Huang Shijie | 45dfc1a | 2011-09-08 10:47:10 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Freescale GPMI NAND Flash Driver |
| 3 | * |
| 4 | * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. |
| 5 | * Copyright (C) 2008 Embedded Alley Solutions, Inc. |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License along |
| 18 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 19 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 20 | */ |
| 21 | #include <linux/mtd/gpmi-nand.h> |
| 22 | #include <linux/delay.h> |
| 23 | #include <linux/clk.h> |
| 24 | #include <mach/mxs.h> |
| 25 | |
| 26 | #include "gpmi-nand.h" |
| 27 | #include "gpmi-regs.h" |
| 28 | #include "bch-regs.h" |
| 29 | |
| 30 | struct timing_threshod timing_default_threshold = { |
| 31 | .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> |
| 32 | BP_GPMI_TIMING0_DATA_SETUP), |
| 33 | .internal_data_setup_in_ns = 0, |
| 34 | .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> |
| 35 | BP_GPMI_CTRL1_RDN_DELAY), |
| 36 | .max_dll_clock_period_in_ns = 32, |
| 37 | .max_dll_delay_in_ns = 16, |
| 38 | }; |
| 39 | |
| 40 | /* |
| 41 | * Clear the bit and poll it cleared. This is usually called with |
| 42 | * a reset address and mask being either SFTRST(bit 31) or CLKGATE |
| 43 | * (bit 30). |
| 44 | */ |
| 45 | static int clear_poll_bit(void __iomem *addr, u32 mask) |
| 46 | { |
| 47 | int timeout = 0x400; |
| 48 | |
| 49 | /* clear the bit */ |
| 50 | __mxs_clrl(mask, addr); |
| 51 | |
| 52 | /* |
| 53 | * SFTRST needs 3 GPMI clocks to settle, the reference manual |
| 54 | * recommends to wait 1us. |
| 55 | */ |
| 56 | udelay(1); |
| 57 | |
| 58 | /* poll the bit becoming clear */ |
| 59 | while ((readl(addr) & mask) && --timeout) |
| 60 | /* nothing */; |
| 61 | |
| 62 | return !timeout; |
| 63 | } |
| 64 | |
| 65 | #define MODULE_CLKGATE (1 << 30) |
| 66 | #define MODULE_SFTRST (1 << 31) |
| 67 | /* |
| 68 | * The current mxs_reset_block() will do two things: |
| 69 | * [1] enable the module. |
| 70 | * [2] reset the module. |
| 71 | * |
| 72 | * In most of the cases, it's ok. But there is a hardware bug in the BCH block. |
| 73 | * If you try to soft reset the BCH block, it becomes unusable until |
| 74 | * the next hard reset. This case occurs in the NAND boot mode. When the board |
| 75 | * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. |
| 76 | * So If the driver tries to reset the BCH again, the BCH will not work anymore. |
| 77 | * You will see a DMA timeout in this case. |
| 78 | * |
| 79 | * To avoid this bug, just add a new parameter `just_enable` for |
| 80 | * the mxs_reset_block(), and rewrite it here. |
| 81 | */ |
| 82 | int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) |
| 83 | { |
| 84 | int ret; |
| 85 | int timeout = 0x400; |
| 86 | |
| 87 | /* clear and poll SFTRST */ |
| 88 | ret = clear_poll_bit(reset_addr, MODULE_SFTRST); |
| 89 | if (unlikely(ret)) |
| 90 | goto error; |
| 91 | |
| 92 | /* clear CLKGATE */ |
| 93 | __mxs_clrl(MODULE_CLKGATE, reset_addr); |
| 94 | |
| 95 | if (!just_enable) { |
| 96 | /* set SFTRST to reset the block */ |
| 97 | __mxs_setl(MODULE_SFTRST, reset_addr); |
| 98 | udelay(1); |
| 99 | |
| 100 | /* poll CLKGATE becoming set */ |
| 101 | while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) |
| 102 | /* nothing */; |
| 103 | if (unlikely(!timeout)) |
| 104 | goto error; |
| 105 | } |
| 106 | |
| 107 | /* clear and poll SFTRST */ |
| 108 | ret = clear_poll_bit(reset_addr, MODULE_SFTRST); |
| 109 | if (unlikely(ret)) |
| 110 | goto error; |
| 111 | |
| 112 | /* clear and poll CLKGATE */ |
| 113 | ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); |
| 114 | if (unlikely(ret)) |
| 115 | goto error; |
| 116 | |
| 117 | return 0; |
| 118 | |
| 119 | error: |
| 120 | pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); |
| 121 | return -ETIMEDOUT; |
| 122 | } |
| 123 | |
| 124 | int gpmi_init(struct gpmi_nand_data *this) |
| 125 | { |
| 126 | struct resources *r = &this->resources; |
| 127 | int ret; |
| 128 | |
Shawn Guo | f1f802c | 2011-12-20 14:02:05 +0800 | [diff] [blame^] | 129 | ret = clk_prepare_enable(r->clock); |
Huang Shijie | 45dfc1a | 2011-09-08 10:47:10 +0800 | [diff] [blame] | 130 | if (ret) |
| 131 | goto err_out; |
| 132 | ret = gpmi_reset_block(r->gpmi_regs, false); |
| 133 | if (ret) |
| 134 | goto err_out; |
| 135 | |
| 136 | /* Choose NAND mode. */ |
| 137 | writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); |
| 138 | |
| 139 | /* Set the IRQ polarity. */ |
| 140 | writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, |
| 141 | r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| 142 | |
| 143 | /* Disable Write-Protection. */ |
| 144 | writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| 145 | |
| 146 | /* Select BCH ECC. */ |
| 147 | writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| 148 | |
Shawn Guo | f1f802c | 2011-12-20 14:02:05 +0800 | [diff] [blame^] | 149 | clk_disable_unprepare(r->clock); |
Huang Shijie | 45dfc1a | 2011-09-08 10:47:10 +0800 | [diff] [blame] | 150 | return 0; |
| 151 | err_out: |
| 152 | return ret; |
