Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2011-2016 Synaptics Incorporated |
| 3 | * Copyright (c) 2011 Unixphere |
| 4 | * |
| 5 | * This driver provides the core support for a single RMI4-based device. |
| 6 | * |
| 7 | * The RMI4 specification can be found here (URL split for line length): |
| 8 | * |
| 9 | * http://www.synaptics.com/sites/default/files/ |
| 10 | * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or modify it |
| 13 | * under the terms of the GNU General Public License version 2 as published by |
| 14 | * the Free Software Foundation. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/bitmap.h> |
| 18 | #include <linux/delay.h> |
| 19 | #include <linux/fs.h> |
Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 20 | #include <linux/pm.h> |
| 21 | #include <linux/slab.h> |
Andrew Duggan | d8a8b3e | 2016-03-10 15:46:32 -0800 | [diff] [blame] | 22 | #include <linux/of.h> |
Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 23 | #include <uapi/linux/input.h> |
| 24 | #include <linux/rmi.h> |
| 25 | #include "rmi_bus.h" |
| 26 | #include "rmi_driver.h" |
| 27 | |
| 28 | #define HAS_NONSTANDARD_PDT_MASK 0x40 |
| 29 | #define RMI4_MAX_PAGE 0xff |
| 30 | #define RMI4_PAGE_SIZE 0x100 |
| 31 | #define RMI4_PAGE_MASK 0xFF00 |
| 32 | |
| 33 | #define RMI_DEVICE_RESET_CMD 0x01 |
| 34 | #define DEFAULT_RESET_DELAY_MS 100 |
| 35 | |
| 36 | static void rmi_free_function_list(struct rmi_device *rmi_dev) |
| 37 | { |
| 38 | struct rmi_function *fn, *tmp; |
| 39 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 40 | |
| 41 | data->f01_container = NULL; |
| 42 | |
| 43 | /* Doing it in the reverse order so F01 will be removed last */ |
| 44 | list_for_each_entry_safe_reverse(fn, tmp, |
| 45 | &data->function_list, node) { |
| 46 | list_del(&fn->node); |
| 47 | rmi_unregister_function(fn); |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | static int reset_one_function(struct rmi_function *fn) |
| 52 | { |
| 53 | struct rmi_function_handler *fh; |
| 54 | int retval = 0; |
| 55 | |
| 56 | if (!fn || !fn->dev.driver) |
| 57 | return 0; |
| 58 | |
| 59 | fh = to_rmi_function_handler(fn->dev.driver); |
| 60 | if (fh->reset) { |
| 61 | retval = fh->reset(fn); |
| 62 | if (retval < 0) |
| 63 | dev_err(&fn->dev, "Reset failed with code %d.\n", |
| 64 | retval); |
| 65 | } |
| 66 | |
| 67 | return retval; |
| 68 | } |
| 69 | |
| 70 | static int configure_one_function(struct rmi_function *fn) |
| 71 | { |
| 72 | struct rmi_function_handler *fh; |
| 73 | int retval = 0; |
| 74 | |
| 75 | if (!fn || !fn->dev.driver) |
| 76 | return 0; |
| 77 | |
| 78 | fh = to_rmi_function_handler(fn->dev.driver); |
| 79 | if (fh->config) { |
| 80 | retval = fh->config(fn); |
| 81 | if (retval < 0) |
| 82 | dev_err(&fn->dev, "Config failed with code %d.\n", |
| 83 | retval); |
| 84 | } |
| 85 | |
| 86 | return retval; |
| 87 | } |
| 88 | |
| 89 | static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev) |
| 90 | { |
| 91 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 92 | struct rmi_function *entry; |
| 93 | int retval; |
| 94 | |
| 95 | list_for_each_entry(entry, &data->function_list, node) { |
| 96 | retval = reset_one_function(entry); |
| 97 | if (retval < 0) |
| 98 | return retval; |
| 99 | } |
| 100 | |
| 101 | return 0; |
| 102 | } |
| 103 | |
| 104 | static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev) |
| 105 | { |
| 106 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 107 | struct rmi_function *entry; |
| 108 | int retval; |
| 109 | |
| 110 | list_for_each_entry(entry, &data->function_list, node) { |
| 111 | retval = configure_one_function(entry); |
| 112 | if (retval < 0) |
| 113 | return retval; |
| 114 | } |
| 115 | |
| 116 | return 0; |
| 117 | } |
| 118 | |
| 119 | static void process_one_interrupt(struct rmi_driver_data *data, |
| 120 | struct rmi_function *fn) |
| 121 | { |
| 122 | struct rmi_function_handler *fh; |
| 123 | |
| 124 | if (!fn || !fn->dev.driver) |
| 125 | return; |
| 126 | |
| 127 | fh = to_rmi_function_handler(fn->dev.driver); |
Andrew Duggan | a1376d3 | 2016-03-17 17:06:24 -0700 | [diff] [blame] | 128 | if (fh->attention) { |
Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 129 | bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask, |
| 130 | data->irq_count); |
| 131 | if (!bitmap_empty(data->fn_irq_bits, data->irq_count)) |
| 132 | fh->attention(fn, data->fn_irq_bits); |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | int rmi_process_interrupt_requests(struct rmi_device *rmi_dev) |
