David Daney | f12b76e | 2016-03-04 14:31:47 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * This program is free software; you can redistribute it and/or modify |
| 3 | * it under the terms of the GNU General Public License version 2 as |
| 4 | * published by the Free Software Foundation. |
| 5 | * |
| 6 | * This program is distributed in the hope that it will be useful, |
| 7 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 8 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 9 | * GNU General Public License for more details. |
| 10 | * |
| 11 | * You should have received a copy of the GNU General Public License |
| 12 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 13 | * |
| 14 | * Copyright (C) 2015 - 2016 Cavium, Inc. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/of_address.h> |
| 20 | #include <linux/of_pci.h> |
| 21 | #include <linux/platform_device.h> |
| 22 | |
| 23 | #include "pci-host-common.h" |
| 24 | |
| 25 | #define PEM_CFG_WR 0x28 |
| 26 | #define PEM_CFG_RD 0x30 |
| 27 | |
| 28 | struct thunder_pem_pci { |
| 29 | struct gen_pci gen_pci; |
| 30 | u32 ea_entry[3]; |
| 31 | void __iomem *pem_reg_base; |
| 32 | }; |
| 33 | |
| 34 | static void __iomem *thunder_pem_map_bus(struct pci_bus *bus, |
| 35 | unsigned int devfn, int where) |
| 36 | { |
| 37 | struct gen_pci *pci = bus->sysdata; |
| 38 | resource_size_t idx = bus->number - pci->cfg.bus_range->start; |
| 39 | |
| 40 | return pci->cfg.win[idx] + ((devfn << 16) | where); |
| 41 | } |
| 42 | |
| 43 | static int thunder_pem_bridge_read(struct pci_bus *bus, unsigned int devfn, |
| 44 | int where, int size, u32 *val) |
| 45 | { |
| 46 | u64 read_val; |
| 47 | struct thunder_pem_pci *pem_pci; |
| 48 | struct gen_pci *pci = bus->sysdata; |
| 49 | |
| 50 | pem_pci = container_of(pci, struct thunder_pem_pci, gen_pci); |
| 51 | |
| 52 | if (devfn != 0 || where >= 2048) { |
| 53 | *val = ~0; |
| 54 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 55 | } |
| 56 | |
| 57 | /* |
| 58 | * 32-bit accesses only. Write the address to the low order |
| 59 | * bits of PEM_CFG_RD, then trigger the read by reading back. |
| 60 | * The config data lands in the upper 32-bits of PEM_CFG_RD. |
| 61 | */ |
| 62 | read_val = where & ~3ull; |
| 63 | writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD); |
| 64 | read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); |
| 65 | read_val >>= 32; |
| 66 | |
| 67 | /* |
| 68 | * The config space contains some garbage, fix it up. Also |
| 69 | * synthesize an EA capability for the BAR used by MSI-X. |
| 70 | */ |
| 71 | switch (where & ~3) { |
| 72 | case 0x40: |
| 73 | read_val &= 0xffff00ff; |
| 74 | read_val |= 0x00007000; /* Skip MSI CAP */ |
| 75 | break; |
| 76 | case 0x70: /* Express Cap */ |
| 77 | /* PME interrupt on vector 2*/ |
| 78 | read_val |= (2u << 25); |
| 79 | break; |
| 80 | case 0xb0: /* MSI-X Cap */ |
| 81 | /* TableSize=4, Next Cap is EA */ |
| 82 | read_val &= 0xc00000ff; |
| 83 | read_val |= 0x0003bc00; |
| 84 | break; |
| 85 | case 0xb4: |
| 86 | /* Table offset=0, BIR=0 */ |
| 87 | read_val = 0x00000000; |
| 88 | break; |
| 89 | case 0xb8: |
| 90 | /* BPA offset=0xf0000, BIR=0 */ |
| 91 | read_val = 0x000f0000; |
| 92 | break; |
| 93 | case 0xbc: |
| 94 | /* EA, 1 entry, no next Cap */ |
| 95 | read_val = 0x00010014; |
| 96 | break; |
| 97 | case 0xc0: |
| 98 | /* DW2 for type-1 */ |
| 99 | read_val = 0x00000000; |
| 100 | break; |
| 101 | case 0xc4: |
| 102 | /* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */ |
| 103 | read_val = 0x80ff0003; |
| 104 | break; |
| 105 | case 0xc8: |
| 106 | read_val = pem_pci->ea_entry[0]; |
| 107 | break; |
| 108 | case 0xcc: |
| 109 | read_val = pem_pci->ea_entry[1]; |
| 110 | break; |
| 111 | case 0xd0: |
| 112 | read_val = pem_pci->ea_entry[2]; |
| 113 | break; |
| 114 | default: |
| 115 | break; |
| 116 | } |
| 117 | read_val >>= (8 * (where & 3)); |
| 118 | switch (size) { |
| 119 | case 1: |
| 120 | read_val &= 0xff; |
| 121 | break; |
| 122 | case 2: |
| 123 | read_val &= 0xffff; |
