blob: e0797afee52bf4f81a6c958389a9157e2fc5f33e [file] [log] [blame]
Luis R. Rodriguezf078f202008-08-04 00:16:41 -07001/*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18/*
19 * Atheros rate control algorithm
20 */
21
22#include "core.h"
23#include "../net/mac80211/rate.h"
24
25static u32 tx_triglevel_max;
26
27static struct ath_rate_table ar5416_11na_ratetable = {
28 42,
29 {
30 { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
31 5400, 0x0b, 0x00, 12,
32 0, 2, 1, 0, 0, 0, 0, 0 },
33 { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
34 7800, 0x0f, 0x00, 18,
35 0, 3, 1, 1, 1, 1, 1, 0 },
36 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
37 10000, 0x0a, 0x00, 24,
38 2, 4, 2, 2, 2, 2, 2, 0 },
39 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
40 13900, 0x0e, 0x00, 36,
41 2, 6, 2, 3, 3, 3, 3, 0 },
42 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
43 17300, 0x09, 0x00, 48,
44 4, 10, 3, 4, 4, 4, 4, 0 },
45 { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
46 23000, 0x0d, 0x00, 72,
47 4, 14, 3, 5, 5, 5, 5, 0 },
48 { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
49 27400, 0x08, 0x00, 96,
50 4, 20, 3, 6, 6, 6, 6, 0 },
51 { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
52 29300, 0x0c, 0x00, 108,
53 4, 23, 3, 7, 7, 7, 7, 0 },
54 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
55 6400, 0x80, 0x00, 0,
56 0, 2, 3, 8, 24, 8, 24, 3216 },
57 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
58 12700, 0x81, 0x00, 1,
59 2, 4, 3, 9, 25, 9, 25, 6434 },
60 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
61 18800, 0x82, 0x00, 2,
62 2, 6, 3, 10, 26, 10, 26, 9650 },
63 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
64 25000, 0x83, 0x00, 3,
65 4, 10, 3, 11, 27, 11, 27, 12868 },
66 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
67 36700, 0x84, 0x00, 4,
68 4, 14, 3, 12, 28, 12, 28, 19304 },
69 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
70 48100, 0x85, 0x00, 5,
71 4, 20, 3, 13, 29, 13, 29, 25740 },
72 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
73 53500, 0x86, 0x00, 6,
74 4, 23, 3, 14, 30, 14, 30, 28956 },
75 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
76 59000, 0x87, 0x00, 7,
77 4, 25, 3, 15, 31, 15, 32, 32180 },
78 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
79 12700, 0x88, 0x00,
80 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
81 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
82 24800, 0x89, 0x00, 9,
83 2, 4, 3, 17, 34, 17, 34, 12860 },
84 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
85 36600, 0x8a, 0x00, 10,
86 2, 6, 3, 18, 35, 18, 35, 19300 },
87 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
88 48100, 0x8b, 0x00, 11,
89 4, 10, 3, 19, 36, 19, 36, 25736 },
90 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
91 69500, 0x8c, 0x00, 12,
92 4, 14, 3, 20, 37, 20, 37, 38600 },
93 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
94 89500, 0x8d, 0x00, 13,
95 4, 20, 3, 21, 38, 21, 38, 51472 },
96 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
97 98900, 0x8e, 0x00, 14,
98 4, 23, 3, 22, 39, 22, 39, 57890 },
99 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
100 108300, 0x8f, 0x00, 15,
101 4, 25, 3, 23, 40, 23, 41, 64320 },
102 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
103 13200, 0x80, 0x00, 0,
104 0, 2, 3, 8, 24, 24, 24, 6684 },
105 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
106 25900, 0x81, 0x00, 1,
107 2, 4, 3, 9, 25, 25, 25, 13368 },
108 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
109 38600, 0x82, 0x00, 2,
110 2, 6, 3, 10, 26, 26, 26, 20052 },
111 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
112 49800, 0x83, 0x00, 3,
113 4, 10, 3, 11, 27, 27, 27, 26738 },
114 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
115 72200, 0x84, 0x00, 4,
116 4, 14, 3, 12, 28, 28, 28, 40104 },
117 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
118 92900, 0x85, 0x00, 5,
119 4, 20, 3, 13, 29, 29, 29, 53476 },
120 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
121 102700, 0x86, 0x00, 6,
122 4, 23, 3, 14, 30, 30, 30, 60156 },
123 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
124 112000, 0x87, 0x00, 7,
125 4, 25, 3, 15, 31, 32, 32, 66840 },
126 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
127 122000, 0x87, 0x00, 7,
128 4, 25, 3, 15, 31, 32, 32, 74200 },
129 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
130 25800, 0x88, 0x00, 8,
131 0, 2, 3, 16, 33, 33, 33, 13360 },
132 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
133 49800, 0x89, 0x00, 9,
134 2, 4, 3, 17, 34, 34, 34, 26720 },
135 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
136 71900, 0x8a, 0x00, 10,
137 2, 6, 3, 18, 35, 35, 35, 40080 },
138 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
139 92500, 0x8b, 0x00, 11,
140 4, 10, 3, 19, 36, 36, 36, 53440 },
141 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
142 130300, 0x8c, 0x00, 12,
143 4, 14, 3, 20, 37, 37, 37, 80160 },
144 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
145 162800, 0x8d, 0x00, 13,
146 4, 20, 3, 21, 38, 38, 38, 106880 },
147 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
148 178200, 0x8e, 0x00, 14,
149 4, 23, 3, 22, 39, 39, 39, 120240 },
150 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
151 192100, 0x8f, 0x00, 15,
152 4, 25, 3, 23, 40, 41, 41, 133600 },
153 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
154 207000, 0x8f, 0x00, 15,
155 4, 25, 3, 23, 40, 41, 41, 148400 },
156 },
157 50, /* probe interval */
158 50, /* rssi reduce interval */
159 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
160};
161
162/* TRUE_ALL - valid for 20/40/Legacy,
163 * TRUE - Legacy only,
164 * TRUE_20 - HT 20 only,
165 * TRUE_40 - HT 40 only */
166
167/* 4ms frame limit not used for NG mode. The values filled
168 * for HT are the 64K max aggregate limit */
169
170static struct ath_rate_table ar5416_11ng_ratetable = {
171 46,
172 {
173 { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */
174 900, 0x1b, 0x00, 2,
175 0, 0, 1, 0, 0, 0, 0, 0 },
176 { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */
177 1900, 0x1a, 0x04, 4,
178 1, 1, 1, 1, 1, 1, 1, 0 },
179 { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
180 4900, 0x19, 0x04, 11,
181 2, 2, 2, 2, 2, 2, 2, 0 },
182 { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */
183 8100, 0x18, 0x04, 22,
184 3, 3, 2, 3, 3, 3, 3, 0 },
185 { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
186 5400, 0x0b, 0x00, 12,
187 4, 2, 1, 4, 4, 4, 4, 0 },
188 { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
189 7800, 0x0f, 0x00, 18,
190 4, 3, 1, 5, 5, 5, 5, 0 },
191 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
192 10100, 0x0a, 0x00, 24,
193 6, 4, 1, 6, 6, 6, 6, 0 },
194 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
195 14100, 0x0e, 0x00, 36,
196 6, 6, 2, 7, 7, 7, 7, 0 },
197 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
198 17700, 0x09, 0x00, 48,
199 8, 10, 3, 8, 8, 8, 8, 0 },
200 { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
201 23700, 0x0d, 0x00, 72,
202 8, 14, 3, 9, 9, 9, 9, 0 },
203 { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
204 27400, 0x08, 0x00, 96,
205 8, 20, 3, 10, 10, 10, 10, 0 },
206 { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
207 30900, 0x0c, 0x00, 108,
208 8, 23, 3, 11, 11, 11, 11, 0 },
209 { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
210 6400, 0x80, 0x00, 0,
211 4, 2, 3, 12, 28, 12, 28, 3216 },
212 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
213 12700, 0x81, 0x00, 1,
214 6, 4, 3, 13, 29, 13, 29, 6434 },
215 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
216 18800, 0x82, 0x00, 2,
217 6, 6, 3, 14, 30, 14, 30, 9650 },
218 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
219 25000, 0x83, 0x00, 3,
220 8, 10, 3, 15, 31, 15, 31, 12868 },
221 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
222 36700, 0x84, 0x00, 4,
223 8, 14, 3, 16, 32, 16, 32, 19304 },
224 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
225 48100, 0x85, 0x00, 5,
226 8, 20, 3, 17, 33, 17, 33, 25740 },
227 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
228 53500, 0x86, 0x00, 6,
229 8, 23, 3, 18, 34, 18, 34, 28956 },
230 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
231 59000, 0x87, 0x00, 7,
232 8, 25, 3, 19, 35, 19, 36, 32180 },
233 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
234 12700, 0x88, 0x00, 8,
235 4, 2, 3, 20, 37, 20, 37, 6430 },
236 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
237 24800, 0x89, 0x00, 9,
238 6, 4, 3, 21, 38, 21, 38, 12860 },