| 153 | } |
| 154 | |
| 155 | /* This function is very useful. It is called only when the bug occur. */ |
| 156 | void gpmi_dump_info(struct gpmi_nand_data *this) |
| 157 | { |
| 158 | struct resources *r = &this->resources; |
| 159 | struct bch_geometry *geo = &this->bch_geometry; |
| 160 | u32 reg; |
| 161 | int i; |
| 162 | |
| 163 | pr_err("Show GPMI registers :\n"); |
| 164 | for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { |
| 165 | reg = readl(r->gpmi_regs + i * 0x10); |
| 166 | pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); |
| 167 | } |
| 168 | |
| 169 | /* start to print out the BCH info */ |
| 170 | pr_err("BCH Geometry :\n"); |
| 171 | pr_err("GF length : %u\n", geo->gf_len); |
| 172 | pr_err("ECC Strength : %u\n", geo->ecc_strength); |
| 173 | pr_err("Page Size in Bytes : %u\n", geo->page_size); |
| 174 | pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size); |
| 175 | pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size); |
| 176 | pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count); |
| 177 | pr_err("Payload Size in Bytes : %u\n", geo->payload_size); |
| 178 | pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size); |
| 179 | pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset); |
| 180 | pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset); |
| 181 | pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset); |
| 182 | } |
| 183 | |
| 184 | /* Configures the geometry for BCH. */ |
| 185 | int bch_set_geometry(struct gpmi_nand_data *this) |
| 186 | { |
| 187 | struct resources *r = &this->resources; |
| 188 | struct bch_geometry *bch_geo = &this->bch_geometry; |
| 189 | unsigned int block_count; |
| 190 | unsigned int block_size; |
| 191 | unsigned int metadata_size; |
| 192 | unsigned int ecc_strength; |
| 193 | unsigned int page_size; |
| 194 | int ret; |
| 195 | |
| 196 | if (common_nfc_set_geometry(this)) |
| 197 | return !0; |
| 198 | |
| 199 | block_count = bch_geo->ecc_chunk_count - 1; |
| 200 | block_size = bch_geo->ecc_chunk_size; |
| 201 | metadata_size = bch_geo->metadata_size; |
| 202 | ecc_strength = bch_geo->ecc_strength >> 1; |
| 203 | page_size = bch_geo->page_size; |
| 204 | |
Shawn Guo | f1f802c | 2011-12-20 14:02:05 +0800 | [diff] [blame^] | 205 | ret = clk_prepare_enable(r->clock); |
Huang Shijie | 45dfc1a | 2011-09-08 10:47:10 +0800 | [diff] [blame] | 206 | if (ret) |
| 207 | goto err_out; |
| 208 | |
| 209 | ret = gpmi_reset_block(r->bch_regs, true); |
| 210 | if (ret) |
| 211 | goto err_out; |
| 212 | |
| 213 | /* Configure layout 0. */ |
| 214 | writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) |
| 215 | | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) |
| 216 | | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) |
| 217 | | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size), |
| 218 | r->bch_regs + HW_BCH_FLASH0LAYOUT0); |
| 219 | |
| 220 | writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
| 221 | | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) |
| 222 | | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size), |
| 223 | r->bch_regs + HW_BCH_FLASH0LAYOUT1); |
| 224 | |
| 225 | /* Set *all* chip selects to use layout 0. */ |
| 226 | writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); |
| 227 | |
| 228 | /* Enable interrupts. */ |
| 229 | writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, |
| 230 | r->bch_regs + HW_BCH_CTRL_SET); |
| 231 | |
Shawn Guo | f1f802c | 2011-12-20 14:02:05 +0800 | [diff] [blame^] | 232 | clk_disable_unprepare(r->clock); |
Huang Shijie | 45dfc1a | 2011-09-08 10:47:10 +0800 | [diff] [blame] | 233 | return 0; |
| 234 | err_out: |
| 235 | return ret; |
| 236 | } |
| 237 | |
| 238 | /* Converts time in nanoseconds to cycles. */ |
| 239 | static unsigned int ns_to_cycles(unsigned int time, |
| 240 | unsigned int period, unsigned int min) |
| 241 | { |
| 242 | unsigned int k; |
| 243 | |
| 244 | k = (time + period - 1) / period; |
| 245 | return max(k, min); |
| 246 | } |
| 247 | |
| 248 | /* Apply timing to current hardware conditions. */ |
| 249 | static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, |
| 250 | struct gpmi_nfc_hardware_timing *hw) |
| 251 | { |
| 252 | struct gpmi_nand_platform_data *pdata = this->pdata; |
| 253 | struct timing_threshod *nfc = &timing_default_threshold; |
| 254 | struct nand_chip *nand = &this->nand; |
| 255 | struct nand_timing target = this->timing; |
| 256 | bool improved_timing_is_available; |
| 257 | unsigned long clock_frequency_in_hz; |
| 258 | unsigned int clock_period_in_ns; |
| 259 | bool dll_use_half_periods; |
| 260 | unsigned int dll_delay_shift; |
| 261 | unsigned int max_sample_delay_in_ns; |
| 262 | unsigned int address_setup_in_cycles; |
| 263 | unsigned int data_setup_in_ns; |
| 264 | unsigned int data_setup_in_cycles; |
| 265 | unsigned int data_hold_in_cycles; |
| 266 | int ideal_sample_delay_in_ns; |
| 267 | unsigned int sample_delay_factor; |
| 268 | int tEYE; |
| 269 | unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns; |
| 270 | unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns; |
