hutchingse8b39012014-02-23 00:03:24 +00003859 speed = 100;
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303860 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
Ben Hutchingse8b39012014-02-23 00:03:24 +00003861 speed = 1000;
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303862 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
Ben Hutchingse8b39012014-02-23 00:03:24 +00003863 speed = 10000;
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05303864 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
Ben Hutchingse8b39012014-02-23 00:03:24 +00003865 speed = 40000;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003866
3867 if (link_ok != lc->link_ok || speed != lc->speed ||
3868 fc != lc->fc) { /* something changed */
3869 lc->link_ok = link_ok;
3870 lc->speed = speed;
3871 lc->fc = fc;
Hariprasad Shenai444018a2014-09-01 19:54:55 +05303872 lc->supported = be16_to_cpu(p->u.info.pcap);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003873 t4_os_link_changed(adap, port, link_ok);
3874 }
3875 if (mod != pi->mod_type) {
3876 pi->mod_type = mod;
3877 t4_os_portmod_changed(adap, port);
3878 }
3879 }
3880 return 0;
3881}
3882
Greg Kroah-Hartman1dd06ae2012-12-06 14:30:56 +00003883static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003884{
3885 u16 val;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003886
Jiang Liue5c8ae52012-08-20 13:53:19 -06003887 if (pci_is_pcie(adapter->pdev)) {
3888 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003889 p->speed = val & PCI_EXP_LNKSTA_CLS;
3890 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
3891 }
3892}
3893
3894/**
3895 * init_link_config - initialize a link's SW state
3896 * @lc: structure holding the link state
3897 * @caps: link capabilities
3898 *
3899 * Initializes the SW state maintained for each link, including the link's
3900 * capabilities and default speed/flow-control/autonegotiation settings.
3901 */
Greg Kroah-Hartman1dd06ae2012-12-06 14:30:56 +00003902static void init_link_config(struct link_config *lc, unsigned int caps)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003903{
3904 lc->supported = caps;
3905 lc->requested_speed = 0;
3906 lc->speed = 0;
3907 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3908 if (lc->supported & FW_PORT_CAP_ANEG) {
3909 lc->advertising = lc->supported & ADVERT_MASK;
3910 lc->autoneg = AUTONEG_ENABLE;
3911 lc->requested_fc |= PAUSE_AUTONEG;
3912 } else {
3913 lc->advertising = 0;
3914 lc->autoneg = AUTONEG_DISABLE;
3915 }
3916}
3917
Hariprasad Shenai8203b502014-10-09 05:48:47 +05303918#define CIM_PF_NOACCESS 0xeeeeeeee
3919
3920int t4_wait_dev_ready(void __iomem *regs)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003921{
Hariprasad Shenai8203b502014-10-09 05:48:47 +05303922 u32 whoami;
3923
3924 whoami = readl(regs + PL_WHOAMI);
3925 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003926 return 0;
Hariprasad Shenai8203b502014-10-09 05:48:47 +05303927
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003928 msleep(500);
Hariprasad Shenai8203b502014-10-09 05:48:47 +05303929 whoami = readl(regs + PL_WHOAMI);
3930 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003931}
3932
Hariprasad Shenaife2ee132014-09-10 17:44:28 +05303933struct flash_desc {
3934 u32 vendor_and_model_id;
3935 u32 size_mb;
3936};
3937
Bill Pemberton91744942012-12-03 09:23:02 -05003938static int get_flash_params(struct adapter *adap)
Dimitris Michailidis900a6592010-06-18 10:05:27 +00003939{
Hariprasad Shenaife2ee132014-09-10 17:44:28 +05303940 /* Table for non-Numonix supported flash parts. Numonix parts are left
3941 * to the preexisting code. All flash parts have 64KB sectors.
