blob: 4a88312fbd25405051f9ef422b4a71d95059c7a2 [file] [log] [blame]
Andrew Duggan2b6a3212016-03-10 15:35:49 -08001/*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
4 *
5 * This driver provides the core support for a single RMI4-based device.
6 *
7 * The RMI4 specification can be found here (URL split for line length):
8 *
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 */
16
17#include <linux/bitmap.h>
18#include <linux/delay.h>
19#include <linux/fs.h>
Andrew Duggan2b6a3212016-03-10 15:35:49 -080020#include <linux/pm.h>
21#include <linux/slab.h>
Andrew Duggand8a8b3e2016-03-10 15:46:32 -080022#include <linux/of.h>
Andrew Duggan2b6a3212016-03-10 15:35:49 -080023#include <uapi/linux/input.h>
24#include <linux/rmi.h>
25#include "rmi_bus.h"
26#include "rmi_driver.h"
27
28#define HAS_NONSTANDARD_PDT_MASK 0x40
29#define RMI4_MAX_PAGE 0xff
30#define RMI4_PAGE_SIZE 0x100
31#define RMI4_PAGE_MASK 0xFF00
32
33#define RMI_DEVICE_RESET_CMD 0x01
34#define DEFAULT_RESET_DELAY_MS 100
35
36static void rmi_free_function_list(struct rmi_device *rmi_dev)
37{
38 struct rmi_function *fn, *tmp;
39 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
40
41 data->f01_container = NULL;
42
43 /* Doing it in the reverse order so F01 will be removed last */
44 list_for_each_entry_safe_reverse(fn, tmp,
45 &data->function_list, node) {
46 list_del(&fn->node);
47 rmi_unregister_function(fn);
48 }
49}
50
51static int reset_one_function(struct rmi_function *fn)
52{
53 struct rmi_function_handler *fh;
54 int retval = 0;
55
56 if (!fn || !fn->dev.driver)
57 return 0;
58
59 fh = to_rmi_function_handler(fn->dev.driver);
60 if (fh->reset) {
61 retval = fh->reset(fn);
62 if (retval < 0)
63 dev_err(&fn->dev, "Reset failed with code %d.\n",
64 retval);
65 }
66
67 return retval;
68}
69
70static int configure_one_function(struct rmi_function *fn)
71{
72 struct rmi_function_handler *fh;
73 int retval = 0;
74
75 if (!fn || !fn->dev.driver)
76 return 0;
77
78 fh = to_rmi_function_handler(fn->dev.driver);
79 if (fh->config) {
80 retval = fh->config(fn);
81 if (retval < 0)
82 dev_err(&fn->dev, "Config failed with code %d.\n",
83 retval);
84 }
85
86 return retval;
87}
88
89static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
90{
91 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
92 struct rmi_function *entry;
93 int retval;
94
95 list_for_each_entry(entry, &data->function_list, node) {
96 retval = reset_one_function(entry);
97 if (retval < 0)
98 return retval;
99 }
100
101 return 0;
102}
103
104static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
105{
106 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
107 struct rmi_function *entry;
108 int retval;
109
110 list_for_each_entry(entry, &data->function_list, node) {
111 retval = configure_one_function(entry);
112 if (retval < 0)
113 return retval;
114 }
115
116 return 0;
117}
118
119static void process_one_interrupt(struct rmi_driver_data *data,
120 struct rmi_function *fn)
121{
122 struct rmi_function_handler *fh;
123
124 if (!fn || !fn->dev.driver)
125 return;
126
127 fh = to_rmi_function_handler(fn->dev.driver);
Andrew Duggana1376d32016-03-17 17:06:24 -0700128 if (fh->attention) {
Andrew Duggan2b6a3212016-03-10 15:35:49 -0800129 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
130 data->irq_count);
131 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
132 fh->attention(fn, data->fn_irq_bits);
133 }
134}
135
136int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
137{
138 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
139 struct device *dev = &rmi_dev->dev;
140 struct rmi_function *entry;
141 int error;
142
143 if (!data)
144 return 0;
145
146 if (!rmi_dev->xport->attn_data) {
147 error = rmi_read_block(rmi_dev,
148 data->f01_container->fd.data_base_addr + 1,
149 data->irq_status, data->num_of_irq_regs);
150 if (error < 0) {
151 dev_err(dev, "Failed to read irqs, code=%d\n", error);
152 return error;
153 }
154 }
155
156 mutex_lock(&data->irq_mutex);
157 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
158 data->irq_count);
159 /*
160 * At this point, irq_status has all bits that are set in the
161 * interrupt status register and are enabled.