| 137 | { |
| 138 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 139 | struct device *dev = &rmi_dev->dev; |
| 140 | struct rmi_function *entry; |
| 141 | int error; |
| 142 | |
| 143 | if (!data) |
| 144 | return 0; |
| 145 | |
| 146 | if (!rmi_dev->xport->attn_data) { |
| 147 | error = rmi_read_block(rmi_dev, |
| 148 | data->f01_container->fd.data_base_addr + 1, |
| 149 | data->irq_status, data->num_of_irq_regs); |
| 150 | if (error < 0) { |
| 151 | dev_err(dev, "Failed to read irqs, code=%d\n", error); |
| 152 | return error; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | mutex_lock(&data->irq_mutex); |
| 157 | bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask, |
| 158 | data->irq_count); |
| 159 | /* |
| 160 | * At this point, irq_status has all bits that are set in the |
| 161 | * interrupt status register and are enabled. |
| 162 | */ |
| 163 | mutex_unlock(&data->irq_mutex); |
| 164 | |
| 165 | /* |
| 166 | * It would be nice to be able to use irq_chip to handle these |
| 167 | * nested IRQs. Unfortunately, most of the current customers for |
| 168 | * this driver are using older kernels (3.0.x) that don't support |
| 169 | * the features required for that. Once they've shifted to more |
| 170 | * recent kernels (say, 3.3 and higher), this should be switched to |
| 171 | * use irq_chip. |
| 172 | */ |
| 173 | list_for_each_entry(entry, &data->function_list, node) |
Andrew Duggan | a1376d3 | 2016-03-17 17:06:24 -0700 | [diff] [blame] | 174 | process_one_interrupt(data, entry); |
Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 175 | |
| 176 | if (data->input) |
| 177 | input_sync(data->input); |
| 178 | |
| 179 | return 0; |
| 180 | } |
| 181 | EXPORT_SYMBOL_GPL(rmi_process_interrupt_requests); |
| 182 | |
| 183 | static int suspend_one_function(struct rmi_function *fn) |
| 184 | { |
| 185 | struct rmi_function_handler *fh; |
| 186 | int retval = 0; |
| 187 | |
| 188 | if (!fn || !fn->dev.driver) |
| 189 | return 0; |
| 190 | |
| 191 | fh = to_rmi_function_handler(fn->dev.driver); |
| 192 | if (fh->suspend) { |
| 193 | retval = fh->suspend(fn); |
| 194 | if (retval < 0) |
| 195 | dev_err(&fn->dev, "Suspend failed with code %d.\n", |
| 196 | retval); |
| 197 | } |
| 198 | |
| 199 | return retval; |
| 200 | } |
| 201 | |
| 202 | static int rmi_suspend_functions(struct rmi_device *rmi_dev) |
| 203 | { |
| 204 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 205 | struct rmi_function *entry; |
| 206 | int retval; |
| 207 | |
| 208 | list_for_each_entry(entry, &data->function_list, node) { |
| 209 | retval = suspend_one_function(entry); |
| 210 | if (retval < 0) |
| 211 | return retval; |
| 212 | } |
| 213 | |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | static int resume_one_function(struct rmi_function *fn) |
| 218 | { |
| 219 | struct rmi_function_handler *fh; |
| 220 | int retval = 0; |
| 221 | |
| 222 | if (!fn || !fn->dev.driver) |
| 223 | return 0; |
| 224 | |
| 225 | fh = to_rmi_function_handler(fn->dev.driver); |
| 226 | if (fh->resume) { |
| 227 | retval = fh->resume(fn); |
| 228 | if (retval < 0) |
| 229 | dev_err(&fn->dev, "Resume failed with code %d.\n", |
| 230 | retval); |
| 231 | } |
| 232 | |
| 233 | return retval; |
| 234 | } |
| 235 | |
| 236 | static int rmi_resume_functions(struct rmi_device *rmi_dev) |
| 237 | { |
| 238 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 239 | struct rmi_function *entry; |
| 240 | int retval; |
| 241 | |
| 242 | list_for_each_entry(entry, &data->function_list, node) { |
| 243 | retval = resume_one_function(entry); |
| 244 | if (retval < 0) |
| 245 | return retval; |
| 246 | } |
| 247 | |
| 248 | return 0; |
| 249 | } |
| 250 | |
| 251 | static int enable_sensor(struct rmi_device *rmi_dev) |
| 252 | { |
| 253 | int retval = 0; |
| 254 | |
| 255 | retval = rmi_driver_process_config_requests(rmi_dev); |
| 256 | if (retval < 0) |
| 257 | return retval; |
| 258 | |
| 259 | return rmi_process_interrupt_requests(rmi_dev); |
| 260 | } |
| 261 | |
| 262 | /** |
| 263 | * rmi_driver_set_input_params - set input device id and other data. |
| 264 | * |
| 265 | * @rmi_dev: Pointer to an RMI device |
| 266 | * @input: Pointer to input device |
| 267 | * |
| 268 | */ |
| 269 | static int rmi_driver_set_input_params(struct rmi_device *rmi_dev, |
| 270 | struct input_dev *input) |
| 271 | { |
| 272 | input->name = SYNAPTICS_INPUT_DEVICE_NAME; |
| 273 | input->id.vendor = SYNAPTICS_VENDOR_ID; |
| 274 | input->id.bustype = BUS_RMI; |
| 275 | return 0; |
| 276 | } |