| 124 | break; |
| 125 | default: |
| 126 | break; |
| 127 | } |
| 128 | *val = read_val; |
| 129 | return PCIBIOS_SUCCESSFUL; |
| 130 | } |
| 131 | |
| 132 | static int thunder_pem_config_read(struct pci_bus *bus, unsigned int devfn, |
| 133 | int where, int size, u32 *val) |
| 134 | { |
| 135 | struct gen_pci *pci = bus->sysdata; |
| 136 | |
| 137 | if (bus->number < pci->cfg.bus_range->start || |
| 138 | bus->number > pci->cfg.bus_range->end) |
| 139 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 140 | |
| 141 | /* |
| 142 | * The first device on the bus is the PEM PCIe bridge. |
| 143 | * Special case its config access. |
| 144 | */ |
| 145 | if (bus->number == pci->cfg.bus_range->start) |
| 146 | return thunder_pem_bridge_read(bus, devfn, where, size, val); |
| 147 | |
| 148 | return pci_generic_config_read(bus, devfn, where, size, val); |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Some of the w1c_bits below also include read-only or non-writable |
| 153 | * reserved bits, this makes the code simpler and is OK as the bits |
| 154 | * are not affected by writing zeros to them. |
| 155 | */ |
| 156 | static u32 thunder_pem_bridge_w1c_bits(int where) |
| 157 | { |
| 158 | u32 w1c_bits = 0; |
| 159 | |
| 160 | switch (where & ~3) { |
| 161 | case 0x04: /* Command/Status */ |
| 162 | case 0x1c: /* Base and I/O Limit/Secondary Status */ |
| 163 | w1c_bits = 0xff000000; |
| 164 | break; |
| 165 | case 0x44: /* Power Management Control and Status */ |
| 166 | w1c_bits = 0xfffffe00; |
| 167 | break; |
| 168 | case 0x78: /* Device Control/Device Status */ |
| 169 | case 0x80: /* Link Control/Link Status */ |
| 170 | case 0x88: /* Slot Control/Slot Status */ |
| 171 | case 0x90: /* Root Status */ |
| 172 | case 0xa0: /* Link Control 2 Registers/Link Status 2 */ |
| 173 | w1c_bits = 0xffff0000; |
| 174 | break; |
| 175 | case 0x104: /* Uncorrectable Error Status */ |
| 176 | case 0x110: /* Correctable Error Status */ |
| 177 | case 0x130: /* Error Status */ |
| 178 | case 0x160: /* Link Control 4 */ |
| 179 | w1c_bits = 0xffffffff; |
| 180 | break; |
| 181 | default: |
| 182 | break; |
| 183 | } |
| 184 | return w1c_bits; |
| 185 | } |
| 186 | |
| 187 | static int thunder_pem_bridge_write(struct pci_bus *bus, unsigned int devfn, |
| 188 | int where, int size, u32 val) |
| 189 | { |
| 190 | struct gen_pci *pci = bus->sysdata; |
| 191 | struct thunder_pem_pci *pem_pci; |
| 192 | u64 write_val, read_val; |
| 193 | u32 mask = 0; |
| 194 | |
| 195 | pem_pci = container_of(pci, struct thunder_pem_pci, gen_pci); |
| 196 | |
| 197 | if (devfn != 0 || where >= 2048) |
| 198 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 199 | |
| 200 | /* |
| 201 | * 32-bit accesses only. If the write is for a size smaller |
| 202 | * than 32-bits, we must first read the 32-bit value and merge |
| 203 | * in the desired bits and then write the whole 32-bits back |
| 204 | * out. |
| 205 | */ |
| 206 | switch (size) { |
| 207 | case 1: |
| 208 | read_val = where & ~3ull; |
| 209 | writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD); |
| 210 | read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); |
| 211 | read_val >>= 32; |
| 212 | mask = ~(0xff << (8 * (where & 3))); |
| 213 | read_val &= mask; |
| 214 | val = (val & 0xff) << (8 * (where & 3)); |
| 215 | val |= (u32)read_val; |
| 216 | break; |
| 217 | case 2: |
| 218 | read_val = where & ~3ull; |
| 219 | writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD); |
| 220 | read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); |
| 221 | read_val >>= 32; |
| 222 | mask = ~(0xffff << (8 * (where & 3))); |
| 223 | read_val &= mask; |
| 224 | val = (val & 0xffff) << (8 * (where & 3)); |
| 225 | val |= (u32)read_val; |
| 226 | break; |
| 227 | default: |
| 228 | break; |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * By expanding the write width to 32 bits, we may |
| 233 | * inadvertently hit some W1C bits that were not intended to |
| 234 | * be written. Calculate the mask that must be applied to the |
