Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2004 Video54 Technologies, Inc. |
| 3 | * Copyright (c) 2004-2008 Atheros Communications, Inc. |
| 4 | * |
| 5 | * Permission to use, copy, modify, and/or distribute this software for any |
| 6 | * purpose with or without fee is hereby granted, provided that the above |
| 7 | * copyright notice and this permission notice appear in all copies. |
| 8 | * |
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 | */ |
| 17 | |
| 18 | /* |
| 19 | * Atheros rate control algorithm |
| 20 | */ |
| 21 | |
| 22 | #include "core.h" |
| 23 | #include "../net/mac80211/rate.h" |
| 24 | |
| 25 | static u32 tx_triglevel_max; |
| 26 | |
| 27 | static struct ath_rate_table ar5416_11na_ratetable = { |
| 28 | 42, |
| 29 | { |
| 30 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 31 | 5400, 0x0b, 0x00, 12, |
| 32 | 0, 2, 1, 0, 0, 0, 0, 0 }, |
| 33 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 34 | 7800, 0x0f, 0x00, 18, |
| 35 | 0, 3, 1, 1, 1, 1, 1, 0 }, |
| 36 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 37 | 10000, 0x0a, 0x00, 24, |
| 38 | 2, 4, 2, 2, 2, 2, 2, 0 }, |
| 39 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 40 | 13900, 0x0e, 0x00, 36, |
| 41 | 2, 6, 2, 3, 3, 3, 3, 0 }, |
| 42 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 43 | 17300, 0x09, 0x00, 48, |
| 44 | 4, 10, 3, 4, 4, 4, 4, 0 }, |
| 45 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 46 | 23000, 0x0d, 0x00, 72, |
| 47 | 4, 14, 3, 5, 5, 5, 5, 0 }, |
| 48 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 49 | 27400, 0x08, 0x00, 96, |
| 50 | 4, 20, 3, 6, 6, 6, 6, 0 }, |
| 51 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 52 | 29300, 0x0c, 0x00, 108, |
| 53 | 4, 23, 3, 7, 7, 7, 7, 0 }, |
| 54 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 55 | 6400, 0x80, 0x00, 0, |
| 56 | 0, 2, 3, 8, 24, 8, 24, 3216 }, |
| 57 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 58 | 12700, 0x81, 0x00, 1, |
| 59 | 2, 4, 3, 9, 25, 9, 25, 6434 }, |
| 60 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 61 | 18800, 0x82, 0x00, 2, |
| 62 | 2, 6, 3, 10, 26, 10, 26, 9650 }, |
| 63 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 64 | 25000, 0x83, 0x00, 3, |
| 65 | 4, 10, 3, 11, 27, 11, 27, 12868 }, |
| 66 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 67 | 36700, 0x84, 0x00, 4, |
| 68 | 4, 14, 3, 12, 28, 12, 28, 19304 }, |
| 69 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 70 | 48100, 0x85, 0x00, 5, |
| 71 | 4, 20, 3, 13, 29, 13, 29, 25740 }, |
| 72 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 73 | 53500, 0x86, 0x00, 6, |
| 74 | 4, 23, 3, 14, 30, 14, 30, 28956 }, |
| 75 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 76 | 59000, 0x87, 0x00, 7, |
| 77 | 4, 25, 3, 15, 31, 15, 32, 32180 }, |
| 78 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 79 | 12700, 0x88, 0x00, |
| 80 | 8, 0, 2, 3, 16, 33, 16, 33, 6430 }, |
| 81 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 82 | 24800, 0x89, 0x00, 9, |
| 83 | 2, 4, 3, 17, 34, 17, 34, 12860 }, |
| 84 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 85 | 36600, 0x8a, 0x00, 10, |
| 86 | 2, 6, 3, 18, 35, 18, 35, 19300 }, |
| 87 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 88 | 48100, 0x8b, 0x00, 11, |
| 89 | 4, 10, 3, 19, 36, 19, 36, 25736 }, |
| 90 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 91 | 69500, 0x8c, 0x00, 12, |
| 92 | 4, 14, 3, 20, 37, 20, 37, 38600 }, |
| 93 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 94 | 89500, 0x8d, 0x00, 13, |
| 95 | 4, 20, 3, 21, 38, 21, 38, 51472 }, |
| 96 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 97 | 98900, 0x8e, 0x00, 14, |
| 98 | 4, 23, 3, 22, 39, 22, 39, 57890 }, |
| 99 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 100 | 108300, 0x8f, 0x00, 15, |
| 101 | 4, 25, 3, 23, 40, 23, 41, 64320 }, |
| 102 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 103 | 13200, 0x80, 0x00, 0, |
| 104 | 0, 2, 3, 8, 24, 24, 24, 6684 }, |
| 105 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 106 | 25900, 0x81, 0x00, 1, |
| 107 | 2, 4, 3, 9, 25, 25, 25, 13368 }, |
| 108 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 109 | 38600, 0x82, 0x00, 2, |
| 110 | 2, 6, 3, 10, 26, 26, 26, 20052 }, |
| 111 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 112 | 49800, 0x83, 0x00, 3, |
| 113 | 4, 10, 3, 11, 27, 27, 27, 26738 }, |
| 114 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 115 | 72200, 0x84, 0x00, 4, |
| 116 | 4, 14, 3, 12, 28, 28, 28, 40104 }, |
| 117 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 118 | 92900, 0x85, 0x00, 5, |
| 119 | 4, 20, 3, 13, 29, 29, 29, 53476 }, |
| 120 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ |
| 121 | 102700, 0x86, 0x00, 6, |
| 122 | 4, 23, 3, 14, 30, 30, 30, 60156 }, |
| 123 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 124 | 112000, 0x87, 0x00, 7, |
| 125 | 4, 25, 3, 15, 31, 32, 32, 66840 }, |
| 126 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ |
| 127 | 122000, 0x87, 0x00, 7, |
| 128 | 4, 25, 3, 15, 31, 32, 32, 74200 }, |
| 129 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 130 | 25800, 0x88, 0x00, 8, |
| 131 | 0, 2, 3, 16, 33, 33, 33, 13360 }, |
| 132 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 133 | 49800, 0x89, 0x00, 9, |
| 134 | 2, 4, 3, 17, 34, 34, 34, 26720 }, |
| 135 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 136 | 71900, 0x8a, 0x00, 10, |
| 137 | 2, 6, 3, 18, 35, 35, 35, 40080 }, |
| 138 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 139 | 92500, 0x8b, 0x00, 11, |
| 140 | 4, 10, 3, 19, 36, 36, 36, 53440 }, |
| 141 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 142 | 130300, 0x8c, 0x00, 12, |
| 143 | 4, 14, 3, 20, 37, 37, 37, 80160 }, |
| 144 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 145 | 162800, 0x8d, 0x00, 13, |
| 146 | 4, 20, 3, 21, 38, 38, 38, 106880 }, |
| 147 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 148 | 178200, 0x8e, 0x00, 14, |
| 149 | 4, 23, 3, 22, 39, 39, 39, 120240 }, |
| 150 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 151 | 192100, 0x8f, 0x00, 15, |
| 152 | 4, 25, 3, 23, 40, 41, 41, 133600 }, |
| 153 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ |
| 154 | 207000, 0x8f, 0x00, 15, |
| 155 | 4, 25, 3, 23, 40, 41, 41, 148400 }, |
| 156 | }, |
| 157 | 50, /* probe interval */ |
| 158 | 50, /* rssi reduce interval */ |
| 159 | WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| 160 | }; |
| 161 | |
| 162 | /* TRUE_ALL - valid for 20/40/Legacy, |
| 163 | * TRUE - Legacy only, |
| 164 | * TRUE_20 - HT 20 only, |
| 165 | * TRUE_40 - HT 40 only */ |
| 166 | |
| 167 | /* 4ms frame limit not used for NG mode. The values filled |
| 168 | * for HT are the 64K max aggregate limit */ |
| 169 | |
| 170 | static struct ath_rate_table ar5416_11ng_ratetable = { |
| 171 | 46, |
| 172 | { |
| 173 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 174 | 900, 0x1b, 0x00, 2, |
| 175 | 0, 0, 1, 0, 0, 0, 0, 0 }, |
| 176 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 177 | 1900, 0x1a, 0x04, 4, |
| 178 | 1, 1, 1, 1, 1, 1, 1, 0 }, |
| 179 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 180 | 4900, 0x19, 0x04, 11, |
| 181 | 2, 2, 2, 2, 2, 2, 2, 0 }, |
| 182 | { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 183 | 8100, 0x18, 0x04, 22, |
| 184 | 3, 3, 2, 3, 3, 3, 3, 0 }, |
| 185 | { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 186 | 5400, 0x0b, 0x00, 12, |
| 187 | 4, 2, 1, 4, 4, 4, 4, 0 }, |
| 188 | { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 189 | 7800, 0x0f, 0x00, 18, |
| 190 | 4, 3, 1, 5, 5, 5, 5, 0 }, |
| 191 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 192 | 10100, 0x0a, 0x00, 24, |
| 193 | 6, 4, 1, 6, 6, 6, 6, 0 }, |
| 194 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 195 | 14100, 0x0e, 0x00, 36, |
| 196 | 6, 6, 2, 7, 7, 7, 7, 0 }, |
| 197 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 198 | 17700, 0x09, 0x00, 48, |
| 199 | 8, 10, 3, 8, 8, 8, 8, 0 }, |
| 200 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 201 | 23700, 0x0d, 0x00, 72, |
| 202 | 8, 14, 3, 9, 9, 9, 9, 0 }, |
| 203 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 204 | 27400, 0x08, 0x00, 96, |
| 205 | 8, 20, 3, 10, 10, 10, 10, 0 }, |
| 206 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 207 | 30900, 0x0c, 0x00, 108, |
| 208 | 8, 23, 3, 11, 11, 11, 11, 0 }, |
| 209 | { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 210 | 6400, 0x80, 0x00, 0, |
| 211 | 4, 2, 3, 12, 28, 12, 28, 3216 }, |
| 212 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 213 | 12700, 0x81, 0x00, 1, |
| 214 | 6, 4, 3, 13, 29, 13, 29, 6434 }, |
| 215 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 216 | 18800, 0x82, 0x00, 2, |
| 217 | 6, 6, 3, 14, 30, 14, 30, 9650 }, |
| 218 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 219 | 25000, 0x83, 0x00, 3, |
| 220 | 8, 10, 3, 15, 31, 15, 31, 12868 }, |
| 221 | { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 222 | 36700, 0x84, 0x00, 4, |
| 223 | 8, 14, 3, 16, 32, 16, 32, 19304 }, |
| 224 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 225 | 48100, 0x85, 0x00, 5, |
| 226 | 8, 20, 3, 17, 33, 17, 33, 25740 }, |
| 227 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 228 | 53500, 0x86, 0x00, 6, |
| 229 | 8, 23, 3, 18, 34, 18, 34, 28956 }, |
| 230 | { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 231 | 59000, 0x87, 0x00, 7, |
| 232 | 8, 25, 3, 19, 35, 19, 36, 32180 }, |
| 233 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 234 | 12700, 0x88, 0x00, 8, |
| 235 | 4, 2, 3, 20, 37, 20, 37, 6430 }, |
| 236 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 237 | 24800, 0x89, 0x00, 9, |
| 238 | 6, 4, 3, 21, 38, 21, 38, 12860 }, |
| 239 | { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 240 | 36600, 0x8a, 0x00, 10, |