| 277 | |
| 278 | static void rmi_driver_set_input_name(struct rmi_device *rmi_dev, |
| 279 | struct input_dev *input) |
| 280 | { |
| 281 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 282 | char *device_name = rmi_f01_get_product_ID(data->f01_container); |
| 283 | char *name; |
| 284 | |
| 285 | name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL, |
| 286 | "Synaptics %s", device_name); |
| 287 | if (!name) |
| 288 | return; |
| 289 | |
| 290 | input->name = name; |
| 291 | } |
| 292 | |
| 293 | static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev, |
| 294 | unsigned long *mask) |
| 295 | { |
| 296 | int error = 0; |
| 297 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 298 | struct device *dev = &rmi_dev->dev; |
| 299 | |
| 300 | mutex_lock(&data->irq_mutex); |
| 301 | bitmap_or(data->new_irq_mask, |
| 302 | data->current_irq_mask, mask, data->irq_count); |
| 303 | |
| 304 | error = rmi_write_block(rmi_dev, |
| 305 | data->f01_container->fd.control_base_addr + 1, |
| 306 | data->new_irq_mask, data->num_of_irq_regs); |
| 307 | if (error < 0) { |
| 308 | dev_err(dev, "%s: Failed to change enabled interrupts!", |
| 309 | __func__); |
| 310 | goto error_unlock; |
| 311 | } |
| 312 | bitmap_copy(data->current_irq_mask, data->new_irq_mask, |
| 313 | data->num_of_irq_regs); |
| 314 | |
| 315 | error_unlock: |
| 316 | mutex_unlock(&data->irq_mutex); |
| 317 | return error; |
| 318 | } |
| 319 | |
| 320 | static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev, |
| 321 | unsigned long *mask) |
| 322 | { |
| 323 | int error = 0; |
| 324 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 325 | struct device *dev = &rmi_dev->dev; |
| 326 | |
| 327 | mutex_lock(&data->irq_mutex); |
| 328 | bitmap_andnot(data->new_irq_mask, |
| 329 | data->current_irq_mask, mask, data->irq_count); |
| 330 | |
| 331 | error = rmi_write_block(rmi_dev, |
| 332 | data->f01_container->fd.control_base_addr + 1, |
| 333 | data->new_irq_mask, data->num_of_irq_regs); |
| 334 | if (error < 0) { |
| 335 | dev_err(dev, "%s: Failed to change enabled interrupts!", |
| 336 | __func__); |
| 337 | goto error_unlock; |
| 338 | } |
| 339 | bitmap_copy(data->current_irq_mask, data->new_irq_mask, |
| 340 | data->num_of_irq_regs); |
| 341 | |
| 342 | error_unlock: |
| 343 | mutex_unlock(&data->irq_mutex); |
| 344 | return error; |
| 345 | } |
| 346 | |
| 347 | static int rmi_driver_reset_handler(struct rmi_device *rmi_dev) |
| 348 | { |
| 349 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 350 | int error; |
| 351 | |
| 352 | /* |
| 353 | * Can get called before the driver is fully ready to deal with |
| 354 | * this situation. |
| 355 | */ |
| 356 | if (!data || !data->f01_container) { |
| 357 | dev_warn(&rmi_dev->dev, |
| 358 | "Not ready to handle reset yet!\n"); |
| 359 | return 0; |
| 360 | } |
| 361 | |
| 362 | error = rmi_read_block(rmi_dev, |
| 363 | data->f01_container->fd.control_base_addr + 1, |
| 364 | data->current_irq_mask, data->num_of_irq_regs); |
| 365 | if (error < 0) { |
| 366 | dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n", |
| 367 | __func__); |
| 368 | return error; |
| 369 | } |
| 370 | |
| 371 | error = rmi_driver_process_reset_requests(rmi_dev); |
| 372 | if (error < 0) |
| 373 | return error; |
| 374 | |
| 375 | error = rmi_driver_process_config_requests(rmi_dev); |
| 376 | if (error < 0) |
| 377 | return error; |
| 378 | |
| 379 | return 0; |
| 380 | } |
| 381 | |
| 382 | int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry, |
| 383 | u16 pdt_address) |
| 384 | { |
| 385 | u8 buf[RMI_PDT_ENTRY_SIZE]; |
| 386 | int error; |
| 387 | |
| 388 | error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE); |
| 389 | if (error) { |
| 390 | dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n", |
| 391 | pdt_address, error); |
| 392 | return error; |
| 393 | } |
| 394 | |
| 395 | entry->page_start = pdt_address & RMI4_PAGE_MASK; |
| 396 | entry->query_base_addr = buf[0]; |
| 397 | entry->command_base_addr = buf[1]; |
| 398 | entry->control_base_addr = buf[2]; |
| 399 | entry->data_base_addr = buf[3]; |
| 400 | entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK; |
| 401 | entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5; |
| 402 | entry->function_number = buf[5]; |
| 403 | |
| 404 | return 0; |
| 405 | } |
| 406 | EXPORT_SYMBOL_GPL(rmi_read_pdt_entry); |
| 407 | |
| 408 | static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt, |
| 409 | struct rmi_function_descriptor *fd) |
| 410 | { |