3942 */
3943 static struct flash_desc supported_flash[] = {
3944 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
3945 };
3946
Dimitris Michailidis900a6592010-06-18 10:05:27 +00003947 int ret;
3948 u32 info;
3949
3950 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
3951 if (!ret)
3952 ret = sf1_read(adap, 3, 0, 1, &info);
3953 t4_write_reg(adap, SF_OP, 0); /* unlock SF */
3954 if (ret)
3955 return ret;
3956
Hariprasad Shenaife2ee132014-09-10 17:44:28 +05303957 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
3958 if (supported_flash[ret].vendor_and_model_id == info) {
3959 adap->params.sf_size = supported_flash[ret].size_mb;
3960 adap->params.sf_nsec =
3961 adap->params.sf_size / SF_SEC_SIZE;
3962 return 0;
3963 }
3964
Dimitris Michailidis900a6592010-06-18 10:05:27 +00003965 if ((info & 0xff) != 0x20) /* not a Numonix flash */
3966 return -EINVAL;
3967 info >>= 16; /* log2 of size */
3968 if (info >= 0x14 && info < 0x18)
3969 adap->params.sf_nsec = 1 << (info - 16);
3970 else if (info == 0x18)
3971 adap->params.sf_nsec = 64;
3972 else
3973 return -EINVAL;
3974 adap->params.sf_size = 1 << info;
3975 adap->params.sf_fw_start =
3976 t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
Hariprasad Shenaic2906072014-09-10 17:44:30 +05303977
3978 if (adap->params.sf_size < FLASH_MIN_SIZE)
3979 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
3980 adap->params.sf_size, FLASH_MIN_SIZE);
Dimitris Michailidis900a6592010-06-18 10:05:27 +00003981 return 0;
3982}
3983
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003984/**
3985 * t4_prep_adapter - prepare SW and HW for operation
3986 * @adapter: the adapter
3987 * @reset: if true perform a HW reset
3988 *
3989 * Initialize adapter SW state for the various HW modules, set initial
3990 * values for some adapter tunables, take PHYs out of reset, and
3991 * initialize the MDIO interface.
3992 */
Bill Pemberton91744942012-12-03 09:23:02 -05003993int t4_prep_adapter(struct adapter *adapter)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003994{
Santosh Rastapur0a57a532013-03-14 05:08:49 +00003995 int ret, ver;
3996 uint16_t device_id;
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05303997 u32 pl_rev;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003998
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00003999 get_pci_mode(adapter, &adapter->params.pci);
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05304000 pl_rev = G_REV(t4_read_reg(adapter, PL_REV));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004001
Dimitris Michailidis900a6592010-06-18 10:05:27 +00004002 ret = get_flash_params(adapter);
4003 if (ret < 0) {
4004 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
4005 return ret;
4006 }
4007
Santosh Rastapur0a57a532013-03-14 05:08:49 +00004008 /* Retrieve adapter's device ID
4009 */
4010 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
4011 ver = device_id >> 12;
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05304012 adapter->params.chip = 0;
Santosh Rastapur0a57a532013-03-14 05:08:49 +00004013 switch (ver) {
4014 case CHELSIO_T4:
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05304015 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
Santosh Rastapur0a57a532013-03-14 05:08:49 +00004016 break;
4017 case CHELSIO_T5:
Hariprasad Shenaid14807d2013-12-03 17:05:56 +05304018 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
Santosh Rastapur0a57a532013-03-14 05:08:49 +00004019 break;
4020 default:
4021 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4022 device_id);
4023 return -EINVAL;
4024 }
4025
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004026 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
4027
4028 /*
4029 * Default port for debugging in case we can't reach FW.
4030 */
4031 adapter->params.nports = 1;
4032 adapter->params.portvec = 1;
Vipul Pandya636f9d32012-09-26 02:39:39 +00004033 adapter->params.vpd.cclk = 50000;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004034 return 0;
4035}
4036
Kumar Sanghvidcf7b6f2013-12-18 16:38:23 +05304037/**
Stephen Rothwelldd0bcc02014-12-10 19:48:02 +11004038 * cxgb4_t4_bar2_sge_qregs - return BAR2 SGE Queue register information
Hariprasad Shenaie85c9a72014-12-03 19:32:52 +05304039 * @adapter: the adapter
4040 * @qid: the Queue ID
4041 * @qtype: the Ingress or Egress type for @qid
4042 * @pbar2_qoffset: BAR2 Queue Offset
4043 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4044 *
4045 * Returns the BAR2 SGE Queue Registers information associated with the
4046 * indicated Absolute Queue ID. These are passed back in return value
4047 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
4048 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
4049 *
4050 * This may return an error which indicates that BAR2 SGE Queue
4051 * registers aren't available. If an error is not returned, then the
4052 * following values are returned:
4053 *
4054 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
4055 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
4056 *
4057 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
4058 * require the "Inferred Queue ID" ability may be used. E.g. the
4059 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
4060 * then these "Inferred Queue ID" register may not be used.
4061 */
Stephen Rothwelldd0bcc02014-12-10 19:48:02 +11004062int cxgb4_t4_bar2_sge_qregs(struct adapter *adapter,
Hariprasad Shenaie85c9a72014-12-03 19:32:52 +05304063 unsigned int qid,
4064 enum t4_bar2_qtype qtype,
4065 u64 *pbar2_qoffset,
4066 unsigned int *pbar2_qid)
4067{
4068 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
4069 u64 bar2_page_offset, bar2_qoffset;
4070 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
4071
4072 /* T4 doesn't support BAR2 SGE Queue registers.