| 241 | 6, 6, 3, 22, 39, 22, 39, 19300 }, |
| 242 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 243 | 48100, 0x8b, 0x00, 11, |
| 244 | 8, 10, 3, 23, 40, 23, 40, 25736 }, |
| 245 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 246 | 69500, 0x8c, 0x00, 12, |
| 247 | 8, 14, 3, 24, 41, 24, 41, 38600 }, |
| 248 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 249 | 89500, 0x8d, 0x00, 13, |
| 250 | 8, 20, 3, 25, 42, 25, 42, 51472 }, |
| 251 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 252 | 98900, 0x8e, 0x00, 14, |
| 253 | 8, 23, 3, 26, 43, 26, 44, 57890 }, |
| 254 | { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 255 | 108300, 0x8f, 0x00, 15, |
| 256 | 8, 25, 3, 27, 44, 27, 45, 64320 }, |
| 257 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 258 | 13200, 0x80, 0x00, 0, |
| 259 | 8, 2, 3, 12, 28, 28, 28, 6684 }, |
| 260 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 261 | 25900, 0x81, 0x00, 1, |
| 262 | 8, 4, 3, 13, 29, 29, 29, 13368 }, |
| 263 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 264 | 38600, 0x82, 0x00, 2, |
| 265 | 8, 6, 3, 14, 30, 30, 30, 20052 }, |
| 266 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 267 | 49800, 0x83, 0x00, 3, |
| 268 | 8, 10, 3, 15, 31, 31, 31, 26738 }, |
| 269 | { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 270 | 72200, 0x84, 0x00, 4, |
| 271 | 8, 14, 3, 16, 32, 32, 32, 40104 }, |
| 272 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 273 | 92900, 0x85, 0x00, 5, |
| 274 | 8, 20, 3, 17, 33, 33, 33, 53476 }, |
| 275 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ |
| 276 | 102700, 0x86, 0x00, 6, |
| 277 | 8, 23, 3, 18, 34, 34, 34, 60156 }, |
| 278 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 279 | 112000, 0x87, 0x00, 7, |
| 280 | 8, 23, 3, 19, 35, 36, 36, 66840 }, |
| 281 | { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ |
| 282 | 122000, 0x87, 0x00, 7, |
| 283 | 8, 25, 3, 19, 35, 36, 36, 74200 }, |
| 284 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 285 | 25800, 0x88, 0x00, 8, |
| 286 | 8, 2, 3, 20, 37, 37, 37, 13360 }, |
| 287 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 288 | 49800, 0x89, 0x00, 9, |
| 289 | 8, 4, 3, 21, 38, 38, 38, 26720 }, |
| 290 | { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 291 | 71900, 0x8a, 0x00, 10, |
| 292 | 8, 6, 3, 22, 39, 39, 39, 40080 }, |
| 293 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 294 | 92500, 0x8b, 0x00, 11, |
| 295 | 8, 10, 3, 23, 40, 40, 40, 53440 }, |
| 296 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 297 | 130300, 0x8c, 0x00, 12, |
| 298 | 8, 14, 3, 24, 41, 41, 41, 80160 }, |
| 299 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 300 | 162800, 0x8d, 0x00, 13, |
| 301 | 8, 20, 3, 25, 42, 42, 42, 106880 }, |
| 302 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 303 | 178200, 0x8e, 0x00, 14, |
| 304 | 8, 23, 3, 26, 43, 43, 43, 120240 }, |
| 305 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 306 | 192100, 0x8f, 0x00, 15, |
| 307 | 8, 23, 3, 27, 44, 45, 45, 133600 }, |
| 308 | { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ |
| 309 | 207000, 0x8f, 0x00, 15, |
| 310 | 8, 25, 3, 27, 44, 45, 45, 148400 }, |
| 311 | }, |
| 312 | 50, /* probe interval */ |
| 313 | 50, /* rssi reduce interval */ |
| 314 | WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| 315 | }; |
| 316 | |
| 317 | static struct ath_rate_table ar5416_11a_ratetable = { |
| 318 | 8, |
| 319 | { |
| 320 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 321 | 5400, 0x0b, 0x00, (0x80|12), |
| 322 | 0, 2, 1, 0, 0 }, |
| 323 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 324 | 7800, 0x0f, 0x00, 18, |
| 325 | 0, 3, 1, 1, 0 }, |
| 326 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 327 | 10000, 0x0a, 0x00, (0x80|24), |
| 328 | 2, 4, 2, 2, 0 }, |
| 329 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 330 | 13900, 0x0e, 0x00, 36, |
| 331 | 2, 6, 2, 3, 0 }, |
| 332 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 333 | 17300, 0x09, 0x00, (0x80|48), |
| 334 | 4, 10, 3, 4, 0 }, |
| 335 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 336 | 23000, 0x0d, 0x00, 72, |
| 337 | 4, 14, 3, 5, 0 }, |
| 338 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 339 | 27400, 0x08, 0x00, 96, |
| 340 | 4, 19, 3, 6, 0 }, |
| 341 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 342 | 29300, 0x0c, 0x00, 108, |
| 343 | 4, 23, 3, 7, 0 }, |
| 344 | }, |
| 345 | 50, /* probe interval */ |
| 346 | 50, /* rssi reduce interval */ |
| 347 | 0, /* Phy rates allowed initially */ |
| 348 | }; |
| 349 | |
| 350 | static struct ath_rate_table ar5416_11a_ratetable_Half = { |
| 351 | 8, |
| 352 | { |
| 353 | { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */ |
| 354 | 2700, 0x0b, 0x00, (0x80|6), |
| 355 | 0, 2, 1, 0, 0}, |
| 356 | { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */ |
| 357 | 3900, 0x0f, 0x00, 9, |
| 358 | 0, 3, 1, 1, 0 }, |
| 359 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */ |
| 360 | 5000, 0x0a, 0x00, (0x80|12), |
| 361 | 2, 4, 2, 2, 0 }, |
| 362 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */ |
| 363 | 6950, 0x0e, 0x00, 18, |
| 364 | 2, 6, 2, 3, 0 }, |
| 365 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */ |
| 366 | 8650, 0x09, 0x00, (0x80|24), |
| 367 | 4, 10, 3, 4, 0 }, |
| 368 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */ |
| 369 | 11500, 0x0d, 0x00, 36, |
| 370 | 4, 14, 3, 5, 0 }, |
| 371 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */ |
| 372 | 13700, 0x08, 0x00, 48, |
| 373 | 4, 19, 3, 6, 0 }, |
| 374 | { TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */ |
| 375 | 14650, 0x0c, 0x00, 54, |
| 376 | 4, 23, 3, 7, 0 }, |
| 377 | }, |
| 378 | 50, /* probe interval */ |
| 379 | 50, /* rssi reduce interval */ |
| 380 | 0, /* Phy rates allowed initially */ |
| 381 | }; |
| 382 | |
| 383 | static struct ath_rate_table ar5416_11a_ratetable_Quarter = { |
| 384 | 8, |
| 385 | { |
| 386 | { TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */ |
| 387 | 1350, 0x0b, 0x00, (0x80|3), |
| 388 | 0, 2, 1, 0, 0 }, |
| 389 | { TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */ |
| 390 | 1950, 0x0f, 0x00, 4, |
| 391 | 0, 3, 1, 1, 0 }, |
| 392 | { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */ |
| 393 | 2500, 0x0a, 0x00, (0x80|6), |
| 394 | 2, 4, 2, 2, 0 }, |
| 395 | { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */ |
| 396 | 3475, 0x0e, 0x00, 9, |
| 397 | 2, 6, 2, 3, 0 }, |
| 398 | { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */ |
| 399 | 4325, 0x09, 0x00, (0x80|12), |
| 400 | 4, 10, 3, 4, 0 }, |
| 401 | { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */ |
| 402 | 5750, 0x0d, 0x00, 18, |
| 403 | 4, 14, 3, 5, 0 }, |
| 404 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */ |
| 405 | 6850, 0x08, 0x00, 24, |
| 406 | 4, 19, 3, 6, 0 }, |
| 407 | { TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */ |
| 408 | 7325, 0x0c, 0x00, 27, |
| 409 | 4, 23, 3, 7, 0 }, |
| 410 | }, |
| 411 | 50, /* probe interval */ |
| 412 | 50, /* rssi reduce interval */ |
| 413 | 0, /* Phy rates allowed initially */ |
| 414 | }; |
| 415 | |
| 416 | static struct ath_rate_table ar5416_11g_ratetable = { |
| 417 | 12, |
| 418 | { |
| 419 | { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 420 | 900, 0x1b, 0x00, 2, |
| 421 | 0, 0, 1, 0, 0 }, |
| 422 | { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 423 | 1900, 0x1a, 0x04, 4, |
| 424 | 1, 1, 1, 1, 0 }, |
| 425 | { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 426 | 4900, 0x19, 0x04, 11, |
| 427 | 2, 2, 2, 2, 0 }, |
| 428 | { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 429 | 8100, 0x18, 0x04, 22, |
| 430 | 3, 3, 2, 3, 0 }, |
| 431 | { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 432 | 5400, 0x0b, 0x00, 12, |
| 433 | 4, 2, 1, 4, 0 }, |
| 434 | { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 435 | 7800, 0x0f, 0x00, 18, |
| 436 | 4, 3, 1, 5, 0 }, |
| 437 | { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 438 | 10000, 0x0a, 0x00, 24, |
| 439 | 6, 4, 1, 6, 0 }, |
| 440 | { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 441 | 13900, 0x0e, 0x00, 36, |
| 442 | 6, 6, 2, 7, 0 }, |
| 443 | { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 444 | 17300, 0x09, 0x00, 48, |
| 445 | 8, 10, 3, 8, 0 }, |
| 446 | { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 447 | 23000, 0x0d, 0x00, 72, |
| 448 | 8, 14, 3, 9, 0 }, |
| 449 | { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 450 | 27400, 0x08, 0x00, 96, |
| 451 | 8, 19, 3, 10, 0 }, |
| 452 | { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 453 | 29300, 0x0c, 0x00, 108, |
| 454 | 8, 23, 3, 11, 0 }, |
| 455 | }, |
| 456 | 50, /* probe interval */ |
| 457 | 50, /* rssi reduce interval */ |
| 458 | 0, /* Phy rates allowed initially */ |
| 459 | }; |
| 460 | |
| 461 | static struct ath_rate_table ar5416_11b_ratetable = { |
| 462 | 4, |
| 463 | { |
| 464 | { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 465 | 900, 0x1b, 0x00, (0x80|2), |
| 466 | 0, 0, 1, 0, 0 }, |
| 467 | { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 468 | 1800, 0x1a, 0x04, (0x80|4), |
| 469 | 1, 1, 1, 1, 0 }, |
| 470 | { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 471 | 4300, 0x19, 0x04, (0x80|11), |
| 472 | 1, 2, 2, 2, 0 }, |
| 473 | { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 474 | 7100, 0x18, 0x04, (0x80|22), |
| 475 | 1, 4, 100, 3, 0 }, |
| 476 | }, |
| 477 | 100, /* probe interval */ |
| 478 | 100, /* rssi reduce interval */ |
| 479 | 0, /* Phy rates allowed initially */ |
| 480 | }; |
| 481 | |
| 482 | static void ar5416_attach_ratetables(struct ath_rate_softc *sc) |
| 483 | { |
| 484 | /* |
| 485 | * Attach rate tables. |
| 486 | */ |
| 487 | sc->hw_rate_table[WIRELESS_MODE_11b] = &ar5416_11b_ratetable; |
| 488 | sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable; |
