blob: ff97374ca0693d526582b8c34e7f9f421f43ed48 [file] [log] [blame]
Jonas Bonn61e85e32011-06-04 11:06:11 +03001/*
2 * OpenRISC Linux
3 *
4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
6 * declaration.
7 *
8 * OpenRISC implementation:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11 * et al.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 */
18
19/* or32 pgtable.h - macros and functions to manipulate page tables
20 *
21 * Based on:
22 * include/asm-cris/pgtable.h
23 */
24
25#ifndef __ASM_OPENRISC_PGTABLE_H
26#define __ASM_OPENRISC_PGTABLE_H
27
Kirill A. Shutemov9849a562017-03-09 17:24:05 +030028#define __ARCH_USE_5LEVEL_HACK
Jonas Bonn61e85e32011-06-04 11:06:11 +030029#include <asm-generic/pgtable-nopmd.h>
30
31#ifndef __ASSEMBLY__
32#include <asm/mmu.h>
33#include <asm/fixmap.h>
34
35/*
36 * The Linux memory management assumes a three-level page table setup. On
37 * or32, we use that, but "fold" the mid level into the top-level page
38 * table. Since the MMU TLB is software loaded through an interrupt, it
39 * supports any page table structure, so we could have used a three-level
40 * setup, but for the amounts of memory we normally use, a two-level is
41 * probably more efficient.
42 *
43 * This file contains the functions and defines necessary to modify and use
44 * the or32 page table tree.
45 */
46
47extern void paging_init(void);
48
49/* Certain architectures need to do special things when pte's
50 * within a page table are directly modified. Thus, the following
51 * hook is made available.
52 */
53#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
54#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
55/*
56 * (pmds are folded into pgds so this doesn't get actually called,
57 * but the define is needed for a generic inline function.)
58 */
59#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
60
61#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
62#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
63#define PGDIR_MASK (~(PGDIR_SIZE-1))
64
65/*
66 * entries per page directory level: we use a two-level, so
67 * we don't really have any PMD directory physically.
68 * pointers are 4 bytes so we can use the page size and
69 * divide it by 4 (shift by 2).
70 */
71#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
72
Stefan Kristianssonf4770602014-01-11 00:17:38 +020073#define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT))
Jonas Bonn61e85e32011-06-04 11:06:11 +030074
75/* calculate how many PGD entries a user-level program can use
76 * the first mappable virtual address is 0
77 * (TASK_SIZE is the maximum virtual address space)
78 */
79
80#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
Kirill A. Shutemovd016bf72015-02-11 15:26:41 -080081#define FIRST_USER_ADDRESS 0UL
Jonas Bonn61e85e32011-06-04 11:06:11 +030082
83/*
84 * Kernels own virtual memory area.
85 */
86
87/*
88 * The size and location of the vmalloc area are chosen so that modules
89 * placed in this area aren't more than a 28-bit signed offset from any
90 * kernel functions that they may need. This greatly simplifies handling
91 * of the relocations for l.j and l.jal instructions as we don't need to
92 * introduce any trampolines for reaching "distant" code.
93 *
94 * 64 MB of vmalloc area is comparable to what's available on other arches.
95 */
96
97#define VMALLOC_START (PAGE_OFFSET-0x04000000)
98#define VMALLOC_END (PAGE_OFFSET)
99#define VMALLOC_VMADDR(x) ((unsigned long)(x))
100
101/* Define some higher level generic page attributes.
102 *
103 * If you change _PAGE_CI definition be sure to change it in
104 * io.h for ioremap_nocache() too.
105 */
106
107/*
108 * An OR32 PTE looks like this:
109 *
110 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
111 * Phys pg.num L PP Index D A WOM WBC CI CC
112 *
113 * L : link
114 * PPI: Page protection index
115 * D : Dirty
116 * A : Accessed
117 * WOM: Weakly ordered memory
118 * WBC: Write-back cache
119 * CI : Cache inhibit
120 * CC : Cache coherent
121 *
122 * The protection bits below should correspond to the layout of the actual
123 * PTE as per above
124 */
125
126#define _PAGE_CC 0x001 /* software: pte contains a translation */
127#define _PAGE_CI 0x002 /* cache inhibit */
128#define _PAGE_WBC 0x004 /* write back cache */
Jonas Bonn61e85e32011-06-04 11:06:11 +0300129#define _PAGE_WOM 0x008 /* weakly ordered memory */
130
131#define _PAGE_A 0x010 /* accessed */
132#define _PAGE_D 0x020 /* dirty */
133#define _PAGE_URE 0x040 /* user read enable */
134#define _PAGE_UWE 0x080 /* user write enable */
135
136#define _PAGE_SRE 0x100 /* superuser read enable */
137#define _PAGE_SWE 0x200 /* superuser write enable */
138#define _PAGE_EXEC 0x400 /* software: page is executable */
139#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
140
141/* 0x001 is cache coherency bit, which should always be set to
142 * 1 - for SMP (when we support it)
143 * 0 - otherwise
144 *
145 * we just reuse this bit in software for _PAGE_PRESENT and
146 * force it to 0 when loading it into TLB.