239 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
240 36600, 0x8a, 0x00, 10,
241 6, 6, 3, 22, 39, 22, 39, 19300 },
242 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
243 48100, 0x8b, 0x00, 11,
244 8, 10, 3, 23, 40, 23, 40, 25736 },
245 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
246 69500, 0x8c, 0x00, 12,
247 8, 14, 3, 24, 41, 24, 41, 38600 },
248 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
249 89500, 0x8d, 0x00, 13,
250 8, 20, 3, 25, 42, 25, 42, 51472 },
251 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
252 98900, 0x8e, 0x00, 14,
253 8, 23, 3, 26, 43, 26, 44, 57890 },
254 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
255 108300, 0x8f, 0x00, 15,
256 8, 25, 3, 27, 44, 27, 45, 64320 },
257 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
258 13200, 0x80, 0x00, 0,
259 8, 2, 3, 12, 28, 28, 28, 6684 },
260 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
261 25900, 0x81, 0x00, 1,
262 8, 4, 3, 13, 29, 29, 29, 13368 },
263 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
264 38600, 0x82, 0x00, 2,
265 8, 6, 3, 14, 30, 30, 30, 20052 },
266 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
267 49800, 0x83, 0x00, 3,
268 8, 10, 3, 15, 31, 31, 31, 26738 },
269 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
270 72200, 0x84, 0x00, 4,
271 8, 14, 3, 16, 32, 32, 32, 40104 },
272 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
273 92900, 0x85, 0x00, 5,
274 8, 20, 3, 17, 33, 33, 33, 53476 },
275 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
276 102700, 0x86, 0x00, 6,
277 8, 23, 3, 18, 34, 34, 34, 60156 },
278 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
279 112000, 0x87, 0x00, 7,
280 8, 23, 3, 19, 35, 36, 36, 66840 },
281 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
282 122000, 0x87, 0x00, 7,
283 8, 25, 3, 19, 35, 36, 36, 74200 },
284 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
285 25800, 0x88, 0x00, 8,
286 8, 2, 3, 20, 37, 37, 37, 13360 },
287 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
288 49800, 0x89, 0x00, 9,
289 8, 4, 3, 21, 38, 38, 38, 26720 },
290 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
291 71900, 0x8a, 0x00, 10,
292 8, 6, 3, 22, 39, 39, 39, 40080 },
293 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
294 92500, 0x8b, 0x00, 11,
295 8, 10, 3, 23, 40, 40, 40, 53440 },
296 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
297 130300, 0x8c, 0x00, 12,
298 8, 14, 3, 24, 41, 41, 41, 80160 },
299 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
300 162800, 0x8d, 0x00, 13,
301 8, 20, 3, 25, 42, 42, 42, 106880 },
302 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
303 178200, 0x8e, 0x00, 14,
304 8, 23, 3, 26, 43, 43, 43, 120240 },
305 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
306 192100, 0x8f, 0x00, 15,
307 8, 23, 3, 27, 44, 45, 45, 133600 },
308 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
309 207000, 0x8f, 0x00, 15,
310 8, 25, 3, 27, 44, 45, 45, 148400 },
311 },
312 50, /* probe interval */
313 50, /* rssi reduce interval */
314 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
315};
316
317static struct ath_rate_table ar5416_11a_ratetable = {
318 8,
319 {
320 { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
321 5400, 0x0b, 0x00, (0x80|12),
322 0, 2, 1, 0, 0 },
323 { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
324 7800, 0x0f, 0x00, 18,
325 0, 3, 1, 1, 0 },
326 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
327 10000, 0x0a, 0x00, (0x80|24),
328 2, 4, 2, 2, 0 },
329 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
330 13900, 0x0e, 0x00, 36,
331 2, 6, 2, 3, 0 },
332 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
333 17300, 0x09, 0x00, (0x80|48),
334 4, 10, 3, 4, 0 },
335 { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
336 23000, 0x0d, 0x00, 72,
337 4, 14, 3, 5, 0 },
338 { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
339 27400, 0x08, 0x00, 96,
340 4, 19, 3, 6, 0 },
341 { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
342 29300, 0x0c, 0x00, 108,
343 4, 23, 3, 7, 0 },
344 },
345 50, /* probe interval */
346 50, /* rssi reduce interval */
347 0, /* Phy rates allowed initially */
348};
349
350static struct ath_rate_table ar5416_11a_ratetable_Half = {
351 8,
352 {
353 { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */
354 2700, 0x0b, 0x00, (0x80|6),
355 0, 2, 1, 0, 0},
356 { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */
357 3900, 0x0f, 0x00, 9,
358 0, 3, 1, 1, 0 },
359 { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */
360 5000, 0x0a, 0x00, (0x80|12),
361 2, 4, 2, 2, 0 },
362 { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */
363 6950, 0x0e, 0x00, 18,
364 2, 6, 2, 3, 0 },
365 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */
366 8650, 0x09, 0x00, (0x80|24),
367 4, 10, 3, 4, 0 },
368 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */
369 11500, 0x0d, 0x00, 36,
370 4, 14, 3, 5, 0 },
371 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */
372 13700, 0x08, 0x00, 48,
373 4, 19, 3, 6, 0 },
374 { TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */
375 14650, 0x0c, 0x00, 54,
376 4, 23, 3, 7, 0 },
377 },
378 50, /* probe interval */
379 50, /* rssi reduce interval */
380 0, /* Phy rates allowed initially */
381};
382
383static struct ath_rate_table ar5416_11a_ratetable_Quarter = {
384 8,
385 {
386 { TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */
387 1350, 0x0b, 0x00, (0x80|3),
388 0, 2, 1, 0, 0 },
389 { TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */
390 1950, 0x0f, 0x00, 4,
391 0, 3, 1, 1, 0 },
392 { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */
393 2500, 0x0a, 0x00, (0x80|6),
394 2, 4, 2, 2, 0 },
395 { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */
396 3475, 0x0e, 0x00, 9,
397 2, 6, 2, 3, 0 },
398 { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */
399 4325, 0x09, 0x00, (0x80|12),
400 4, 10, 3, 4, 0 },
401 { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */
402 5750, 0x0d, 0x00, 18,
403 4, 14, 3, 5, 0 },
404 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */
405 6850, 0x08, 0x00, 24,
406 4, 19, 3, 6, 0 },
407 { TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */
408 7325, 0x0c, 0x00, 27,
409 4, 23, 3, 7, 0 },
410 },
411 50, /* probe interval */
412 50, /* rssi reduce interval */
413 0, /* Phy rates allowed initially */
414};
415
416static struct ath_rate_table ar5416_11g_ratetable = {
417 12,
418 {
419 { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
420 900, 0x1b, 0x00, 2,
421 0, 0, 1, 0, 0 },
422 { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
423 1900, 0x1a, 0x04, 4,
424 1, 1, 1, 1, 0 },
425 { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
426 4900, 0x19, 0x04, 11,
427 2, 2, 2, 2, 0 },
428 { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
429 8100, 0x18, 0x04, 22,
430 3, 3, 2, 3, 0 },
431 { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
432 5400, 0x0b, 0x00, 12,
433 4, 2, 1, 4, 0 },
434 { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
435 7800, 0x0f, 0x00, 18,
436 4, 3, 1, 5, 0 },
437 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
438 10000, 0x0a, 0x00, 24,
439 6, 4, 1, 6, 0 },
440 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
441 13900, 0x0e, 0x00, 36,
442 6, 6, 2, 7, 0 },
443 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
444 17300, 0x09, 0x00, 48,
445 8, 10, 3, 8, 0 },
446 { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
447 23000, 0x0d, 0x00, 72,
448 8, 14, 3, 9, 0 },
449 { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
450 27400, 0x08, 0x00, 96,
451 8, 19, 3, 10, 0 },
452 { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
453 29300, 0x0c, 0x00, 108,
454 8, 23, 3, 11, 0 },
455 },
456 50, /* probe interval */
457 50, /* rssi reduce interval */
458 0, /* Phy rates allowed initially */
459};
460
461static struct ath_rate_table ar5416_11b_ratetable = {
462 4,
463 {
464 { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
465 900, 0x1b, 0x00, (0x80|2),
466 0, 0, 1, 0, 0 },
467 { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
468 1800, 0x1a, 0x04, (0x80|4),
469 1, 1, 1, 1, 0 },
470 { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
471 4300, 0x19, 0x04, (0x80|11),
472 1, 2, 2, 2, 0 },
473 { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
474 7100, 0x18, 0x04, (0x80|22),
475 1, 4, 100, 3, 0 },
476 },
477 100, /* probe interval */
478 100, /* rssi reduce interval */
479 0, /* Phy rates allowed initially */
480};
481
482static void ar5416_attach_ratetables(struct ath_rate_softc *sc)
483{
484 /*
485 * Attach rate tables.
