blob: 29e23b851b97530a5ebe360add09d451f1d5eaab [file] [log] [blame]
Neal Cardwell0f8782e2016-09-19 23:39:23 -04001/* Bottleneck Bandwidth and RTT (BBR) congestion control
2 *
3 * BBR congestion control computes the sending rate based on the delivery
4 * rate (throughput) estimated from ACKs. In a nutshell:
5 *
6 * On each ACK, update our model of the network path:
7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8 * min_rtt = windowed_min(rtt, 10 seconds)
9 * pacing_rate = pacing_gain * bottleneck_bandwidth
10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11 *
12 * The core algorithm does not react directly to packet losses or delays,
13 * although BBR may adjust the size of next send per ACK when loss is
14 * observed, or adjust the sending rate if it estimates there is a
15 * traffic policer, in order to keep the drop rate reasonable.
16 *
Neal Cardwell9b9375b2016-10-27 13:26:37 -040017 * Here is a state transition diagram for BBR:
18 *
19 * |
20 * V
21 * +---> STARTUP ----+
22 * | | |
23 * | V |
24 * | DRAIN ----+
25 * | | |
26 * | V |
27 * +---> PROBE_BW ----+
28 * | ^ | |
29 * | | | |
30 * | +----+ |
31 * | |
32 * +---- PROBE_RTT <--+
33 *
34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37 * A long-lived BBR flow spends the vast majority of its time remaining
38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39 * in a fair manner, with a small, bounded queue. *If* a flow has been
40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45 * otherwise we enter STARTUP to try to fill the pipe.
46 *
Neal Cardwell0f8782e2016-09-19 23:39:23 -040047 * BBR is described in detail in:
48 * "BBR: Congestion-Based Congestion Control",
49 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51 *
52 * There is a public e-mail list for discussing BBR development and testing:
53 * https://groups.google.com/forum/#!forum/bbr-dev
54 *
Eric Dumazet218af592017-05-16 04:24:36 -070055 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56 * otherwise TCP stack falls back to an internal pacing using one high
57 * resolution timer per TCP socket and may use more resources.
Neal Cardwell0f8782e2016-09-19 23:39:23 -040058 */
59#include <linux/module.h>
60#include <net/tcp.h>
61#include <linux/inet_diag.h>
62#include <linux/inet.h>
63#include <linux/random.h>
64#include <linux/win_minmax.h>
65
66/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
69 * Since the minimum window is >=4 packets, the lower bound isn't
70 * an issue. The upper bound isn't an issue with existing technologies.
71 */
72#define BW_SCALE 24
73#define BW_UNIT (1 << BW_SCALE)
74
75#define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
76#define BBR_UNIT (1 << BBR_SCALE)
77
78/* BBR has the following modes for deciding how fast to send: */
79enum bbr_mode {
80 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
81 BBR_DRAIN, /* drain any queue created during startup */
82 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
Neal Cardwell9b9375b2016-10-27 13:26:37 -040083 BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
Neal Cardwell0f8782e2016-09-19 23:39:23 -040084};
85
86/* BBR congestion control block */
87struct bbr {
88 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
89 u32 min_rtt_stamp; /* timestamp of min_rtt_us */
90 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
91 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
92 u32 rtt_cnt; /* count of packet-timed rounds elapsed */
93 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
Eric Dumazet9a568de2017-05-16 14:00:14 -070094 u64 cycle_mstamp; /* time of this cycle phase start */
Neal Cardwell0f8782e2016-09-19 23:39:23 -040095 u32 mode:3, /* current bbr_mode in state machine */
96 prev_ca_state:3, /* CA state on previous ACK */
97 packet_conservation:1, /* use packet conservation? */
98 restore_cwnd:1, /* decided to revert cwnd to old value */
99 round_start:1, /* start of packet-timed tx->ack round? */
100 tso_segs_goal:7, /* segments we want in each skb we send */
101 idle_restart:1, /* restarting after idle? */
102 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
103 unused:5,
104 lt_is_sampling:1, /* taking long-term ("LT") samples now? */