162 */
163 mutex_unlock(&data->irq_mutex);
164
165 /*
166 * It would be nice to be able to use irq_chip to handle these
167 * nested IRQs. Unfortunately, most of the current customers for
168 * this driver are using older kernels (3.0.x) that don't support
169 * the features required for that. Once they've shifted to more
170 * recent kernels (say, 3.3 and higher), this should be switched to
171 * use irq_chip.
172 */
173 list_for_each_entry(entry, &data->function_list, node)
Andrew Duggana1376d32016-03-17 17:06:24 -0700174 process_one_interrupt(data, entry);
Andrew Duggan2b6a3212016-03-10 15:35:49 -0800175
176 if (data->input)
177 input_sync(data->input);
178
179 return 0;
180}
181EXPORT_SYMBOL_GPL(rmi_process_interrupt_requests);
182
183static int suspend_one_function(struct rmi_function *fn)
184{
185 struct rmi_function_handler *fh;
186 int retval = 0;
187
188 if (!fn || !fn->dev.driver)
189 return 0;
190
191 fh = to_rmi_function_handler(fn->dev.driver);
192 if (fh->suspend) {
193 retval = fh->suspend(fn);
194 if (retval < 0)
195 dev_err(&fn->dev, "Suspend failed with code %d.\n",
196 retval);
197 }
198
199 return retval;
200}
201
202static int rmi_suspend_functions(struct rmi_device *rmi_dev)
203{
204 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
205 struct rmi_function *entry;
206 int retval;
207
208 list_for_each_entry(entry, &data->function_list, node) {
209 retval = suspend_one_function(entry);
210 if (retval < 0)
211 return retval;
212 }
213
214 return 0;
215}
216
217static int resume_one_function(struct rmi_function *fn)
218{
219 struct rmi_function_handler *fh;
220 int retval = 0;
221
222 if (!fn || !fn->dev.driver)
223 return 0;
224
225 fh = to_rmi_function_handler(fn->dev.driver);
226 if (fh->resume) {
227 retval = fh->resume(fn);
228 if (retval < 0)
229 dev_err(&fn->dev, "Resume failed with code %d.\n",
230 retval);
231 }
232
233 return retval;
234}
235
236static int rmi_resume_functions(struct rmi_device *rmi_dev)
237{
238 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
239 struct rmi_function *entry;
240 int retval;
241
242 list_for_each_entry(entry, &data->function_list, node) {
243 retval = resume_one_function(entry);
244 if (retval < 0)
245 return retval;
246 }
247
248 return 0;
249}
250
251static int enable_sensor(struct rmi_device *rmi_dev)
252{
253 int retval = 0;
254
255 retval = rmi_driver_process_config_requests(rmi_dev);
256 if (retval < 0)
257 return retval;
258
259 return rmi_process_interrupt_requests(rmi_dev);
260}
261
262/**
263 * rmi_driver_set_input_params - set input device id and other data.
264 *
265 * @rmi_dev: Pointer to an RMI device
266 * @input: Pointer to input device
267 *
268 */
269static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
270 struct input_dev *input)
271{
272 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
273 input->id.vendor = SYNAPTICS_VENDOR_ID;
274 input->id.bustype = BUS_RMI;
275 return 0;
276}
277
278static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
279 struct input_dev *input)
280{
281 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
282 char *device_name = rmi_f01_get_product_ID(data->f01_container);
283 char *name;
284
285 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
286 "Synaptics %s", device_name);
287 if (!name)
288 return;
289
290 input->name = name;
291}
292
293static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
294 unsigned long *mask)
295{
296 int error = 0;
297 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
298 struct device *dev = &rmi_dev->dev;
299
300 mutex_lock(&data->irq_mutex);
301 bitmap_or(data->new_irq_mask,
302 data->current_irq_mask, mask, data->irq_count);
303
304 error = rmi_write_block(rmi_dev,
305 data->f01_container->fd.control_base_addr + 1,
306 data->new_irq_mask, data->num_of_irq_regs);
307 if (error < 0) {
308 dev_err(dev, "%s: Failed to change enabled interrupts!",
309 __func__);
310 goto error_unlock;
311 }
312 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
313 data->num_of_irq_regs);
314
315error_unlock:
316 mutex_unlock(&data->irq_mutex);
317 return error;
318}
319
320static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
321 unsigned long *mask)
322{
323 int error = 0;
324 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
325 struct device *dev = &rmi_dev->dev;
326
327 mutex_lock(&data->irq_mutex);
328 bitmap_andnot(data->new_irq_mask,
329 data->current_irq_mask, mask, data->irq_count);
330
331 error = rmi_write_block(rmi_dev,
332 data->f01_container->fd.control_base_addr + 1,
333 data->new_irq_mask, data->num_of_irq_regs);
334 if (error < 0) {
335 dev_err(dev, "%s: Failed to change enabled interrupts!",
336 __func__);
337 goto error_unlock;
338 }
339 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
340 data->num_of_irq_regs);
341
342error_unlock:
343 mutex_unlock(&data->irq_mutex);
344 return error;
345}
346
347static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
348{
349 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
350 int error;
351
352 /*
353 * Can get called before the driver is fully ready to deal with
354 * this situation.