| 271 | |
| 272 | /* |
| 273 | * If there are multiple chips, we need to relax the timings to allow |
| 274 | * for signal distortion due to higher capacitance. |
| 275 | */ |
| 276 | if (nand->numchips > 2) { |
| 277 | target.data_setup_in_ns += 10; |
| 278 | target.data_hold_in_ns += 10; |
| 279 | target.address_setup_in_ns += 10; |
| 280 | } else if (nand->numchips > 1) { |
| 281 | target.data_setup_in_ns += 5; |
| 282 | target.data_hold_in_ns += 5; |
| 283 | target.address_setup_in_ns += 5; |
| 284 | } |
| 285 | |
| 286 | /* Check if improved timing information is available. */ |
| 287 | improved_timing_is_available = |
| 288 | (target.tREA_in_ns >= 0) && |
| 289 | (target.tRLOH_in_ns >= 0) && |
| 290 | (target.tRHOH_in_ns >= 0) ; |
| 291 | |
| 292 | /* Inspect the clock. */ |
| 293 | clock_frequency_in_hz = nfc->clock_frequency_in_hz; |
| 294 | clock_period_in_ns = 1000000000 / clock_frequency_in_hz; |
| 295 | |
| 296 | /* |
| 297 | * The NFC quantizes setup and hold parameters in terms of clock cycles. |
| 298 | * Here, we quantize the setup and hold timing parameters to the |
| 299 | * next-highest clock period to make sure we apply at least the |
| 300 | * specified times. |
| 301 | * |
| 302 | * For data setup and data hold, the hardware interprets a value of zero |
| 303 | * as the largest possible delay. This is not what's intended by a zero |
| 304 | * in the input parameter, so we impose a minimum of one cycle. |
| 305 | */ |
| 306 | data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, |
| 307 | clock_period_in_ns, 1); |
| 308 | data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, |
| 309 | clock_period_in_ns, 1); |
| 310 | address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, |
| 311 | clock_period_in_ns, 0); |
| 312 | |
| 313 | /* |
| 314 | * The clock's period affects the sample delay in a number of ways: |
| 315 | * |
| 316 | * (1) The NFC HAL tells us the maximum clock period the sample delay |
| 317 | * DLL can tolerate. If the clock period is greater than half that |
| 318 | * maximum, we must configure the DLL to be driven by half periods. |
| 319 | * |
| 320 | * (2) We need to convert from an ideal sample delay, in ns, to a |
| 321 | * "sample delay factor," which the NFC uses. This factor depends on |
| 322 | * whether we're driving the DLL with full or half periods. |
| 323 | * Paraphrasing the reference manual: |
| 324 | * |
| 325 | * AD = SDF x 0.125 x RP |
| 326 | * |
| 327 | * where: |
| 328 | * |
| 329 | * AD is the applied delay, in ns. |
| 330 | * SDF is the sample delay factor, which is dimensionless. |
| 331 | * RP is the reference period, in ns, which is a full clock period |
| 332 | * if the DLL is being driven by full periods, or half that if |
| 333 | * the DLL is being driven by half periods. |
| 334 | * |
| 335 | * Let's re-arrange this in a way that's more useful to us: |
| 336 | * |
| 337 | * 8 |
| 338 | * SDF = AD x ---- |
| 339 | * RP |
| 340 | * |
| 341 | * The reference period is either the clock period or half that, so this |
| 342 | * is: |
| 343 | * |
| 344 | * 8 AD x DDF |
| 345 | * SDF = AD x ----- = -------- |
| 346 | * f x P P |
| 347 | * |
| 348 | * where: |
| 349 | * |
| 350 | * f is 1 or 1/2, depending on how we're driving the DLL. |
| 351 | * P is the clock period. |
| 352 | * DDF is the DLL Delay Factor, a dimensionless value that |
| 353 | * incorporates all the constants in the conversion. |
| 354 | * |
| 355 | * DDF will be either 8 or 16, both of which are powers of two. We can |
| 356 | * reduce the cost of this conversion by using bit shifts instead of |
| 357 | * multiplication or division. Thus: |
| 358 | * |
| 359 | * AD << DDS |
| 360 | * SDF = --------- |
| 361 | * P |
| 362 | * |
| 363 | * or |
| 364 | * |
| 365 | * AD = (SDF >> DDS) x P |
| 366 | * |
| 367 | * where: |
| 368 | * |
| 369 | * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. |
| 370 | */ |
| 371 | if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { |
| 372 | dll_use_half_periods = true; |
| 373 | dll_delay_shift = 3 + 1; |
| 374 | } else { |
| 375 | dll_use_half_periods = false; |
| 376 | dll_delay_shift = 3; |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * Compute the maximum sample delay the NFC allows, under current |
| 381 | * conditions. If the clock is running too slowly, no sample delay is |
| 382 | * possible. |
| 383 | */ |
| 384 | if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) |
| 385 | max_sample_delay_in_ns = 0; |
| 386 | else { |
| 387 | /* |
| 388 | * Compute the delay implied by the largest sample delay factor |
| 389 | * the NFC allows. |
| 390 | */ |
| 391 | max_sample_delay_in_ns = |
| 392 | (nfc->max_sample_delay_factor * clock_period_in_ns) >> |
| 393 | dll_delay_shift; |
| 394 | |
| 395 | /* |
| 396 | * Check if the implied sample delay larger than the NFC |
| 397 | * actually allows. |
| 398 | */ |
| 399 | if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) |
| 400 | max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * Check if improved timing information is available. If not, we have to |