| 489 | sc->hw_rate_table[WIRELESS_MODE_11g] = &ar5416_11g_ratetable; |
| 490 | |
| 491 | sc->hw_rate_table[WIRELESS_MODE_11NA_HT20] = &ar5416_11na_ratetable; |
| 492 | sc->hw_rate_table[WIRELESS_MODE_11NG_HT20] = &ar5416_11ng_ratetable; |
| 493 | sc->hw_rate_table[WIRELESS_MODE_11NA_HT40PLUS] = |
| 494 | &ar5416_11na_ratetable; |
| 495 | sc->hw_rate_table[WIRELESS_MODE_11NA_HT40MINUS] = |
| 496 | &ar5416_11na_ratetable; |
| 497 | sc->hw_rate_table[WIRELESS_MODE_11NG_HT40PLUS] = |
| 498 | &ar5416_11ng_ratetable; |
| 499 | sc->hw_rate_table[WIRELESS_MODE_11NG_HT40MINUS] = |
| 500 | &ar5416_11ng_ratetable; |
| 501 | } |
| 502 | |
| 503 | static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc) |
| 504 | { |
| 505 | sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable_Quarter; |
| 506 | return; |
| 507 | } |
| 508 | |
| 509 | static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc) |
| 510 | { |
| 511 | sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable_Half; |
| 512 | return; |
| 513 | } |
| 514 | |
| 515 | static void ar5416_setfull_ratetable(struct ath_rate_softc *sc) |
| 516 | { |
| 517 | sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable; |
| 518 | return; |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * Return the median of three numbers |
| 523 | */ |
| 524 | static inline int8_t median(int8_t a, int8_t b, int8_t c) |
| 525 | { |
| 526 | if (a >= b) { |
| 527 | if (b >= c) |
| 528 | return b; |
| 529 | else if (a > c) |
| 530 | return c; |
| 531 | else |
| 532 | return a; |
| 533 | } else { |
| 534 | if (a >= c) |
| 535 | return a; |
| 536 | else if (b >= c) |
| 537 | return c; |
| 538 | else |
| 539 | return b; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, |
| 544 | struct ath_tx_ratectrl *rate_ctrl) |
| 545 | { |
| 546 | u8 i, j, idx, idx_next; |
| 547 | |
| 548 | for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) { |
| 549 | for (j = 0; j <= i-1; j++) { |
| 550 | idx = rate_ctrl->valid_rate_index[j]; |
| 551 | idx_next = rate_ctrl->valid_rate_index[j+1]; |
| 552 | |
| 553 | if (rate_table->info[idx].ratekbps > |
| 554 | rate_table->info[idx_next].ratekbps) { |
| 555 | rate_ctrl->valid_rate_index[j] = idx_next; |
| 556 | rate_ctrl->valid_rate_index[j+1] = idx; |
| 557 | } |
| 558 | } |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | /* Access functions for valid_txrate_mask */ |
| 563 | |
| 564 | static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl) |
| 565 | { |
| 566 | u8 i; |
| 567 | |
| 568 | for (i = 0; i < rate_ctrl->rate_table_size; i++) |
| 569 | rate_ctrl->valid_rate_index[i] = FALSE; |
| 570 | } |
| 571 | |
| 572 | static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl, |
| 573 | u8 index, int valid_tx_rate) |
| 574 | { |
| 575 | ASSERT(index <= rate_ctrl->rate_table_size); |
| 576 | rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE; |
| 577 | } |
| 578 | |
| 579 | static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl, |
| 580 | u8 index) |
| 581 | { |
| 582 | ASSERT(index <= rate_ctrl->rate_table_size); |
| 583 | return rate_ctrl->valid_rate_index[index]; |
| 584 | } |
| 585 | |
| 586 | /* Iterators for valid_txrate_mask */ |
| 587 | static inline int |
| 588 | ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table, |
| 589 | struct ath_tx_ratectrl *rate_ctrl, |
| 590 | u8 cur_valid_txrate, |
| 591 | u8 *next_idx) |
| 592 | { |
| 593 | u8 i; |
| 594 | |
| 595 | for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) { |
| 596 | if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { |
| 597 | *next_idx = rate_ctrl->valid_rate_index[i+1]; |
| 598 | return TRUE; |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | /* No more valid rates */ |
| 603 | *next_idx = 0; |
| 604 | return FALSE; |
| 605 | } |
| 606 | |
| 607 | /* Return true only for single stream */ |
| 608 | |
| 609 | static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw) |
| 610 | { |
| 611 | if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG)) |
| 612 | return FALSE; |
| 613 | if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) |
| 614 | return FALSE; |
| 615 | if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) |
| 616 | return FALSE; |
| 617 | if (!ignore_cw && WLAN_RC_PHY_HT(phy)) |
| 618 | if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) |
| 619 | return FALSE; |
| 620 | if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) |
| 621 | return FALSE; |
| 622 | return TRUE; |
| 623 | } |
| 624 | |
| 625 | static inline int |
| 626 | ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table, |
| 627 | struct ath_tx_ratectrl *rate_ctrl, |
| 628 | u8 cur_valid_txrate, u8 *next_idx) |
| 629 | { |
| 630 | int8_t i; |
| 631 | |
| 632 | for (i = 1; i < rate_ctrl->max_valid_rate ; i++) { |
| 633 | if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { |
| 634 | *next_idx = rate_ctrl->valid_rate_index[i-1]; |
| 635 | return TRUE; |
| 636 | } |
| 637 | } |
| 638 | return FALSE; |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * Initialize the Valid Rate Index from valid entries in Rate Table |
| 643 | */ |
| 644 | static u8 |
| 645 | ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv, |
| 646 | const struct ath_rate_table *rate_table, |
| 647 | u32 capflag) |
| 648 | { |
| 649 | struct ath_tx_ratectrl *rate_ctrl; |
| 650 | u8 i, hi = 0; |
| 651 | u32 valid; |
| 652 | |
| 653 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); |
| 654 | for (i = 0; i < rate_table->rate_cnt; i++) { |
| 655 | valid = (ath_rc_priv->single_stream ? |
| 656 | rate_table->info[i].valid_single_stream : |
| 657 | rate_table->info[i].valid); |
| 658 | if (valid == TRUE) { |
| 659 | u32 phy = rate_table->info[i].phy; |
| 660 | u8 valid_rate_count = 0; |
| 661 | |
| 662 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| 663 | continue; |
| 664 | |
| 665 | valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy]; |
| 666 | |
| 667 | rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i; |
| 668 | rate_ctrl->valid_phy_ratecnt[phy] += 1; |
| 669 | ath_rc_set_valid_txmask(rate_ctrl, i, TRUE); |
| 670 | hi = A_MAX(hi, i); |
| 671 | } |
| 672 | } |
| 673 | return hi; |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * Initialize the Valid Rate Index from Rate Set |
| 678 | */ |
| 679 | static u8 |
| 680 | ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv, |
| 681 | const struct ath_rate_table *rate_table, |
| 682 | struct ath_rateset *rateset, |
| 683 | u32 capflag) |
| 684 | { |
| 685 | /* XXX: Clean me up and make identation friendly */ |
| 686 | u8 i, j, hi = 0; |
| 687 | struct ath_tx_ratectrl *rate_ctrl = |
| 688 | (struct ath_tx_ratectrl *)(ath_rc_priv); |
| 689 | |
| 690 | /* Use intersection of working rates and valid rates */ |
| 691 | for (i = 0; i < rateset->rs_nrates; i++) { |
| 692 | for (j = 0; j < rate_table->rate_cnt; j++) { |
| 693 | u32 phy = rate_table->info[j].phy; |
| 694 | u32 valid = (ath_rc_priv->single_stream ? |
| 695 | rate_table->info[j].valid_single_stream : |
| 696 | rate_table->info[j].valid); |
| 697 | |
| 698 | /* We allow a rate only if its valid and the |
| 699 | * capflag matches one of the validity |
| 700 | * (TRUE/TRUE_20/TRUE_40) flags */ |
| 701 | |
| 702 | /* XXX: catch the negative of this branch |
| 703 | * first and then continue */ |
| 704 | if (((rateset->rs_rates[i] & 0x7F) == |
| 705 | (rate_table->info[j].dot11rate & 0x7F)) && |
| 706 | ((valid & WLAN_RC_CAP_MODE(capflag)) == |
| 707 | WLAN_RC_CAP_MODE(capflag)) && |
| 708 | !WLAN_RC_PHY_HT(phy)) { |
| 709 | |
| 710 | u8 valid_rate_count = 0; |
| 711 | |
| 712 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| 713 | continue; |
| 714 | |
| 715 | valid_rate_count = |
| 716 | rate_ctrl->valid_phy_ratecnt[phy]; |
| 717 | |
| 718 | rate_ctrl->valid_phy_rateidx[phy] |
| 719 | [valid_rate_count] = j; |
| 720 | rate_ctrl->valid_phy_ratecnt[phy] += 1; |
| 721 | ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); |
| 722 | hi = A_MAX(hi, j); |
| 723 | } |
| 724 | } |
| 725 | } |
| 726 | return hi; |
| 727 | } |
| 728 | |
| 729 | static u8 |
| 730 | ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv, |
| 731 | const struct ath_rate_table *rate_table, |
| 732 | u8 *mcs_set, u32 capflag) |
| 733 | { |
| 734 | u8 i, j, hi = 0; |
| 735 | struct ath_tx_ratectrl *rate_ctrl = |
| 736 | (struct ath_tx_ratectrl *)(ath_rc_priv); |
| 737 | |
| 738 | /* Use intersection of working rates and valid rates */ |
| 739 | for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) { |
| 740 | for (j = 0; j < rate_table->rate_cnt; j++) { |
| 741 | u32 phy = rate_table->info[j].phy; |
| 742 | u32 valid = (ath_rc_priv->single_stream ? |
| 743 | rate_table->info[j].valid_single_stream : |
| 744 | rate_table->info[j].valid); |
| 745 | |
| 746 | if (((((struct ath_rateset *) |
| 747 | mcs_set)->rs_rates[i] & 0x7F) != |
| 748 | (rate_table->info[j].dot11rate & 0x7F)) || |
| 749 | !WLAN_RC_PHY_HT(phy) || |
| 750 | !WLAN_RC_PHY_HT_VALID(valid, capflag)) |
| 751 | continue; |
| 752 | |
| 753 | if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| 754 | continue; |
| 755 | |
| 756 | rate_ctrl->valid_phy_rateidx[phy] |
| 757 | [rate_ctrl->valid_phy_ratecnt[phy]] = j; |
| 758 | rate_ctrl->valid_phy_ratecnt[phy] += 1; |
| 759 | ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); |
| 760 | hi = A_MAX(hi, j); |
| 761 | } |
| 762 | } |
| 763 | return hi; |
| 764 | } |
| 765 | |
| 766 | /* |
| 767 | * Attach to a device instance. Setup the public definition |
| 768 | * of how much per-node space we need and setup the private |
| 769 | * phy tables that have rate control parameters. |
| 770 | */ |
| 771 | struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah) |
| 772 | { |
| 773 | struct ath_rate_softc *asc; |
| 774 | |
| 775 | /* we are only in user context so we can sleep for memory */ |
| 776 | asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL); |