486 */
487 sc->hw_rate_table[WIRELESS_MODE_11b] = &ar5416_11b_ratetable;
488 sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable;
489 sc->hw_rate_table[WIRELESS_MODE_11g] = &ar5416_11g_ratetable;
490
491 sc->hw_rate_table[WIRELESS_MODE_11NA_HT20] = &ar5416_11na_ratetable;
492 sc->hw_rate_table[WIRELESS_MODE_11NG_HT20] = &ar5416_11ng_ratetable;
493 sc->hw_rate_table[WIRELESS_MODE_11NA_HT40PLUS] =
494 &ar5416_11na_ratetable;
495 sc->hw_rate_table[WIRELESS_MODE_11NA_HT40MINUS] =
496 &ar5416_11na_ratetable;
497 sc->hw_rate_table[WIRELESS_MODE_11NG_HT40PLUS] =
498 &ar5416_11ng_ratetable;
499 sc->hw_rate_table[WIRELESS_MODE_11NG_HT40MINUS] =
500 &ar5416_11ng_ratetable;
501}
502
503static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc)
504{
505 sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable_Quarter;
506 return;
507}
508
509static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc)
510{
511 sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable_Half;
512 return;
513}
514
515static void ar5416_setfull_ratetable(struct ath_rate_softc *sc)
516{
517 sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable;
518 return;
519}
520
521/*
522 * Return the median of three numbers
523 */
524static inline int8_t median(int8_t a, int8_t b, int8_t c)
525{
526 if (a >= b) {
527 if (b >= c)
528 return b;
529 else if (a > c)
530 return c;
531 else
532 return a;
533 } else {
534 if (a >= c)
535 return a;
536 else if (b >= c)
537 return c;
538 else
539 return b;
540 }
541}
542
543static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
544 struct ath_tx_ratectrl *rate_ctrl)
545{
546 u8 i, j, idx, idx_next;
547
548 for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) {
549 for (j = 0; j <= i-1; j++) {
550 idx = rate_ctrl->valid_rate_index[j];
551 idx_next = rate_ctrl->valid_rate_index[j+1];
552
553 if (rate_table->info[idx].ratekbps >
554 rate_table->info[idx_next].ratekbps) {
555 rate_ctrl->valid_rate_index[j] = idx_next;
556 rate_ctrl->valid_rate_index[j+1] = idx;
557 }
558 }
559 }
560}
561
562/* Access functions for valid_txrate_mask */
563
564static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl)
565{
566 u8 i;
567
568 for (i = 0; i < rate_ctrl->rate_table_size; i++)
569 rate_ctrl->valid_rate_index[i] = FALSE;
570}
571
572static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl,
573 u8 index, int valid_tx_rate)
574{
575 ASSERT(index <= rate_ctrl->rate_table_size);
576 rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE;
577}
578
579static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl,
580 u8 index)
581{
582 ASSERT(index <= rate_ctrl->rate_table_size);
583 return rate_ctrl->valid_rate_index[index];
584}
585
586/* Iterators for valid_txrate_mask */
587static inline int
588ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
589 struct ath_tx_ratectrl *rate_ctrl,
590 u8 cur_valid_txrate,
591 u8 *next_idx)
592{
593 u8 i;
594
595 for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) {
596 if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
597 *next_idx = rate_ctrl->valid_rate_index[i+1];
598 return TRUE;
599 }
600 }
601
602 /* No more valid rates */
603 *next_idx = 0;
604 return FALSE;
605}
606
607/* Return true only for single stream */
608
609static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
610{
611 if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG))
612 return FALSE;
613 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
614 return FALSE;
615 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
616 return FALSE;
617 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
618 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
619 return FALSE;
620 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
621 return FALSE;
622 return TRUE;
623}
624
625static inline int
626ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table,
627 struct ath_tx_ratectrl *rate_ctrl,
628 u8 cur_valid_txrate, u8 *next_idx)
629{
630 int8_t i;
631
632 for (i = 1; i < rate_ctrl->max_valid_rate ; i++) {
633 if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
634 *next_idx = rate_ctrl->valid_rate_index[i-1];
635 return TRUE;
636 }
637 }
638 return FALSE;
639}
640
641/*
642 * Initialize the Valid Rate Index from valid entries in Rate Table
643 */
644static u8
645ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
646 const struct ath_rate_table *rate_table,
647 u32 capflag)
648{
649 struct ath_tx_ratectrl *rate_ctrl;
650 u8 i, hi = 0;
651 u32 valid;
652
653 rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
654 for (i = 0; i < rate_table->rate_cnt; i++) {
655 valid = (ath_rc_priv->single_stream ?
656 rate_table->info[i].valid_single_stream :
657 rate_table->info[i].valid);
658 if (valid == TRUE) {
659 u32 phy = rate_table->info[i].phy;
660 u8 valid_rate_count = 0;
661
662 if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
663 continue;
664
665 valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy];
666
667 rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i;
668 rate_ctrl->valid_phy_ratecnt[phy] += 1;
669 ath_rc_set_valid_txmask(rate_ctrl, i, TRUE);
670 hi = A_MAX(hi, i);
671 }
672 }
673 return hi;
674}
675
676/*
677 * Initialize the Valid Rate Index from Rate Set
678 */
679static u8
680ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
681 const struct ath_rate_table *rate_table,
682 struct ath_rateset *rateset,
683 u32 capflag)
684{
685 /* XXX: Clean me up and make identation friendly */
686 u8 i, j, hi = 0;
687 struct ath_tx_ratectrl *rate_ctrl =
688 (struct ath_tx_ratectrl *)(ath_rc_priv);
689
690 /* Use intersection of working rates and valid rates */
691 for (i = 0; i < rateset->rs_nrates; i++) {
692 for (j = 0; j < rate_table->rate_cnt; j++) {
693 u32 phy = rate_table->info[j].phy;
694 u32 valid = (ath_rc_priv->single_stream ?
695 rate_table->info[j].valid_single_stream :
696 rate_table->info[j].valid);
697
698 /* We allow a rate only if its valid and the
699 * capflag matches one of the validity
700 * (TRUE/TRUE_20/TRUE_40) flags */
701
702 /* XXX: catch the negative of this branch
703 * first and then continue */
704 if (((rateset->rs_rates[i] & 0x7F) ==
705 (rate_table->info[j].dot11rate & 0x7F)) &&
706 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
707 WLAN_RC_CAP_MODE(capflag)) &&
708 !WLAN_RC_PHY_HT(phy)) {
709
710 u8 valid_rate_count = 0;
711
712 if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
713 continue;
714
715 valid_rate_count =
716 rate_ctrl->valid_phy_ratecnt[phy];
717
718 rate_ctrl->valid_phy_rateidx[phy]
719 [valid_rate_count] = j;
720 rate_ctrl->valid_phy_ratecnt[phy] += 1;
721 ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
722 hi = A_MAX(hi, j);
723 }
724 }
725 }
726 return hi;
727}
728
729static u8
730ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv,
731 const struct ath_rate_table *rate_table,
732 u8 *mcs_set, u32 capflag)
733{
734 u8 i, j, hi = 0;
735 struct ath_tx_ratectrl *rate_ctrl =
736 (struct ath_tx_ratectrl *)(ath_rc_priv);
737
738 /* Use intersection of working rates and valid rates */
739 for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) {
740 for (j = 0; j < rate_table->rate_cnt; j++) {
741 u32 phy = rate_table->info[j].phy;
742 u32 valid = (ath_rc_priv->single_stream ?
743 rate_table->info[j].valid_single_stream :
744 rate_table->info[j].valid);
745
746 if (((((struct ath_rateset *)
747 mcs_set)->rs_rates[i] & 0x7F) !=
748 (rate_table->info[j].dot11rate & 0x7F)) ||
749 !WLAN_RC_PHY_HT(phy) ||
750 !WLAN_RC_PHY_HT_VALID(valid, capflag))
751 continue;
752
753 if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
754 continue;
755
756 rate_ctrl->valid_phy_rateidx[phy]
757 [rate_ctrl->valid_phy_ratecnt[phy]] = j;
758 rate_ctrl->valid_phy_ratecnt[phy] += 1;
759 ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
760 hi = A_MAX(hi, j);
761 }
762 }
763 return hi;
764}
765
766/*
767 * Attach to a device instance. Setup the public definition
768 * of how much per-node space we need and setup the private
769 * phy tables that have rate control parameters.
770 */
771struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah)
772{
773 struct ath_rate_softc *asc;
774
775 /* we are only in user context so we can sleep for memory */
776 asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL);
777 if (asc == NULL)
778 return NULL;
779
780 ar5416_attach_ratetables(asc);
781
782 /* Save Maximum TX Trigger Level (used for 11n) */
783 tx_triglevel_max = ah->ah_caps.halTxTrigLevelMax;
784 /* return alias for ath_rate_softc * */
785 return asc;
786}
787
788static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp,
789 struct ath_rate_softc *rsc,
790 gfp_t gfp)
791{
792 struct ath_rate_node *anode;
793
794 anode = kzalloc(sizeof(struct ath_rate_node), gfp);
795 if (anode == NULL)
796 return NULL;
797
798 anode->avp = avp;
799 anode->asc = rsc;
800 avp->rc_node = anode;
801
802 return anode;
803}
804
805static void ath_rate_node_free(struct ath_rate_node *anode)
806{
807 if (anode != NULL)
808 kfree(anode);
809}
810
811void ath_rate_detach(struct ath_rate_softc *asc)
812{
813 if (asc != NULL)
814 kfree(asc);
815}
816
817u8 ath_rate_findrateix(struct ath_softc *sc,
818 u8 dot11rate)
819{
820 const struct ath_rate_table *ratetable;
821 struct ath_rate_softc *rsc = sc->sc_rc;
822 int i;
823
824 ratetable = rsc->hw_rate_table[sc->sc_curmode];
825
826 if (WARN_ON(!ratetable))
827 return 0;
828
829 for (i = 0; i < ratetable->rate_cnt; i++) {
830 if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f))
831 return i;
832 }
833
834 return 0;
835}
836
837/*
838 * Update rate-control state on a device state change. When
839 * operating as a station this includes associate/reassociate
840 * with an AP. Otherwise this gets called, for example, when
841 * the we transition to run state when operating as an AP.
