blob: dc012129c0631ab11a9d8afa69d8c57b06dc3ead [file] [log] [blame]
Rik Snelc494e072006-11-29 18:59:44 +11001/* gf128mul.c - GF(2^128) multiplication functions
2 *
3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
5 *
6 * Based on Dr Brian Gladman's (GPL'd) work published at
Adrian-Ken Rueegsegger8c882f62009-03-04 14:43:52 +08007 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
Rik Snelc494e072006-11-29 18:59:44 +11008 * See the original copyright notice below.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 */
15
16/*
17 ---------------------------------------------------------------------------
18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
19
20 LICENSE TERMS
21
22 The free distribution and use of this software in both source and binary
23 form is allowed (with or without changes) provided that:
24
25 1. distributions of this source code include the above copyright
26 notice, this list of conditions and the following disclaimer;
27
28 2. distributions in binary form include the above copyright
29 notice, this list of conditions and the following disclaimer
30 in the documentation and/or other associated materials;
31
32 3. the copyright holder's name is not used to endorse products
33 built using this software without specific written permission.
34
35 ALTERNATIVELY, provided that this notice is retained in full, this product
36 may be distributed under the terms of the GNU General Public License (GPL),
37 in which case the provisions of the GPL apply INSTEAD OF those given above.
38
39 DISCLAIMER
40
41 This software is provided 'as is' with no explicit or implied warranties
42 in respect of its properties, including, but not limited to, correctness
43 and/or fitness for purpose.
44 ---------------------------------------------------------------------------
45 Issue 31/01/2006
46
Eric Biggers63be5b52017-02-14 13:43:27 -080047 This file provides fast multiplication in GF(2^128) as required by several
Rik Snelc494e072006-11-29 18:59:44 +110048 cryptographic authentication modes
49*/
50
51#include <crypto/gf128mul.h>
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/slab.h>
55
56#define gf128mul_dat(q) { \
57 q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58 q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59 q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60 q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61 q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62 q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63 q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64 q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65 q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66 q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67 q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68 q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69 q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70 q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71 q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72 q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73 q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74 q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75 q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76 q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77 q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78 q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79 q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80 q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81 q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82 q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83 q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84 q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85 q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86 q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87 q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88 q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
89}
90
Eric Biggersf33fd642017-02-14 13:43:29 -080091/*
92 * Given a value i in 0..255 as the byte overflow when a field element
93 * in GF(2^128) is multiplied by x^8, the following macro returns the
94 * 16-bit value that must be XOR-ed into the low-degree end of the
95 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
96 *
97 * There are two versions of the macro, and hence two tables: one for
98 * the "be" convention where the highest-order bit is the coefficient of
99 * the highest-degree polynomial term, and one for the "le" convention
100 * where the highest-order bit is the coefficient of the lowest-degree
101 * polynomial term. In both cases the values are stored in CPU byte
102 * endianness such that the coefficients are ordered consistently across
103 * bytes, i.e. in the "be" table bits 15..0 of the stored value
104 * correspond to the coefficients of x^15..x^0, and in the "le" table
105 * bits 15..0 correspond to the coefficients of x^0..x^15.
106 *
107 * Therefore, provided that the appropriate byte endianness conversions
108 * are done by the multiplication functions (and these must be in place
109 * anyway to support both little endian and big endian CPUs), the "be"
110 * table can be used for multiplications of both "bbe" and "ble"
111 * elements, and the "le" table can be used for multiplications of both
112 * "lle" and "lbe" elements.
113 */
Rik Snelc494e072006-11-29 18:59:44 +1100114
Eric Biggersf33fd642017-02-14 13:43:29 -0800115#define xda_be(i) ( \
Eric Biggers2416e4f2017-02-14 13:43:28 -0800116 (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117 (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118 (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119 (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
Rik Snelc494e072006-11-29 18:59:44 +1100120)
121
Eric Biggersf33fd642017-02-14 13:43:29 -0800122#define xda_le(i) ( \
Eric Biggers2416e4f2017-02-14 13:43:28 -0800123 (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124 (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125 (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126 (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
Rik Snelc494e072006-11-29 18:59:44 +1100127)
128
Eric Biggersf33fd642017-02-14 13:43:29 -0800129static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
Rik Snelc494e072006-11-29 18:59:44 +1100131
Eric Biggers63be5b52017-02-14 13:43:27 -0800132/*
Ondrej Mosnáčekacb9b152017-04-02 21:19:13 +0200133 * The following functions multiply a field element by x^8 in
Eric Biggers63be5b52017-02-14 13:43:27 -0800134 * the polynomial field representation. They use 64-bit word operations
135 * to gain speed but compensate for machine endianness and hence work
Rik Snelc494e072006-11-29 18:59:44 +1100136 * correctly on both styles of machine.