| 777 | if (asc == NULL) |
| 778 | return NULL; |
| 779 | |
| 780 | ar5416_attach_ratetables(asc); |
| 781 | |
| 782 | /* Save Maximum TX Trigger Level (used for 11n) */ |
| 783 | tx_triglevel_max = ah->ah_caps.halTxTrigLevelMax; |
| 784 | /* return alias for ath_rate_softc * */ |
| 785 | return asc; |
| 786 | } |
| 787 | |
| 788 | static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp, |
| 789 | struct ath_rate_softc *rsc, |
| 790 | gfp_t gfp) |
| 791 | { |
| 792 | struct ath_rate_node *anode; |
| 793 | |
| 794 | anode = kzalloc(sizeof(struct ath_rate_node), gfp); |
| 795 | if (anode == NULL) |
| 796 | return NULL; |
| 797 | |
| 798 | anode->avp = avp; |
| 799 | anode->asc = rsc; |
| 800 | avp->rc_node = anode; |
| 801 | |
| 802 | return anode; |
| 803 | } |
| 804 | |
| 805 | static void ath_rate_node_free(struct ath_rate_node *anode) |
| 806 | { |
| 807 | if (anode != NULL) |
| 808 | kfree(anode); |
| 809 | } |
| 810 | |
| 811 | void ath_rate_detach(struct ath_rate_softc *asc) |
| 812 | { |
| 813 | if (asc != NULL) |
| 814 | kfree(asc); |
| 815 | } |
| 816 | |
| 817 | u8 ath_rate_findrateix(struct ath_softc *sc, |
| 818 | u8 dot11rate) |
| 819 | { |
| 820 | const struct ath_rate_table *ratetable; |
| 821 | struct ath_rate_softc *rsc = sc->sc_rc; |
| 822 | int i; |
| 823 | |
| 824 | ratetable = rsc->hw_rate_table[sc->sc_curmode]; |
| 825 | |
| 826 | if (WARN_ON(!ratetable)) |
| 827 | return 0; |
| 828 | |
| 829 | for (i = 0; i < ratetable->rate_cnt; i++) { |
| 830 | if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f)) |
| 831 | return i; |
| 832 | } |
| 833 | |
| 834 | return 0; |
| 835 | } |
| 836 | |
| 837 | /* |
| 838 | * Update rate-control state on a device state change. When |
| 839 | * operating as a station this includes associate/reassociate |
| 840 | * with an AP. Otherwise this gets called, for example, when |
| 841 | * the we transition to run state when operating as an AP. |
| 842 | */ |
| 843 | void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp) |
| 844 | { |
| 845 | struct ath_rate_softc *asc = sc->sc_rc; |
| 846 | |
| 847 | /* For half and quarter rate channles use different |
| 848 | * rate tables |
| 849 | */ |
| 850 | if (sc->sc_curchan.channelFlags & CHANNEL_HALF) |
| 851 | ar5416_sethalf_ratetable(asc); |
| 852 | else if (sc->sc_curchan.channelFlags & CHANNEL_QUARTER) |
| 853 | ar5416_setquarter_ratetable(asc); |
| 854 | else /* full rate */ |
| 855 | ar5416_setfull_ratetable(asc); |
| 856 | |
| 857 | if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) { |
| 858 | asc->fixedrix = |
| 859 | sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff]; |
| 860 | /* NB: check the fixed rate exists */ |
| 861 | if (asc->fixedrix == 0xff) |
| 862 | asc->fixedrix = IEEE80211_FIXED_RATE_NONE; |
| 863 | } else { |
| 864 | asc->fixedrix = IEEE80211_FIXED_RATE_NONE; |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | static u8 ath_rc_ratefind_ht(struct ath_softc *sc, |
| 869 | struct ath_rate_node *ath_rc_priv, |
| 870 | const struct ath_rate_table *rate_table, |
| 871 | int probe_allowed, int *is_probing, |
| 872 | int is_retry) |
| 873 | { |
| 874 | u32 dt, best_thruput, this_thruput, now_msec; |
| 875 | u8 rate, next_rate, best_rate, maxindex, minindex; |
| 876 | int8_t rssi_last, rssi_reduce = 0, index = 0; |
| 877 | struct ath_tx_ratectrl *rate_ctrl = NULL; |
| 878 | |
| 879 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ? |
| 880 | (ath_rc_priv) : NULL); |
| 881 | |
| 882 | *is_probing = FALSE; |
| 883 | |
| 884 | rssi_last = median(rate_ctrl->rssi_last, |
| 885 | rate_ctrl->rssi_last_prev, |
| 886 | rate_ctrl->rssi_last_prev2); |
| 887 | |
| 888 | /* |
| 889 | * Age (reduce) last ack rssi based on how old it is. |
| 890 | * The bizarre numbers are so the delta is 160msec, |
| 891 | * meaning we divide by 16. |
| 892 | * 0msec <= dt <= 25msec: don't derate |
| 893 | * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB |
| 894 | * 185msec <= dt: derate by 10dB |
| 895 | */ |
| 896 | |
| 897 | now_msec = jiffies_to_msecs(jiffies); |
| 898 | dt = now_msec - rate_ctrl->rssi_time; |
| 899 | |
| 900 | if (dt >= 185) |
| 901 | rssi_reduce = 10; |
| 902 | else if (dt >= 25) |
| 903 | rssi_reduce = (u8)((dt - 25) >> 4); |
| 904 | |
| 905 | /* Now reduce rssi_last by rssi_reduce */ |
| 906 | if (rssi_last < rssi_reduce) |
| 907 | rssi_last = 0; |
| 908 | else |
| 909 | rssi_last -= rssi_reduce; |
| 910 | |
| 911 | /* |
| 912 | * Now look up the rate in the rssi table and return it. |
| 913 | * If no rates match then we return 0 (lowest rate) |
| 914 | */ |
| 915 | |
| 916 | best_thruput = 0; |
| 917 | maxindex = rate_ctrl->max_valid_rate-1; |
| 918 | |
| 919 | minindex = 0; |
| 920 | best_rate = minindex; |
| 921 | |
| 922 | /* |
| 923 | * Try the higher rate first. It will reduce memory moving time |
| 924 | * if we have very good channel characteristics. |
| 925 | */ |
| 926 | for (index = maxindex; index >= minindex ; index--) { |
| 927 | u8 per_thres; |
| 928 | |
| 929 | rate = rate_ctrl->valid_rate_index[index]; |
| 930 | if (rate > rate_ctrl->rate_max_phy) |
| 931 | continue; |
| 932 | |
| 933 | /* |
| 934 | * For TCP the average collision rate is around 11%, |
| 935 | * so we ignore PERs less than this. This is to |
| 936 | * prevent the rate we are currently using (whose |
| 937 | * PER might be in the 10-15 range because of TCP |
| 938 | * collisions) looking worse than the next lower |
| 939 | * rate whose PER has decayed close to 0. If we |
| 940 | * used to next lower rate, its PER would grow to |
| 941 | * 10-15 and we would be worse off then staying |
| 942 | * at the current rate. |
| 943 | */ |
| 944 | per_thres = rate_ctrl->state[rate].per; |
| 945 | if (per_thres < 12) |
| 946 | per_thres = 12; |
| 947 | |
| 948 | this_thruput = rate_table->info[rate].user_ratekbps * |
| 949 | (100 - per_thres); |
| 950 | |
| 951 | if (best_thruput <= this_thruput) { |
| 952 | best_thruput = this_thruput; |
| 953 | best_rate = rate; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | rate = best_rate; |
| 958 | |
| 959 | /* if we are retrying for more than half the number |
| 960 | * of max retries, use the min rate for the next retry |
| 961 | */ |
| 962 | if (is_retry) |
| 963 | rate = rate_ctrl->valid_rate_index[minindex]; |
| 964 | |
| 965 | rate_ctrl->rssi_last_lookup = rssi_last; |
| 966 | |
| 967 | /* |
| 968 | * Must check the actual rate (ratekbps) to account for |
| 969 | * non-monoticity of 11g's rate table |
| 970 | */ |
| 971 | |
| 972 | if (rate >= rate_ctrl->rate_max_phy && probe_allowed) { |
| 973 | rate = rate_ctrl->rate_max_phy; |
| 974 | |
| 975 | /* Probe the next allowed phy state */ |
| 976 | /* FIXME:XXXX Check to make sure ratMax is checked properly */ |
| 977 | if (ath_rc_get_nextvalid_txrate(rate_table, |
| 978 | rate_ctrl, rate, &next_rate) && |
| 979 | (now_msec - rate_ctrl->probe_time > |
| 980 | rate_table->probe_interval) && |
| 981 | (rate_ctrl->hw_maxretry_pktcnt >= 1)) { |
| 982 | rate = next_rate; |
| 983 | rate_ctrl->probe_rate = rate; |
| 984 | rate_ctrl->probe_time = now_msec; |
| 985 | rate_ctrl->hw_maxretry_pktcnt = 0; |
| 986 | *is_probing = TRUE; |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | /* |
| 991 | * Make sure rate is not higher than the allowed maximum. |
| 992 | * We should also enforce the min, but I suspect the min is |
| 993 | * normally 1 rather than 0 because of the rate 9 vs 6 issue |
| 994 | * in the old code. |
| 995 | */ |
| 996 | if (rate > (rate_ctrl->rate_table_size - 1)) |
| 997 | rate = rate_ctrl->rate_table_size - 1; |
| 998 | |
| 999 | ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) || |
| 1000 | (rate_table->info[rate].valid_single_stream && |
| 1001 | ath_rc_priv->single_stream)); |
| 1002 | |
| 1003 | return rate; |
| 1004 | } |
| 1005 | |
| 1006 | static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table , |
| 1007 | struct ath_rc_series *series, |
| 1008 | u8 tries, |
| 1009 | u8 rix, |
| 1010 | int rtsctsenable) |
| 1011 | { |
| 1012 | series->tries = tries; |
| 1013 | series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) | |
| 1014 | (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ? |
| 1015 | ATH_RC_DS_FLAG : 0) | |
| 1016 | (WLAN_RC_PHY_40(rate_table->info[rix].phy) ? |
| 1017 | ATH_RC_CW40_FLAG : 0) | |
| 1018 | (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ? |
| 1019 | ATH_RC_SGI_FLAG : 0); |
| 1020 | |
| 1021 | series->rix = rate_table->info[rix].base_index; |
| 1022 | series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen; |
| 1023 | } |
| 1024 | |
| 1025 | static u8 ath_rc_rate_getidx(struct ath_softc *sc, |
| 1026 | struct ath_rate_node *ath_rc_priv, |
| 1027 | const struct ath_rate_table *rate_table, |
| 1028 | u8 rix, u16 stepdown, |
| 1029 | u16 min_rate) |
| 1030 | { |
| 1031 | u32 j; |
| 1032 | u8 nextindex; |
| 1033 | struct ath_tx_ratectrl *rate_ctrl = |
| 1034 | (struct ath_tx_ratectrl *)(ath_rc_priv); |
| 1035 | |
| 1036 | if (min_rate) { |
| 1037 | for (j = RATE_TABLE_SIZE; j > 0; j--) { |
| 1038 | if (ath_rc_get_nextlowervalid_txrate(rate_table, |
| 1039 | rate_ctrl, rix, &nextindex)) |
| 1040 | rix = nextindex; |
| 1041 | else |
| 1042 | break; |
| 1043 | } |
| 1044 | } else { |
| 1045 | for (j = stepdown; j > 0; j--) { |
| 1046 | if (ath_rc_get_nextlowervalid_txrate(rate_table, |
| 1047 | rate_ctrl, rix, &nextindex)) |
| 1048 | rix = nextindex; |
| 1049 | else |
| 1050 | break; |
| 1051 | } |
| 1052 | } |
| 1053 | return rix; |
| 1054 | } |
| 1055 | |
| 1056 | static void ath_rc_ratefind(struct ath_softc *sc, |
| 1057 | struct ath_rate_node *ath_rc_priv, |
| 1058 | int num_tries, int num_rates, unsigned int rcflag, |
| 1059 | struct ath_rc_series series[], int *is_probe, |
| 1060 | int is_retry) |
| 1061 | { |
| 1062 | u8 try_per_rate = 0, i = 0, rix, nrix; |