105 lt_rtt_cnt:7, /* round trips in long-term interval */
106 lt_use_bw:1; /* use lt_bw as our bw estimate? */
107 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
108 u32 lt_last_delivered; /* LT intvl start: tp->delivered */
109 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
110 u32 lt_last_lost; /* LT intvl start: tp->lost */
111 u32 pacing_gain:10, /* current gain for setting pacing rate */
112 cwnd_gain:10, /* current gain for setting cwnd */
113 full_bw_cnt:3, /* number of rounds without large bw gains */
114 cycle_idx:3, /* current index in pacing_gain cycle array */
115 unused_b:6;
116 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
117 u32 full_bw; /* recent bw, to estimate if pipe is full */
118};
119
120#define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
121
122/* Window length of bw filter (in rounds): */
123static const int bbr_bw_rtts = CYCLE_LEN + 2;
124/* Window length of min_rtt filter (in sec): */
125static const u32 bbr_min_rtt_win_sec = 10;
126/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
127static const u32 bbr_probe_rtt_mode_ms = 200;
128/* Skip TSO below the following bandwidth (bits/sec): */
129static const int bbr_min_tso_rate = 1200000;
130
131/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
132 * that will allow a smoothly increasing pacing rate that will double each RTT
133 * and send the same number of packets per RTT that an un-paced, slow-starting
134 * Reno or CUBIC flow would:
135 */
136static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
137/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
138 * the queue created in BBR_STARTUP in a single round:
139 */
140static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
141/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
142static const int bbr_cwnd_gain = BBR_UNIT * 2;
143/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
144static const int bbr_pacing_gain[] = {
145 BBR_UNIT * 5 / 4, /* probe for more available bw */
146 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
147 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
148 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
149};
150/* Randomize the starting gain cycling phase over N phases: */
151static const u32 bbr_cycle_rand = 7;
152
153/* Try to keep at least this many packets in flight, if things go smoothly. For
154 * smooth functioning, a sliding window protocol ACKing every other packet
155 * needs at least 4 packets in flight:
156 */
157static const u32 bbr_cwnd_min_target = 4;
158
159/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
160/* If bw has increased significantly (1.25x), there may be more bw available: */
161static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
162/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
163static const u32 bbr_full_bw_cnt = 3;
164
165/* "long-term" ("LT") bandwidth estimator parameters... */
166/* The minimum number of rounds in an LT bw sampling interval: */
167static const u32 bbr_lt_intvl_min_rtts = 4;
168/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
169static const u32 bbr_lt_loss_thresh = 50;
170/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
171static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
172/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
173static const u32 bbr_lt_bw_diff = 4000 / 8;
174/* If we estimate we're policed, use lt_bw for this many round trips: */
175static const u32 bbr_lt_bw_max_rtts = 48;
176
177/* Do we estimate that STARTUP filled the pipe? */
178static bool bbr_full_bw_reached(const struct sock *sk)
179{
180 const struct bbr *bbr = inet_csk_ca(sk);
181
182 return bbr->full_bw_cnt >= bbr_full_bw_cnt;
183}
184
185/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
186static u32 bbr_max_bw(const struct sock *sk)
187{
188 struct bbr *bbr = inet_csk_ca(sk);
189
190 return minmax_get(&bbr->bw);
191}
192
193/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
194static u32 bbr_bw(const struct sock *sk)
195{
196 struct bbr *bbr = inet_csk_ca(sk);
197
198 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
199}
200
201/* Return rate in bytes per second, optionally with a gain.