355 */
356 if (!data || !data->f01_container) {
357 dev_warn(&rmi_dev->dev,
358 "Not ready to handle reset yet!\n");
359 return 0;
360 }
361
362 error = rmi_read_block(rmi_dev,
363 data->f01_container->fd.control_base_addr + 1,
364 data->current_irq_mask, data->num_of_irq_regs);
365 if (error < 0) {
366 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
367 __func__);
368 return error;
369 }
370
371 error = rmi_driver_process_reset_requests(rmi_dev);
372 if (error < 0)
373 return error;
374
375 error = rmi_driver_process_config_requests(rmi_dev);
376 if (error < 0)
377 return error;
378
379 return 0;
380}
381
382int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry,
383 u16 pdt_address)
384{
385 u8 buf[RMI_PDT_ENTRY_SIZE];
386 int error;
387
388 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
389 if (error) {
390 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
391 pdt_address, error);
392 return error;
393 }
394
395 entry->page_start = pdt_address & RMI4_PAGE_MASK;
396 entry->query_base_addr = buf[0];
397 entry->command_base_addr = buf[1];
398 entry->control_base_addr = buf[2];
399 entry->data_base_addr = buf[3];
400 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
401 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
402 entry->function_number = buf[5];
403
404 return 0;
405}
406EXPORT_SYMBOL_GPL(rmi_read_pdt_entry);
407
408static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
409 struct rmi_function_descriptor *fd)
410{
411 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
412 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
413 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
414 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
415 fd->function_number = pdt->function_number;
416 fd->interrupt_source_count = pdt->interrupt_source_count;
417 fd->function_version = pdt->function_version;
418}
419
420#define RMI_SCAN_CONTINUE 0
421#define RMI_SCAN_DONE 1
422
423static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
424 int page,
425 void *ctx,
426 int (*callback)(struct rmi_device *rmi_dev,
427 void *ctx,
428 const struct pdt_entry *entry))
429{
430 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
431 struct pdt_entry pdt_entry;
432 u16 page_start = RMI4_PAGE_SIZE * page;
433 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
434 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
435 u16 addr;
436 int error;
437 int retval;
438
439 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
440 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
441 if (error)
442 return error;
443
444 if (RMI4_END_OF_PDT(pdt_entry.function_number))
445 break;
446
447 retval = callback(rmi_dev, ctx, &pdt_entry);
448 if (retval != RMI_SCAN_CONTINUE)
449 return retval;
450 }
451
452 return (data->f01_bootloader_mode || addr == pdt_start) ?
453 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
454}
455
456static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
457 int (*callback)(struct rmi_device *rmi_dev,
458 void *ctx,
459 const struct pdt_entry *entry))
460{
461 int page;
462 int retval = RMI_SCAN_DONE;
463
464 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
465 retval = rmi_scan_pdt_page(rmi_dev, page, ctx, callback);
466 if (retval != RMI_SCAN_CONTINUE)
467 break;
468 }
469
470 return retval < 0 ? retval : 0;
471}
472
473int rmi_read_register_desc(struct rmi_device *d, u16 addr,
474 struct rmi_register_descriptor *rdesc)
475{
476 int ret;
477 u8 size_presence_reg;
478 u8 buf[35];
479 int presense_offset = 1;
480 u8 *struct_buf;
481 int reg;
482 int offset = 0;
483 int map_offset = 0;
484 int i;
485 int b;
486
487 /*
488 * The first register of the register descriptor is the size of
489 * the register descriptor's presense register.