| 405 | * use a less-sophisticated algorithm. |
| 406 | */ |
| 407 | if (!improved_timing_is_available) { |
| 408 | /* |
| 409 | * Fold the read setup time required by the NFC into the ideal |
| 410 | * sample delay. |
| 411 | */ |
| 412 | ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + |
| 413 | nfc->internal_data_setup_in_ns; |
| 414 | |
| 415 | /* |
| 416 | * The ideal sample delay may be greater than the maximum |
| 417 | * allowed by the NFC. If so, we can trade off sample delay time |
| 418 | * for more data setup time. |
| 419 | * |
| 420 | * In each iteration of the following loop, we add a cycle to |
| 421 | * the data setup time and subtract a corresponding amount from |
| 422 | * the sample delay until we've satisified the constraints or |
| 423 | * can't do any better. |
| 424 | */ |
| 425 | while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && |
| 426 | (data_setup_in_cycles < nfc->max_data_setup_cycles)) { |
| 427 | |
| 428 | data_setup_in_cycles++; |
| 429 | ideal_sample_delay_in_ns -= clock_period_in_ns; |
| 430 | |
| 431 | if (ideal_sample_delay_in_ns < 0) |
| 432 | ideal_sample_delay_in_ns = 0; |
| 433 | |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * Compute the sample delay factor that corresponds most closely |
| 438 | * to the ideal sample delay. If the result is too large for the |
| 439 | * NFC, use the maximum value. |
| 440 | * |
| 441 | * Notice that we use the ns_to_cycles function to compute the |
| 442 | * sample delay factor. We do this because the form of the |
| 443 | * computation is the same as that for calculating cycles. |
| 444 | */ |
| 445 | sample_delay_factor = |
| 446 | ns_to_cycles( |
| 447 | ideal_sample_delay_in_ns << dll_delay_shift, |
| 448 | clock_period_in_ns, 0); |
| 449 | |
| 450 | if (sample_delay_factor > nfc->max_sample_delay_factor) |
| 451 | sample_delay_factor = nfc->max_sample_delay_factor; |
| 452 | |
| 453 | /* Skip to the part where we return our results. */ |
| 454 | goto return_results; |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * If control arrives here, we have more detailed timing information, |
| 459 | * so we can use a better algorithm. |
| 460 | */ |
| 461 | |
| 462 | /* |
| 463 | * Fold the read setup time required by the NFC into the maximum |
| 464 | * propagation delay. |
| 465 | */ |
| 466 | max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; |
| 467 | |
| 468 | /* |
| 469 | * Earlier, we computed the number of clock cycles required to satisfy |
| 470 | * the data setup time. Now, we need to know the actual nanoseconds. |
| 471 | */ |
| 472 | data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; |
| 473 | |
| 474 | /* |
| 475 | * Compute tEYE, the width of the data eye when reading from the NAND |
| 476 | * Flash. The eye width is fundamentally determined by the data setup |
| 477 | * time, perturbed by propagation delays and some characteristics of the |
| 478 | * NAND Flash device. |
| 479 | * |
| 480 | * start of the eye = max_prop_delay + tREA |
| 481 | * end of the eye = min_prop_delay + tRHOH + data_setup |
| 482 | */ |
| 483 | tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + |
| 484 | (int)data_setup_in_ns; |
| 485 | |
| 486 | tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; |
| 487 | |
| 488 | /* |
| 489 | * The eye must be open. If it's not, we can try to open it by |
| 490 | * increasing its main forcer, the data setup time. |
| 491 | * |
| 492 | * In each iteration of the following loop, we increase the data setup |
| 493 | * time by a single clock cycle. We do this until either the eye is |
| 494 | * open or we run into NFC limits. |
| 495 | */ |
| 496 | while ((tEYE <= 0) && |
| 497 | (data_setup_in_cycles < nfc->max_data_setup_cycles)) { |
| 498 | /* Give a cycle to data setup. */ |
| 499 | data_setup_in_cycles++; |
| 500 | /* Synchronize the data setup time with the cycles. */ |
| 501 | data_setup_in_ns += clock_period_in_ns; |
| 502 | /* Adjust tEYE accordingly. */ |
| 503 | tEYE += clock_period_in_ns; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * When control arrives here, the eye is open. The ideal time to sample |
| 508 | * the data is in the center of the eye: |
| 509 | * |
| 510 | * end of the eye + start of the eye |
| 511 | * --------------------------------- - data_setup |
| 512 | * 2 |
| 513 | * |
| 514 | * After some algebra, this simplifies to the code immediately below. |
| 515 | */ |
| 516 | ideal_sample_delay_in_ns = |
| 517 | ((int)max_prop_delay_in_ns + |
| 518 | (int)target.tREA_in_ns + |
| 519 | (int)min_prop_delay_in_ns + |
| 520 | (int)target.tRHOH_in_ns - |
| 521 | (int)data_setup_in_ns) >> 1; |
| 522 | |
| 523 | /* |
| 524 | * The following figure illustrates some aspects of a NAND Flash read: |
| 525 | * |
| 526 | * |
| 527 | * __ _____________________________________ |
| 528 | * RDN \_________________/ |
| 529 | * |
| 530 | * <---- tEYE -----> |
| 531 | * /-----------------\ |
| 532 | * Read Data ----------------------------< >--------- |
| 533 | * \-----------------/ |
| 534 | * ^ ^ ^ ^ |
| 535 | * | | | | |
| 536 | * |<--Data Setup -->|<--Delay Time -->| | |