202 * The order here is chosen carefully to avoid overflow of u64. This should
203 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
204 */
205static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
206{
207 rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
208 rate *= gain;
209 rate >>= BBR_SCALE;
210 rate *= USEC_PER_SEC;
211 return rate >> BW_SCALE;
212}
213
Neal Cardwellf19fd622017-07-14 17:49:22 -0400214/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
215static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
216{
217 u64 rate = bw;
218
219 rate = bbr_rate_bytes_per_sec(sk, rate, gain);
220 rate = min_t(u64, rate, sk->sk_max_pacing_rate);
221 return rate;
222}
223
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400224/* Pace using current bw estimate and a gain factor. In order to help drive the
225 * network toward lower queues while maintaining high utilization and low
226 * latency, the average pacing rate aims to be slightly (~1%) lower than the
227 * estimated bandwidth. This is an important aspect of the design. In this
228 * implementation this slightly lower pacing rate is achieved implicitly by not
229 * including link-layer headers in the packet size used for the pacing rate.
230 */
231static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
232{
Neal Cardwellf19fd622017-07-14 17:49:22 -0400233 u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400234
Neal Cardwell4aea2872017-07-14 17:49:21 -0400235 if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400236 sk->sk_pacing_rate = rate;
237}
238
239/* Return count of segments we want in the skbs we send, or 0 for default. */
240static u32 bbr_tso_segs_goal(struct sock *sk)
241{
242 struct bbr *bbr = inet_csk_ca(sk);
243
244 return bbr->tso_segs_goal;
245}
246
247static void bbr_set_tso_segs_goal(struct sock *sk)
248{
249 struct tcp_sock *tp = tcp_sk(sk);
250 struct bbr *bbr = inet_csk_ca(sk);
251 u32 min_segs;
252
253 min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
254 bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
255 0x7FU);
256}
257
258/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
259static void bbr_save_cwnd(struct sock *sk)
260{
261 struct tcp_sock *tp = tcp_sk(sk);
262 struct bbr *bbr = inet_csk_ca(sk);
263
264 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
265 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
266 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
267 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
268}
269
270static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
271{
272 struct tcp_sock *tp = tcp_sk(sk);
273 struct bbr *bbr = inet_csk_ca(sk);
274
275 if (event == CA_EVENT_TX_START && tp->app_limited) {
276 bbr->idle_restart = 1;
277 /* Avoid pointless buffer overflows: pace at est. bw if we don't
278 * need more speed (we're restarting from idle and app-limited).
279 */
280 if (bbr->mode == BBR_PROBE_BW)
281 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
282 }
283}
284
285/* Find target cwnd. Right-size the cwnd based on min RTT and the
286 * estimated bottleneck bandwidth:
287 *
288 * cwnd = bw * min_rtt * gain = BDP * gain
289 *
290 * The key factor, gain, controls the amount of queue. While a small gain
291 * builds a smaller queue, it becomes more vulnerable to noise in RTT
292 * measurements (e.g., delayed ACKs or other ACK compression effects). This
293 * noise may cause BBR to under-estimate the rate.
294 *
295 * To achieve full performance in high-speed paths, we budget enough cwnd to
296 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
297 * - one skb in sending host Qdisc,
298 * - one skb in sending host TSO/GSO engine
299 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
300 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
301 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
302 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
303 * full even with ACK-every-other-packet delayed ACKs.
304 */
305static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
306{
307 struct bbr *bbr = inet_csk_ca(sk);
308 u32 cwnd;
309 u64 w;
310
311 /* If we've never had a valid RTT sample, cap cwnd at the initial
312 * default. This should only happen when the connection is not using TCP
313 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
314 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
315 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
316 */
317 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
318 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
319
320 w = (u64)bw * bbr->min_rtt_us;
321
322 /* Apply a gain to the given value, then remove the BW_SCALE shift. */
323 cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
324
325 /* Allow enough full-sized skbs in flight to utilize end systems. */
326 cwnd += 3 * bbr->tso_segs_goal;
327
328 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
329 cwnd = (cwnd + 1) & ~1U;
330
331 return cwnd;
332}
333
334/* An optimization in BBR to reduce losses: On the first round of recovery, we
335 * follow the packet conservation principle: send P packets per P packets acked.
336 * After that, we slow-start and send at most 2*P packets per P packets acked.
337 * After recovery finishes, or upon undo, we restore the cwnd we had when
338 * recovery started (capped by the target cwnd based on estimated BDP).