| 411 | fd->query_base_addr = pdt->query_base_addr + pdt->page_start; |
| 412 | fd->command_base_addr = pdt->command_base_addr + pdt->page_start; |
| 413 | fd->control_base_addr = pdt->control_base_addr + pdt->page_start; |
| 414 | fd->data_base_addr = pdt->data_base_addr + pdt->page_start; |
| 415 | fd->function_number = pdt->function_number; |
| 416 | fd->interrupt_source_count = pdt->interrupt_source_count; |
| 417 | fd->function_version = pdt->function_version; |
| 418 | } |
| 419 | |
| 420 | #define RMI_SCAN_CONTINUE 0 |
| 421 | #define RMI_SCAN_DONE 1 |
| 422 | |
| 423 | static int rmi_scan_pdt_page(struct rmi_device *rmi_dev, |
| 424 | int page, |
| 425 | void *ctx, |
| 426 | int (*callback)(struct rmi_device *rmi_dev, |
| 427 | void *ctx, |
| 428 | const struct pdt_entry *entry)) |
| 429 | { |
| 430 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 431 | struct pdt_entry pdt_entry; |
| 432 | u16 page_start = RMI4_PAGE_SIZE * page; |
| 433 | u16 pdt_start = page_start + PDT_START_SCAN_LOCATION; |
| 434 | u16 pdt_end = page_start + PDT_END_SCAN_LOCATION; |
| 435 | u16 addr; |
| 436 | int error; |
| 437 | int retval; |
| 438 | |
| 439 | for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) { |
| 440 | error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr); |
| 441 | if (error) |
| 442 | return error; |
| 443 | |
| 444 | if (RMI4_END_OF_PDT(pdt_entry.function_number)) |
| 445 | break; |
| 446 | |
| 447 | retval = callback(rmi_dev, ctx, &pdt_entry); |
| 448 | if (retval != RMI_SCAN_CONTINUE) |
| 449 | return retval; |
| 450 | } |
| 451 | |
| 452 | return (data->f01_bootloader_mode || addr == pdt_start) ? |
| 453 | RMI_SCAN_DONE : RMI_SCAN_CONTINUE; |
| 454 | } |
| 455 | |
| 456 | static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx, |
| 457 | int (*callback)(struct rmi_device *rmi_dev, |
| 458 | void *ctx, |
| 459 | const struct pdt_entry *entry)) |
| 460 | { |
| 461 | int page; |
| 462 | int retval = RMI_SCAN_DONE; |
| 463 | |
| 464 | for (page = 0; page <= RMI4_MAX_PAGE; page++) { |
| 465 | retval = rmi_scan_pdt_page(rmi_dev, page, ctx, callback); |
| 466 | if (retval != RMI_SCAN_CONTINUE) |
| 467 | break; |
| 468 | } |
| 469 | |
| 470 | return retval < 0 ? retval : 0; |
| 471 | } |
| 472 | |
| 473 | int rmi_read_register_desc(struct rmi_device *d, u16 addr, |
| 474 | struct rmi_register_descriptor *rdesc) |
| 475 | { |
| 476 | int ret; |
| 477 | u8 size_presence_reg; |
| 478 | u8 buf[35]; |
| 479 | int presense_offset = 1; |
| 480 | u8 *struct_buf; |
| 481 | int reg; |
| 482 | int offset = 0; |
| 483 | int map_offset = 0; |
| 484 | int i; |
| 485 | int b; |
| 486 | |
| 487 | /* |
| 488 | * The first register of the register descriptor is the size of |
| 489 | * the register descriptor's presense register. |
| 490 | */ |
| 491 | ret = rmi_read(d, addr, &size_presence_reg); |
| 492 | if (ret) |
| 493 | return ret; |
| 494 | ++addr; |
| 495 | |
| 496 | if (size_presence_reg < 0 || size_presence_reg > 35) |
| 497 | return -EIO; |
| 498 | |
| 499 | memset(buf, 0, sizeof(buf)); |
| 500 | |
| 501 | /* |
| 502 | * The presence register contains the size of the register structure |
| 503 | * and a bitmap which identified which packet registers are present |
| 504 | * for this particular register type (ie query, control, or data). |
| 505 | */ |
| 506 | ret = rmi_read_block(d, addr, buf, size_presence_reg); |
| 507 | if (ret) |
| 508 | return ret; |
| 509 | ++addr; |
| 510 | |
| 511 | if (buf[0] == 0) { |
| 512 | presense_offset = 3; |
| 513 | rdesc->struct_size = buf[1] | (buf[2] << 8); |
| 514 | } else { |
| 515 | rdesc->struct_size = buf[0]; |
| 516 | } |
| 517 | |
| 518 | for (i = presense_offset; i < size_presence_reg; i++) { |
| 519 | for (b = 0; b < 8; b++) { |
| 520 | if (buf[i] & (0x1 << b)) |
| 521 | bitmap_set(rdesc->presense_map, map_offset, 1); |
| 522 | ++map_offset; |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | rdesc->num_registers = bitmap_weight(rdesc->presense_map, |
| 527 | RMI_REG_DESC_PRESENSE_BITS); |
| 528 | |
| 529 | rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers * |
| 530 | sizeof(struct rmi_register_desc_item), |
| 531 | GFP_KERNEL); |
| 532 | if (!rdesc->registers) |
| 533 | return -ENOMEM; |
| 534 | |
| 535 | /* |
| 536 | * Allocate a temporary buffer to hold the register structure. |
| 537 | * I'm not using devm_kzalloc here since it will not be retained |
| 538 | * after exiting this function |
| 539 | */ |
| 540 | struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL); |