137 */
138
Rik Snelc494e072006-11-29 18:59:44 +1100139static void gf128mul_x8_lle(be128 *x)
140{
141 u64 a = be64_to_cpu(x->a);
142 u64 b = be64_to_cpu(x->b);
Eric Biggersf33fd642017-02-14 13:43:29 -0800143 u64 _tt = gf128mul_table_le[b & 0xff];
Rik Snelc494e072006-11-29 18:59:44 +1100144
145 x->b = cpu_to_be64((b >> 8) | (a << 56));
146 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
147}
148
149static void gf128mul_x8_bbe(be128 *x)
150{
151 u64 a = be64_to_cpu(x->a);
152 u64 b = be64_to_cpu(x->b);
Eric Biggersf33fd642017-02-14 13:43:29 -0800153 u64 _tt = gf128mul_table_be[a >> 56];
Rik Snelc494e072006-11-29 18:59:44 +1100154
155 x->a = cpu_to_be64((a << 8) | (b >> 56));
156 x->b = cpu_to_be64((b << 8) ^ _tt);
157}
158
159void gf128mul_lle(be128 *r, const be128 *b)
160{
161 be128 p[8];
162 int i;
163
164 p[0] = *r;
165 for (i = 0; i < 7; ++i)
166 gf128mul_x_lle(&p[i + 1], &p[i]);
167
Mathias Krause62542662011-07-08 17:21:21 +0800168 memset(r, 0, sizeof(*r));
Rik Snelc494e072006-11-29 18:59:44 +1100169 for (i = 0;;) {
170 u8 ch = ((u8 *)b)[15 - i];
171
172 if (ch & 0x80)
173 be128_xor(r, r, &p[0]);
174 if (ch & 0x40)
175 be128_xor(r, r, &p[1]);
176 if (ch & 0x20)
177 be128_xor(r, r, &p[2]);
178 if (ch & 0x10)
179 be128_xor(r, r, &p[3]);
180 if (ch & 0x08)
181 be128_xor(r, r, &p[4]);
182 if (ch & 0x04)
183 be128_xor(r, r, &p[5]);
184 if (ch & 0x02)
185 be128_xor(r, r, &p[6]);
186 if (ch & 0x01)
187 be128_xor(r, r, &p[7]);
188
189 if (++i >= 16)
190 break;
191
192 gf128mul_x8_lle(r);
193 }
194}
195EXPORT_SYMBOL(gf128mul_lle);
196
197void gf128mul_bbe(be128 *r, const be128 *b)
198{
199 be128 p[8];
200 int i;
201
202 p[0] = *r;
203 for (i = 0; i < 7; ++i)
204 gf128mul_x_bbe(&p[i + 1], &p[i]);
205
Mathias Krause62542662011-07-08 17:21:21 +0800206 memset(r, 0, sizeof(*r));
Rik Snelc494e072006-11-29 18:59:44 +1100207 for (i = 0;;) {
208 u8 ch = ((u8 *)b)[i];
209
210 if (ch & 0x80)
211 be128_xor(r, r, &p[7]);
212 if (ch & 0x40)
213 be128_xor(r, r, &p[6]);
214 if (ch & 0x20)
215 be128_xor(r, r, &p[5]);
216 if (ch & 0x10)
217 be128_xor(r, r, &p[4]);
218 if (ch & 0x08)
219 be128_xor(r, r, &p[3]);
220 if (ch & 0x04)
221 be128_xor(r, r, &p[2]);
222 if (ch & 0x02)
223 be128_xor(r, r, &p[1]);
224 if (ch & 0x01)
225 be128_xor(r, r, &p[0]);
226
227 if (++i >= 16)
228 break;
229
230 gf128mul_x8_bbe(r);
231 }
232}
233EXPORT_SYMBOL(gf128mul_bbe);
234
235/* This version uses 64k bytes of table space.
236 A 16 byte buffer has to be multiplied by a 16 byte key
Eric Biggers63be5b52017-02-14 13:43:27 -0800237 value in GF(2^128). If we consider a GF(2^128) value in
Rik Snelc494e072006-11-29 18:59:44 +1100238 the buffer's lowest byte, we can construct a table of
239 the 256 16 byte values that result from the 256 values
240 of this byte. This requires 4096 bytes. But we also
241 need tables for each of the 16 higher bytes in the
242 buffer as well, which makes 64 kbytes in total.
243*/
244/* additional explanation
245 * t[0][BYTE] contains g*BYTE
246 * t[1][BYTE] contains g*x^8*BYTE
247 * ..