339 *
340 * TODO(ycheng/ncardwell): implement a rate-based approach.
341 */
342static bool bbr_set_cwnd_to_recover_or_restore(
343 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
344{
345 struct tcp_sock *tp = tcp_sk(sk);
346 struct bbr *bbr = inet_csk_ca(sk);
347 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
348 u32 cwnd = tp->snd_cwnd;
349
350 /* An ACK for P pkts should release at most 2*P packets. We do this
351 * in two steps. First, here we deduct the number of lost packets.
352 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
353 */
354 if (rs->losses > 0)
355 cwnd = max_t(s32, cwnd - rs->losses, 1);
356
357 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
358 /* Starting 1st round of Recovery, so do packet conservation. */
359 bbr->packet_conservation = 1;
360 bbr->next_rtt_delivered = tp->delivered; /* start round now */
361 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
362 cwnd = tcp_packets_in_flight(tp) + acked;
363 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
364 /* Exiting loss recovery; restore cwnd saved before recovery. */
365 bbr->restore_cwnd = 1;
366 bbr->packet_conservation = 0;
367 }
368 bbr->prev_ca_state = state;
369
370 if (bbr->restore_cwnd) {
371 /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
372 cwnd = max(cwnd, bbr->prior_cwnd);
373 bbr->restore_cwnd = 0;
374 }
375
376 if (bbr->packet_conservation) {
377 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
378 return true; /* yes, using packet conservation */
379 }
380 *new_cwnd = cwnd;
381 return false;
382}
383
384/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
385 * has drawn us down below target), or snap down to target if we're above it.
386 */
387static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
388 u32 acked, u32 bw, int gain)
389{
390 struct tcp_sock *tp = tcp_sk(sk);
391 struct bbr *bbr = inet_csk_ca(sk);
392 u32 cwnd = 0, target_cwnd = 0;
393
394 if (!acked)
395 return;
396
397 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
398 goto done;
399
400 /* If we're below target cwnd, slow start cwnd toward target cwnd. */
401 target_cwnd = bbr_target_cwnd(sk, bw, gain);
402 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
403 cwnd = min(cwnd + acked, target_cwnd);
404 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
405 cwnd = cwnd + acked;
406 cwnd = max(cwnd, bbr_cwnd_min_target);
407
408done:
409 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
410 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
411 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
412}
413
414/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
415static bool bbr_is_next_cycle_phase(struct sock *sk,
416 const struct rate_sample *rs)
417{
418 struct tcp_sock *tp = tcp_sk(sk);
419 struct bbr *bbr = inet_csk_ca(sk);
420 bool is_full_length =
Eric Dumazet9a568de2017-05-16 14:00:14 -0700421 tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400422 bbr->min_rtt_us;
423 u32 inflight, bw;
424
425 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
426 * use the pipe without increasing the queue.
427 */
428 if (bbr->pacing_gain == BBR_UNIT)
429 return is_full_length; /* just use wall clock time */
430
431 inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
432 bw = bbr_max_bw(sk);
433
434 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
435 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
436 * small (e.g. on a LAN). We do not persist if packets are lost, since
437 * a path with small buffers may not hold that much.
438 */
439 if (bbr->pacing_gain > BBR_UNIT)
440 return is_full_length &&
441 (rs->losses || /* perhaps pacing_gain*BDP won't fit */
442 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
443
444 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
445 * probing didn't find more bw. If inflight falls to match BDP then we
446 * estimate queue is drained; persisting would underutilize the pipe.