490 */
491 ret = rmi_read(d, addr, &size_presence_reg);
492 if (ret)
493 return ret;
494 ++addr;
495
496 if (size_presence_reg < 0 || size_presence_reg > 35)
497 return -EIO;
498
499 memset(buf, 0, sizeof(buf));
500
501 /*
502 * The presence register contains the size of the register structure
503 * and a bitmap which identified which packet registers are present
504 * for this particular register type (ie query, control, or data).
505 */
506 ret = rmi_read_block(d, addr, buf, size_presence_reg);
507 if (ret)
508 return ret;
509 ++addr;
510
511 if (buf[0] == 0) {
512 presense_offset = 3;
513 rdesc->struct_size = buf[1] | (buf[2] << 8);
514 } else {
515 rdesc->struct_size = buf[0];
516 }
517
518 for (i = presense_offset; i < size_presence_reg; i++) {
519 for (b = 0; b < 8; b++) {
520 if (buf[i] & (0x1 << b))
521 bitmap_set(rdesc->presense_map, map_offset, 1);
522 ++map_offset;
523 }
524 }
525
526 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
527 RMI_REG_DESC_PRESENSE_BITS);
528
529 rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
530 sizeof(struct rmi_register_desc_item),
531 GFP_KERNEL);
532 if (!rdesc->registers)
533 return -ENOMEM;
534
535 /*
536 * Allocate a temporary buffer to hold the register structure.
537 * I'm not using devm_kzalloc here since it will not be retained
538 * after exiting this function
539 */
540 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
541 if (!struct_buf)
542 return -ENOMEM;
543
544 /*
545 * The register structure contains information about every packet
546 * register of this type. This includes the size of the packet
547 * register and a bitmap of all subpackets contained in the packet
548 * register.
549 */
550 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
551 if (ret)
552 goto free_struct_buff;
553
554 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
Andrew Duggan2b6a3212016-03-10 15:35:49 -0800555 for (i = 0; i < rdesc->num_registers; i++) {
556 struct rmi_register_desc_item *item = &rdesc->registers[i];
557 int reg_size = struct_buf[offset];
558
559 ++offset;
560 if (reg_size == 0) {
561 reg_size = struct_buf[offset] |
562 (struct_buf[offset + 1] << 8);
563 offset += 2;
564 }
565
566 if (reg_size == 0) {
567 reg_size = struct_buf[offset] |
568 (struct_buf[offset + 1] << 8) |
569 (struct_buf[offset + 2] << 16) |
570 (struct_buf[offset + 3] << 24);
571 offset += 4;
572 }
573
574 item->reg = reg;
575 item->reg_size = reg_size;
576
Andrew Duggan3e29d6b2016-08-22 11:28:11 -0700577 map_offset = 0;
578
Andrew Duggan2b6a3212016-03-10 15:35:49 -0800579 do {
580 for (b = 0; b < 7; b++) {
581 if (struct_buf[offset] & (0x1 << b))
582 bitmap_set(item->subpacket_map,
583 map_offset, 1);
584 ++map_offset;
585 }
586 } while (struct_buf[offset++] & 0x80);
587
588 item->num_subpackets = bitmap_weight(item->subpacket_map,
589 RMI_REG_DESC_SUBPACKET_BITS);
590
591 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
592 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
593 item->reg, item->reg_size, item->num_subpackets);
594
595 reg = find_next_bit(rdesc->presense_map,
596 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
597 }
598
599free_struct_buff:
600 kfree(struct_buf);
601 return ret;
602}
603EXPORT_SYMBOL_GPL(rmi_read_register_desc);
604
605const struct rmi_register_desc_item *rmi_get_register_desc_item(
606 struct rmi_register_descriptor *rdesc, u16 reg)
607{
608 const struct rmi_register_desc_item *item;
609 int i;
610
611 for (i = 0; i < rdesc->num_registers; i++) {
612 item = &rdesc->registers[i];
613 if (item->reg == reg)
614 return item;
615 }
616
617 return NULL;
618}
619EXPORT_SYMBOL_GPL(rmi_get_register_desc_item);
620
621size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
622{
623 const struct rmi_register_desc_item *item;
624 int i;
625 size_t size = 0;
626
627 for (i = 0; i < rdesc->num_registers; i++) {
628 item = &rdesc->registers[i];
629 size += item->reg_size;
630 }
631 return size;
632}
633EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size);
634
635/* Compute the register offset relative to the base address */
636int rmi_register_desc_calc_reg_offset(
637 struct rmi_register_descriptor *rdesc, u16 reg)
638{
639 const struct rmi_register_desc_item *item;
640 int offset = 0;
641 int i;
642
643 for (i = 0; i < rdesc->num_registers; i++) {
644 item = &rdesc->registers[i];
645 if (item->reg == reg)
646 return offset;
647 ++offset;
648 }
649 return -1;
650}
651EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset);
652
653bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
654 u8 subpacket)
655{
656 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
657 subpacket) == subpacket;
658}
659
660/* Indicates that flash programming is enabled (bootloader mode). */
661#define RMI_F01_STATUS_BOOTLOADER(status) (!!((status) & 0x40))
662
663/*
664 * Given the PDT entry for F01, read the device status register to determine
665 * if we're stuck in bootloader mode or not.