| 541 | if (!struct_buf) |
| 542 | return -ENOMEM; |
| 543 | |
| 544 | /* |
| 545 | * The register structure contains information about every packet |
| 546 | * register of this type. This includes the size of the packet |
| 547 | * register and a bitmap of all subpackets contained in the packet |
| 548 | * register. |
| 549 | */ |
| 550 | ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size); |
| 551 | if (ret) |
| 552 | goto free_struct_buff; |
| 553 | |
| 554 | reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS); |
Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 555 | for (i = 0; i < rdesc->num_registers; i++) { |
| 556 | struct rmi_register_desc_item *item = &rdesc->registers[i]; |
| 557 | int reg_size = struct_buf[offset]; |
| 558 | |
| 559 | ++offset; |
| 560 | if (reg_size == 0) { |
| 561 | reg_size = struct_buf[offset] | |
| 562 | (struct_buf[offset + 1] << 8); |
| 563 | offset += 2; |
| 564 | } |
| 565 | |
| 566 | if (reg_size == 0) { |
| 567 | reg_size = struct_buf[offset] | |
| 568 | (struct_buf[offset + 1] << 8) | |
| 569 | (struct_buf[offset + 2] << 16) | |
| 570 | (struct_buf[offset + 3] << 24); |
| 571 | offset += 4; |
| 572 | } |
| 573 | |
| 574 | item->reg = reg; |
| 575 | item->reg_size = reg_size; |
| 576 | |
Andrew Duggan | 3e29d6b | 2016-08-22 11:28:11 -0700 | [diff] [blame] | 577 | map_offset = 0; |
| 578 | |
Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 579 | do { |
| 580 | for (b = 0; b < 7; b++) { |
| 581 | if (struct_buf[offset] & (0x1 << b)) |
| 582 | bitmap_set(item->subpacket_map, |
| 583 | map_offset, 1); |
| 584 | ++map_offset; |
| 585 | } |
| 586 | } while (struct_buf[offset++] & 0x80); |
| 587 | |
| 588 | item->num_subpackets = bitmap_weight(item->subpacket_map, |
| 589 | RMI_REG_DESC_SUBPACKET_BITS); |
| 590 | |
| 591 | rmi_dbg(RMI_DEBUG_CORE, &d->dev, |
| 592 | "%s: reg: %d reg size: %ld subpackets: %d\n", __func__, |
| 593 | item->reg, item->reg_size, item->num_subpackets); |
| 594 | |
| 595 | reg = find_next_bit(rdesc->presense_map, |
| 596 | RMI_REG_DESC_PRESENSE_BITS, reg + 1); |
| 597 | } |
| 598 | |
| 599 | free_struct_buff: |
| 600 | kfree(struct_buf); |
| 601 | return ret; |
| 602 | } |
| 603 | EXPORT_SYMBOL_GPL(rmi_read_register_desc); |
| 604 | |
| 605 | const struct rmi_register_desc_item *rmi_get_register_desc_item( |
| 606 | struct rmi_register_descriptor *rdesc, u16 reg) |
| 607 | { |
| 608 | const struct rmi_register_desc_item *item; |
| 609 | int i; |
| 610 | |
| 611 | for (i = 0; i < rdesc->num_registers; i++) { |
| 612 | item = &rdesc->registers[i]; |
| 613 | if (item->reg == reg) |
| 614 | return item; |
| 615 | } |
| 616 | |
| 617 | return NULL; |
| 618 | } |
| 619 | EXPORT_SYMBOL_GPL(rmi_get_register_desc_item); |
| 620 | |
| 621 | size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc) |
| 622 | { |
| 623 | const struct rmi_register_desc_item *item; |
| 624 | int i; |
| 625 | size_t size = 0; |
| 626 | |
| 627 | for (i = 0; i < rdesc->num_registers; i++) { |
| 628 | item = &rdesc->registers[i]; |
| 629 | size += item->reg_size; |
| 630 | } |
| 631 | return size; |
| 632 | } |
| 633 | EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size); |
| 634 | |
| 635 | /* Compute the register offset relative to the base address */ |
| 636 | int rmi_register_desc_calc_reg_offset( |
| 637 | struct rmi_register_descriptor *rdesc, u16 reg) |
| 638 | { |
| 639 | const struct rmi_register_desc_item *item; |
| 640 | int offset = 0; |
| 641 | int i; |
| 642 | |
| 643 | for (i = 0; i < rdesc->num_registers; i++) { |
| 644 | item = &rdesc->registers[i]; |
| 645 | if (item->reg == reg) |
| 646 | return offset; |
| 647 | ++offset; |
| 648 | } |
| 649 | return -1; |
| 650 | } |
| 651 | EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset); |
| 652 | |
| 653 | bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item, |
| 654 | u8 subpacket) |
| 655 | { |
| 656 | return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS, |
| 657 | subpacket) == subpacket; |
| 658 | } |
| 659 | |
| 660 | /* Indicates that flash programming is enabled (bootloader mode). */ |
| 661 | #define RMI_F01_STATUS_BOOTLOADER(status) (!!((status) & 0x40)) |
| 662 | |
| 663 | /* |
| 664 | * Given the PDT entry for F01, read the device status register to determine |
| 665 | * if we're stuck in bootloader mode or not. |
| 666 | * |
| 667 | */ |
| 668 | static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev, |
| 669 | const struct pdt_entry *pdt) |
| 670 | { |
| 671 | int error; |
| 672 | u8 device_status; |