447 */
448 return is_full_length ||
449 inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
450}
451
452static void bbr_advance_cycle_phase(struct sock *sk)
453{
454 struct tcp_sock *tp = tcp_sk(sk);
455 struct bbr *bbr = inet_csk_ca(sk);
456
457 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
458 bbr->cycle_mstamp = tp->delivered_mstamp;
459 bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
460}
461
462/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
463static void bbr_update_cycle_phase(struct sock *sk,
464 const struct rate_sample *rs)
465{
466 struct bbr *bbr = inet_csk_ca(sk);
467
468 if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
469 bbr_is_next_cycle_phase(sk, rs))
470 bbr_advance_cycle_phase(sk);
471}
472
473static void bbr_reset_startup_mode(struct sock *sk)
474{
475 struct bbr *bbr = inet_csk_ca(sk);
476
477 bbr->mode = BBR_STARTUP;
478 bbr->pacing_gain = bbr_high_gain;
479 bbr->cwnd_gain = bbr_high_gain;
480}
481
482static void bbr_reset_probe_bw_mode(struct sock *sk)
483{
484 struct bbr *bbr = inet_csk_ca(sk);
485
486 bbr->mode = BBR_PROBE_BW;
487 bbr->pacing_gain = BBR_UNIT;
488 bbr->cwnd_gain = bbr_cwnd_gain;
489 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
490 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
491}
492
493static void bbr_reset_mode(struct sock *sk)
494{
495 if (!bbr_full_bw_reached(sk))
496 bbr_reset_startup_mode(sk);
497 else
498 bbr_reset_probe_bw_mode(sk);
499}
500
501/* Start a new long-term sampling interval. */
502static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
503{
504 struct tcp_sock *tp = tcp_sk(sk);
505 struct bbr *bbr = inet_csk_ca(sk);
506
Eric Dumazet9a568de2017-05-16 14:00:14 -0700507 bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400508 bbr->lt_last_delivered = tp->delivered;
509 bbr->lt_last_lost = tp->lost;
510 bbr->lt_rtt_cnt = 0;
511}
512
513/* Completely reset long-term bandwidth sampling. */
514static void bbr_reset_lt_bw_sampling(struct sock *sk)
515{
516 struct bbr *bbr = inet_csk_ca(sk);
517
518 bbr->lt_bw = 0;
519 bbr->lt_use_bw = 0;
520 bbr->lt_is_sampling = false;
521 bbr_reset_lt_bw_sampling_interval(sk);
522}
523
524/* Long-term bw sampling interval is done. Estimate whether we're policed. */
525static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
526{
527 struct bbr *bbr = inet_csk_ca(sk);
528 u32 diff;
529
530 if (bbr->lt_bw) { /* do we have bw from a previous interval? */
531 /* Is new bw close to the lt_bw from the previous interval? */
532 diff = abs(bw - bbr->lt_bw);
533 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
534 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
535 bbr_lt_bw_diff)) {
536 /* All criteria are met; estimate we're policed. */
537 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
538 bbr->lt_use_bw = 1;
539 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
540 bbr->lt_rtt_cnt = 0;
541 return;
542 }
543 }
544 bbr->lt_bw = bw;
545 bbr_reset_lt_bw_sampling_interval(sk);
546}
547
548/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
549 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
550 * explicitly models their policed rate, to reduce unnecessary losses. We
551 * estimate that we're policed if we see 2 consecutive sampling intervals with
552 * consistent throughput and high packet loss. If we think we're being policed,
553 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
554 */
555static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
556{
557 struct tcp_sock *tp = tcp_sk(sk);
558 struct bbr *bbr = inet_csk_ca(sk);
559 u32 lost, delivered;
560 u64 bw;
Eric Dumazet9a568de2017-05-16 14:00:14 -0700561 u32 t;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400562
563 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
564 if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
565 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
566 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
567 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
568 }
569 return;
570 }
571
572 /* Wait for the first loss before sampling, to let the policer exhaust
573 * its tokens and estimate the steady-state rate allowed by the policer.
574 * Starting samples earlier includes bursts that over-estimate the bw.