666 *
667 */
668static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
669 const struct pdt_entry *pdt)
670{
671 int error;
672 u8 device_status;
673
674 error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start,
675 &device_status);
676 if (error) {
677 dev_err(&rmi_dev->dev,
678 "Failed to read device status: %d.\n", error);
679 return error;
680 }
681
682 return RMI_F01_STATUS_BOOTLOADER(device_status);
683}
684
685static int rmi_count_irqs(struct rmi_device *rmi_dev,
686 void *ctx, const struct pdt_entry *pdt)
687{
688 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
689 int *irq_count = ctx;
690
691 *irq_count += pdt->interrupt_source_count;
692 if (pdt->function_number == 0x01) {
693 data->f01_bootloader_mode =
694 rmi_check_bootloader_mode(rmi_dev, pdt);
695 if (data->f01_bootloader_mode)
696 dev_warn(&rmi_dev->dev,
697 "WARNING: RMI4 device is in bootloader mode!\n");
698 }
699
700 return RMI_SCAN_CONTINUE;
701}
702
703static int rmi_initial_reset(struct rmi_device *rmi_dev,
704 void *ctx, const struct pdt_entry *pdt)
705{
706 int error;
707
708 if (pdt->function_number == 0x01) {
709 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
710 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
711 const struct rmi_device_platform_data *pdata =
712 rmi_get_platform_data(rmi_dev);
713
714 if (rmi_dev->xport->ops->reset) {
715 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
716 cmd_addr);
717 if (error)
718 return error;
719
720 return RMI_SCAN_DONE;
721 }
722
723 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
724 if (error) {
725 dev_err(&rmi_dev->dev,
726 "Initial reset failed. Code = %d.\n", error);
727 return error;
728 }
729
730 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
731
732 return RMI_SCAN_DONE;
733 }
734
735 /* F01 should always be on page 0. If we don't find it there, fail. */
736 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
737}
738
739static int rmi_create_function(struct rmi_device *rmi_dev,
740 void *ctx, const struct pdt_entry *pdt)
741{
742 struct device *dev = &rmi_dev->dev;
743 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
744 int *current_irq_count = ctx;
745 struct rmi_function *fn;
746 int i;
747 int error;
748
749 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
750 pdt->function_number);
751
752 fn = kzalloc(sizeof(struct rmi_function) +
753 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
754 GFP_KERNEL);
755 if (!fn) {
756 dev_err(dev, "Failed to allocate memory for F%02X\n",
757 pdt->function_number);
758 return -ENOMEM;
759 }
760
761 INIT_LIST_HEAD(&fn->node);
762 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
763
764 fn->rmi_dev = rmi_dev;
765
766 fn->num_of_irqs = pdt->interrupt_source_count;
767 fn->irq_pos = *current_irq_count;
768 *current_irq_count += fn->num_of_irqs;
769
770 for (i = 0; i < fn->num_of_irqs; i++)
771 set_bit(fn->irq_pos + i, fn->irq_mask);
772
773 error = rmi_register_function(fn);
774 if (error)
775 goto err_put_fn;
776
777 if (pdt->function_number == 0x01)
778 data->f01_container = fn;
779
780 list_add_tail(&fn->node, &data->function_list);
781
782 return RMI_SCAN_CONTINUE;
783
784err_put_fn:
785 put_device(&fn->dev);
786 return error;
787}
788
789int rmi_driver_suspend(struct rmi_device *rmi_dev)
790{
791 int retval = 0;
792
793 retval = rmi_suspend_functions(rmi_dev);
794 if (retval)
795 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
796 retval);
797
798 return retval;
799}
800EXPORT_SYMBOL_GPL(rmi_driver_suspend);
801
802int rmi_driver_resume(struct rmi_device *rmi_dev)
803{
804 int retval;
805
806 retval = rmi_resume_functions(rmi_dev);
807 if (retval)
808 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