| 1063 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| 1064 | struct ath_rate_table *rate_table; |
| 1065 | |
| 1066 | rate_table = |
| 1067 | (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; |
| 1068 | rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, |
| 1069 | (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0, |
| 1070 | is_probe, is_retry); |
| 1071 | nrix = rix; |
| 1072 | |
| 1073 | if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) { |
| 1074 | /* set one try for probe rates. For the |
| 1075 | * probes don't enable rts */ |
| 1076 | ath_rc_rate_set_series(rate_table, |
| 1077 | &series[i++], 1, nrix, FALSE); |
| 1078 | |
| 1079 | try_per_rate = (num_tries/num_rates); |
| 1080 | /* Get the next tried/allowed rate. No RTS for the next series |
| 1081 | * after the probe rate |
| 1082 | */ |
| 1083 | nrix = ath_rc_rate_getidx(sc, |
| 1084 | ath_rc_priv, rate_table, nrix, 1, FALSE); |
| 1085 | ath_rc_rate_set_series(rate_table, |
| 1086 | &series[i++], try_per_rate, nrix, 0); |
| 1087 | } else { |
| 1088 | try_per_rate = (num_tries/num_rates); |
| 1089 | /* Set the choosen rate. No RTS for first series entry. */ |
| 1090 | ath_rc_rate_set_series(rate_table, |
| 1091 | &series[i++], try_per_rate, nrix, FALSE); |
| 1092 | } |
| 1093 | |
| 1094 | /* Fill in the other rates for multirate retry */ |
| 1095 | for ( ; i < num_rates; i++) { |
| 1096 | u8 try_num; |
| 1097 | u8 min_rate; |
| 1098 | |
| 1099 | try_num = ((i + 1) == num_rates) ? |
| 1100 | num_tries - (try_per_rate * i) : try_per_rate ; |
| 1101 | min_rate = (((i + 1) == num_rates) && |
| 1102 | (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0; |
| 1103 | |
| 1104 | nrix = ath_rc_rate_getidx(sc, ath_rc_priv, |
| 1105 | rate_table, nrix, 1, min_rate); |
| 1106 | /* All other rates in the series have RTS enabled */ |
| 1107 | ath_rc_rate_set_series(rate_table, |
| 1108 | &series[i], try_num, nrix, TRUE); |
| 1109 | } |
| 1110 | |
| 1111 | /* |
| 1112 | * NB:Change rate series to enable aggregation when operating |
| 1113 | * at lower MCS rates. When first rate in series is MCS2 |
| 1114 | * in HT40 @ 2.4GHz, series should look like: |
| 1115 | * |
| 1116 | * {MCS2, MCS1, MCS0, MCS0}. |
| 1117 | * |
| 1118 | * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should |
| 1119 | * look like: |
| 1120 | * |
| 1121 | * {MCS3, MCS2, MCS1, MCS1} |
| 1122 | * |
| 1123 | * So, set fourth rate in series to be same as third one for |
| 1124 | * above conditions. |
| 1125 | */ |
| 1126 | if ((sc->sc_curmode == WIRELESS_MODE_11NG_HT20) || |
| 1127 | (sc->sc_curmode == WIRELESS_MODE_11NG_HT40PLUS) || |
| 1128 | (sc->sc_curmode == WIRELESS_MODE_11NG_HT40MINUS)) { |
| 1129 | u8 dot11rate = rate_table->info[rix].dot11rate; |
| 1130 | u8 phy = rate_table->info[rix].phy; |
| 1131 | if (i == 4 && |
| 1132 | ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || |
| 1133 | (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { |
| 1134 | series[3].rix = series[2].rix; |
| 1135 | series[3].flags = series[2].flags; |
| 1136 | series[3].max_4ms_framelen = series[2].max_4ms_framelen; |
| 1137 | } |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | /* |
| 1142 | * Return the Tx rate series. |
| 1143 | */ |
| 1144 | void ath_rate_findrate(struct ath_softc *sc, |
| 1145 | struct ath_rate_node *ath_rc_priv, |
| 1146 | int num_tries, |
| 1147 | int num_rates, |
| 1148 | unsigned int rcflag, |
| 1149 | struct ath_rc_series series[], |
| 1150 | int *is_probe, |
| 1151 | int is_retry) |
| 1152 | { |
| 1153 | struct ath_vap *avp = ath_rc_priv->avp; |
| 1154 | |
| 1155 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); |
| 1156 | if (!num_rates || !num_tries) |
| 1157 | return; |
| 1158 | |
| 1159 | if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) { |
| 1160 | ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates, |
| 1161 | rcflag, series, is_probe, is_retry); |
| 1162 | } else { |
| 1163 | /* Fixed rate */ |
| 1164 | int idx; |
| 1165 | u8 flags; |
| 1166 | u32 rix; |
| 1167 | struct ath_rate_softc *asc = ath_rc_priv->asc; |
| 1168 | struct ath_rate_table *rate_table; |
| 1169 | |
| 1170 | rate_table = (struct ath_rate_table *) |
| 1171 | asc->hw_rate_table[sc->sc_curmode]; |
| 1172 | |
| 1173 | for (idx = 0; idx < 4; idx++) { |
| 1174 | unsigned int mcs; |
| 1175 | u8 series_rix = 0; |
| 1176 | |
| 1177 | series[idx].tries = |
| 1178 | IEEE80211_RATE_IDX_ENTRY( |
| 1179 | avp->av_config.av_fixed_retryset, idx); |
| 1180 | |
| 1181 | mcs = IEEE80211_RATE_IDX_ENTRY( |
| 1182 | avp->av_config.av_fixed_rateset, idx); |
| 1183 | |
| 1184 | if (idx == 3 && (mcs & 0xf0) == 0x70) |
| 1185 | mcs = (mcs & ~0xf0)|0x80; |
| 1186 | |
| 1187 | if (!(mcs & 0x80)) |
| 1188 | flags = 0; |
| 1189 | else |
| 1190 | flags = ((ath_rc_priv->ht_cap & |
| 1191 | WLAN_RC_DS_FLAG) ? |
| 1192 | ATH_RC_DS_FLAG : 0) | |
| 1193 | ((ath_rc_priv->ht_cap & |
| 1194 | WLAN_RC_40_FLAG) ? |
| 1195 | ATH_RC_CW40_FLAG : 0) | |
| 1196 | ((ath_rc_priv->ht_cap & |
| 1197 | WLAN_RC_SGI_FLAG) ? |
| 1198 | ((ath_rc_priv->ht_cap & |
| 1199 | WLAN_RC_40_FLAG) ? |
| 1200 | ATH_RC_SGI_FLAG : 0) : 0); |
| 1201 | |
| 1202 | series[idx].rix = sc->sc_rixmap[mcs]; |
| 1203 | series_rix = series[idx].rix; |
| 1204 | |
| 1205 | /* XXX: Give me some cleanup love */ |
| 1206 | if ((flags & ATH_RC_CW40_FLAG) && |
| 1207 | (flags & ATH_RC_SGI_FLAG)) |
| 1208 | rix = rate_table->info[series_rix].ht_index; |
| 1209 | else if (flags & ATH_RC_SGI_FLAG) |
| 1210 | rix = rate_table->info[series_rix].sgi_index; |
| 1211 | else if (flags & ATH_RC_CW40_FLAG) |
| 1212 | rix = rate_table->info[series_rix].cw40index; |
| 1213 | else |
| 1214 | rix = rate_table->info[series_rix].base_index; |
| 1215 | series[idx].max_4ms_framelen = |
| 1216 | rate_table->info[rix].max_4ms_framelen; |
| 1217 | series[idx].flags = flags; |
| 1218 | } |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | static void ath_rc_update_ht(struct ath_softc *sc, |
| 1223 | struct ath_rate_node *ath_rc_priv, |
| 1224 | struct ath_tx_info_priv *info_priv, |
| 1225 | int tx_rate, int xretries, int retries) |
| 1226 | { |
| 1227 | struct ath_tx_ratectrl *rate_ctrl; |
| 1228 | u32 now_msec = jiffies_to_msecs(jiffies); |
| 1229 | int state_change = FALSE, rate, count; |
| 1230 | u8 last_per; |
| 1231 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| 1232 | struct ath_rate_table *rate_table = |
| 1233 | (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; |
| 1234 | |
| 1235 | static u32 nretry_to_per_lookup[10] = { |
| 1236 | 100 * 0 / 1, |
| 1237 | 100 * 1 / 4, |
| 1238 | 100 * 1 / 2, |
| 1239 | 100 * 3 / 4, |
| 1240 | 100 * 4 / 5, |
| 1241 | 100 * 5 / 6, |
| 1242 | 100 * 6 / 7, |
| 1243 | 100 * 7 / 8, |
| 1244 | 100 * 8 / 9, |
| 1245 | 100 * 9 / 10 |
| 1246 | }; |
| 1247 | |
| 1248 | if (!ath_rc_priv) |
| 1249 | return; |
| 1250 | |
| 1251 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); |
| 1252 | |
| 1253 | ASSERT(tx_rate >= 0); |
| 1254 | if (tx_rate < 0) |
| 1255 | return; |
| 1256 | |
| 1257 | /* To compensate for some imbalance between ctrl and ext. channel */ |
| 1258 | |
| 1259 | if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy)) |
| 1260 | info_priv->tx.ts_rssi = |
| 1261 | info_priv->tx.ts_rssi < 3 ? 0 : |
| 1262 | info_priv->tx.ts_rssi - 3; |
| 1263 | |
| 1264 | last_per = rate_ctrl->state[tx_rate].per; |
| 1265 | |
| 1266 | if (xretries) { |
| 1267 | /* Update the PER. */ |
| 1268 | if (xretries == 1) { |
| 1269 | rate_ctrl->state[tx_rate].per += 30; |
| 1270 | if (rate_ctrl->state[tx_rate].per > 100) |
| 1271 | rate_ctrl->state[tx_rate].per = 100; |
| 1272 | } else { |
| 1273 | /* xretries == 2 */ |
| 1274 | count = sizeof(nretry_to_per_lookup) / |
| 1275 | sizeof(nretry_to_per_lookup[0]); |
| 1276 | if (retries >= count) |
| 1277 | retries = count - 1; |
| 1278 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| 1279 | rate_ctrl->state[tx_rate].per = |
| 1280 | (u8)(rate_ctrl->state[tx_rate].per - |
| 1281 | (rate_ctrl->state[tx_rate].per >> 3) + |
| 1282 | ((100) >> 3)); |
| 1283 | } |
| 1284 | |
| 1285 | /* xretries == 1 or 2 */ |
| 1286 | |
| 1287 | if (rate_ctrl->probe_rate == tx_rate) |
| 1288 | rate_ctrl->probe_rate = 0; |
| 1289 | |
| 1290 | } else { /* xretries == 0 */ |
| 1291 | /* Update the PER. */ |
| 1292 | /* Make sure it doesn't index out of array's bounds. */ |
| 1293 | count = sizeof(nretry_to_per_lookup) / |
| 1294 | sizeof(nretry_to_per_lookup[0]); |
| 1295 | if (retries >= count) |
| 1296 | retries = count - 1; |
| 1297 | if (info_priv->n_bad_frames) { |
| 1298 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| 1299 | /* |
| 1300 | * Assuming that n_frames is not 0. The current PER |
| 1301 | * from the retries is 100 * retries / (retries+1), |
| 1302 | * since the first retries attempts failed, and the |
| 1303 | * next one worked. For the one that worked, |
| 1304 | * n_bad_frames subframes out of n_frames wored, |
| 1305 | * so the PER for that part is |
| 1306 | * 100 * n_bad_frames / n_frames, and it contributes |
| 1307 | * 100 * n_bad_frames / (n_frames * (retries+1)) to |
| 1308 | * the above PER. The expression below is a |
| 1309 | * simplified version of the sum of these two terms. |
| 1310 | */ |
| 1311 | if (info_priv->n_frames > 0) |
| 1312 | rate_ctrl->state[tx_rate].per |
| 1313 | = (u8) |
| 1314 | (rate_ctrl->state[tx_rate].per - |
| 1315 | (rate_ctrl->state[tx_rate].per >> 3) + |
| 1316 | ((100*(retries*info_priv->n_frames + |
| 1317 | info_priv->n_bad_frames) / |
| 1318 | (info_priv->n_frames * |
| 1319 | (retries+1))) >> 3)); |
| 1320 | } else { |
| 1321 | /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| 1322 | |
| 1323 | rate_ctrl->state[tx_rate].per = (u8) |
| 1324 | (rate_ctrl->state[tx_rate].per - |
| 1325 | (rate_ctrl->state[tx_rate].per >> 3) + |
| 1326 | (nretry_to_per_lookup[retries] >> 3)); |
| 1327 | } |
| 1328 | |