| 537 | * | | | | |
| 538 | * | | | |
| 539 | * | |<-- Quantized Delay Time -->| |
| 540 | * | | | |
| 541 | * |
| 542 | * |
| 543 | * We have some issues we must now address: |
| 544 | * |
| 545 | * (1) The *ideal* sample delay time must not be negative. If it is, we |
| 546 | * jam it to zero. |
| 547 | * |
| 548 | * (2) The *ideal* sample delay time must not be greater than that |
| 549 | * allowed by the NFC. If it is, we can increase the data setup |
| 550 | * time, which will reduce the delay between the end of the data |
| 551 | * setup and the center of the eye. It will also make the eye |
| 552 | * larger, which might help with the next issue... |
| 553 | * |
| 554 | * (3) The *quantized* sample delay time must not fall either before the |
| 555 | * eye opens or after it closes (the latter is the problem |
| 556 | * illustrated in the above figure). |
| 557 | */ |
| 558 | |
| 559 | /* Jam a negative ideal sample delay to zero. */ |
| 560 | if (ideal_sample_delay_in_ns < 0) |
| 561 | ideal_sample_delay_in_ns = 0; |
| 562 | |
| 563 | /* |
| 564 | * Extend the data setup as needed to reduce the ideal sample delay |
| 565 | * below the maximum permitted by the NFC. |
| 566 | */ |
| 567 | while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && |
| 568 | (data_setup_in_cycles < nfc->max_data_setup_cycles)) { |
| 569 | |
| 570 | /* Give a cycle to data setup. */ |
| 571 | data_setup_in_cycles++; |
| 572 | /* Synchronize the data setup time with the cycles. */ |
| 573 | data_setup_in_ns += clock_period_in_ns; |
| 574 | /* Adjust tEYE accordingly. */ |
| 575 | tEYE += clock_period_in_ns; |
| 576 | |
| 577 | /* |
| 578 | * Decrease the ideal sample delay by one half cycle, to keep it |
| 579 | * in the middle of the eye. |
| 580 | */ |
| 581 | ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); |
| 582 | |
| 583 | /* Jam a negative ideal sample delay to zero. */ |
| 584 | if (ideal_sample_delay_in_ns < 0) |
| 585 | ideal_sample_delay_in_ns = 0; |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * Compute the sample delay factor that corresponds to the ideal sample |
| 590 | * delay. If the result is too large, then use the maximum allowed |
| 591 | * value. |
| 592 | * |
| 593 | * Notice that we use the ns_to_cycles function to compute the sample |
| 594 | * delay factor. We do this because the form of the computation is the |
| 595 | * same as that for calculating cycles. |
| 596 | */ |
| 597 | sample_delay_factor = |
| 598 | ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, |
| 599 | clock_period_in_ns, 0); |
| 600 | |
| 601 | if (sample_delay_factor > nfc->max_sample_delay_factor) |
| 602 | sample_delay_factor = nfc->max_sample_delay_factor; |
| 603 | |
| 604 | /* |
| 605 | * These macros conveniently encapsulate a computation we'll use to |
| 606 | * continuously evaluate whether or not the data sample delay is inside |
| 607 | * the eye. |
| 608 | */ |
| 609 | #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) |
| 610 | |
| 611 | #define QUANTIZED_DELAY \ |
| 612 | ((int) ((sample_delay_factor * clock_period_in_ns) >> \ |
| 613 | dll_delay_shift)) |
| 614 | |
| 615 | #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) |
| 616 | |
| 617 | #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) |
| 618 | |
| 619 | /* |
| 620 | * While the quantized sample time falls outside the eye, reduce the |
| 621 | * sample delay or extend the data setup to move the sampling point back |
| 622 | * toward the eye. Do not allow the number of data setup cycles to |
| 623 | * exceed the maximum allowed by the NFC. |
| 624 | */ |
| 625 | while (SAMPLE_IS_NOT_WITHIN_THE_EYE && |
| 626 | (data_setup_in_cycles < nfc->max_data_setup_cycles)) { |
| 627 | /* |
| 628 | * If control arrives here, the quantized sample delay falls |
| 629 | * outside the eye. Check if it's before the eye opens, or after |
| 630 | * the eye closes. |
| 631 | */ |
| 632 | if (QUANTIZED_DELAY > IDEAL_DELAY) { |
| 633 | /* |
| 634 | * If control arrives here, the quantized sample delay |
| 635 | * falls after the eye closes. Decrease the quantized |
| 636 | * delay time and then go back to re-evaluate. |
| 637 | */ |
| 638 | if (sample_delay_factor != 0) |
| 639 | sample_delay_factor--; |
| 640 | continue; |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * If control arrives here, the quantized sample delay falls |
| 645 | * before the eye opens. Shift the sample point by increasing |
| 646 | * data setup time. This will also make the eye larger. |
| 647 | */ |
| 648 | |
| 649 | /* Give a cycle to data setup. */ |
| 650 | data_setup_in_cycles++; |
| 651 | /* Synchronize the data setup time with the cycles. */ |
| 652 | data_setup_in_ns += clock_period_in_ns; |
| 653 | /* Adjust tEYE accordingly. */ |
| 654 | tEYE += clock_period_in_ns; |
| 655 | |
| 656 | /* |
| 657 | * Decrease the ideal sample delay by one half cycle, to keep it |
| 658 | * in the middle of the eye. |
| 659 | */ |
| 660 | ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); |
| 661 | |
| 662 | /* ...and one less period for the delay time. */ |