4073 */
4074 if (is_t4(adapter->params.chip))
4075 return -EINVAL;
4076
4077 /* Get our SGE Page Size parameters.
4078 */
4079 page_shift = adapter->params.sge.hps + 10;
4080 page_size = 1 << page_shift;
4081
4082 /* Get the right Queues per Page parameters for our Queue.
4083 */
4084 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
4085 ? adapter->params.sge.eq_qpp
4086 : adapter->params.sge.iq_qpp);
4087 qpp_mask = (1 << qpp_shift) - 1;
4088
4089 /* Calculate the basics of the BAR2 SGE Queue register area:
4090 * o The BAR2 page the Queue registers will be in.
4091 * o The BAR2 Queue ID.
4092 * o The BAR2 Queue ID Offset into the BAR2 page.
4093 */
4094 bar2_page_offset = ((qid >> qpp_shift) << page_shift);
4095 bar2_qid = qid & qpp_mask;
4096 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
4097
4098 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
4099 * hardware will infer the Absolute Queue ID simply from the writes to
4100 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
4101 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
4102 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
4103 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
4104 * from the BAR2 Page and BAR2 Queue ID.
4105 *
4106 * One important censequence of this is that some BAR2 SGE registers
4107 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
4108 * there. But other registers synthesize the SGE Queue ID purely
4109 * from the writes to the registers -- the Write Combined Doorbell
4110 * Buffer is a good example. These BAR2 SGE Registers are only
4111 * available for those BAR2 SGE Register areas where the SGE Absolute
4112 * Queue ID can be inferred from simple writes.
4113 */
4114 bar2_qoffset = bar2_page_offset;
4115 bar2_qinferred = (bar2_qid_offset < page_size);
4116 if (bar2_qinferred) {
4117 bar2_qoffset += bar2_qid_offset;
4118 bar2_qid = 0;
4119 }
4120
4121 *pbar2_qoffset = bar2_qoffset;
4122 *pbar2_qid = bar2_qid;
4123 return 0;
4124}
4125
4126/**
4127 * t4_init_sge_params - initialize adap->params.sge
4128 * @adapter: the adapter
4129 *
4130 * Initialize various fields of the adapter's SGE Parameters structure.
4131 */
4132int t4_init_sge_params(struct adapter *adapter)
4133{
4134 struct sge_params *sge_params = &adapter->params.sge;
4135 u32 hps, qpp;
4136 unsigned int s_hps, s_qpp;
4137
4138 /* Extract the SGE Page Size for our PF.
4139 */
Hariprasad Shenaif612b812015-01-05 16:30:43 +05304140 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
Hariprasad Shenaie85c9a72014-12-03 19:32:52 +05304141 s_hps = (HOSTPAGESIZEPF0_S +
4142 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn);
4143 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
4144
4145 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
4146 */
4147 s_qpp = (QUEUESPERPAGEPF0_S +
4148 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn);
Hariprasad Shenaif612b812015-01-05 16:30:43 +05304149 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
4150 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
Hariprasad Shenaif061de42015-01-05 16:30:44 +05304151 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
Hariprasad Shenaif612b812015-01-05 16:30:43 +05304152 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
Hariprasad Shenaie85c9a72014-12-03 19:32:52 +05304153
4154 return 0;
4155}
4156
4157/**
Kumar Sanghvidcf7b6f2013-12-18 16:38:23 +05304158 * t4_init_tp_params - initialize adap->params.tp
4159 * @adap: the adapter
4160 *
4161 * Initialize various fields of the adapter's TP Parameters structure.
4162 */
4163int t4_init_tp_params(struct adapter *adap)
4164{
4165 int chan;
4166 u32 v;
4167
4168 v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
4169 adap->params.tp.tre = TIMERRESOLUTION_GET(v);
4170 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
4171
4172 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
4173 for (chan = 0; chan < NCHAN; chan++)
4174 adap->params.tp.tx_modq[chan] = chan;
4175
4176 /* Cache the adapter's Compressed Filter Mode and global Incress
4177 * Configuration.
4178 */
4179 t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4180 &adap->params.tp.vlan_pri_map, 1,
4181 TP_VLAN_PRI_MAP);
4182 t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4183 &adap->params.tp.ingress_config, 1,
4184 TP_INGRESS_CONFIG);
4185
4186 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
4187 * shift positions of several elements of the Compressed Filter Tuple
4188 * for this adapter which we need frequently ...