| 1329 | rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev; |
| 1330 | rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last; |
| 1331 | rate_ctrl->rssi_last = info_priv->tx.ts_rssi; |
| 1332 | rate_ctrl->rssi_time = now_msec; |
| 1333 | |
| 1334 | /* |
| 1335 | * If we got at most one retry then increase the max rate if |
| 1336 | * this was a probe. Otherwise, ignore the probe. |
| 1337 | */ |
| 1338 | |
| 1339 | if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) { |
| 1340 | if (retries > 0 || 2 * info_priv->n_bad_frames > |
| 1341 | info_priv->n_frames) { |
| 1342 | /* |
| 1343 | * Since we probed with just a single attempt, |
| 1344 | * any retries means the probe failed. Also, |
| 1345 | * if the attempt worked, but more than half |
| 1346 | * the subframes were bad then also consider |
| 1347 | * the probe a failure. |
| 1348 | */ |
| 1349 | rate_ctrl->probe_rate = 0; |
| 1350 | } else { |
| 1351 | u8 probe_rate = 0; |
| 1352 | |
| 1353 | rate_ctrl->rate_max_phy = rate_ctrl->probe_rate; |
| 1354 | probe_rate = rate_ctrl->probe_rate; |
| 1355 | |
| 1356 | if (rate_ctrl->state[probe_rate].per > 30) |
| 1357 | rate_ctrl->state[probe_rate].per = 20; |
| 1358 | |
| 1359 | rate_ctrl->probe_rate = 0; |
| 1360 | |
| 1361 | /* |
| 1362 | * Since this probe succeeded, we allow the next |
| 1363 | * probe twice as soon. This allows the maxRate |
| 1364 | * to move up faster if the probes are |
| 1365 | * succesful. |
| 1366 | */ |
| 1367 | rate_ctrl->probe_time = now_msec - |
| 1368 | rate_table->probe_interval / 2; |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | if (retries > 0) { |
| 1373 | /* |
| 1374 | * Don't update anything. We don't know if |
| 1375 | * this was because of collisions or poor signal. |
| 1376 | * |
| 1377 | * Later: if rssi_ack is close to |
| 1378 | * rate_ctrl->state[txRate].rssi_thres and we see lots |
| 1379 | * of retries, then we could increase |
| 1380 | * rate_ctrl->state[txRate].rssi_thres. |
| 1381 | */ |
| 1382 | rate_ctrl->hw_maxretry_pktcnt = 0; |
| 1383 | } else { |
| 1384 | /* |
| 1385 | * It worked with no retries. First ignore bogus (small) |
| 1386 | * rssi_ack values. |
| 1387 | */ |
| 1388 | if (tx_rate == rate_ctrl->rate_max_phy && |
| 1389 | rate_ctrl->hw_maxretry_pktcnt < 255) { |
| 1390 | rate_ctrl->hw_maxretry_pktcnt++; |
| 1391 | } |
| 1392 | |
| 1393 | if (info_priv->tx.ts_rssi >= |
| 1394 | rate_table->info[tx_rate].rssi_ack_validmin) { |
| 1395 | /* Average the rssi */ |
| 1396 | if (tx_rate != rate_ctrl->rssi_sum_rate) { |
| 1397 | rate_ctrl->rssi_sum_rate = tx_rate; |
| 1398 | rate_ctrl->rssi_sum = |
| 1399 | rate_ctrl->rssi_sum_cnt = 0; |
| 1400 | } |
| 1401 | |
| 1402 | rate_ctrl->rssi_sum += info_priv->tx.ts_rssi; |
| 1403 | rate_ctrl->rssi_sum_cnt++; |
| 1404 | |
| 1405 | if (rate_ctrl->rssi_sum_cnt > 4) { |
| 1406 | int32_t rssi_ackAvg = |
| 1407 | (rate_ctrl->rssi_sum + 2) / 4; |
| 1408 | int8_t rssi_thres = |
| 1409 | rate_ctrl->state[tx_rate]. |
| 1410 | rssi_thres; |
| 1411 | int8_t rssi_ack_vmin = |
| 1412 | rate_table->info[tx_rate]. |
| 1413 | rssi_ack_validmin; |
| 1414 | |
| 1415 | rate_ctrl->rssi_sum = |
| 1416 | rate_ctrl->rssi_sum_cnt = 0; |
| 1417 | |
| 1418 | /* Now reduce the current |
| 1419 | * rssi threshold. */ |
| 1420 | if ((rssi_ackAvg < rssi_thres + 2) && |
| 1421 | (rssi_thres > rssi_ack_vmin)) { |
| 1422 | rate_ctrl->state[tx_rate]. |
| 1423 | rssi_thres--; |
| 1424 | } |
| 1425 | |
| 1426 | state_change = TRUE; |
| 1427 | } |
| 1428 | } |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | /* For all cases */ |
| 1433 | |
| 1434 | /* |
| 1435 | * If this rate looks bad (high PER) then stop using it for |
| 1436 | * a while (except if we are probing). |
| 1437 | */ |
| 1438 | if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 && |
| 1439 | rate_table->info[tx_rate].ratekbps <= |
| 1440 | rate_table->info[rate_ctrl->rate_max_phy].ratekbps) { |
| 1441 | ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl, |
| 1442 | (u8) tx_rate, &rate_ctrl->rate_max_phy); |
| 1443 | |
| 1444 | /* Don't probe for a little while. */ |
| 1445 | rate_ctrl->probe_time = now_msec; |
| 1446 | } |
| 1447 | |
| 1448 | if (state_change) { |
| 1449 | /* |
| 1450 | * Make sure the rates above this have higher rssi thresholds. |
| 1451 | * (Note: Monotonicity is kept within the OFDM rates and |
| 1452 | * within the CCK rates. However, no adjustment is |
| 1453 | * made to keep the rssi thresholds monotonically |
| 1454 | * increasing between the CCK and OFDM rates.) |
| 1455 | */ |
| 1456 | for (rate = tx_rate; rate < |
| 1457 | rate_ctrl->rate_table_size - 1; rate++) { |
| 1458 | if (rate_table->info[rate+1].phy != |
| 1459 | rate_table->info[tx_rate].phy) |
| 1460 | break; |
| 1461 | |
| 1462 | if (rate_ctrl->state[rate].rssi_thres + |
| 1463 | rate_table->info[rate].rssi_ack_deltamin > |
| 1464 | rate_ctrl->state[rate+1].rssi_thres) { |
| 1465 | rate_ctrl->state[rate+1].rssi_thres = |
| 1466 | rate_ctrl->state[rate]. |
| 1467 | rssi_thres + |
| 1468 | rate_table->info[rate]. |
| 1469 | rssi_ack_deltamin; |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | /* Make sure the rates below this have lower rssi thresholds. */ |
| 1474 | for (rate = tx_rate - 1; rate >= 0; rate--) { |
| 1475 | if (rate_table->info[rate].phy != |
| 1476 | rate_table->info[tx_rate].phy) |
| 1477 | break; |
| 1478 | |
| 1479 | if (rate_ctrl->state[rate].rssi_thres + |
| 1480 | rate_table->info[rate].rssi_ack_deltamin > |
| 1481 | rate_ctrl->state[rate+1].rssi_thres) { |
| 1482 | if (rate_ctrl->state[rate+1].rssi_thres < |
| 1483 | rate_table->info[rate]. |
| 1484 | rssi_ack_deltamin) |
| 1485 | rate_ctrl->state[rate].rssi_thres = 0; |
| 1486 | else { |
| 1487 | rate_ctrl->state[rate].rssi_thres = |
| 1488 | rate_ctrl->state[rate+1]. |
| 1489 | rssi_thres - |
| 1490 | rate_table->info[rate]. |
| 1491 | rssi_ack_deltamin; |
| 1492 | } |
| 1493 | |
| 1494 | if (rate_ctrl->state[rate].rssi_thres < |
| 1495 | rate_table->info[rate]. |
| 1496 | rssi_ack_validmin) { |
| 1497 | rate_ctrl->state[rate].rssi_thres = |
| 1498 | rate_table->info[rate]. |
| 1499 | rssi_ack_validmin; |
| 1500 | } |
| 1501 | } |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | /* Make sure the rates below this have lower PER */ |
| 1506 | /* Monotonicity is kept only for rates below the current rate. */ |
| 1507 | if (rate_ctrl->state[tx_rate].per < last_per) { |
| 1508 | for (rate = tx_rate - 1; rate >= 0; rate--) { |
| 1509 | if (rate_table->info[rate].phy != |
| 1510 | rate_table->info[tx_rate].phy) |
| 1511 | break; |
| 1512 | |
| 1513 | if (rate_ctrl->state[rate].per > |
| 1514 | rate_ctrl->state[rate+1].per) { |
| 1515 | rate_ctrl->state[rate].per = |
| 1516 | rate_ctrl->state[rate+1].per; |
| 1517 | } |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | /* Maintain monotonicity for rates above the current rate */ |
| 1522 | for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) { |
| 1523 | if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per) |
| 1524 | rate_ctrl->state[rate+1].per = |
| 1525 | rate_ctrl->state[rate].per; |
| 1526 | } |
| 1527 | |
| 1528 | /* Every so often, we reduce the thresholds and |
| 1529 | * PER (different for CCK and OFDM). */ |
| 1530 | if (now_msec - rate_ctrl->rssi_down_time >= |
| 1531 | rate_table->rssi_reduce_interval) { |
| 1532 | |
| 1533 | for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { |
| 1534 | if (rate_ctrl->state[rate].rssi_thres > |
| 1535 | rate_table->info[rate].rssi_ack_validmin) |
| 1536 | rate_ctrl->state[rate].rssi_thres -= 1; |
| 1537 | } |
| 1538 | rate_ctrl->rssi_down_time = now_msec; |
| 1539 | } |
| 1540 | |
| 1541 | /* Every so often, we reduce the thresholds |
| 1542 | * and PER (different for CCK and OFDM). */ |
| 1543 | if (now_msec - rate_ctrl->per_down_time >= |
| 1544 | rate_table->rssi_reduce_interval) { |
| 1545 | for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { |
| 1546 | rate_ctrl->state[rate].per = |
| 1547 | 7 * rate_ctrl->state[rate].per / 8; |
| 1548 | } |
| 1549 | |
| 1550 | rate_ctrl->per_down_time = now_msec; |
| 1551 | } |
| 1552 | } |
| 1553 | |
| 1554 | /* |
| 1555 | * This routine is called in rate control callback tx_status() to give |
| 1556 | * the status of previous frames. |
| 1557 | */ |
| 1558 | static void ath_rc_update(struct ath_softc *sc, |
| 1559 | struct ath_rate_node *ath_rc_priv, |
| 1560 | struct ath_tx_info_priv *info_priv, int final_ts_idx, |
| 1561 | int xretries, int long_retry) |
| 1562 | { |
| 1563 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| 1564 | struct ath_rate_table *rate_table; |
| 1565 | struct ath_tx_ratectrl *rate_ctrl; |
| 1566 | struct ath_rc_series rcs[4]; |
| 1567 | u8 flags; |
| 1568 | u32 series = 0, rix; |
| 1569 | |
| 1570 | memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0])); |
| 1571 | rate_table = (struct ath_rate_table *) |
| 1572 | asc->hw_rate_table[sc->sc_curmode]; |
| 1573 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); |
| 1574 | ASSERT(rcs[0].tries != 0); |
| 1575 | |
| 1576 | /* |
| 1577 | * If the first rate is not the final index, there |
| 1578 | * are intermediate rate failures to be processed. |
| 1579 | */ |
| 1580 | if (final_ts_idx != 0) { |
| 1581 | /* Process intermediate rates that failed.*/ |
| 1582 | for (series = 0; series < final_ts_idx ; series++) { |
| 1583 | if (rcs[series].tries != 0) { |
| 1584 | flags = rcs[series].flags; |
| 1585 | /* If HT40 and we have switched mode from |
| 1586 | * 40 to 20 => don't update */ |
| 1587 | if ((flags & ATH_RC_CW40_FLAG) && |
| 1588 | (rate_ctrl->rc_phy_mode != |
| 1589 | (flags & ATH_RC_CW40_FLAG))) |
| 1590 | return; |
| 1591 | if ((flags & ATH_RC_CW40_FLAG) && |
| 1592 | (flags & ATH_RC_SGI_FLAG)) |
| 1593 | rix = rate_table->info[ |
| 1594 | rcs[series].rix].ht_index; |
| 1595 | else if (flags & ATH_RC_SGI_FLAG) |