575 */
576 if (!bbr->lt_is_sampling) {
577 if (!rs->losses)
578 return;
579 bbr_reset_lt_bw_sampling_interval(sk);
580 bbr->lt_is_sampling = true;
581 }
582
583 /* To avoid underestimates, reset sampling if we run out of data. */
584 if (rs->is_app_limited) {
585 bbr_reset_lt_bw_sampling(sk);
586 return;
587 }
588
589 if (bbr->round_start)
590 bbr->lt_rtt_cnt++; /* count round trips in this interval */
591 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
592 return; /* sampling interval needs to be longer */
593 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
594 bbr_reset_lt_bw_sampling(sk); /* interval is too long */
595 return;
596 }
597
598 /* End sampling interval when a packet is lost, so we estimate the
599 * policer tokens were exhausted. Stopping the sampling before the
600 * tokens are exhausted under-estimates the policed rate.
601 */
602 if (!rs->losses)
603 return;
604
605 /* Calculate packets lost and delivered in sampling interval. */
606 lost = tp->lost - bbr->lt_last_lost;
607 delivered = tp->delivered - bbr->lt_last_delivered;
608 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
609 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
610 return;
611
612 /* Find average delivery rate in this sampling interval. */
Eric Dumazet9a568de2017-05-16 14:00:14 -0700613 t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
614 if ((s32)t < 1)
615 return; /* interval is less than one ms, so wait */
616 /* Check if can multiply without overflow */
617 if (t >= ~0U / USEC_PER_MSEC) {
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400618 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
619 return;
620 }
Eric Dumazet9a568de2017-05-16 14:00:14 -0700621 t *= USEC_PER_MSEC;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400622 bw = (u64)delivered * BW_UNIT;
623 do_div(bw, t);
624 bbr_lt_bw_interval_done(sk, bw);
625}
626
627/* Estimate the bandwidth based on how fast packets are delivered */
628static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
629{
630 struct tcp_sock *tp = tcp_sk(sk);
631 struct bbr *bbr = inet_csk_ca(sk);
632 u64 bw;
633
634 bbr->round_start = 0;
635 if (rs->delivered < 0 || rs->interval_us <= 0)
636 return; /* Not a valid observation */
637
638 /* See if we've reached the next RTT */
639 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
640 bbr->next_rtt_delivered = tp->delivered;
641 bbr->rtt_cnt++;
642 bbr->round_start = 1;
643 bbr->packet_conservation = 0;
644 }
645
646 bbr_lt_bw_sampling(sk, rs);
647
648 /* Divide delivered by the interval to find a (lower bound) bottleneck
649 * bandwidth sample. Delivered is in packets and interval_us in uS and
650 * ratio will be <<1 for most connections. So delivered is first scaled.
651 */
652 bw = (u64)rs->delivered * BW_UNIT;
653 do_div(bw, rs->interval_us);
654
655 /* If this sample is application-limited, it is likely to have a very
656 * low delivered count that represents application behavior rather than
657 * the available network rate. Such a sample could drag down estimated
658 * bw, causing needless slow-down. Thus, to continue to send at the
659 * last measured network rate, we filter out app-limited samples unless
660 * they describe the path bw at least as well as our bw model.
661 *
662 * So the goal during app-limited phase is to proceed with the best
663 * network rate no matter how long. We automatically leave this
664 * phase when app writes faster than the network can deliver :)
665 */
666 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
667 /* Incorporate new sample into our max bw filter. */
668 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
669 }
670}
671
672/* Estimate when the pipe is full, using the change in delivery rate: BBR
673 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
674 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
675 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
676 * higher rwin, 3: we get higher delivery rate samples. Or transient
677 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
678 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
679 */
680static void bbr_check_full_bw_reached(struct sock *sk,
681 const struct rate_sample *rs)
682{
683 struct bbr *bbr = inet_csk_ca(sk);
684 u32 bw_thresh;
685
686 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
687 return;
688
689 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
690 if (bbr_max_bw(sk) >= bw_thresh) {
691 bbr->full_bw = bbr_max_bw(sk);
692 bbr->full_bw_cnt = 0;
693 return;
694 }
695 ++bbr->full_bw_cnt;
696}
697
698/* If pipe is probably full, drain the queue and then enter steady-state. */
699static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
700{
701 struct bbr *bbr = inet_csk_ca(sk);
702
703 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
704 bbr->mode = BBR_DRAIN; /* drain queue we created */
705 bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
706 bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
707 } /* fall through to check if in-flight is already small: */
708 if (bbr->mode == BBR_DRAIN &&
709 tcp_packets_in_flight(tcp_sk(sk)) <=
710 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
711 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
712}
713
714/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
715 * periodically drain the bottleneck queue, to converge to measure the true
716 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
717 * small (reducing queuing delay and packet loss) and achieve fairness among
718 * BBR flows.