4189 */
4190 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
4191 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
4192 adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
4193 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
4194 F_PROTOCOL);
4195
4196 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
4197 * represents the presense of an Outer VLAN instead of a VNIC ID.
4198 */
4199 if ((adap->params.tp.ingress_config & F_VNIC) == 0)
4200 adap->params.tp.vnic_shift = -1;
4201
4202 return 0;
4203}
4204
4205/**
4206 * t4_filter_field_shift - calculate filter field shift
4207 * @adap: the adapter
4208 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
4209 *
4210 * Return the shift position of a filter field within the Compressed
4211 * Filter Tuple. The filter field is specified via its selection bit
4212 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
4213 */
4214int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
4215{
4216 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
4217 unsigned int sel;
4218 int field_shift;
4219
4220 if ((filter_mode & filter_sel) == 0)
4221 return -1;
4222
4223 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
4224 switch (filter_mode & sel) {
4225 case F_FCOE:
4226 field_shift += W_FT_FCOE;
4227 break;
4228 case F_PORT:
4229 field_shift += W_FT_PORT;
4230 break;
4231 case F_VNIC_ID:
4232 field_shift += W_FT_VNIC_ID;
4233 break;
4234 case F_VLAN:
4235 field_shift += W_FT_VLAN;
4236 break;
4237 case F_TOS:
4238 field_shift += W_FT_TOS;
4239 break;
4240 case F_PROTOCOL:
4241 field_shift += W_FT_PROTOCOL;
4242 break;
4243 case F_ETHERTYPE:
4244 field_shift += W_FT_ETHERTYPE;
4245 break;
4246 case F_MACMATCH:
4247 field_shift += W_FT_MACMATCH;
4248 break;
4249 case F_MPSHITTYPE:
4250 field_shift += W_FT_MPSHITTYPE;
4251 break;
4252 case F_FRAGMENTATION:
4253 field_shift += W_FT_FRAGMENTATION;
4254 break;
4255 }
4256 }
4257 return field_shift;
4258}
4259
Bill Pemberton91744942012-12-03 09:23:02 -05004260int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004261{
4262 u8 addr[6];
4263 int ret, i, j = 0;
4264 struct fw_port_cmd c;
Dimitris Michailidisf7965642010-07-11 12:01:18 +00004265 struct fw_rss_vi_config_cmd rvc;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004266
4267 memset(&c, 0, sizeof(c));
Dimitris Michailidisf7965642010-07-11 12:01:18 +00004268 memset(&rvc, 0, sizeof(rvc));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004269
4270 for_each_port(adap, i) {
4271 unsigned int rss_size;
4272 struct port_info *p = adap2pinfo(adap, i);
4273
4274 while ((adap->params.portvec & (1 << j)) == 0)
4275 j++;
4276
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05304277 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) |
4278 FW_CMD_REQUEST_F | FW_CMD_READ_F |
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05304279 FW_PORT_CMD_PORTID_V(j));
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004280 c.action_to_len16 = htonl(
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05304281 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004282 FW_LEN16(c));
4283 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4284 if (ret)
4285 return ret;
4286
4287 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
4288 if (ret < 0)
4289 return ret;
4290
4291 p->viid = ret;
4292 p->tx_chan = j;
4293 p->lport = j;
4294 p->rss_size = rss_size;
4295 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
Thadeu Lima de Souza Cascardo40c9f8a2014-06-21 09:48:08 -03004296 adap->port[i]->dev_port = j;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004297
4298 ret = ntohl(c.u.info.lstatus_to_modtype);
Hariprasad Shenai2b5fb1f2014-11-21 12:52:04 +05304299 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
4300 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
4301 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
Dimitris Michailidisa0881ca2010-06-18 10:05:34 +00004302 p->mod_type = FW_PORT_MOD_TYPE_NA;
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004303
Hariprasad Shenaie2ac9622014-11-07 09:35:25 +05304304 rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4305 FW_CMD_REQUEST_F | FW_CMD_READ_F |
Dimitris Michailidisf7965642010-07-11 12:01:18 +00004306 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
4307 rvc.retval_len16 = htonl(FW_LEN16(rvc));
4308 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
4309 if (ret)
4310 return ret;
4311 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
4312
Dimitris Michailidis56d36be2010-04-01 15:28:23 +00004313 init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
4314 j++;
4315 }
4316 return 0;
4317}