| 673 | |
| 674 | error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start, |
| 675 | &device_status); |
| 676 | if (error) { |
| 677 | dev_err(&rmi_dev->dev, |
| 678 | "Failed to read device status: %d.\n", error); |
| 679 | return error; |
| 680 | } |
| 681 | |
| 682 | return RMI_F01_STATUS_BOOTLOADER(device_status); |
| 683 | } |
| 684 | |
| 685 | static int rmi_count_irqs(struct rmi_device *rmi_dev, |
| 686 | void *ctx, const struct pdt_entry *pdt) |
| 687 | { |
| 688 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 689 | int *irq_count = ctx; |
| 690 | |
| 691 | *irq_count += pdt->interrupt_source_count; |
| 692 | if (pdt->function_number == 0x01) { |
| 693 | data->f01_bootloader_mode = |
| 694 | rmi_check_bootloader_mode(rmi_dev, pdt); |
| 695 | if (data->f01_bootloader_mode) |
| 696 | dev_warn(&rmi_dev->dev, |
| 697 | "WARNING: RMI4 device is in bootloader mode!\n"); |
| 698 | } |
| 699 | |
| 700 | return RMI_SCAN_CONTINUE; |
| 701 | } |
| 702 | |
| 703 | static int rmi_initial_reset(struct rmi_device *rmi_dev, |
| 704 | void *ctx, const struct pdt_entry *pdt) |
| 705 | { |
| 706 | int error; |
| 707 | |
| 708 | if (pdt->function_number == 0x01) { |
| 709 | u16 cmd_addr = pdt->page_start + pdt->command_base_addr; |
| 710 | u8 cmd_buf = RMI_DEVICE_RESET_CMD; |
| 711 | const struct rmi_device_platform_data *pdata = |
| 712 | rmi_get_platform_data(rmi_dev); |
| 713 | |
| 714 | if (rmi_dev->xport->ops->reset) { |
| 715 | error = rmi_dev->xport->ops->reset(rmi_dev->xport, |
| 716 | cmd_addr); |
| 717 | if (error) |
| 718 | return error; |
| 719 | |
| 720 | return RMI_SCAN_DONE; |
| 721 | } |
| 722 | |
| 723 | error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1); |
| 724 | if (error) { |
| 725 | dev_err(&rmi_dev->dev, |
| 726 | "Initial reset failed. Code = %d.\n", error); |
| 727 | return error; |
| 728 | } |
| 729 | |
| 730 | mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS); |
| 731 | |
| 732 | return RMI_SCAN_DONE; |
| 733 | } |
| 734 | |
| 735 | /* F01 should always be on page 0. If we don't find it there, fail. */ |
| 736 | return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV; |
| 737 | } |
| 738 | |
| 739 | static int rmi_create_function(struct rmi_device *rmi_dev, |
| 740 | void *ctx, const struct pdt_entry *pdt) |
| 741 | { |
| 742 | struct device *dev = &rmi_dev->dev; |
| 743 | struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); |
| 744 | int *current_irq_count = ctx; |
| 745 | struct rmi_function *fn; |
| 746 | int i; |
| 747 | int error; |
| 748 | |
| 749 | rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n", |
| 750 | pdt->function_number); |
| 751 | |
| 752 | fn = kzalloc(sizeof(struct rmi_function) + |
| 753 | BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long), |
| 754 | GFP_KERNEL); |
| 755 | if (!fn) { |
| 756 | dev_err(dev, "Failed to allocate memory for F%02X\n", |
| 757 | pdt->function_number); |
| 758 | return -ENOMEM; |
| 759 | } |
| 760 | |
| 761 | INIT_LIST_HEAD(&fn->node); |
| 762 | rmi_driver_copy_pdt_to_fd(pdt, &fn->fd); |
| 763 | |
| 764 | fn->rmi_dev = rmi_dev; |
| 765 | |
| 766 | fn->num_of_irqs = pdt->interrupt_source_count; |
| 767 | fn->irq_pos = *current_irq_count; |
| 768 | *current_irq_count += fn->num_of_irqs; |
| 769 | |
| 770 | for (i = 0; i < fn->num_of_irqs; i++) |
| 771 | set_bit(fn->irq_pos + i, fn->irq_mask); |
| 772 | |
| 773 | error = rmi_register_function(fn); |
| 774 | if (error) |
| 775 | goto err_put_fn; |
| 776 | |
| 777 | if (pdt->function_number == 0x01) |
| 778 | data->f01_container = fn; |
| 779 | |
| 780 | list_add_tail(&fn->node, &data->function_list); |
| 781 | |
| 782 | return RMI_SCAN_CONTINUE; |
| 783 | |
| 784 | err_put_fn: |
| 785 | put_device(&fn->dev); |
| 786 | return error; |
| 787 | } |
| 788 | |
| 789 | int rmi_driver_suspend(struct rmi_device *rmi_dev) |
| 790 | { |
| 791 | int retval = 0; |
| 792 | |
| 793 | retval = rmi_suspend_functions(rmi_dev); |
| 794 | if (retval) |
| 795 | dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", |
| 796 | retval); |
| 797 | |
| 798 | return retval; |
| 799 | } |
| 800 | EXPORT_SYMBOL_GPL(rmi_driver_suspend); |
| 801 | |
| 802 | int rmi_driver_resume(struct rmi_device *rmi_dev) |
| 803 | { |
| 804 | int retval; |
| 805 | |
| 806 | retval = rmi_resume_functions(rmi_dev); |
| 807 | if (retval) |
| 808 | dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", |
| 809 | retval); |
| 810 | |
| 811 | return retval; |
| 812 | } |
| 813 | EXPORT_SYMBOL_GPL(rmi_driver_resume); |
| 814 | |