842 */
843void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp)
844{
845 struct ath_rate_softc *asc = sc->sc_rc;
846
847 /* For half and quarter rate channles use different
848 * rate tables
849 */
850 if (sc->sc_curchan.channelFlags & CHANNEL_HALF)
851 ar5416_sethalf_ratetable(asc);
852 else if (sc->sc_curchan.channelFlags & CHANNEL_QUARTER)
853 ar5416_setquarter_ratetable(asc);
854 else /* full rate */
855 ar5416_setfull_ratetable(asc);
856
857 if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) {
858 asc->fixedrix =
859 sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff];
860 /* NB: check the fixed rate exists */
861 if (asc->fixedrix == 0xff)
862 asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
863 } else {
864 asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
865 }
866}
867
868static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
869 struct ath_rate_node *ath_rc_priv,
870 const struct ath_rate_table *rate_table,
871 int probe_allowed, int *is_probing,
872 int is_retry)
873{
874 u32 dt, best_thruput, this_thruput, now_msec;
875 u8 rate, next_rate, best_rate, maxindex, minindex;
876 int8_t rssi_last, rssi_reduce = 0, index = 0;
877 struct ath_tx_ratectrl *rate_ctrl = NULL;
878
879 rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ?
880 (ath_rc_priv) : NULL);
881
882 *is_probing = FALSE;
883
884 rssi_last = median(rate_ctrl->rssi_last,
885 rate_ctrl->rssi_last_prev,
886 rate_ctrl->rssi_last_prev2);
887
888 /*
889 * Age (reduce) last ack rssi based on how old it is.
890 * The bizarre numbers are so the delta is 160msec,
891 * meaning we divide by 16.
892 * 0msec <= dt <= 25msec: don't derate
893 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
894 * 185msec <= dt: derate by 10dB
895 */
896
897 now_msec = jiffies_to_msecs(jiffies);
898 dt = now_msec - rate_ctrl->rssi_time;
899
900 if (dt >= 185)
901 rssi_reduce = 10;
902 else if (dt >= 25)
903 rssi_reduce = (u8)((dt - 25) >> 4);
904
905 /* Now reduce rssi_last by rssi_reduce */
906 if (rssi_last < rssi_reduce)
907 rssi_last = 0;
908 else
909 rssi_last -= rssi_reduce;
910
911 /*
912 * Now look up the rate in the rssi table and return it.
913 * If no rates match then we return 0 (lowest rate)
914 */
915
916 best_thruput = 0;
917 maxindex = rate_ctrl->max_valid_rate-1;
918
919 minindex = 0;
920 best_rate = minindex;
921
922 /*
923 * Try the higher rate first. It will reduce memory moving time
924 * if we have very good channel characteristics.
925 */
926 for (index = maxindex; index >= minindex ; index--) {
927 u8 per_thres;
928
929 rate = rate_ctrl->valid_rate_index[index];
930 if (rate > rate_ctrl->rate_max_phy)
931 continue;
932
933 /*
934 * For TCP the average collision rate is around 11%,
935 * so we ignore PERs less than this. This is to
936 * prevent the rate we are currently using (whose
937 * PER might be in the 10-15 range because of TCP
938 * collisions) looking worse than the next lower
939 * rate whose PER has decayed close to 0. If we
940 * used to next lower rate, its PER would grow to
941 * 10-15 and we would be worse off then staying
942 * at the current rate.
943 */
944 per_thres = rate_ctrl->state[rate].per;
945 if (per_thres < 12)
946 per_thres = 12;
947
948 this_thruput = rate_table->info[rate].user_ratekbps *
949 (100 - per_thres);
950
951 if (best_thruput <= this_thruput) {
952 best_thruput = this_thruput;
953 best_rate = rate;
954 }
955 }
956
957 rate = best_rate;
958
959 /* if we are retrying for more than half the number
960 * of max retries, use the min rate for the next retry
961 */
962 if (is_retry)
963 rate = rate_ctrl->valid_rate_index[minindex];
964
965 rate_ctrl->rssi_last_lookup = rssi_last;
966
967 /*
968 * Must check the actual rate (ratekbps) to account for
969 * non-monoticity of 11g's rate table
970 */
971
972 if (rate >= rate_ctrl->rate_max_phy && probe_allowed) {
973 rate = rate_ctrl->rate_max_phy;
974
975 /* Probe the next allowed phy state */
976 /* FIXME:XXXX Check to make sure ratMax is checked properly */
977 if (ath_rc_get_nextvalid_txrate(rate_table,
978 rate_ctrl, rate, &next_rate) &&
979 (now_msec - rate_ctrl->probe_time >
980 rate_table->probe_interval) &&
981 (rate_ctrl->hw_maxretry_pktcnt >= 1)) {
982 rate = next_rate;
983 rate_ctrl->probe_rate = rate;
984 rate_ctrl->probe_time = now_msec;
985 rate_ctrl->hw_maxretry_pktcnt = 0;
986 *is_probing = TRUE;
987 }
988 }
989
990 /*
991 * Make sure rate is not higher than the allowed maximum.
992 * We should also enforce the min, but I suspect the min is
993 * normally 1 rather than 0 because of the rate 9 vs 6 issue
994 * in the old code.
995 */
996 if (rate > (rate_ctrl->rate_table_size - 1))
997 rate = rate_ctrl->rate_table_size - 1;
998
999 ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
1000 (rate_table->info[rate].valid_single_stream &&
1001 ath_rc_priv->single_stream));
1002
1003 return rate;
1004}
1005
1006static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table ,
1007 struct ath_rc_series *series,
1008 u8 tries,
1009 u8 rix,
1010 int rtsctsenable)
1011{
1012 series->tries = tries;
1013 series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) |
1014 (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ?
1015 ATH_RC_DS_FLAG : 0) |
1016 (WLAN_RC_PHY_40(rate_table->info[rix].phy) ?
1017 ATH_RC_CW40_FLAG : 0) |
1018 (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ?
1019 ATH_RC_SGI_FLAG : 0);
1020
1021 series->rix = rate_table->info[rix].base_index;
1022 series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen;
1023}
1024
1025static u8 ath_rc_rate_getidx(struct ath_softc *sc,
1026 struct ath_rate_node *ath_rc_priv,
1027 const struct ath_rate_table *rate_table,
1028 u8 rix, u16 stepdown,
1029 u16 min_rate)
1030{
1031 u32 j;
1032 u8 nextindex;
1033 struct ath_tx_ratectrl *rate_ctrl =
1034 (struct ath_tx_ratectrl *)(ath_rc_priv);
1035
1036 if (min_rate) {
1037 for (j = RATE_TABLE_SIZE; j > 0; j--) {
1038 if (ath_rc_get_nextlowervalid_txrate(rate_table,
1039 rate_ctrl, rix, &nextindex))
1040 rix = nextindex;
1041 else
1042 break;
1043 }
1044 } else {
1045 for (j = stepdown; j > 0; j--) {
1046 if (ath_rc_get_nextlowervalid_txrate(rate_table,
1047 rate_ctrl, rix, &nextindex))
1048 rix = nextindex;
1049 else
1050 break;
1051 }
1052 }
1053 return rix;
1054}
1055
1056static void ath_rc_ratefind(struct ath_softc *sc,
1057 struct ath_rate_node *ath_rc_priv,
1058 int num_tries, int num_rates, unsigned int rcflag,
1059 struct ath_rc_series series[], int *is_probe,
1060 int is_retry)
1061{
1062 u8 try_per_rate = 0, i = 0, rix, nrix;
1063 struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
1064 struct ath_rate_table *rate_table;
1065
1066 rate_table =
1067 (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
1068 rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table,
1069 (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0,
1070 is_probe, is_retry);
1071 nrix = rix;
1072
1073 if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) {
1074 /* set one try for probe rates. For the
1075 * probes don't enable rts */
1076 ath_rc_rate_set_series(rate_table,
1077 &series[i++], 1, nrix, FALSE);
1078
1079 try_per_rate = (num_tries/num_rates);
1080 /* Get the next tried/allowed rate. No RTS for the next series
1081 * after the probe rate
1082 */
1083 nrix = ath_rc_rate_getidx(sc,
1084 ath_rc_priv, rate_table, nrix, 1, FALSE);
1085 ath_rc_rate_set_series(rate_table,
1086 &series[i++], try_per_rate, nrix, 0);
1087 } else {
1088 try_per_rate = (num_tries/num_rates);
1089 /* Set the choosen rate. No RTS for first series entry. */
1090 ath_rc_rate_set_series(rate_table,
1091 &series[i++], try_per_rate, nrix, FALSE);
1092 }
1093
1094 /* Fill in the other rates for multirate retry */
1095 for ( ; i < num_rates; i++) {
1096 u8 try_num;
1097 u8 min_rate;
1098
1099 try_num = ((i + 1) == num_rates) ?
