blob: f0aa21c2a762415dd07d7bd9c8432d4ebfcbfe48 [file] [log] [blame]
Oskar Schirmer8759ef32009-06-11 14:51:15 +01001/*
2 * rational fractions
3 *
Oskar Schirmer6684b572012-05-16 09:41:19 +00004 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
Oskar Schirmer8759ef32009-06-11 14:51:15 +01005 *
6 * helper functions when coping with rational numbers
7 */
8
9#include <linux/rational.h>
Paul Gortmaker8bc3bcc2011-11-16 21:29:17 -050010#include <linux/compiler.h>
11#include <linux/export.h>
Oskar Schirmer8759ef32009-06-11 14:51:15 +010012
13/*
14 * calculate best rational approximation for a given fraction
15 * taking into account restricted register size, e.g. to find
16 * appropriate values for a pll with 5 bit denominator and
17 * 8 bit numerator register fields, trying to set up with a
18 * frequency ratio of 3.1415, one would say:
19 *
20 * rational_best_approximation(31415, 10000,
21 * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
22 *
23 * you may look at given_numerator as a fixed point number,
24 * with the fractional part size described in given_denominator.
25 *
26 * for theoretical background, see:
27 * http://en.wikipedia.org/wiki/Continued_fraction
28 */
29
30void rational_best_approximation(
31 unsigned long given_numerator, unsigned long given_denominator,
32 unsigned long max_numerator, unsigned long max_denominator,
33 unsigned long *best_numerator, unsigned long *best_denominator)
34{
35 unsigned long n, d, n0, d0, n1, d1;
36 n = given_numerator;
37 d = given_denominator;
38 n0 = d1 = 0;
39 n1 = d0 = 1;
40 for (;;) {
41 unsigned long t, a;
42 if ((n1 > max_numerator) || (d1 > max_denominator)) {
43 n1 = n0;
44 d1 = d0;
45 break;
46 }
47 if (d == 0)
48 break;
49 t = d;
50 a = n / d;
51 d = n % d;
52 n = t;
53 t = n0 + a * n1;
54 n0 = n1;
55 n1 = t;
56 t = d0 + a * d1;
57 d0 = d1;
58 d1 = t;
59 }
60 *best_numerator = n1;
61 *best_denominator = d1;
62}
63
64EXPORT_SYMBOL(rational_best_approximation);