809 retval);
810
811 return retval;
812}
813EXPORT_SYMBOL_GPL(rmi_driver_resume);
814
815static int rmi_driver_remove(struct device *dev)
816{
817 struct rmi_device *rmi_dev = to_rmi_device(dev);
818
819 rmi_free_function_list(rmi_dev);
820
821 return 0;
822}
823
Andrew Duggand8a8b3e2016-03-10 15:46:32 -0800824#ifdef CONFIG_OF
825static int rmi_driver_of_probe(struct device *dev,
826 struct rmi_device_platform_data *pdata)
827{
828 int retval;
829
830 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
831 "syna,reset-delay-ms", 1);
832 if (retval)
833 return retval;
834
835 return 0;
836}
837#else
838static inline int rmi_driver_of_probe(struct device *dev,
839 struct rmi_device_platform_data *pdata)
840{
841 return -ENODEV;
842}
843#endif
844
Andrew Duggan2b6a3212016-03-10 15:35:49 -0800845static int rmi_driver_probe(struct device *dev)
846{
847 struct rmi_driver *rmi_driver;
848 struct rmi_driver_data *data;
849 struct rmi_device_platform_data *pdata;
850 struct rmi_device *rmi_dev;
851 size_t size;
852 void *irq_memory;
853 int irq_count;
854 int retval;
855
856 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
857 __func__);
858
859 if (!rmi_is_physical_device(dev)) {
860 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
861 return -ENODEV;
862 }
863
864 rmi_dev = to_rmi_device(dev);
865 rmi_driver = to_rmi_driver(dev->driver);
866 rmi_dev->driver = rmi_driver;
867
868 pdata = rmi_get_platform_data(rmi_dev);
869
Andrew Duggand8a8b3e2016-03-10 15:46:32 -0800870 if (rmi_dev->xport->dev->of_node) {
871 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
872 if (retval)
873 return retval;
874 }
875
Andrew Duggan2b6a3212016-03-10 15:35:49 -0800876 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
877 if (!data)
878 return -ENOMEM;
879
880 INIT_LIST_HEAD(&data->function_list);
881 data->rmi_dev = rmi_dev;
882 dev_set_drvdata(&rmi_dev->dev, data);
883
884 /*
885 * Right before a warm boot, the sensor might be in some unusual state,
886 * such as F54 diagnostics, or F34 bootloader mode after a firmware
887 * or configuration update. In order to clear the sensor to a known
888 * state and/or apply any updates, we issue a initial reset to clear any
889 * previous settings and force it into normal operation.
890 *
891 * We have to do this before actually building the PDT because
892 * the reflash updates (if any) might cause various registers to move
893 * around.
894 *
895 * For a number of reasons, this initial reset may fail to return
896 * within the specified time, but we'll still be able to bring up the
897 * driver normally after that failure. This occurs most commonly in
898 * a cold boot situation (where then firmware takes longer to come up
899 * than from a warm boot) and the reset_delay_ms in the platform data
900 * has been set too short to accommodate that. Since the sensor will
901 * eventually come up and be usable, we don't want to just fail here
902 * and leave the customer's device unusable. So we warn them, and
903 * continue processing.
904 */
905 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
906 if (retval < 0)
907 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
908
909 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
910 if (retval < 0) {
911 /*
912 * we'll print out a warning and continue since
913 * failure to get the PDT properties is not a cause to fail
914 */
915 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
916 PDT_PROPERTIES_LOCATION, retval);
917 }
918
919 /*
920 * We need to count the IRQs and allocate their storage before scanning
921 * the PDT and creating the function entries, because adding a new
922 * function can trigger events that result in the IRQ related storage
923 * being accessed.