| 1596 | rix = rate_table->info[ |
| 1597 | rcs[series].rix].sgi_index; |
| 1598 | else if (flags & ATH_RC_CW40_FLAG) |
| 1599 | rix = rate_table->info[ |
| 1600 | rcs[series].rix].cw40index; |
| 1601 | else |
| 1602 | rix = rate_table->info[ |
| 1603 | rcs[series].rix].base_index; |
| 1604 | ath_rc_update_ht(sc, ath_rc_priv, |
| 1605 | info_priv, rix, |
| 1606 | xretries ? 1 : 2, |
| 1607 | rcs[series].tries); |
| 1608 | } |
| 1609 | } |
| 1610 | } else { |
| 1611 | /* |
| 1612 | * Handle the special case of MIMO PS burst, where the second |
| 1613 | * aggregate is sent out with only one rate and one try. |
| 1614 | * Treating it as an excessive retry penalizes the rate |
| 1615 | * inordinately. |
| 1616 | */ |
| 1617 | if (rcs[0].tries == 1 && xretries == 1) |
| 1618 | xretries = 2; |
| 1619 | } |
| 1620 | |
| 1621 | flags = rcs[series].flags; |
| 1622 | /* If HT40 and we have switched mode from 40 to 20 => don't update */ |
| 1623 | if ((flags & ATH_RC_CW40_FLAG) && |
| 1624 | (rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG))) |
| 1625 | return; |
| 1626 | |
| 1627 | if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG)) |
| 1628 | rix = rate_table->info[rcs[series].rix].ht_index; |
| 1629 | else if (flags & ATH_RC_SGI_FLAG) |
| 1630 | rix = rate_table->info[rcs[series].rix].sgi_index; |
| 1631 | else if (flags & ATH_RC_CW40_FLAG) |
| 1632 | rix = rate_table->info[rcs[series].rix].cw40index; |
| 1633 | else |
| 1634 | rix = rate_table->info[rcs[series].rix].base_index; |
| 1635 | |
| 1636 | ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix, |
| 1637 | xretries, long_retry); |
| 1638 | } |
| 1639 | |
| 1640 | |
| 1641 | /* |
| 1642 | * Process a tx descriptor for a completed transmit (success or failure). |
| 1643 | */ |
| 1644 | static void ath_rate_tx_complete(struct ath_softc *sc, |
| 1645 | struct ath_node *an, |
| 1646 | struct ath_rate_node *rc_priv, |
| 1647 | struct ath_tx_info_priv *info_priv) |
| 1648 | { |
| 1649 | int final_ts_idx = info_priv->tx.ts_rateindex; |
| 1650 | int tx_status = 0, is_underrun = 0; |
| 1651 | struct ath_vap *avp; |
| 1652 | |
| 1653 | avp = rc_priv->avp; |
| 1654 | if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) |
| 1655 | || info_priv->tx.ts_status & ATH9K_TXERR_FILT) |
| 1656 | return; |
| 1657 | |
| 1658 | if (info_priv->tx.ts_rssi > 0) { |
| 1659 | ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi, |
| 1660 | info_priv->tx.ts_rssi); |
| 1661 | } |
| 1662 | |
| 1663 | /* |
| 1664 | * If underrun error is seen assume it as an excessive retry only |
| 1665 | * if prefetch trigger level have reached the max (0x3f for 5416) |
| 1666 | * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY |
| 1667 | * times. This affects how ratectrl updates PER for the failed rate. |
| 1668 | */ |
| 1669 | if (info_priv->tx.ts_flags & |
| 1670 | (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && |
| 1671 | ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) { |
| 1672 | tx_status = 1; |
| 1673 | is_underrun = 1; |
| 1674 | } |
| 1675 | |
| 1676 | if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || |
| 1677 | (info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) |
| 1678 | tx_status = 1; |
| 1679 | |
| 1680 | ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status, |
| 1681 | (is_underrun) ? ATH_11N_TXMAXTRY : |
| 1682 | info_priv->tx.ts_longretry); |
| 1683 | } |
| 1684 | |
| 1685 | |
| 1686 | /* |
| 1687 | * Update the SIB's rate control information |
| 1688 | * |
| 1689 | * This should be called when the supported rates change |
| 1690 | * (e.g. SME operation, wireless mode change) |
| 1691 | * |
| 1692 | * It will determine which rates are valid for use. |
| 1693 | */ |
| 1694 | static void ath_rc_sib_update(struct ath_softc *sc, |
| 1695 | struct ath_rate_node *ath_rc_priv, |
| 1696 | u32 capflag, int keep_state, |
| 1697 | struct ath_rateset *negotiated_rates, |
| 1698 | struct ath_rateset *negotiated_htrates) |
| 1699 | { |
| 1700 | struct ath_rate_table *rate_table = NULL; |
| 1701 | struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| 1702 | struct ath_rateset *rateset = negotiated_rates; |
| 1703 | u8 *ht_mcs = (u8 *)negotiated_htrates; |
| 1704 | struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *) |
| 1705 | (ath_rc_priv); |
| 1706 | u8 i, j, k, hi = 0, hthi = 0; |
| 1707 | |
| 1708 | rate_table = (struct ath_rate_table *) |
| 1709 | asc->hw_rate_table[sc->sc_curmode]; |
| 1710 | |
| 1711 | /* Initial rate table size. Will change depending |
| 1712 | * on the working rate set */ |
| 1713 | rate_ctrl->rate_table_size = MAX_TX_RATE_TBL; |
| 1714 | |
| 1715 | /* Initialize thresholds according to the global rate table */ |
| 1716 | for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) { |
| 1717 | rate_ctrl->state[i].rssi_thres = |
| 1718 | rate_table->info[i].rssi_ack_validmin; |
| 1719 | rate_ctrl->state[i].per = 0; |
| 1720 | } |
| 1721 | |
| 1722 | /* Determine the valid rates */ |
| 1723 | ath_rc_init_valid_txmask(rate_ctrl); |
| 1724 | |
| 1725 | for (i = 0; i < WLAN_RC_PHY_MAX; i++) { |
| 1726 | for (j = 0; j < MAX_TX_RATE_PHY; j++) |
| 1727 | rate_ctrl->valid_phy_rateidx[i][j] = 0; |
| 1728 | rate_ctrl->valid_phy_ratecnt[i] = 0; |
| 1729 | } |
| 1730 | rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG); |
| 1731 | |
| 1732 | /* Set stream capability */ |
| 1733 | ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1; |
| 1734 | |
| 1735 | if (!rateset->rs_nrates) { |
| 1736 | /* No working rate, just initialize valid rates */ |
| 1737 | hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table, |
| 1738 | capflag); |
| 1739 | } else { |
| 1740 | /* Use intersection of working rates and valid rates */ |
| 1741 | hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table, |
| 1742 | rateset, capflag); |
| 1743 | if (capflag & WLAN_RC_HT_FLAG) { |
| 1744 | hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv, |
| 1745 | rate_table, |
| 1746 | ht_mcs, |
| 1747 | capflag); |
| 1748 | } |
| 1749 | hi = A_MAX(hi, hthi); |
| 1750 | } |
| 1751 | |
| 1752 | rate_ctrl->rate_table_size = hi + 1; |
| 1753 | rate_ctrl->rate_max_phy = 0; |
| 1754 | ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); |
| 1755 | |
| 1756 | for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { |
| 1757 | for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) { |
| 1758 | rate_ctrl->valid_rate_index[k++] = |
| 1759 | rate_ctrl->valid_phy_rateidx[i][j]; |
| 1760 | } |
| 1761 | |
| 1762 | if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE) |
| 1763 | || !rate_ctrl->valid_phy_ratecnt[i]) |
| 1764 | continue; |
| 1765 | |
| 1766 | rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1]; |
| 1767 | } |
| 1768 | ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); |
| 1769 | ASSERT(k <= MAX_TX_RATE_TBL); |
| 1770 | |
| 1771 | rate_ctrl->max_valid_rate = k; |
| 1772 | /* |
| 1773 | * Some third party vendors don't send the supported rate series in |
| 1774 | * order. So sorting to make sure its in order, otherwise our RateFind |
| 1775 | * Algo will select wrong rates |
| 1776 | */ |
| 1777 | ath_rc_sort_validrates(rate_table, rate_ctrl); |
| 1778 | rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4]; |
| 1779 | } |
| 1780 | |
| 1781 | /* |
| 1782 | * Update rate-control state on station associate/reassociate. |
| 1783 | */ |
| 1784 | static int ath_rate_newassoc(struct ath_softc *sc, |
| 1785 | struct ath_rate_node *ath_rc_priv, |
| 1786 | unsigned int capflag, |
| 1787 | struct ath_rateset *negotiated_rates, |
| 1788 | struct ath_rateset *negotiated_htrates) |
| 1789 | { |
| 1790 | |
| 1791 | |
| 1792 | ath_rc_priv->ht_cap = |
| 1793 | ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) | |
| 1794 | ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) | |
| 1795 | ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) | |
| 1796 | ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0); |
| 1797 | |
| 1798 | ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0, |
| 1799 | negotiated_rates, negotiated_htrates); |
| 1800 | |
| 1801 | return 0; |
| 1802 | } |
| 1803 | |
| 1804 | /* |
| 1805 | * This routine is called to initialize the rate control parameters |
| 1806 | * in the SIB. It is called initially during system initialization |
| 1807 | * or when a station is associated with the AP. |
| 1808 | */ |
| 1809 | static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv) |
| 1810 | { |
| 1811 | struct ath_tx_ratectrl *rate_ctrl; |
| 1812 | |
| 1813 | rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); |
| 1814 | rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies); |
| 1815 | } |
| 1816 | |
| 1817 | |
| 1818 | static void ath_setup_rates(struct ieee80211_local *local, struct sta_info *sta) |
| 1819 | |
| 1820 | { |
| 1821 | struct ieee80211_supported_band *sband; |
| 1822 | struct ieee80211_hw *hw = local_to_hw(local); |
| 1823 | struct ath_softc *sc = hw->priv; |
| 1824 | struct ath_rate_node *rc_priv = sta->rate_ctrl_priv; |
| 1825 | int i, j = 0; |
| 1826 | |
| 1827 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); |
| 1828 | sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; |
| 1829 | for (i = 0; i < sband->n_bitrates; i++) { |
| 1830 | if (sta->supp_rates[local->hw.conf.channel->band] & BIT(i)) { |
| 1831 | rc_priv->neg_rates.rs_rates[j] |
| 1832 | = (sband->bitrates[i].bitrate * 2) / 10; |
| 1833 | j++; |
| 1834 | } |
| 1835 | } |
| 1836 | rc_priv->neg_rates.rs_nrates = j; |
| 1837 | } |
| 1838 | |
| 1839 | void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv) |
| 1840 | { |
| 1841 | struct ath_softc *sc = hw->priv; |
| 1842 | u32 capflag = 0; |
| 1843 | |
| 1844 | if (hw->conf.ht_conf.ht_supported) { |
| 1845 | capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG; |
| 1846 | if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040) |