1100 num_tries - (try_per_rate * i) : try_per_rate ;
1101 min_rate = (((i + 1) == num_rates) &&
1102 (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0;
1103
1104 nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
1105 rate_table, nrix, 1, min_rate);
1106 /* All other rates in the series have RTS enabled */
1107 ath_rc_rate_set_series(rate_table,
1108 &series[i], try_num, nrix, TRUE);
1109 }
1110
1111 /*
1112 * NB:Change rate series to enable aggregation when operating
1113 * at lower MCS rates. When first rate in series is MCS2
1114 * in HT40 @ 2.4GHz, series should look like:
1115 *
1116 * {MCS2, MCS1, MCS0, MCS0}.
1117 *
1118 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
1119 * look like:
1120 *
1121 * {MCS3, MCS2, MCS1, MCS1}
1122 *
1123 * So, set fourth rate in series to be same as third one for
1124 * above conditions.
1125 */
1126 if ((sc->sc_curmode == WIRELESS_MODE_11NG_HT20) ||
1127 (sc->sc_curmode == WIRELESS_MODE_11NG_HT40PLUS) ||
1128 (sc->sc_curmode == WIRELESS_MODE_11NG_HT40MINUS)) {
1129 u8 dot11rate = rate_table->info[rix].dot11rate;
1130 u8 phy = rate_table->info[rix].phy;
1131 if (i == 4 &&
1132 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
1133 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
1134 series[3].rix = series[2].rix;
1135 series[3].flags = series[2].flags;
1136 series[3].max_4ms_framelen = series[2].max_4ms_framelen;
1137 }
1138 }
1139}
1140
1141/*
1142 * Return the Tx rate series.
1143 */
1144void ath_rate_findrate(struct ath_softc *sc,
1145 struct ath_rate_node *ath_rc_priv,
1146 int num_tries,
1147 int num_rates,
1148 unsigned int rcflag,
1149 struct ath_rc_series series[],
1150 int *is_probe,
1151 int is_retry)
1152{
1153 struct ath_vap *avp = ath_rc_priv->avp;
1154
1155 DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
1156 if (!num_rates || !num_tries)
1157 return;
1158
1159 if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) {
1160 ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates,
1161 rcflag, series, is_probe, is_retry);
1162 } else {
1163 /* Fixed rate */
1164 int idx;
1165 u8 flags;
1166 u32 rix;
1167 struct ath_rate_softc *asc = ath_rc_priv->asc;
1168 struct ath_rate_table *rate_table;
1169
1170 rate_table = (struct ath_rate_table *)
1171 asc->hw_rate_table[sc->sc_curmode];
1172
1173 for (idx = 0; idx < 4; idx++) {
1174 unsigned int mcs;
1175 u8 series_rix = 0;
1176
1177 series[idx].tries =
1178 IEEE80211_RATE_IDX_ENTRY(
1179 avp->av_config.av_fixed_retryset, idx);
1180
1181 mcs = IEEE80211_RATE_IDX_ENTRY(
1182 avp->av_config.av_fixed_rateset, idx);
1183
1184 if (idx == 3 && (mcs & 0xf0) == 0x70)
1185 mcs = (mcs & ~0xf0)|0x80;
1186
1187 if (!(mcs & 0x80))
1188 flags = 0;
1189 else
1190 flags = ((ath_rc_priv->ht_cap &
1191 WLAN_RC_DS_FLAG) ?
1192 ATH_RC_DS_FLAG : 0) |
1193 ((ath_rc_priv->ht_cap &
1194 WLAN_RC_40_FLAG) ?
1195 ATH_RC_CW40_FLAG : 0) |
1196 ((ath_rc_priv->ht_cap &
1197 WLAN_RC_SGI_FLAG) ?
1198 ((ath_rc_priv->ht_cap &
1199 WLAN_RC_40_FLAG) ?
1200 ATH_RC_SGI_FLAG : 0) : 0);
1201
1202 series[idx].rix = sc->sc_rixmap[mcs];
1203 series_rix = series[idx].rix;
1204
1205 /* XXX: Give me some cleanup love */
1206 if ((flags & ATH_RC_CW40_FLAG) &&
1207 (flags & ATH_RC_SGI_FLAG))
1208 rix = rate_table->info[series_rix].ht_index;
1209 else if (flags & ATH_RC_SGI_FLAG)
1210 rix = rate_table->info[series_rix].sgi_index;
1211 else if (flags & ATH_RC_CW40_FLAG)
1212 rix = rate_table->info[series_rix].cw40index;
1213 else
1214 rix = rate_table->info[series_rix].base_index;
1215 series[idx].max_4ms_framelen =
1216 rate_table->info[rix].max_4ms_framelen;
1217 series[idx].flags = flags;
1218 }
1219 }
1220}
1221
1222static void ath_rc_update_ht(struct ath_softc *sc,
1223 struct ath_rate_node *ath_rc_priv,
1224 struct ath_tx_info_priv *info_priv,
1225 int tx_rate, int xretries, int retries)
1226{
1227 struct ath_tx_ratectrl *rate_ctrl;
1228 u32 now_msec = jiffies_to_msecs(jiffies);
1229 int state_change = FALSE, rate, count;
1230 u8 last_per;
1231 struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
1232 struct ath_rate_table *rate_table =
1233 (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
1234
1235 static u32 nretry_to_per_lookup[10] = {
1236 100 * 0 / 1,
1237 100 * 1 / 4,
1238 100 * 1 / 2,
1239 100 * 3 / 4,
1240 100 * 4 / 5,
1241 100 * 5 / 6,
1242 100 * 6 / 7,
1243 100 * 7 / 8,
1244 100 * 8 / 9,
1245 100 * 9 / 10
1246 };
1247
1248 if (!ath_rc_priv)
1249 return;
1250
1251 rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
1252
1253 ASSERT(tx_rate >= 0);
1254 if (tx_rate < 0)
1255 return;
1256
1257 /* To compensate for some imbalance between ctrl and ext. channel */
1258
1259 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1260 info_priv->tx.ts_rssi =
1261 info_priv->tx.ts_rssi < 3 ? 0 :
1262 info_priv->tx.ts_rssi - 3;
1263
1264 last_per = rate_ctrl->state[tx_rate].per;
1265
1266 if (xretries) {
1267 /* Update the PER. */
1268 if (xretries == 1) {
1269 rate_ctrl->state[tx_rate].per += 30;
1270 if (rate_ctrl->state[tx_rate].per > 100)
1271 rate_ctrl->state[tx_rate].per = 100;
1272 } else {
1273 /* xretries == 2 */
1274 count = sizeof(nretry_to_per_lookup) /
1275 sizeof(nretry_to_per_lookup[0]);
1276 if (retries >= count)
1277 retries = count - 1;
1278 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
1279 rate_ctrl->state[tx_rate].per =
1280 (u8)(rate_ctrl->state[tx_rate].per -
1281 (rate_ctrl->state[tx_rate].per >> 3) +
1282 ((100) >> 3));
1283 }
1284
1285 /* xretries == 1 or 2 */
1286
1287 if (rate_ctrl->probe_rate == tx_rate)
1288 rate_ctrl->probe_rate = 0;
1289
1290 } else { /* xretries == 0 */
1291 /* Update the PER. */
1292 /* Make sure it doesn't index out of array's bounds. */
1293 count = sizeof(nretry_to_per_lookup) /
1294 sizeof(nretry_to_per_lookup[0]);
1295 if (retries >= count)
1296 retries = count - 1;
1297 if (info_priv->n_bad_frames) {
1298 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
1299 /*
1300 * Assuming that n_frames is not 0. The current PER
1301 * from the retries is 100 * retries / (retries+1),
1302 * since the first retries attempts failed, and the
1303 * next one worked. For the one that worked,
1304 * n_bad_frames subframes out of n_frames wored,
1305 * so the PER for that part is
1306 * 100 * n_bad_frames / n_frames, and it contributes
1307 * 100 * n_bad_frames / (n_frames * (retries+1)) to
1308 * the above PER. The expression below is a
1309 * simplified version of the sum of these two terms.
1310 */
1311 if (info_priv->n_frames > 0)
1312 rate_ctrl->state[tx_rate].per
1313 = (u8)
1314 (rate_ctrl->state[tx_rate].per -
1315 (rate_ctrl->state[tx_rate].per >> 3) +
1316 ((100*(retries*info_priv->n_frames +
1317 info_priv->n_bad_frames) /
1318 (info_priv->n_frames *
1319 (retries+1))) >> 3));
1320 } else {
1321 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
1322
1323 rate_ctrl->state[tx_rate].per = (u8)
1324 (rate_ctrl->state[tx_rate].per -
1325 (rate_ctrl->state[tx_rate].per >> 3) +
1326 (nretry_to_per_lookup[retries] >> 3));
1327 }
1328
1329 rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev;
1330 rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last;
1331 rate_ctrl->rssi_last = info_priv->tx.ts_rssi;
1332 rate_ctrl->rssi_time = now_msec;
1333
1334 /*
1335 * If we got at most one retry then increase the max rate if
1336 * this was a probe. Otherwise, ignore the probe.
1337 */
1338
1339 if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) {
1340 if (retries > 0 || 2 * info_priv->n_bad_frames >
1341 info_priv->n_frames) {
1342 /*
1343 * Since we probed with just a single attempt,
1344 * any retries means the probe failed. Also,
1345 * if the attempt worked, but more than half
1346 * the subframes were bad then also consider
1347 * the probe a failure.