248 * t[15][BYTE] contains g*x^120*BYTE */
Rik Snelc494e072006-11-29 18:59:44 +1100249struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
250{
251 struct gf128mul_64k *t;
252 int i, j, k;
253
254 t = kzalloc(sizeof(*t), GFP_KERNEL);
255 if (!t)
256 goto out;
257
258 for (i = 0; i < 16; i++) {
259 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
260 if (!t->t[i]) {
261 gf128mul_free_64k(t);
262 t = NULL;
263 goto out;
264 }
265 }
266
267 t->t[0]->t[1] = *g;
268 for (j = 1; j <= 64; j <<= 1)
269 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
270
271 for (i = 0;;) {
272 for (j = 2; j < 256; j += j)
273 for (k = 1; k < j; ++k)
274 be128_xor(&t->t[i]->t[j + k],
275 &t->t[i]->t[j], &t->t[i]->t[k]);
276
277 if (++i >= 16)
278 break;
279
280 for (j = 128; j > 0; j >>= 1) {
281 t->t[i]->t[j] = t->t[i - 1]->t[j];
282 gf128mul_x8_bbe(&t->t[i]->t[j]);
283 }
284 }
285
286out:
287 return t;
288}
289EXPORT_SYMBOL(gf128mul_init_64k_bbe);
290
291void gf128mul_free_64k(struct gf128mul_64k *t)
292{
293 int i;
294
295 for (i = 0; i < 16; i++)
Alex Cope75aa0a72016-11-14 11:02:54 -0800296 kzfree(t->t[i]);
297 kzfree(t);
Rik Snelc494e072006-11-29 18:59:44 +1100298}
299EXPORT_SYMBOL(gf128mul_free_64k);
300
Eric Biggers3ea996d2017-02-14 13:43:30 -0800301void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
Rik Snelc494e072006-11-29 18:59:44 +1100302{
303 u8 *ap = (u8 *)a;
304 be128 r[1];
305 int i;
306
307 *r = t->t[0]->t[ap[15]];
308 for (i = 1; i < 16; ++i)
309 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
310 *a = *r;
311}
312EXPORT_SYMBOL(gf128mul_64k_bbe);
313
314/* This version uses 4k bytes of table space.
315 A 16 byte buffer has to be multiplied by a 16 byte key
Eric Biggers63be5b52017-02-14 13:43:27 -0800316 value in GF(2^128). If we consider a GF(2^128) value in a
Rik Snelc494e072006-11-29 18:59:44 +1100317 single byte, we can construct a table of the 256 16 byte
318 values that result from the 256 values of this byte.
319 This requires 4096 bytes. If we take the highest byte in
320 the buffer and use this table to get the result, we then
321 have to multiply by x^120 to get the final value. For the
322 next highest byte the result has to be multiplied by x^112
323 and so on. But we can do this by accumulating the result
324 in an accumulator starting with the result for the top
325 byte. We repeatedly multiply the accumulator value by
326 x^8 and then add in (i.e. xor) the 16 bytes of the next
327 lower byte in the buffer, stopping when we reach the
328 lowest byte. This requires a 4096 byte table.
329*/
330struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
331{
332 struct gf128mul_4k *t;
333 int j, k;
334
335 t = kzalloc(sizeof(*t), GFP_KERNEL);
336 if (!t)
337 goto out;
338
339 t->t[128] = *g;
340 for (j = 64; j > 0; j >>= 1)
341 gf128mul_x_lle(&t->t[j], &t->t[j+j]);
342
343 for (j = 2; j < 256; j += j)
344 for (k = 1; k < j; ++k)
345 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
346
347out:
348 return t;
349}
350EXPORT_SYMBOL(gf128mul_init_4k_lle);
351
352struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
353{
354 struct gf128mul_4k *t;
355 int j, k;
356
357 t = kzalloc(sizeof(*t), GFP_KERNEL);
358 if (!t)
359 goto out;
360
361 t->t[1] = *g;
362 for (j = 1; j <= 64; j <<= 1)
363 gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
364
365 for (j = 2; j < 256; j += j)
366 for (k = 1; k < j; ++k)
367 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
368
369out:
370 return t;
371}
372EXPORT_SYMBOL(gf128mul_init_4k_bbe);
373
Eric Biggers3ea996d2017-02-14 13:43:30 -0800374void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
Rik Snelc494e072006-11-29 18:59:44 +1100375{
376 u8 *ap = (u8 *)a;
377 be128 r[1];
378 int i = 15;
379
380 *r = t->t[ap[15]];
381 while (i--) {
382 gf128mul_x8_lle(r);
383 be128_xor(r, r, &t->t[ap[i]]);
384 }
385 *a = *r;
386}
387EXPORT_SYMBOL(gf128mul_4k_lle);
388
Eric Biggers3ea996d2017-02-14 13:43:30 -0800389void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
Rik Snelc494e072006-11-29 18:59:44 +1100390{
391 u8 *ap = (u8 *)a;
392 be128 r[1];
393 int i = 0;
394
395 *r = t->t[ap[0]];
396 while (++i < 16) {
397 gf128mul_x8_bbe(r);
398 be128_xor(r, r, &t->t[ap[i]]);
399 }
400 *a = *r;
401}
402EXPORT_SYMBOL(gf128mul_4k_bbe);
403
404MODULE_LICENSE("GPL");
405MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");