| 235 | * data to be written to avoid these cases. |
| 236 | */ |
| 237 | if (mask) { |
| 238 | u32 w1c_bits = thunder_pem_bridge_w1c_bits(where); |
| 239 | |
| 240 | if (w1c_bits) { |
| 241 | mask &= w1c_bits; |
| 242 | val &= ~mask; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Low order bits are the config address, the high order 32 |
| 248 | * bits are the data to be written. |
| 249 | */ |
| 250 | write_val = where & ~3ull; |
| 251 | write_val |= (((u64)val) << 32); |
| 252 | writeq(write_val, pem_pci->pem_reg_base + PEM_CFG_WR); |
| 253 | return PCIBIOS_SUCCESSFUL; |
| 254 | } |
| 255 | |
| 256 | static int thunder_pem_config_write(struct pci_bus *bus, unsigned int devfn, |
| 257 | int where, int size, u32 val) |
| 258 | { |
| 259 | struct gen_pci *pci = bus->sysdata; |
| 260 | |
| 261 | if (bus->number < pci->cfg.bus_range->start || |
| 262 | bus->number > pci->cfg.bus_range->end) |
| 263 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 264 | /* |
| 265 | * The first device on the bus is the PEM PCIe bridge. |
| 266 | * Special case its config access. |
| 267 | */ |
| 268 | if (bus->number == pci->cfg.bus_range->start) |
| 269 | return thunder_pem_bridge_write(bus, devfn, where, size, val); |
| 270 | |
| 271 | |
| 272 | return pci_generic_config_write(bus, devfn, where, size, val); |
| 273 | } |
| 274 | |
| 275 | static struct gen_pci_cfg_bus_ops thunder_pem_bus_ops = { |
| 276 | .bus_shift = 24, |
| 277 | .ops = { |
| 278 | .map_bus = thunder_pem_map_bus, |
| 279 | .read = thunder_pem_config_read, |
| 280 | .write = thunder_pem_config_write, |
| 281 | } |
| 282 | }; |
| 283 | |
| 284 | static const struct of_device_id thunder_pem_of_match[] = { |
| 285 | { .compatible = "cavium,pci-host-thunder-pem", |
| 286 | .data = &thunder_pem_bus_ops }, |
| 287 | |
| 288 | { }, |
| 289 | }; |
| 290 | MODULE_DEVICE_TABLE(of, thunder_pem_of_match); |
| 291 | |
| 292 | static int thunder_pem_probe(struct platform_device *pdev) |
| 293 | { |
| 294 | struct device *dev = &pdev->dev; |
| 295 | const struct of_device_id *of_id; |
| 296 | resource_size_t bar4_start; |
| 297 | struct resource *res_pem; |
| 298 | struct thunder_pem_pci *pem_pci; |
| 299 | |
| 300 | pem_pci = devm_kzalloc(dev, sizeof(*pem_pci), GFP_KERNEL); |
| 301 | if (!pem_pci) |
| 302 | return -ENOMEM; |
| 303 | |
| 304 | of_id = of_match_node(thunder_pem_of_match, dev->of_node); |
| 305 | pem_pci->gen_pci.cfg.ops = (struct gen_pci_cfg_bus_ops *)of_id->data; |
| 306 | |
| 307 | /* |
| 308 | * The second register range is the PEM bridge to the PCIe |
| 309 | * bus. It has a different config access method than those |
| 310 | * devices behind the bridge. |
| 311 | */ |
| 312 | res_pem = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| 313 | if (!res_pem) { |
| 314 | dev_err(dev, "missing \"reg[1]\"property\n"); |
| 315 | return -EINVAL; |
| 316 | } |
| 317 | |
| 318 | pem_pci->pem_reg_base = devm_ioremap(dev, res_pem->start, 0x10000); |
| 319 | if (!pem_pci->pem_reg_base) |
| 320 | return -ENOMEM; |
| 321 | |
| 322 | /* |
| 323 | * The MSI-X BAR for the PEM and AER interrupts is located at |
| 324 | * a fixed offset from the PEM register base. Generate a |
| 325 | * fragment of the synthesized Enhanced Allocation capability |
| 326 | * structure here for the BAR. |
| 327 | */ |
| 328 | bar4_start = res_pem->start + 0xf00000; |
| 329 | pem_pci->ea_entry[0] = (u32)bar4_start | 2; |
| 330 | pem_pci->ea_entry[1] = (u32)(res_pem->end - bar4_start) & ~3u; |
| 331 | pem_pci->ea_entry[2] = (u32)(bar4_start >> 32); |
| 332 | |
| 333 | return pci_host_common_probe(pdev, &pem_pci->gen_pci); |
| 334 | } |
| 335 | |
| 336 | static struct platform_driver thunder_pem_driver = { |
| 337 | .driver = { |
| 338 | .name = KBUILD_MODNAME, |
| 339 | .of_match_table = thunder_pem_of_match, |
| 340 | }, |
| 341 | .probe = thunder_pem_probe, |
| 342 | }; |
| 343 | module_platform_driver(thunder_pem_driver); |
| 344 | |
| 345 | MODULE_DESCRIPTION("Thunder PEM PCIe host driver"); |
| 346 | MODULE_LICENSE("GPL v2"); |