1348 */
1349 rate_ctrl->probe_rate = 0;
1350 } else {
1351 u8 probe_rate = 0;
1352
1353 rate_ctrl->rate_max_phy = rate_ctrl->probe_rate;
1354 probe_rate = rate_ctrl->probe_rate;
1355
1356 if (rate_ctrl->state[probe_rate].per > 30)
1357 rate_ctrl->state[probe_rate].per = 20;
1358
1359 rate_ctrl->probe_rate = 0;
1360
1361 /*
1362 * Since this probe succeeded, we allow the next
1363 * probe twice as soon. This allows the maxRate
1364 * to move up faster if the probes are
1365 * succesful.
1366 */
1367 rate_ctrl->probe_time = now_msec -
1368 rate_table->probe_interval / 2;
1369 }
1370 }
1371
1372 if (retries > 0) {
1373 /*
1374 * Don't update anything. We don't know if
1375 * this was because of collisions or poor signal.
1376 *
1377 * Later: if rssi_ack is close to
1378 * rate_ctrl->state[txRate].rssi_thres and we see lots
1379 * of retries, then we could increase
1380 * rate_ctrl->state[txRate].rssi_thres.
1381 */
1382 rate_ctrl->hw_maxretry_pktcnt = 0;
1383 } else {
1384 /*
1385 * It worked with no retries. First ignore bogus (small)
1386 * rssi_ack values.
1387 */
1388 if (tx_rate == rate_ctrl->rate_max_phy &&
1389 rate_ctrl->hw_maxretry_pktcnt < 255) {
1390 rate_ctrl->hw_maxretry_pktcnt++;
1391 }
1392
1393 if (info_priv->tx.ts_rssi >=
1394 rate_table->info[tx_rate].rssi_ack_validmin) {
1395 /* Average the rssi */
1396 if (tx_rate != rate_ctrl->rssi_sum_rate) {
1397 rate_ctrl->rssi_sum_rate = tx_rate;
1398 rate_ctrl->rssi_sum =
1399 rate_ctrl->rssi_sum_cnt = 0;
1400 }
1401
1402 rate_ctrl->rssi_sum += info_priv->tx.ts_rssi;
1403 rate_ctrl->rssi_sum_cnt++;
1404
1405 if (rate_ctrl->rssi_sum_cnt > 4) {
1406 int32_t rssi_ackAvg =
1407 (rate_ctrl->rssi_sum + 2) / 4;
1408 int8_t rssi_thres =
1409 rate_ctrl->state[tx_rate].
1410 rssi_thres;
1411 int8_t rssi_ack_vmin =
1412 rate_table->info[tx_rate].
1413 rssi_ack_validmin;
1414
1415 rate_ctrl->rssi_sum =
1416 rate_ctrl->rssi_sum_cnt = 0;
1417
1418 /* Now reduce the current
1419 * rssi threshold. */
1420 if ((rssi_ackAvg < rssi_thres + 2) &&
1421 (rssi_thres > rssi_ack_vmin)) {
1422 rate_ctrl->state[tx_rate].
1423 rssi_thres--;
1424 }
1425
1426 state_change = TRUE;
1427 }
1428 }
1429 }
1430 }
1431
1432 /* For all cases */
1433
1434 /*
1435 * If this rate looks bad (high PER) then stop using it for
1436 * a while (except if we are probing).
1437 */
1438 if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 &&
1439 rate_table->info[tx_rate].ratekbps <=
1440 rate_table->info[rate_ctrl->rate_max_phy].ratekbps) {
1441 ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl,
1442 (u8) tx_rate, &rate_ctrl->rate_max_phy);
1443
1444 /* Don't probe for a little while. */
1445 rate_ctrl->probe_time = now_msec;
1446 }
1447
1448 if (state_change) {
1449 /*
1450 * Make sure the rates above this have higher rssi thresholds.
1451 * (Note: Monotonicity is kept within the OFDM rates and
1452 * within the CCK rates. However, no adjustment is
1453 * made to keep the rssi thresholds monotonically
1454 * increasing between the CCK and OFDM rates.)
1455 */
1456 for (rate = tx_rate; rate <
1457 rate_ctrl->rate_table_size - 1; rate++) {
1458 if (rate_table->info[rate+1].phy !=
1459 rate_table->info[tx_rate].phy)
1460 break;
1461
1462 if (rate_ctrl->state[rate].rssi_thres +
1463 rate_table->info[rate].rssi_ack_deltamin >
1464 rate_ctrl->state[rate+1].rssi_thres) {
1465 rate_ctrl->state[rate+1].rssi_thres =
1466 rate_ctrl->state[rate].
1467 rssi_thres +
1468 rate_table->info[rate].
1469 rssi_ack_deltamin;
1470 }
1471 }
1472
1473 /* Make sure the rates below this have lower rssi thresholds. */
1474 for (rate = tx_rate - 1; rate >= 0; rate--) {
1475 if (rate_table->info[rate].phy !=
1476 rate_table->info[tx_rate].phy)
1477 break;
1478
1479 if (rate_ctrl->state[rate].rssi_thres +
1480 rate_table->info[rate].rssi_ack_deltamin >
1481 rate_ctrl->state[rate+1].rssi_thres) {
1482 if (rate_ctrl->state[rate+1].rssi_thres <
1483 rate_table->info[rate].
1484 rssi_ack_deltamin)
1485 rate_ctrl->state[rate].rssi_thres = 0;
1486 else {
1487 rate_ctrl->state[rate].rssi_thres =
1488 rate_ctrl->state[rate+1].
1489 rssi_thres -
1490 rate_table->info[rate].
1491 rssi_ack_deltamin;
1492 }
1493
1494 if (rate_ctrl->state[rate].rssi_thres <
1495 rate_table->info[rate].
1496 rssi_ack_validmin) {
1497 rate_ctrl->state[rate].rssi_thres =
1498 rate_table->info[rate].
1499 rssi_ack_validmin;
1500 }
1501 }
1502 }
1503 }
1504
1505 /* Make sure the rates below this have lower PER */
1506 /* Monotonicity is kept only for rates below the current rate. */
1507 if (rate_ctrl->state[tx_rate].per < last_per) {
1508 for (rate = tx_rate - 1; rate >= 0; rate--) {
1509 if (rate_table->info[rate].phy !=
1510 rate_table->info[tx_rate].phy)
1511 break;
1512
1513 if (rate_ctrl->state[rate].per >
1514 rate_ctrl->state[rate+1].per) {
1515 rate_ctrl->state[rate].per =
1516 rate_ctrl->state[rate+1].per;
1517 }
1518 }
1519 }
1520
1521 /* Maintain monotonicity for rates above the current rate */
1522 for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) {
1523 if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per)
1524 rate_ctrl->state[rate+1].per =
1525 rate_ctrl->state[rate].per;
1526 }
1527
1528 /* Every so often, we reduce the thresholds and
1529 * PER (different for CCK and OFDM). */
1530 if (now_msec - rate_ctrl->rssi_down_time >=
1531 rate_table->rssi_reduce_interval) {
1532
1533 for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
1534 if (rate_ctrl->state[rate].rssi_thres >
1535 rate_table->info[rate].rssi_ack_validmin)
1536 rate_ctrl->state[rate].rssi_thres -= 1;
1537 }
1538 rate_ctrl->rssi_down_time = now_msec;
1539 }
1540
1541 /* Every so often, we reduce the thresholds
1542 * and PER (different for CCK and OFDM). */
1543 if (now_msec - rate_ctrl->per_down_time >=
1544 rate_table->rssi_reduce_interval) {
1545 for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
1546 rate_ctrl->state[rate].per =
1547 7 * rate_ctrl->state[rate].per / 8;
1548 }
1549
1550 rate_ctrl->per_down_time = now_msec;
1551 }
1552}
1553
1554/*
1555 * This routine is called in rate control callback tx_status() to give
1556 * the status of previous frames.
1557 */
1558static void ath_rc_update(struct ath_softc *sc,
1559 struct ath_rate_node *ath_rc_priv,
1560 struct ath_tx_info_priv *info_priv, int final_ts_idx,
1561 int xretries, int long_retry)
1562{
1563 struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
1564 struct ath_rate_table *rate_table;
1565 struct ath_tx_ratectrl *rate_ctrl;
1566 struct ath_rc_series rcs[4];
1567 u8 flags;
1568 u32 series = 0, rix;
1569
1570 memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0]));
1571 rate_table = (struct ath_rate_table *)
1572 asc->hw_rate_table[sc->sc_curmode];
1573 rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
1574 ASSERT(rcs[0].tries != 0);
1575
1576 /*
1577 * If the first rate is not the final index, there
1578 * are intermediate rate failures to be processed.