| 815 | static int rmi_driver_remove(struct device *dev) |
| 816 | { |
| 817 | struct rmi_device *rmi_dev = to_rmi_device(dev); |
| 818 | |
| 819 | rmi_free_function_list(rmi_dev); |
| 820 | |
| 821 | return 0; |
| 822 | } |
| 823 | |
Andrew Duggan | d8a8b3e | 2016-03-10 15:46:32 -0800 | [diff] [blame] | 824 | #ifdef CONFIG_OF |
| 825 | static int rmi_driver_of_probe(struct device *dev, |
| 826 | struct rmi_device_platform_data *pdata) |
| 827 | { |
| 828 | int retval; |
| 829 | |
| 830 | retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms, |
| 831 | "syna,reset-delay-ms", 1); |
| 832 | if (retval) |
| 833 | return retval; |
| 834 | |
| 835 | return 0; |
| 836 | } |
| 837 | #else |
| 838 | static inline int rmi_driver_of_probe(struct device *dev, |
| 839 | struct rmi_device_platform_data *pdata) |
| 840 | { |
| 841 | return -ENODEV; |
| 842 | } |
| 843 | #endif |
| 844 | |
Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 845 | static int rmi_driver_probe(struct device *dev) |
| 846 | { |
| 847 | struct rmi_driver *rmi_driver; |
| 848 | struct rmi_driver_data *data; |
| 849 | struct rmi_device_platform_data *pdata; |
| 850 | struct rmi_device *rmi_dev; |
| 851 | size_t size; |
| 852 | void *irq_memory; |
| 853 | int irq_count; |
| 854 | int retval; |
| 855 | |
| 856 | rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n", |
| 857 | __func__); |
| 858 | |
| 859 | if (!rmi_is_physical_device(dev)) { |
| 860 | rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n"); |
| 861 | return -ENODEV; |
| 862 | } |
| 863 | |
| 864 | rmi_dev = to_rmi_device(dev); |
| 865 | rmi_driver = to_rmi_driver(dev->driver); |
| 866 | rmi_dev->driver = rmi_driver; |
| 867 | |
| 868 | pdata = rmi_get_platform_data(rmi_dev); |
| 869 | |
Andrew Duggan | d8a8b3e | 2016-03-10 15:46:32 -0800 | [diff] [blame] | 870 | if (rmi_dev->xport->dev->of_node) { |
| 871 | retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata); |
| 872 | if (retval) |
| 873 | return retval; |
| 874 | } |
| 875 | |
Andrew Duggan | 2b6a321 | 2016-03-10 15:35:49 -0800 | [diff] [blame] | 876 | data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL); |
| 877 | if (!data) |
| 878 | return -ENOMEM; |
| 879 | |
| 880 | INIT_LIST_HEAD(&data->function_list); |
| 881 | data->rmi_dev = rmi_dev; |
| 882 | dev_set_drvdata(&rmi_dev->dev, data); |
| 883 | |
| 884 | /* |
| 885 | * Right before a warm boot, the sensor might be in some unusual state, |
| 886 | * such as F54 diagnostics, or F34 bootloader mode after a firmware |
| 887 | * or configuration update. In order to clear the sensor to a known |
| 888 | * state and/or apply any updates, we issue a initial reset to clear any |
| 889 | * previous settings and force it into normal operation. |
| 890 | * |
| 891 | * We have to do this before actually building the PDT because |
| 892 | * the reflash updates (if any) might cause various registers to move |
| 893 | * around. |
| 894 | * |
| 895 | * For a number of reasons, this initial reset may fail to return |
| 896 | * within the specified time, but we'll still be able to bring up the |
| 897 | * driver normally after that failure. This occurs most commonly in |
| 898 | * a cold boot situation (where then firmware takes longer to come up |
| 899 | * than from a warm boot) and the reset_delay_ms in the platform data |
| 900 | * has been set too short to accommodate that. Since the sensor will |
| 901 | * eventually come up and be usable, we don't want to just fail here |
| 902 | * and leave the customer's device unusable. So we warn them, and |
| 903 | * continue processing. |
| 904 | */ |
| 905 | retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset); |
| 906 | if (retval < 0) |
| 907 | dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n"); |
| 908 | |
| 909 | retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props); |
| 910 | if (retval < 0) { |
| 911 | /* |
| 912 | * we'll print out a warning and continue since |
| 913 | * failure to get the PDT properties is not a cause to fail |
| 914 | */ |
| 915 | dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n", |
| 916 | PDT_PROPERTIES_LOCATION, retval); |
| 917 | } |
| 918 | |
| 919 | /* |
| 920 | * We need to count the IRQs and allocate their storage before scanning |
| 921 | * the PDT and creating the function entries, because adding a new |
| 922 | * function can trigger events that result in the IRQ related storage |
| 923 | * being accessed. |
| 924 | */ |
| 925 | rmi_dbg(RMI_DEBUG_CORE, dev, "Counting IRQs.\n"); |
| 926 | irq_count = 0; |