924 */
925 rmi_dbg(RMI_DEBUG_CORE, dev, "Counting IRQs.\n");
926 irq_count = 0;
927 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
928 if (retval < 0) {
929 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
930 goto err;
931 }
932 data->irq_count = irq_count;
933 data->num_of_irq_regs = (data->irq_count + 7) / 8;
934
935 mutex_init(&data->irq_mutex);
936
937 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
938 irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
939 if (!irq_memory) {
940 dev_err(dev, "Failed to allocate memory for irq masks.\n");
941 goto err;
942 }
943
944 data->irq_status = irq_memory + size * 0;
945 data->fn_irq_bits = irq_memory + size * 1;
946 data->current_irq_mask = irq_memory + size * 2;
947 data->new_irq_mask = irq_memory + size * 3;
948
949 if (rmi_dev->xport->input) {
950 /*
951 * The transport driver already has an input device.
952 * In some cases it is preferable to reuse the transport
953 * devices input device instead of creating a new one here.
954 * One example is some HID touchpads report "pass-through"
955 * button events are not reported by rmi registers.
956 */
957 data->input = rmi_dev->xport->input;
958 } else {
959 data->input = devm_input_allocate_device(dev);
960 if (!data->input) {
961 dev_err(dev, "%s: Failed to allocate input device.\n",
962 __func__);
963 retval = -ENOMEM;
964 goto err_destroy_functions;
965 }
966 rmi_driver_set_input_params(rmi_dev, data->input);
967 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
968 "%s/input0", dev_name(dev));
969 }
970
971 irq_count = 0;
972 rmi_dbg(RMI_DEBUG_CORE, dev, "Creating functions.");
973 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
974 if (retval < 0) {
975 dev_err(dev, "Function creation failed with code %d.\n",
976 retval);
977 goto err_destroy_functions;
978 }
979
980 if (!data->f01_container) {
981 dev_err(dev, "Missing F01 container!\n");
982 retval = -EINVAL;
983 goto err_destroy_functions;
984 }
985
986 retval = rmi_read_block(rmi_dev,
987 data->f01_container->fd.control_base_addr + 1,
988 data->current_irq_mask, data->num_of_irq_regs);
989 if (retval < 0) {
990 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
991 __func__);
992 goto err_destroy_functions;
993 }
994
995 if (data->input) {
996 rmi_driver_set_input_name(rmi_dev, data->input);
997 if (!rmi_dev->xport->input) {
998 if (input_register_device(data->input)) {
999 dev_err(dev, "%s: Failed to register input device.\n",
1000 __func__);
1001 goto err_destroy_functions;
1002 }
1003 }
1004 }
1005
1006 if (data->f01_container->dev.driver)
1007 /* Driver already bound, so enable ATTN now. */
1008 return enable_sensor(rmi_dev);
1009
1010 return 0;
1011
1012err_destroy_functions:
1013 rmi_free_function_list(rmi_dev);
1014err:
1015 return retval < 0 ? retval : 0;
1016}
1017
1018static struct rmi_driver rmi_physical_driver = {
1019 .driver = {
1020 .owner = THIS_MODULE,
1021 .name = "rmi4_physical",
1022 .bus = &rmi_bus_type,
1023 .probe = rmi_driver_probe,
1024 .remove = rmi_driver_remove,
1025 },
1026 .reset_handler = rmi_driver_reset_handler,
1027 .clear_irq_bits = rmi_driver_clear_irq_bits,
1028 .set_irq_bits = rmi_driver_set_irq_bits,
1029 .set_input_params = rmi_driver_set_input_params,
1030};
1031
1032bool rmi_is_physical_driver(struct device_driver *drv)
1033{
1034 return drv == &rmi_physical_driver.driver;
1035}
1036
1037int __init rmi_register_physical_driver(void)
1038{
1039 int error;
1040
1041 error = driver_register(&rmi_physical_driver.driver);
1042 if (error) {
1043 pr_err("%s: driver register failed, code=%d.\n", __func__,
1044 error);
1045 return error;
1046 }
1047
1048 return 0;
1049}
1050
1051void __exit rmi_unregister_physical_driver(void)
1052{
1053 driver_unregister(&rmi_physical_driver.driver);
1054}