719 *
720 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
721 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
722 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
723 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
724 * re-enter the previous mode. BBR uses 200ms to approximately bound the
725 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
726 *
727 * Note that flows need only pay 2% if they are busy sending over the last 10
728 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
729 * natural silences or low-rate periods within 10 seconds where the rate is low
730 * enough for long enough to drain its queue in the bottleneck. We pick up
731 * these min RTT measurements opportunistically with our min_rtt filter. :-)
732 */
733static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
734{
735 struct tcp_sock *tp = tcp_sk(sk);
736 struct bbr *bbr = inet_csk_ca(sk);
737 bool filter_expired;
738
739 /* Track min RTT seen in the min_rtt_win_sec filter window: */
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700740 filter_expired = after(tcp_jiffies32,
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400741 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
742 if (rs->rtt_us >= 0 &&
743 (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
744 bbr->min_rtt_us = rs->rtt_us;
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700745 bbr->min_rtt_stamp = tcp_jiffies32;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400746 }
747
748 if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
749 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
750 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
751 bbr->pacing_gain = BBR_UNIT;
752 bbr->cwnd_gain = BBR_UNIT;
753 bbr_save_cwnd(sk); /* note cwnd so we can restore it */
754 bbr->probe_rtt_done_stamp = 0;
755 }
756
757 if (bbr->mode == BBR_PROBE_RTT) {
758 /* Ignore low rate samples during this mode. */
759 tp->app_limited =
760 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
761 /* Maintain min packets in flight for max(200 ms, 1 round). */
762 if (!bbr->probe_rtt_done_stamp &&
763 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700764 bbr->probe_rtt_done_stamp = tcp_jiffies32 +
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400765 msecs_to_jiffies(bbr_probe_rtt_mode_ms);
766 bbr->probe_rtt_round_done = 0;
767 bbr->next_rtt_delivered = tp->delivered;
768 } else if (bbr->probe_rtt_done_stamp) {
769 if (bbr->round_start)
770 bbr->probe_rtt_round_done = 1;
771 if (bbr->probe_rtt_round_done &&
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700772 after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) {
773 bbr->min_rtt_stamp = tcp_jiffies32;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400774 bbr->restore_cwnd = 1; /* snap to prior_cwnd */
775 bbr_reset_mode(sk);
776 }
777 }
778 }
779 bbr->idle_restart = 0;
780}
781
782static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
783{
784 bbr_update_bw(sk, rs);
785 bbr_update_cycle_phase(sk, rs);
786 bbr_check_full_bw_reached(sk, rs);
787 bbr_check_drain(sk, rs);
788 bbr_update_min_rtt(sk, rs);
789}
790
791static void bbr_main(struct sock *sk, const struct rate_sample *rs)
792{
793 struct bbr *bbr = inet_csk_ca(sk);
794 u32 bw;
795
796 bbr_update_model(sk, rs);
797
798 bw = bbr_bw(sk);
799 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
800 bbr_set_tso_segs_goal(sk);
801 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
802}
803
804static void bbr_init(struct sock *sk)
805{
806 struct tcp_sock *tp = tcp_sk(sk);
807 struct bbr *bbr = inet_csk_ca(sk);
808 u64 bw;
809
810 bbr->prior_cwnd = 0;
811 bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
812 bbr->rtt_cnt = 0;
813 bbr->next_rtt_delivered = 0;
814 bbr->prev_ca_state = TCP_CA_Open;
815 bbr->packet_conservation = 0;
816