147 */
148#define _PAGE_PRESENT _PAGE_CC
149#define _PAGE_USER _PAGE_URE
150#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
151#define _PAGE_DIRTY _PAGE_D
152#define _PAGE_ACCESSED _PAGE_A
153#define _PAGE_NO_CACHE _PAGE_CI
154#define _PAGE_SHARED _PAGE_U_SHARED
155#define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
156
157#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
158#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
159#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
160#define _KERNPG_TABLE \
161 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
162
163#define PAGE_NONE __pgprot(_PAGE_ALL)
164#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
165#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
166#define PAGE_SHARED \
167 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
168 | _PAGE_SHARED)
169#define PAGE_SHARED_X \
170 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
171 | _PAGE_SHARED | _PAGE_EXEC)
172#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
173#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
174
175#define PAGE_KERNEL \
176 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
177 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
178#define PAGE_KERNEL_RO \
179 __pgprot(_PAGE_ALL | _PAGE_SRE \
180 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
181#define PAGE_KERNEL_NOCACHE \
182 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
183 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
184
185#define __P000 PAGE_NONE
186#define __P001 PAGE_READONLY_X
187#define __P010 PAGE_COPY
188#define __P011 PAGE_COPY_X
189#define __P100 PAGE_READONLY
190#define __P101 PAGE_READONLY_X
191#define __P110 PAGE_COPY
192#define __P111 PAGE_COPY_X
193
194#define __S000 PAGE_NONE
195#define __S001 PAGE_READONLY_X
196#define __S010 PAGE_SHARED
197#define __S011 PAGE_SHARED_X
198#define __S100 PAGE_READONLY
199#define __S101 PAGE_READONLY_X
200#define __S110 PAGE_SHARED
201#define __S111 PAGE_SHARED_X
202
203/* zero page used for uninitialized stuff */
204extern unsigned long empty_zero_page[2048];
205#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
206
207/* number of bits that fit into a memory pointer */
208#define BITS_PER_PTR (8*sizeof(unsigned long))
209
210/* to align the pointer to a pointer address */
211#define PTR_MASK (~(sizeof(void *)-1))
212
213/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
214/* 64-bit machines, beware! SRB. */
215#define SIZEOF_PTR_LOG2 2
216
217/* to find an entry in a page-table */
218#define PAGE_PTR(address) \
219((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
220
221/* to set the page-dir */
222#define SET_PAGE_DIR(tsk, pgdir)
223
224#define pte_none(x) (!pte_val(x))
225#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
226#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
227
228#define pmd_none(x) (!pmd_val(x))
229#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
230#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
231#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
232
233/*
234 * The following only work if pte_present() is true.
235 * Undefined behaviour if not..
236 */
237
238static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
239static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
240static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
241static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
242static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
Jonas Bonn61e85e32011-06-04 11:06:11 +0300243static inline int pte_special(pte_t pte) { return 0; }
244static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
245
246static inline pte_t pte_wrprotect(pte_t pte)
247{
248 pte_val(pte) &= ~(_PAGE_WRITE);
249 return pte;
250}
251
252static inline pte_t pte_rdprotect(pte_t pte)
253{
254 pte_val(pte) &= ~(_PAGE_READ);
255 return pte;
256}
257
258static inline pte_t pte_exprotect(pte_t pte)
259{
260 pte_val(pte) &= ~(_PAGE_EXEC);
261 return pte;
262}
263
264static inline pte_t pte_mkclean(pte_t pte)
265{
266 pte_val(pte) &= ~(_PAGE_DIRTY);
267 return pte;
268}
269
270static inline pte_t pte_mkold(pte_t pte)
271{
272 pte_val(pte) &= ~(_PAGE_ACCESSED);
273 return pte;
274}
275
276static inline pte_t pte_mkwrite(pte_t pte)
277{
278 pte_val(pte) |= _PAGE_WRITE;
279 return pte;
280}
281
282static inline pte_t pte_mkread(pte_t pte)
283{
284 pte_val(pte) |= _PAGE_READ;
285 return pte;
286}
287
288static inline pte_t pte_mkexec(pte_t pte)
289{
290 pte_val(pte) |= _PAGE_EXEC;
291 return pte;
292}
293
294static inline pte_t pte_mkdirty(pte_t pte)
295{
296 pte_val(pte) |= _PAGE_DIRTY;
297 return pte;
298}
299
300static inline pte_t pte_mkyoung(pte_t pte)
301{
302 pte_val(pte) |= _PAGE_ACCESSED;
303 return pte;
304}
305
306/*
307 * Conversion functions: convert a page and protection to a page entry,
308 * and a page entry and page directory to the page they refer to.