| 1847 | capflag |= ATH_RC_CW40_FLAG; |
| 1848 | } |
| 1849 | |
| 1850 | ath_rate_newassoc(sc, rc_priv, capflag, |
| 1851 | &rc_priv->neg_rates, |
| 1852 | &rc_priv->neg_ht_rates); |
| 1853 | |
| 1854 | } |
| 1855 | |
| 1856 | /* Rate Control callbacks */ |
| 1857 | static void ath_tx_status(void *priv, struct net_device *dev, |
| 1858 | struct sk_buff *skb) |
| 1859 | { |
| 1860 | struct ath_softc *sc = priv; |
| 1861 | struct ath_tx_info_priv *tx_info_priv; |
| 1862 | struct ath_node *an; |
| 1863 | struct sta_info *sta; |
| 1864 | struct ieee80211_local *local; |
| 1865 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| 1866 | struct ieee80211_hdr *hdr; |
| 1867 | __le16 fc; |
| 1868 | |
| 1869 | local = hw_to_local(sc->hw); |
| 1870 | hdr = (struct ieee80211_hdr *)skb->data; |
| 1871 | fc = hdr->frame_control; |
| 1872 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| 1873 | |
| 1874 | spin_lock_bh(&sc->node_lock); |
| 1875 | an = ath_node_find(sc, hdr->addr1); |
| 1876 | spin_unlock_bh(&sc->node_lock); |
| 1877 | |
| 1878 | sta = sta_info_get(local, hdr->addr1); |
| 1879 | if (!an || !sta || !ieee80211_is_data(fc)) { |
| 1880 | if (tx_info->driver_data[0] != NULL) { |
| 1881 | kfree(tx_info->driver_data[0]); |
| 1882 | tx_info->driver_data[0] = NULL; |
| 1883 | } |
| 1884 | return; |
| 1885 | } |
| 1886 | if (tx_info->driver_data[0] != NULL) { |
| 1887 | ath_rate_tx_complete(sc, an, sta->rate_ctrl_priv, tx_info_priv); |
| 1888 | kfree(tx_info->driver_data[0]); |
| 1889 | tx_info->driver_data[0] = NULL; |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | static void ath_tx_aggr_resp(struct ath_softc *sc, |
| 1894 | struct sta_info *sta, |
| 1895 | struct ath_node *an, |
| 1896 | u8 tidno) |
| 1897 | { |
| 1898 | struct ieee80211_hw *hw = sc->hw; |
| 1899 | struct ieee80211_local *local; |
| 1900 | struct ath_atx_tid *txtid; |
| 1901 | struct ieee80211_supported_band *sband; |
| 1902 | u16 buffersize = 0; |
| 1903 | int state; |
| 1904 | DECLARE_MAC_BUF(mac); |
| 1905 | |
| 1906 | if (!sc->sc_txaggr) |
| 1907 | return; |
| 1908 | |
| 1909 | txtid = ATH_AN_2_TID(an, tidno); |
| 1910 | if (!txtid->paused) |
| 1911 | return; |
| 1912 | |
| 1913 | local = hw_to_local(sc->hw); |
| 1914 | sband = hw->wiphy->bands[hw->conf.channel->band]; |
| 1915 | buffersize = IEEE80211_MIN_AMPDU_BUF << |
| 1916 | sband->ht_info.ampdu_factor; /* FIXME */ |
| 1917 | state = sta->ampdu_mlme.tid_state_tx[tidno]; |
| 1918 | |
| 1919 | if (state & HT_ADDBA_RECEIVED_MSK) { |
| 1920 | txtid->addba_exchangecomplete = 1; |
| 1921 | txtid->addba_exchangeinprogress = 0; |
| 1922 | txtid->baw_size = buffersize; |
| 1923 | |
| 1924 | DPRINTF(sc, ATH_DBG_AGGR, |
| 1925 | "%s: Resuming tid, buffersize: %d\n", |
| 1926 | __func__, |
| 1927 | buffersize); |
| 1928 | |
| 1929 | ath_tx_resume_tid(sc, txtid); |
| 1930 | } |
| 1931 | } |
| 1932 | |
| 1933 | static void ath_get_rate(void *priv, struct net_device *dev, |
| 1934 | struct ieee80211_supported_band *sband, |
| 1935 | struct sk_buff *skb, |
| 1936 | struct rate_selection *sel) |
| 1937 | { |
| 1938 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| 1939 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| 1940 | struct sta_info *sta; |
| 1941 | struct ath_softc *sc = (struct ath_softc *)priv; |
| 1942 | struct ieee80211_hw *hw = sc->hw; |
| 1943 | struct ath_tx_info_priv *tx_info_priv; |
| 1944 | struct ath_rate_node *ath_rc_priv; |
| 1945 | struct ath_node *an; |
| 1946 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| 1947 | int is_probe, chk, ret; |
| 1948 | s8 lowest_idx; |
| 1949 | __le16 fc = hdr->frame_control; |
| 1950 | u8 *qc, tid; |
| 1951 | DECLARE_MAC_BUF(mac); |
| 1952 | |
| 1953 | DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| 1954 | |
| 1955 | /* allocate driver private area of tx_info */ |
| 1956 | tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); |
| 1957 | ASSERT(tx_info->driver_data[0] != NULL); |
| 1958 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| 1959 | |
| 1960 | sta = sta_info_get(local, hdr->addr1); |
| 1961 | lowest_idx = rate_lowest_index(local, sband, sta); |
| 1962 | tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10; |
| 1963 | /* lowest rate for management and multicast/broadcast frames */ |
| 1964 | if (!ieee80211_is_data(fc) || |
| 1965 | is_multicast_ether_addr(hdr->addr1) || !sta) { |
| 1966 | sel->rate_idx = lowest_idx; |
| 1967 | return; |
| 1968 | } |
| 1969 | |
| 1970 | ath_rc_priv = sta->rate_ctrl_priv; |
| 1971 | |
| 1972 | /* Find tx rate for unicast frames */ |
| 1973 | ath_rate_findrate(sc, ath_rc_priv, |
| 1974 | ATH_11N_TXMAXTRY, 4, |
| 1975 | ATH_RC_PROBE_ALLOWED, |
| 1976 | tx_info_priv->rcs, |
| 1977 | &is_probe, |
| 1978 | false); |
| 1979 | if (is_probe) |
| 1980 | sel->probe_idx = ((struct ath_tx_ratectrl *) |
| 1981 | sta->rate_ctrl_priv)->probe_rate; |
| 1982 | |
| 1983 | /* Ratecontrol sometimes returns invalid rate index */ |
| 1984 | if (tx_info_priv->rcs[0].rix != 0xff) |
| 1985 | ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix; |
| 1986 | else |
| 1987 | tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix; |
| 1988 | |
| 1989 | sel->rate_idx = tx_info_priv->rcs[0].rix; |
| 1990 | |
| 1991 | /* Check if aggregation has to be enabled for this tid */ |
| 1992 | |
| 1993 | if (hw->conf.ht_conf.ht_supported) { |
| 1994 | if (ieee80211_is_data_qos(fc)) { |
| 1995 | qc = ieee80211_get_qos_ctl(hdr); |
| 1996 | tid = qc[0] & 0xf; |
| 1997 | |
| 1998 | spin_lock_bh(&sc->node_lock); |
| 1999 | an = ath_node_find(sc, hdr->addr1); |
| 2000 | spin_unlock_bh(&sc->node_lock); |
| 2001 | |
| 2002 | if (!an) { |
| 2003 | DPRINTF(sc, ATH_DBG_AGGR, |
| 2004 | "%s: Node not found to " |
| 2005 | "init/chk TX aggr\n", __func__); |
| 2006 | return; |
| 2007 | } |
| 2008 | |
| 2009 | chk = ath_tx_aggr_check(sc, an, tid); |
| 2010 | if (chk == AGGR_REQUIRED) { |
| 2011 | ret = ieee80211_start_tx_ba_session(hw, |
| 2012 | hdr->addr1, tid); |
| 2013 | if (ret) |
| 2014 | DPRINTF(sc, ATH_DBG_AGGR, |
| 2015 | "%s: Unable to start tx " |
| 2016 | "aggr for: %s\n", |
| 2017 | __func__, |
| 2018 | print_mac(mac, hdr->addr1)); |
| 2019 | else |
| 2020 | DPRINTF(sc, ATH_DBG_AGGR, |
| 2021 | "%s: Started tx aggr for: %s\n", |
| 2022 | __func__, |
| 2023 | print_mac(mac, hdr->addr1)); |
| 2024 | } else if (chk == AGGR_EXCHANGE_PROGRESS) |
| 2025 | ath_tx_aggr_resp(sc, sta, an, tid); |
| 2026 | } |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | static void ath_rate_init(void *priv, void *priv_sta, |
| 2031 | struct ieee80211_local *local, |
| 2032 | struct sta_info *sta) |
| 2033 | { |
| 2034 | struct ieee80211_supported_band *sband; |
| 2035 | struct ieee80211_hw *hw = local_to_hw(local); |
| 2036 | struct ieee80211_conf *conf = &local->hw.conf; |
| 2037 | struct ath_softc *sc = hw->priv; |
| 2038 | int i, j = 0; |
| 2039 | |
| 2040 | DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| 2041 | |
| 2042 | sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; |
| 2043 | sta->txrate_idx = rate_lowest_index(local, sband, sta); |
| 2044 | |
| 2045 | ath_setup_rates(local, sta); |
| 2046 | if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) { |
| 2047 | for (i = 0; i < MCS_SET_SIZE; i++) { |
| 2048 | if (conf->ht_conf.supp_mcs_set[i/8] & (1<<(i%8))) |
| 2049 | ((struct ath_rate_node *) |
| 2050 | priv_sta)->neg_ht_rates.rs_rates[j++] = i; |
| 2051 | if (j == ATH_RATE_MAX) |
| 2052 | break; |
| 2053 | } |
| 2054 | ((struct ath_rate_node *)priv_sta)->neg_ht_rates.rs_nrates = j; |
| 2055 | } |
| 2056 | ath_rc_node_update(hw, priv_sta); |
| 2057 | } |
| 2058 | |
| 2059 | static void ath_rate_clear(void *priv) |
| 2060 | { |
| 2061 | return; |
| 2062 | } |
| 2063 | |
| 2064 | static void *ath_rate_alloc(struct ieee80211_local *local) |
| 2065 | { |
| 2066 | struct ieee80211_hw *hw = local_to_hw(local); |
| 2067 | struct ath_softc *sc = hw->priv; |
| 2068 | |
| 2069 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); |
| 2070 | return local->hw.priv; |
| 2071 | } |
| 2072 | |
| 2073 | static void ath_rate_free(void *priv) |
| 2074 | { |
| 2075 | return; |
| 2076 | } |
| 2077 | |
| 2078 | static void *ath_rate_alloc_sta(void *priv, gfp_t gfp) |
| 2079 | { |
| 2080 | struct ath_softc *sc = priv; |
| 2081 | struct ath_vap *avp = sc->sc_vaps[0]; |
| 2082 | struct ath_rate_node *rate_priv; |
| 2083 | |
| 2084 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); |
| 2085 | rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp); |
| 2086 | if (!rate_priv) { |
| 2087 | DPRINTF(sc, ATH_DBG_FATAL, "%s:Unable to allocate" |
| 2088 | "private rate control structure", __func__); |
| 2089 | return NULL; |
| 2090 | } |
| 2091 | ath_rc_sib_init(rate_priv); |
| 2092 | return rate_priv; |
| 2093 | } |
| 2094 | |
| 2095 | static void ath_rate_free_sta(void *priv, void *priv_sta) |
| 2096 | { |
| 2097 | struct ath_rate_node *rate_priv = priv_sta; |
| 2098 | struct ath_softc *sc = priv; |
| 2099 | |
| 2100 | DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); |
| 2101 | ath_rate_node_free(rate_priv); |
| 2102 | } |
| 2103 | |
| 2104 | static struct rate_control_ops ath_rate_ops = { |
| 2105 | .module = NULL, |
| 2106 | .name = "ath9k_rate_control", |
| 2107 | .tx_status = ath_tx_status, |
| 2108 | .get_rate = ath_get_rate, |
| 2109 | .rate_init = ath_rate_init, |
| 2110 | .clear = ath_rate_clear, |
| 2111 | .alloc = ath_rate_alloc, |
| 2112 | .free = ath_rate_free, |
| 2113 | .alloc_sta = ath_rate_alloc_sta, |
| 2114 | .free_sta = ath_rate_free_sta |
| 2115 | }; |
| 2116 | |
| 2117 | int ath_rate_control_register(void) |
| 2118 | { |
| 2119 | return ieee80211_rate_control_register(&ath_rate_ops); |
| 2120 | } |
| 2121 | |
| 2122 | void ath_rate_control_unregister(void) |
| 2123 | { |
| 2124 | ieee80211_rate_control_unregister(&ath_rate_ops); |
| 2125 | } |
| 2126 | |