817 bbr->probe_rtt_done_stamp = 0;
818 bbr->probe_rtt_round_done = 0;
819 bbr->min_rtt_us = tcp_min_rtt(tp);
Eric Dumazet2660bfa82017-05-16 14:00:05 -0700820 bbr->min_rtt_stamp = tcp_jiffies32;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400821
822 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
823
824 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
825 bw = (u64)tp->snd_cwnd * BW_UNIT;
826 do_div(bw, (tp->srtt_us >> 3) ? : USEC_PER_MSEC);
827 sk->sk_pacing_rate = 0; /* force an update of sk_pacing_rate */
828 bbr_set_pacing_rate(sk, bw, bbr_high_gain);
829
830 bbr->restore_cwnd = 0;
831 bbr->round_start = 0;
832 bbr->idle_restart = 0;
833 bbr->full_bw = 0;
834 bbr->full_bw_cnt = 0;
Eric Dumazet9a568de2017-05-16 14:00:14 -0700835 bbr->cycle_mstamp = 0;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400836 bbr->cycle_idx = 0;
837 bbr_reset_lt_bw_sampling(sk);
838 bbr_reset_startup_mode(sk);
Eric Dumazet218af592017-05-16 04:24:36 -0700839
840 cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400841}
842
843static u32 bbr_sndbuf_expand(struct sock *sk)
844{
845 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
846 return 3;
847}
848
849/* In theory BBR does not need to undo the cwnd since it does not
850 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
851 */
852static u32 bbr_undo_cwnd(struct sock *sk)
853{
854 return tcp_sk(sk)->snd_cwnd;
855}
856
857/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
858static u32 bbr_ssthresh(struct sock *sk)
859{
860 bbr_save_cwnd(sk);
861 return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
862}
863
864static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
865 union tcp_cc_info *info)
866{
867 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
868 ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
869 struct tcp_sock *tp = tcp_sk(sk);
870 struct bbr *bbr = inet_csk_ca(sk);
871 u64 bw = bbr_bw(sk);
872
873 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
874 memset(&info->bbr, 0, sizeof(info->bbr));
875 info->bbr.bbr_bw_lo = (u32)bw;
876 info->bbr.bbr_bw_hi = (u32)(bw >> 32);
877 info->bbr.bbr_min_rtt = bbr->min_rtt_us;
878 info->bbr.bbr_pacing_gain = bbr->pacing_gain;
879 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
880 *attr = INET_DIAG_BBRINFO;
881 return sizeof(info->bbr);
882 }
883 return 0;
884}
885
886static void bbr_set_state(struct sock *sk, u8 new_state)
887{
888 struct bbr *bbr = inet_csk_ca(sk);
889
890 if (new_state == TCP_CA_Loss) {
891 struct rate_sample rs = { .losses = 1 };
892
893 bbr->prev_ca_state = TCP_CA_Loss;
894 bbr->full_bw = 0;
895 bbr->round_start = 1; /* treat RTO like end of a round */
896 bbr_lt_bw_sampling(sk, &rs);
897 }
898}
899
900static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
901 .flags = TCP_CONG_NON_RESTRICTED,
902 .name = "bbr",
903 .owner = THIS_MODULE,
904 .init = bbr_init,
905 .cong_control = bbr_main,
906 .sndbuf_expand = bbr_sndbuf_expand,
907 .undo_cwnd = bbr_undo_cwnd,
908 .cwnd_event = bbr_cwnd_event,
909 .ssthresh = bbr_ssthresh,
910 .tso_segs_goal = bbr_tso_segs_goal,
911 .get_info = bbr_get_info,
912 .set_state = bbr_set_state,
913};
914
915static int __init bbr_register(void)
916{
917 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
918 return tcp_register_congestion_control(&tcp_bbr_cong_ops);
919}
920
921static void __exit bbr_unregister(void)
922{
923 tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
924}
925
926module_init(bbr_register);
927module_exit(bbr_unregister);
928
929MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
930MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
931MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
932MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
933MODULE_LICENSE("Dual BSD/GPL");
934MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");