1579 */
1580 if (final_ts_idx != 0) {
1581 /* Process intermediate rates that failed.*/
1582 for (series = 0; series < final_ts_idx ; series++) {
1583 if (rcs[series].tries != 0) {
1584 flags = rcs[series].flags;
1585 /* If HT40 and we have switched mode from
1586 * 40 to 20 => don't update */
1587 if ((flags & ATH_RC_CW40_FLAG) &&
1588 (rate_ctrl->rc_phy_mode !=
1589 (flags & ATH_RC_CW40_FLAG)))
1590 return;
1591 if ((flags & ATH_RC_CW40_FLAG) &&
1592 (flags & ATH_RC_SGI_FLAG))
1593 rix = rate_table->info[
1594 rcs[series].rix].ht_index;
1595 else if (flags & ATH_RC_SGI_FLAG)
1596 rix = rate_table->info[
1597 rcs[series].rix].sgi_index;
1598 else if (flags & ATH_RC_CW40_FLAG)
1599 rix = rate_table->info[
1600 rcs[series].rix].cw40index;
1601 else
1602 rix = rate_table->info[
1603 rcs[series].rix].base_index;
1604 ath_rc_update_ht(sc, ath_rc_priv,
1605 info_priv, rix,
1606 xretries ? 1 : 2,
1607 rcs[series].tries);
1608 }
1609 }
1610 } else {
1611 /*
1612 * Handle the special case of MIMO PS burst, where the second
1613 * aggregate is sent out with only one rate and one try.
1614 * Treating it as an excessive retry penalizes the rate
1615 * inordinately.
1616 */
1617 if (rcs[0].tries == 1 && xretries == 1)
1618 xretries = 2;
1619 }
1620
1621 flags = rcs[series].flags;
1622 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1623 if ((flags & ATH_RC_CW40_FLAG) &&
1624 (rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG)))
1625 return;
1626
1627 if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG))
1628 rix = rate_table->info[rcs[series].rix].ht_index;
1629 else if (flags & ATH_RC_SGI_FLAG)
1630 rix = rate_table->info[rcs[series].rix].sgi_index;
1631 else if (flags & ATH_RC_CW40_FLAG)
1632 rix = rate_table->info[rcs[series].rix].cw40index;
1633 else
1634 rix = rate_table->info[rcs[series].rix].base_index;
1635
1636 ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix,
1637 xretries, long_retry);
1638}
1639
1640
1641/*
1642 * Process a tx descriptor for a completed transmit (success or failure).
1643 */
1644static void ath_rate_tx_complete(struct ath_softc *sc,
1645 struct ath_node *an,
1646 struct ath_rate_node *rc_priv,
1647 struct ath_tx_info_priv *info_priv)
1648{
1649 int final_ts_idx = info_priv->tx.ts_rateindex;
1650 int tx_status = 0, is_underrun = 0;
1651 struct ath_vap *avp;
1652
1653 avp = rc_priv->avp;
1654 if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE)
1655 || info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1656 return;
1657
1658 if (info_priv->tx.ts_rssi > 0) {
1659 ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi,
1660 info_priv->tx.ts_rssi);
1661 }
1662
1663 /*
1664 * If underrun error is seen assume it as an excessive retry only
1665 * if prefetch trigger level have reached the max (0x3f for 5416)
1666 * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
1667 * times. This affects how ratectrl updates PER for the failed rate.
1668 */
1669 if (info_priv->tx.ts_flags &
1670 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1671 ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) {
1672 tx_status = 1;
1673 is_underrun = 1;
1674 }
1675
1676 if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1677 (info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1678 tx_status = 1;
1679
1680 ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status,
1681 (is_underrun) ? ATH_11N_TXMAXTRY :
1682 info_priv->tx.ts_longretry);
1683}
1684
1685
1686/*
1687 * Update the SIB's rate control information
1688 *
1689 * This should be called when the supported rates change
1690 * (e.g. SME operation, wireless mode change)
1691 *
1692 * It will determine which rates are valid for use.
1693 */
1694static void ath_rc_sib_update(struct ath_softc *sc,
1695 struct ath_rate_node *ath_rc_priv,
1696 u32 capflag, int keep_state,
1697 struct ath_rateset *negotiated_rates,
1698 struct ath_rateset *negotiated_htrates)
1699{
1700 struct ath_rate_table *rate_table = NULL;
1701 struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
1702 struct ath_rateset *rateset = negotiated_rates;
1703 u8 *ht_mcs = (u8 *)negotiated_htrates;
1704 struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *)
1705 (ath_rc_priv);
1706 u8 i, j, k, hi = 0, hthi = 0;
1707
1708 rate_table = (struct ath_rate_table *)
1709 asc->hw_rate_table[sc->sc_curmode];
1710
1711 /* Initial rate table size. Will change depending
1712 * on the working rate set */
1713 rate_ctrl->rate_table_size = MAX_TX_RATE_TBL;
1714
1715 /* Initialize thresholds according to the global rate table */
1716 for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) {
1717 rate_ctrl->state[i].rssi_thres =
1718 rate_table->info[i].rssi_ack_validmin;
1719 rate_ctrl->state[i].per = 0;
1720 }
1721
1722 /* Determine the valid rates */
1723 ath_rc_init_valid_txmask(rate_ctrl);
1724
1725 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1726 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1727 rate_ctrl->valid_phy_rateidx[i][j] = 0;
1728 rate_ctrl->valid_phy_ratecnt[i] = 0;
1729 }
1730 rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG);
1731
1732 /* Set stream capability */
1733 ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1;
1734
1735 if (!rateset->rs_nrates) {
1736 /* No working rate, just initialize valid rates */
1737 hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table,
1738 capflag);
1739 } else {
1740 /* Use intersection of working rates and valid rates */
1741 hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table,
1742 rateset, capflag);
1743 if (capflag & WLAN_RC_HT_FLAG) {
1744 hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv,
1745 rate_table,
1746 ht_mcs,
1747 capflag);
1748 }
1749 hi = A_MAX(hi, hthi);
1750 }
1751
1752 rate_ctrl->rate_table_size = hi + 1;
1753 rate_ctrl->rate_max_phy = 0;
1754 ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
1755
1756 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1757 for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) {
1758 rate_ctrl->valid_rate_index[k++] =
1759 rate_ctrl->valid_phy_rateidx[i][j];
1760 }
1761
1762 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE)
1763 || !rate_ctrl->valid_phy_ratecnt[i])
1764 continue;
1765
1766 rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1];
1767 }
1768 ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
1769 ASSERT(k <= MAX_TX_RATE_TBL);
1770
1771 rate_ctrl->max_valid_rate = k;
1772 /*
1773 * Some third party vendors don't send the supported rate series in
1774 * order. So sorting to make sure its in order, otherwise our RateFind
1775 * Algo will select wrong rates
1776 */
1777 ath_rc_sort_validrates(rate_table, rate_ctrl);
1778 rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4];
1779}
1780
1781/*
1782 * Update rate-control state on station associate/reassociate.
1783 */
1784static int ath_rate_newassoc(struct ath_softc *sc,
1785 struct ath_rate_node *ath_rc_priv,
1786 unsigned int capflag,
1787 struct ath_rateset *negotiated_rates,
1788 struct ath_rateset *negotiated_htrates)
1789{
1790
1791
1792 ath_rc_priv->ht_cap =
1793 ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) |
1794 ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) |
1795 ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) |
1796 ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0);
1797
1798 ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0,
1799 negotiated_rates, negotiated_htrates);
1800
1801 return 0;
1802}
1803
1804/*
1805 * This routine is called to initialize the rate control parameters
1806 * in the SIB. It is called initially during system initialization
1807 * or when a station is associated with the AP.