309 */
310
311/* What actually goes as arguments to the various functions is less than
312 * obvious, but a rule of thumb is that struct page's goes as struct page *,
313 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
314 * addresses (the 0xc0xxxxxx's) goes as void *'s.
315 */
316
317static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
318{
319 pte_t pte;
320 /* the PTE needs a physical address */
321 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
322 return pte;
323}
324
325#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
326
327#define mk_pte_phys(physpage, pgprot) \
328({ \
329 pte_t __pte; \
330 \
331 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
332 __pte; \
333})
334
335static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
336{
337 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
338 return pte;
339}
340
341
342/*
343 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
344 * __pte_page(pte_val) refers to the "virtual" DRAM interval
345 * pte_pagenr refers to the page-number counted starting from the virtual
346 * DRAM start
347 */
348
349static inline unsigned long __pte_page(pte_t pte)
350{
351 /* the PTE contains a physical address */
352 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
353}
354
355#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
356
357/* permanent address of a page */
358
359#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
360#define pte_page(pte) (mem_map+pte_pagenr(pte))
361
362/*
363 * only the pte's themselves need to point to physical DRAM (see above)
364 * the pagetable links are purely handled within the kernel SW and thus
365 * don't need the __pa and __va transformations.
366 */
367static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
368{
369 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
370}
371
372#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
373#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
374
375/* to find an entry in a page-table-directory. */
376#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
377
378#define __pgd_offset(address) pgd_index(address)
379
380#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
381
382/* to find an entry in a kernel page-table-directory */
383#define pgd_offset_k(address) pgd_offset(&init_mm, address)
384
385#define __pmd_offset(address) \
386 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
387
388/*
389 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
390 *
391 * this macro returns the index of the entry in the pte page which would
392 * control the given virtual address
393 */
394#define __pte_offset(address) \
395 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
396#define pte_offset_kernel(dir, address) \
397 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
398#define pte_offset_map(dir, address) \
399 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
400#define pte_offset_map_nested(dir, address) \
401 pte_offset_map(dir, address)
402
403#define pte_unmap(pte) do { } while (0)
404#define pte_unmap_nested(pte) do { } while (0)
405#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
406#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
407
408#define pte_ERROR(e) \
409 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
410 __FILE__, __LINE__, &(e), pte_val(e))
411#define pgd_ERROR(e) \
412 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
413 __FILE__, __LINE__, &(e), pgd_val(e))
414
415extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
416
417/*
418 * or32 doesn't have any external MMU info: the kernel page
419 * tables contain all the necessary information.
420 *
421 * Actually I am not sure on what this could be used for.
422 */
423static inline void update_mmu_cache(struct vm_area_struct *vma,
424 unsigned long address, pte_t *pte)
425{
426}
427
428/* __PHX__ FIXME, SWAP, this probably doesn't work */
429
430/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
431/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
432
433#define __swp_type(x) (((x).val >> 5) & 0x7f)
434#define __swp_offset(x) ((x).val >> 12)
435#define __swp_entry(type, offset) \
436 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
437#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
438#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
439
Jonas Bonn61e85e32011-06-04 11:06:11 +0300440#define kern_addr_valid(addr) (1)
441
Jonas Bonn61e85e32011-06-04 11:06:11 +0300442#include <asm-generic/pgtable.h>
443
444/*
445 * No page table caches to initialise
446 */
447#define pgtable_cache_init() do { } while (0)
Jonas Bonn61e85e32011-06-04 11:06:11 +0300448
449typedef pte_t *pte_addr_t;
450
451#endif /* __ASSEMBLY__ */
452#endif /* __ASM_OPENRISC_PGTABLE_H */