| 927 | retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs); |
| 928 | if (retval < 0) { |
| 929 | dev_err(dev, "IRQ counting failed with code %d.\n", retval); |
| 930 | goto err; |
| 931 | } |
| 932 | data->irq_count = irq_count; |
| 933 | data->num_of_irq_regs = (data->irq_count + 7) / 8; |
| 934 | |
| 935 | mutex_init(&data->irq_mutex); |
| 936 | |
| 937 | size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long); |
| 938 | irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL); |
| 939 | if (!irq_memory) { |
| 940 | dev_err(dev, "Failed to allocate memory for irq masks.\n"); |
| 941 | goto err; |
| 942 | } |
| 943 | |
| 944 | data->irq_status = irq_memory + size * 0; |
| 945 | data->fn_irq_bits = irq_memory + size * 1; |
| 946 | data->current_irq_mask = irq_memory + size * 2; |
| 947 | data->new_irq_mask = irq_memory + size * 3; |
| 948 | |
| 949 | if (rmi_dev->xport->input) { |
| 950 | /* |
| 951 | * The transport driver already has an input device. |
| 952 | * In some cases it is preferable to reuse the transport |
| 953 | * devices input device instead of creating a new one here. |
| 954 | * One example is some HID touchpads report "pass-through" |
| 955 | * button events are not reported by rmi registers. |
| 956 | */ |
| 957 | data->input = rmi_dev->xport->input; |
| 958 | } else { |
| 959 | data->input = devm_input_allocate_device(dev); |
| 960 | if (!data->input) { |
| 961 | dev_err(dev, "%s: Failed to allocate input device.\n", |
| 962 | __func__); |
| 963 | retval = -ENOMEM; |
| 964 | goto err_destroy_functions; |
| 965 | } |
| 966 | rmi_driver_set_input_params(rmi_dev, data->input); |
| 967 | data->input->phys = devm_kasprintf(dev, GFP_KERNEL, |
| 968 | "%s/input0", dev_name(dev)); |
| 969 | } |
| 970 | |
| 971 | irq_count = 0; |
| 972 | rmi_dbg(RMI_DEBUG_CORE, dev, "Creating functions."); |
| 973 | retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function); |
| 974 | if (retval < 0) { |
| 975 | dev_err(dev, "Function creation failed with code %d.\n", |
| 976 | retval); |
| 977 | goto err_destroy_functions; |
| 978 | } |
| 979 | |
| 980 | if (!data->f01_container) { |
| 981 | dev_err(dev, "Missing F01 container!\n"); |
| 982 | retval = -EINVAL; |
| 983 | goto err_destroy_functions; |
| 984 | } |
| 985 | |
| 986 | retval = rmi_read_block(rmi_dev, |
| 987 | data->f01_container->fd.control_base_addr + 1, |
| 988 | data->current_irq_mask, data->num_of_irq_regs); |
| 989 | if (retval < 0) { |
| 990 | dev_err(dev, "%s: Failed to read current IRQ mask.\n", |
| 991 | __func__); |
| 992 | goto err_destroy_functions; |
| 993 | } |
| 994 | |
| 995 | if (data->input) { |
| 996 | rmi_driver_set_input_name(rmi_dev, data->input); |
| 997 | if (!rmi_dev->xport->input) { |
| 998 | if (input_register_device(data->input)) { |
| 999 | dev_err(dev, "%s: Failed to register input device.\n", |
| 1000 | __func__); |
| 1001 | goto err_destroy_functions; |
| 1002 | } |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | if (data->f01_container->dev.driver) |
| 1007 | /* Driver already bound, so enable ATTN now. */ |
| 1008 | return enable_sensor(rmi_dev); |
| 1009 | |
| 1010 | return 0; |
| 1011 | |
| 1012 | err_destroy_functions: |
| 1013 | rmi_free_function_list(rmi_dev); |
| 1014 | err: |
| 1015 | return retval < 0 ? retval : 0; |
| 1016 | } |
| 1017 | |
| 1018 | static struct rmi_driver rmi_physical_driver = { |
| 1019 | .driver = { |
| 1020 | .owner = THIS_MODULE, |
| 1021 | .name = "rmi4_physical", |
| 1022 | .bus = &rmi_bus_type, |
| 1023 | .probe = rmi_driver_probe, |
| 1024 | .remove = rmi_driver_remove, |
| 1025 | }, |
| 1026 | .reset_handler = rmi_driver_reset_handler, |
| 1027 | .clear_irq_bits = rmi_driver_clear_irq_bits, |
| 1028 | .set_irq_bits = rmi_driver_set_irq_bits, |
| 1029 | .set_input_params = rmi_driver_set_input_params, |
| 1030 | }; |
| 1031 | |
| 1032 | bool rmi_is_physical_driver(struct device_driver *drv) |
| 1033 | { |
| 1034 | return drv == &rmi_physical_driver.driver; |
| 1035 | } |
| 1036 | |
| 1037 | int __init rmi_register_physical_driver(void) |
| 1038 | { |
| 1039 | int error; |
| 1040 | |
| 1041 | error = driver_register(&rmi_physical_driver.driver); |
| 1042 | if (error) { |
| 1043 | pr_err("%s: driver register failed, code=%d.\n", __func__, |
| 1044 | error); |
| 1045 | return error; |
| 1046 | } |
| 1047 | |
| 1048 | return 0; |
| 1049 | } |
| 1050 | |
| 1051 | void __exit rmi_unregister_physical_driver(void) |
| 1052 | { |
| 1053 | driver_unregister(&rmi_physical_driver.driver); |
| 1054 | } |