1808 */
1809static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv)
1810{
1811 struct ath_tx_ratectrl *rate_ctrl;
1812
1813 rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
1814 rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies);
1815}
1816
1817
1818static void ath_setup_rates(struct ieee80211_local *local, struct sta_info *sta)
1819
1820{
1821 struct ieee80211_supported_band *sband;
1822 struct ieee80211_hw *hw = local_to_hw(local);
1823 struct ath_softc *sc = hw->priv;
1824 struct ath_rate_node *rc_priv = sta->rate_ctrl_priv;
1825 int i, j = 0;
1826
1827 DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
1828 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
1829 for (i = 0; i < sband->n_bitrates; i++) {
1830 if (sta->supp_rates[local->hw.conf.channel->band] & BIT(i)) {
1831 rc_priv->neg_rates.rs_rates[j]
1832 = (sband->bitrates[i].bitrate * 2) / 10;
1833 j++;
1834 }
1835 }
1836 rc_priv->neg_rates.rs_nrates = j;
1837}
1838
1839void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv)
1840{
1841 struct ath_softc *sc = hw->priv;
1842 u32 capflag = 0;
1843
1844 if (hw->conf.ht_conf.ht_supported) {
1845 capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG;
1846 if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040)
1847 capflag |= ATH_RC_CW40_FLAG;
1848 }
1849
1850 ath_rate_newassoc(sc, rc_priv, capflag,
1851 &rc_priv->neg_rates,
1852 &rc_priv->neg_ht_rates);
1853
1854}
1855
1856/* Rate Control callbacks */
1857static void ath_tx_status(void *priv, struct net_device *dev,
1858 struct sk_buff *skb)
1859{
1860 struct ath_softc *sc = priv;
1861 struct ath_tx_info_priv *tx_info_priv;
1862 struct ath_node *an;
1863 struct sta_info *sta;
1864 struct ieee80211_local *local;
1865 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1866 struct ieee80211_hdr *hdr;
1867 __le16 fc;
1868
1869 local = hw_to_local(sc->hw);
1870 hdr = (struct ieee80211_hdr *)skb->data;
1871 fc = hdr->frame_control;
1872 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
1873
1874 spin_lock_bh(&sc->node_lock);
1875 an = ath_node_find(sc, hdr->addr1);
1876 spin_unlock_bh(&sc->node_lock);
1877
1878 sta = sta_info_get(local, hdr->addr1);
1879 if (!an || !sta || !ieee80211_is_data(fc)) {
1880 if (tx_info->driver_data[0] != NULL) {
1881 kfree(tx_info->driver_data[0]);
1882 tx_info->driver_data[0] = NULL;
1883 }
1884 return;
1885 }
1886 if (tx_info->driver_data[0] != NULL) {
1887 ath_rate_tx_complete(sc, an, sta->rate_ctrl_priv, tx_info_priv);
1888 kfree(tx_info->driver_data[0]);
1889 tx_info->driver_data[0] = NULL;
1890 }
1891}
1892
1893static void ath_tx_aggr_resp(struct ath_softc *sc,
1894 struct sta_info *sta,
1895 struct ath_node *an,
1896 u8 tidno)
1897{
1898 struct ieee80211_hw *hw = sc->hw;
1899 struct ieee80211_local *local;
1900 struct ath_atx_tid *txtid;
1901 struct ieee80211_supported_band *sband;
1902 u16 buffersize = 0;
1903 int state;
1904 DECLARE_MAC_BUF(mac);
1905
1906 if (!sc->sc_txaggr)
1907 return;
1908
1909 txtid = ATH_AN_2_TID(an, tidno);
1910 if (!txtid->paused)
1911 return;
1912
1913 local = hw_to_local(sc->hw);
1914 sband = hw->wiphy->bands[hw->conf.channel->band];
1915 buffersize = IEEE80211_MIN_AMPDU_BUF <<
1916 sband->ht_info.ampdu_factor; /* FIXME */
1917 state = sta->ampdu_mlme.tid_state_tx[tidno];
1918
1919 if (state & HT_ADDBA_RECEIVED_MSK) {
1920 txtid->addba_exchangecomplete = 1;
1921 txtid->addba_exchangeinprogress = 0;
1922 txtid->baw_size = buffersize;
1923
1924 DPRINTF(sc, ATH_DBG_AGGR,
1925 "%s: Resuming tid, buffersize: %d\n",
1926 __func__,
1927 buffersize);
1928
1929 ath_tx_resume_tid(sc, txtid);
1930 }
1931}
1932
1933static void ath_get_rate(void *priv, struct net_device *dev,
1934 struct ieee80211_supported_band *sband,
1935 struct sk_buff *skb,
1936 struct rate_selection *sel)
1937{
1938 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1939 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1940 struct sta_info *sta;
1941 struct ath_softc *sc = (struct ath_softc *)priv;
1942 struct ieee80211_hw *hw = sc->hw;
1943 struct ath_tx_info_priv *tx_info_priv;
1944 struct ath_rate_node *ath_rc_priv;
1945 struct ath_node *an;
1946 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1947 int is_probe, chk, ret;
1948 s8 lowest_idx;
1949 __le16 fc = hdr->frame_control;
1950 u8 *qc, tid;
1951 DECLARE_MAC_BUF(mac);
1952
1953 DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
1954
1955 /* allocate driver private area of tx_info */
1956 tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1957 ASSERT(tx_info->driver_data[0] != NULL);
1958 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
1959
1960 sta = sta_info_get(local, hdr->addr1);
1961 lowest_idx = rate_lowest_index(local, sband, sta);
1962 tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10;
1963 /* lowest rate for management and multicast/broadcast frames */
1964 if (!ieee80211_is_data(fc) ||
1965 is_multicast_ether_addr(hdr->addr1) || !sta) {
1966 sel->rate_idx = lowest_idx;
1967 return;
1968 }
1969
1970 ath_rc_priv = sta->rate_ctrl_priv;
1971
1972 /* Find tx rate for unicast frames */
1973 ath_rate_findrate(sc, ath_rc_priv,
1974 ATH_11N_TXMAXTRY, 4,
1975 ATH_RC_PROBE_ALLOWED,
1976 tx_info_priv->rcs,
1977 &is_probe,
1978 false);
1979 if (is_probe)
1980 sel->probe_idx = ((struct ath_tx_ratectrl *)
1981 sta->rate_ctrl_priv)->probe_rate;
1982
1983 /* Ratecontrol sometimes returns invalid rate index */
1984 if (tx_info_priv->rcs[0].rix != 0xff)
1985 ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix;
1986 else
1987 tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix;
1988
1989 sel->rate_idx = tx_info_priv->rcs[0].rix;
1990
1991 /* Check if aggregation has to be enabled for this tid */
1992
1993 if (hw->conf.ht_conf.ht_supported) {
1994 if (ieee80211_is_data_qos(fc)) {
1995 qc = ieee80211_get_qos_ctl(hdr);
1996 tid = qc[0] & 0xf;
1997
1998 spin_lock_bh(&sc->node_lock);
1999 an = ath_node_find(sc, hdr->addr1);
2000 spin_unlock_bh(&sc->node_lock);
2001
2002 if (!an) {
2003 DPRINTF(sc, ATH_DBG_AGGR,
2004 "%s: Node not found to "
2005 "init/chk TX aggr\n", __func__);
2006 return;
2007 }
2008
2009 chk = ath_tx_aggr_check(sc, an, tid);
2010 if (chk == AGGR_REQUIRED) {
2011 ret = ieee80211_start_tx_ba_session(hw,
2012 hdr->addr1, tid);
2013 if (ret)
2014 DPRINTF(sc, ATH_DBG_AGGR,
2015 "%s: Unable to start tx "
2016 "aggr for: %s\n",
2017 __func__,
2018 print_mac(mac, hdr->addr1));
2019 else
2020 DPRINTF(sc, ATH_DBG_AGGR,
2021 "%s: Started tx aggr for: %s\n",
2022 __func__,
2023 print_mac(mac, hdr->addr1));
2024 } else if (chk == AGGR_EXCHANGE_PROGRESS)
2025 ath_tx_aggr_resp(sc, sta, an, tid);
2026 }
2027 }
2028}
2029
2030static void ath_rate_init(void *priv, void *priv_sta,
2031 struct ieee80211_local *local,
2032 struct sta_info *sta)
2033{
2034 struct ieee80211_supported_band *sband;
2035 struct ieee80211_hw *hw = local_to_hw(local);
2036 struct ieee80211_conf *conf = &local->hw.conf;
2037 struct ath_softc *sc = hw->priv;
2038 int i, j = 0;
2039
2040 DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
2041
2042 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
2043 sta->txrate_idx = rate_lowest_index(local, sband, sta);
2044
2045 ath_setup_rates(local, sta);
2046 if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
2047 for (i = 0; i < MCS_SET_SIZE; i++) {
2048 if (conf->ht_conf.supp_mcs_set[i/8] & (1<<(i%8)))
2049 ((struct ath_rate_node *)
2050 priv_sta)->neg_ht_rates.rs_rates[j++] = i;
2051 if (j == ATH_RATE_MAX)
2052 break;
2053 }
2054 ((struct ath_rate_node *)priv_sta)->neg_ht_rates.rs_nrates = j;
2055 }
2056 ath_rc_node_update(hw, priv_sta);
2057}
2058
2059static void ath_rate_clear(void *priv)
2060{
2061 return;
2062}
2063
2064static void *ath_rate_alloc(struct ieee80211_local *local)
2065{
2066 struct ieee80211_hw *hw = local_to_hw(local);
2067 struct ath_softc *sc = hw->priv;
2068
2069 DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
2070 return local->hw.priv;
2071}
2072
2073static void ath_rate_free(void *priv)
2074{
2075 return;
2076}
2077
2078static void *ath_rate_alloc_sta(void *priv, gfp_t gfp)
2079{
2080 struct ath_softc *sc = priv;
2081 struct ath_vap *avp = sc->sc_vaps[0];
2082 struct ath_rate_node *rate_priv;
2083
2084 DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
2085 rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp);
2086 if (!rate_priv) {
2087 DPRINTF(sc, ATH_DBG_FATAL, "%s:Unable to allocate"
2088 "private rate control structure", __func__);
2089 return NULL;
2090 }
2091 ath_rc_sib_init(rate_priv);
2092 return rate_priv;
2093}
2094
2095static void ath_rate_free_sta(void *priv, void *priv_sta)
2096{
2097 struct ath_rate_node *rate_priv = priv_sta;
2098 struct ath_softc *sc = priv;
2099
2100 DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
2101 ath_rate_node_free(rate_priv);
2102}
2103
2104static struct rate_control_ops ath_rate_ops = {
2105 .module = NULL,
2106 .name = "ath9k_rate_control",
2107 .tx_status = ath_tx_status,
2108 .get_rate = ath_get_rate,
2109 .rate_init = ath_rate_init,
2110 .clear = ath_rate_clear,
2111 .alloc = ath_rate_alloc,
2112 .free = ath_rate_free,
2113 .alloc_sta = ath_rate_alloc_sta,
2114 .free_sta = ath_rate_free_sta
2115};
2116
2117int ath_rate_control_register(void)
2118{
2119 return ieee80211_rate_control_register(&ath_rate_ops);
2120}
2121
2122void ath_rate_control_unregister(void)
2123{
2124 ieee80211_rate_control_unregister(&ath_rate_ops);
2125}
2126