| 663 | ideal_sample_delay_in_ns -= clock_period_in_ns; |
| 664 | |
| 665 | /* Jam a negative ideal sample delay to zero. */ |
| 666 | if (ideal_sample_delay_in_ns < 0) |
| 667 | ideal_sample_delay_in_ns = 0; |
| 668 | |
| 669 | /* |
| 670 | * We have a new ideal sample delay, so re-compute the quantized |
| 671 | * delay. |
| 672 | */ |
| 673 | sample_delay_factor = |
| 674 | ns_to_cycles( |
| 675 | ideal_sample_delay_in_ns << dll_delay_shift, |
| 676 | clock_period_in_ns, 0); |
| 677 | |
| 678 | if (sample_delay_factor > nfc->max_sample_delay_factor) |
| 679 | sample_delay_factor = nfc->max_sample_delay_factor; |
| 680 | } |
| 681 | |
| 682 | /* Control arrives here when we're ready to return our results. */ |
| 683 | return_results: |
| 684 | hw->data_setup_in_cycles = data_setup_in_cycles; |
| 685 | hw->data_hold_in_cycles = data_hold_in_cycles; |
| 686 | hw->address_setup_in_cycles = address_setup_in_cycles; |
| 687 | hw->use_half_periods = dll_use_half_periods; |
| 688 | hw->sample_delay_factor = sample_delay_factor; |
| 689 | |
| 690 | /* Return success. */ |
| 691 | return 0; |
| 692 | } |
| 693 | |
| 694 | /* Begin the I/O */ |
| 695 | void gpmi_begin(struct gpmi_nand_data *this) |
| 696 | { |
| 697 | struct resources *r = &this->resources; |
| 698 | struct timing_threshod *nfc = &timing_default_threshold; |
| 699 | unsigned char *gpmi_regs = r->gpmi_regs; |
| 700 | unsigned int clock_period_in_ns; |
| 701 | uint32_t reg; |
| 702 | unsigned int dll_wait_time_in_us; |
| 703 | struct gpmi_nfc_hardware_timing hw; |
| 704 | int ret; |
| 705 | |
| 706 | /* Enable the clock. */ |
Shawn Guo | f1f802c | 2011-12-20 14:02:05 +0800 | [diff] [blame^] | 707 | ret = clk_prepare_enable(r->clock); |
Huang Shijie | 45dfc1a | 2011-09-08 10:47:10 +0800 | [diff] [blame] | 708 | if (ret) { |
| 709 | pr_err("We failed in enable the clk\n"); |
| 710 | goto err_out; |
| 711 | } |
| 712 | |
| 713 | /* set ready/busy timeout */ |
| 714 | writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT, |
| 715 | gpmi_regs + HW_GPMI_TIMING1); |
| 716 | |
| 717 | /* Get the timing information we need. */ |
| 718 | nfc->clock_frequency_in_hz = clk_get_rate(r->clock); |
| 719 | clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz; |
| 720 | |
| 721 | gpmi_nfc_compute_hardware_timing(this, &hw); |
| 722 | |
| 723 | /* Set up all the simple timing parameters. */ |
| 724 | reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | |
| 725 | BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | |
| 726 | BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ; |
| 727 | |
| 728 | writel(reg, gpmi_regs + HW_GPMI_TIMING0); |
| 729 | |
| 730 | /* |
| 731 | * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. |
| 732 | */ |
| 733 | writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); |
| 734 | |
| 735 | /* Clear out the DLL control fields. */ |
| 736 | writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR); |
| 737 | writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR); |
| 738 | |
| 739 | /* If no sample delay is called for, return immediately. */ |
| 740 | if (!hw.sample_delay_factor) |
| 741 | return; |
| 742 | |
| 743 | /* Configure the HALF_PERIOD flag. */ |
| 744 | if (hw.use_half_periods) |
| 745 | writel(BM_GPMI_CTRL1_HALF_PERIOD, |
| 746 | gpmi_regs + HW_GPMI_CTRL1_SET); |
| 747 | |
| 748 | /* Set the delay factor. */ |
| 749 | writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor), |
| 750 | gpmi_regs + HW_GPMI_CTRL1_SET); |
| 751 | |
| 752 | /* Enable the DLL. */ |
| 753 | writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); |
| 754 | |
| 755 | /* |
| 756 | * After we enable the GPMI DLL, we have to wait 64 clock cycles before |
| 757 | * we can use the GPMI. |
| 758 | * |
| 759 | * Calculate the amount of time we need to wait, in microseconds. |
| 760 | */ |
| 761 | dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; |
| 762 | |
| 763 | if (!dll_wait_time_in_us) |
| 764 | dll_wait_time_in_us = 1; |
| 765 | |
| 766 | /* Wait for the DLL to settle. */ |
| 767 | udelay(dll_wait_time_in_us); |
| 768 | |
| 769 | err_out: |
| 770 | return; |
| 771 | } |
| 772 | |
| 773 | void gpmi_end(struct gpmi_nand_data *this) |
| 774 | { |
| 775 | struct resources *r = &this->resources; |
Shawn Guo | f1f802c | 2011-12-20 14:02:05 +0800 | [diff] [blame^] | 776 | clk_disable_unprepare(r->clock); |
Huang Shijie | 45dfc1a | 2011-09-08 10:47:10 +0800 | [diff] [blame] | 777 | } |
| 778 | |
| 779 | /* Clears a BCH interrupt. */ |
| 780 | void gpmi_clear_bch(struct gpmi_nand_data *this) |
| 781 | { |
| 782 | struct resources *r = &this->resources; |
| 783 | writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); |
| 784 | } |
| 785 | |
| 786 | /* Returns the Ready/Busy status of the given chip. */ |
| 787 | int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) |
| 788 | { |
| 789 | struct resources *r = &this->resources; |
| 790 | uint32_t mask = 0; |
| 791 | uint32_t reg = 0; |
| 792 | |
| 793 | if (GPMI_IS_MX23(this)) { |
| 794 | mask = MX23_BM_GPMI_DEBUG_READY0 << chip; |
| 795 | reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); |
| 796 | } else if (GPMI_IS_MX28(this)) { |
| 797 | mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); |
| 798 | reg = readl(r->gpmi_regs + HW_GPMI_STAT); |
| 799 | } else |
| 800 | pr_err("unknow arch.\n"); |
| 801 | return reg & mask; |
| 802 | } |
| 803 | |
| 804 | static inline void set_dma_type(struct gpmi_nand_data *this, |
| 805 | enum dma_ops_type type) |
| 806 | { |
| 807 | this->last_dma_type = this->dma_type; |
| 808 | this->dma_type = type; |
| 809 | } |
| 810 | |
| 811 | int gpmi_send_command(struct gpmi_nand_data *this) |
| 812 | { |
| 813 | struct dma_chan *channel = get_dma_chan(this); |
| 814 | struct dma_async_tx_descriptor *desc; |
| 815 | struct scatterlist *sgl; |
| 816 | int chip = this->current_chip; |
| 817 | u32 pio[3]; |
| 818 | |
| 819 | /* [1] send out the PIO words */ |
| 820 | pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) |
| 821 | | BM_GPMI_CTRL0_WORD_LENGTH |
| 822 | | BF_GPMI_CTRL0_CS(chip, this) |
| 823 | | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| 824 | | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) |
| 825 | | BM_GPMI_CTRL0_ADDRESS_INCREMENT |
| 826 | | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); |
| 827 | pio[1] = pio[2] = 0; |
| 828 | desc = channel->device->device_prep_slave_sg(channel, |
| 829 | (struct scatterlist *)pio, |
| 830 | ARRAY_SIZE(pio), DMA_NONE, 0); |
| 831 | if (!desc) { |
| 832 | pr_err("step 1 error\n"); |
| 833 | return -1; |
| 834 | } |
| 835 | |
| 836 | /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ |
| 837 | sgl = &this->cmd_sgl; |
| 838 | |
| 839 | sg_init_one(sgl, this->cmd_buffer, this->command_length); |
| 840 | dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); |
| 841 | desc = channel->device->device_prep_slave_sg(channel, |
| 842 | sgl, 1, DMA_TO_DEVICE, 1); |
| 843 | if (!desc) { |
| 844 | pr_err("step 2 error\n"); |
| 845 | return -1; |
| 846 | } |
| 847 | |
| 848 | /* [3] submit the DMA */ |
| 849 | set_dma_type(this, DMA_FOR_COMMAND); |
| 850 | return start_dma_without_bch_irq(this, desc); |
| 851 | } |
| 852 | |
| 853 | int gpmi_send_data(struct gpmi_nand_data *this) |
| 854 | { |
| 855 | struct dma_async_tx_descriptor *desc; |
| 856 | struct dma_chan *channel = get_dma_chan(this); |
| 857 | int chip = this->current_chip; |
| 858 | uint32_t command_mode; |
| 859 | uint32_t address; |
| 860 | u32 pio[2]; |
| 861 | |
| 862 | /* [1] PIO */ |
| 863 | command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; |
| 864 | address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| 865 | |
| 866 | pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| 867 | | BM_GPMI_CTRL0_WORD_LENGTH |
| 868 | | BF_GPMI_CTRL0_CS(chip, this) |
| 869 | | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| 870 | | BF_GPMI_CTRL0_ADDRESS(address) |
| 871 | | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); |
| 872 | pio[1] = 0; |
| 873 | desc = channel->device->device_prep_slave_sg(channel, |
| 874 | (struct scatterlist *)pio, |
| 875 | ARRAY_SIZE(pio), DMA_NONE, 0); |
| 876 | if (!desc) { |
| 877 | pr_err("step 1 error\n"); |
| 878 | return -1; |
| 879 | } |
| 880 | |
| 881 | /* [2] send DMA request */ |
| 882 | prepare_data_dma(this, DMA_TO_DEVICE); |
| 883 | desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl, |
| 884 | 1, DMA_TO_DEVICE, 1); |
| 885 | if (!desc) { |
| 886 | pr_err("step 2 error\n"); |
| 887 | return -1; |
| 888 | } |
| 889 | /* [3] submit the DMA */ |
| 890 | set_dma_type(this, DMA_FOR_WRITE_DATA); |
| 891 | return start_dma_without_bch_irq(this, desc); |
| 892 | } |
| 893 | |
| 894 | int gpmi_read_data(struct gpmi_nand_data *this) |
| 895 | { |
| 896 | struct dma_async_tx_descriptor *desc; |
| 897 | struct dma_chan *channel = get_dma_chan(this); |
| 898 | int chip = this->current_chip; |
| 899 | u32 pio[2]; |
| 900 | |
| 901 | /* [1] : send PIO */ |
| 902 | pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) |
| 903 | | BM_GPMI_CTRL0_WORD_LENGTH |
| 904 | | BF_GPMI_CTRL0_CS(chip, this) |
| 905 | | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| 906 | | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) |
| 907 | | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); |
| 908 | pio[1] = 0; |
| 909 | desc = channel->device->device_prep_slave_sg(channel, |
| 910 | (struct scatterlist *)pio, |
| 911 | ARRAY_SIZE(pio), DMA_NONE, 0); |
| 912 | if (!desc) { |
| 913 | pr_err("step 1 error\n"); |
| 914 | return -1; |
| 915 | } |
| 916 | |
| 917 | /* [2] : send DMA request */ |
| 918 | prepare_data_dma(this, DMA_FROM_DEVICE); |
| 919 | desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl, |
| 920 | 1, DMA_FROM_DEVICE, 1); |
| 921 | if (!desc) { |
| 922 | pr_err("step 2 error\n"); |
| 923 | return -1; |
| 924 | } |
| 925 | |
| 926 | /* [3] : submit the DMA */ |
| 927 | set_dma_type(this, DMA_FOR_READ_DATA); |
| 928 | return start_dma_without_bch_irq(this, desc); |
| 929 | } |
| 930 | |
| 931 | int gpmi_send_page(struct gpmi_nand_data *this, |
| 932 | dma_addr_t payload, dma_addr_t auxiliary) |
| 933 | { |
| 934 | struct bch_geometry *geo = &this->bch_geometry; |
| 935 | uint32_t command_mode; |
| 936 | uint32_t address; |
| 937 | uint32_t ecc_command; |
| 938 | uint32_t buffer_mask; |
| 939 | struct dma_async_tx_descriptor *desc; |
| 940 | struct dma_chan *channel = get_dma_chan(this); |
| 941 | int chip = this->current_chip; |
| 942 | u32 pio[6]; |
| 943 | |
| 944 | /* A DMA descriptor that does an ECC page read. */ |
| 945 | command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; |
| 946 | address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| 947 | ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; |
| 948 | buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | |
| 949 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; |
| 950 | |
| 951 | pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| 952 | | BM_GPMI_CTRL0_WORD_LENGTH |
| 953 | | BF_GPMI_CTRL0_CS(chip, this) |
| 954 | | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| 955 | | BF_GPMI_CTRL0_ADDRESS(address) |
| 956 | | BF_GPMI_CTRL0_XFER_COUNT(0); |
| 957 | pio[1] = 0; |
| 958 | pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC |
| 959 | | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
| 960 | | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); |
| 961 | pio[3] = geo->page_size; |
| 962 | pio[4] = payload; |
| 963 | pio[5] = auxiliary; |
| 964 | |
| 965 | desc = channel->device->device_prep_slave_sg(channel, |
| 966 | (struct scatterlist *)pio, |
| 967 | ARRAY_SIZE(pio), DMA_NONE, 0); |
| 968 | if (!desc) { |
| 969 | pr_err("step 2 error\n"); |
| 970 | return -1; |
| 971 | } |
| 972 | set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE); |
| 973 | return start_dma_with_bch_irq(this, desc); |
| 974 | } |
| 975 | |
| 976 | int gpmi_read_page(struct gpmi_nand_data *this, |
| 977 | dma_addr_t payload, dma_addr_t auxiliary) |
| 978 | { |
| 979 | struct bch_geometry *geo = &this->bch_geometry; |
| 980 | uint32_t command_mode; |
| 981 | uint32_t address; |
| 982 | uint32_t ecc_command; |
| 983 | uint32_t buffer_mask; |
| 984 | struct dma_async_tx_descriptor *desc; |
| 985 | struct dma_chan *channel = get_dma_chan(this); |
| 986 | int chip = this->current_chip; |
| 987 | u32 pio[6]; |
| 988 | |
| 989 | /* [1] Wait for the chip to report ready. */ |
| 990 | command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; |
| 991 | address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| 992 | |
| 993 | pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| 994 | | BM_GPMI_CTRL0_WORD_LENGTH |
| 995 | | BF_GPMI_CTRL0_CS(chip, this) |
| 996 | | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| 997 | | BF_GPMI_CTRL0_ADDRESS(address) |
| 998 | | BF_GPMI_CTRL0_XFER_COUNT(0); |
| 999 | pio[1] = 0; |
| 1000 | desc = channel->device->device_prep_slave_sg(channel, |
| 1001 | (struct scatterlist *)pio, 2, DMA_NONE, 0); |
| 1002 | if (!desc) { |
| 1003 | pr_err("step 1 error\n"); |
| 1004 | return -1; |
| 1005 | } |
| 1006 | |
| 1007 | /* [2] Enable the BCH block and read. */ |
| 1008 | command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; |
| 1009 | address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| 1010 | ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; |
| 1011 | buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
| 1012 | | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; |
| 1013 | |
| 1014 | pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| 1015 | | BM_GPMI_CTRL0_WORD_LENGTH |
| 1016 | | BF_GPMI_CTRL0_CS(chip, this) |
| 1017 | | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| 1018 | | BF_GPMI_CTRL0_ADDRESS(address) |
| 1019 | | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); |
| 1020 | |
| 1021 | pio[1] = 0; |
| 1022 | pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC |
| 1023 | | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
| 1024 | | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); |
| 1025 | pio[3] = geo->page_size; |
| 1026 | pio[4] = payload; |
| 1027 | pio[5] = auxiliary; |
| 1028 | desc = channel->device->device_prep_slave_sg(channel, |
| 1029 | (struct scatterlist *)pio, |
| 1030 | ARRAY_SIZE(pio), DMA_NONE, 1); |
| 1031 | if (!desc) { |
| 1032 | pr_err("step 2 error\n"); |
| 1033 | return -1; |
| 1034 | } |
| 1035 | |
| 1036 | /* [3] Disable the BCH block */ |
| 1037 | command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; |
| 1038 | address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| 1039 | |
| 1040 | pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| 1041 | | BM_GPMI_CTRL0_WORD_LENGTH |
| 1042 | | BF_GPMI_CTRL0_CS(chip, this) |
| 1043 | | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| 1044 | | BF_GPMI_CTRL0_ADDRESS(address) |
| 1045 | | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); |
| 1046 | pio[1] = 0; |
| 1047 | desc = channel->device->device_prep_slave_sg(channel, |
| 1048 | (struct scatterlist *)pio, 2, DMA_NONE, 1); |
| 1049 | if (!desc) { |
| 1050 | pr_err("step 3 error\n"); |
| 1051 | return -1; |
| 1052 | } |
| 1053 | |
| 1054 | /* [4] submit the DMA */ |
| 1055 | set_dma_type(this, DMA_FOR_READ_ECC_PAGE); |
| 1056 | return start_dma_with_bch_irq(this, desc); |
| 1057 | } |