Tony Lindgren | 3179a01 | 2005-11-10 14:26:48 +0000 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/arm/mach-omap1/clock.c |
| 3 | * |
| 4 | * Copyright (C) 2004 - 2005 Nokia corporation |
| 5 | * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> |
| 6 | * |
| 7 | * Modified to use omap shared clock framework by |
| 8 | * Tony Lindgren <tony@atomide.com> |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License version 2 as |
| 12 | * published by the Free Software Foundation. |
| 13 | */ |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/list.h> |
| 17 | #include <linux/errno.h> |
| 18 | #include <linux/err.h> |
Russell King | f8ce254 | 2006-01-07 16:15:52 +0000 | [diff] [blame^] | 19 | #include <linux/clk.h> |
Tony Lindgren | 3179a01 | 2005-11-10 14:26:48 +0000 | [diff] [blame] | 20 | |
| 21 | #include <asm/io.h> |
Tony Lindgren | 3179a01 | 2005-11-10 14:26:48 +0000 | [diff] [blame] | 22 | |
| 23 | #include <asm/arch/usb.h> |
| 24 | #include <asm/arch/clock.h> |
| 25 | #include <asm/arch/sram.h> |
| 26 | |
| 27 | #include "clock.h" |
| 28 | |
| 29 | __u32 arm_idlect1_mask; |
| 30 | |
| 31 | /*------------------------------------------------------------------------- |
| 32 | * Omap1 specific clock functions |
| 33 | *-------------------------------------------------------------------------*/ |
| 34 | |
| 35 | static void omap1_watchdog_recalc(struct clk * clk) |
| 36 | { |
| 37 | clk->rate = clk->parent->rate / 14; |
| 38 | } |
| 39 | |
| 40 | static void omap1_uart_recalc(struct clk * clk) |
| 41 | { |
| 42 | unsigned int val = omap_readl(clk->enable_reg); |
| 43 | if (val & clk->enable_bit) |
| 44 | clk->rate = 48000000; |
| 45 | else |
| 46 | clk->rate = 12000000; |
| 47 | } |
| 48 | |
| 49 | static int omap1_clk_enable_dsp_domain(struct clk *clk) |
| 50 | { |
| 51 | int retval; |
| 52 | |
| 53 | retval = omap1_clk_use(&api_ck.clk); |
| 54 | if (!retval) { |
| 55 | retval = omap1_clk_enable(clk); |
| 56 | omap1_clk_unuse(&api_ck.clk); |
| 57 | } |
| 58 | |
| 59 | return retval; |
| 60 | } |
| 61 | |
| 62 | static void omap1_clk_disable_dsp_domain(struct clk *clk) |
| 63 | { |
| 64 | if (omap1_clk_use(&api_ck.clk) == 0) { |
| 65 | omap1_clk_disable(clk); |
| 66 | omap1_clk_unuse(&api_ck.clk); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | static int omap1_clk_enable_uart_functional(struct clk *clk) |
| 71 | { |
| 72 | int ret; |
| 73 | struct uart_clk *uclk; |
| 74 | |
| 75 | ret = omap1_clk_enable(clk); |
| 76 | if (ret == 0) { |
| 77 | /* Set smart idle acknowledgement mode */ |
| 78 | uclk = (struct uart_clk *)clk; |
| 79 | omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8, |
| 80 | uclk->sysc_addr); |
| 81 | } |
| 82 | |
| 83 | return ret; |
| 84 | } |
| 85 | |
| 86 | static void omap1_clk_disable_uart_functional(struct clk *clk) |
| 87 | { |
| 88 | struct uart_clk *uclk; |
| 89 | |
| 90 | /* Set force idle acknowledgement mode */ |
| 91 | uclk = (struct uart_clk *)clk; |
| 92 | omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr); |
| 93 | |
| 94 | omap1_clk_disable(clk); |
| 95 | } |
| 96 | |
| 97 | static void omap1_clk_allow_idle(struct clk *clk) |
| 98 | { |
| 99 | struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; |
| 100 | |
| 101 | if (!(clk->flags & CLOCK_IDLE_CONTROL)) |
| 102 | return; |
| 103 | |
| 104 | if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count)) |
| 105 | arm_idlect1_mask |= 1 << iclk->idlect_shift; |
| 106 | } |
| 107 | |
| 108 | static void omap1_clk_deny_idle(struct clk *clk) |
| 109 | { |
| 110 | struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; |
| 111 | |
| 112 | if (!(clk->flags & CLOCK_IDLE_CONTROL)) |
| 113 | return; |
| 114 | |
| 115 | if (iclk->no_idle_count++ == 0) |
| 116 | arm_idlect1_mask &= ~(1 << iclk->idlect_shift); |
| 117 | } |
| 118 | |
| 119 | static __u16 verify_ckctl_value(__u16 newval) |
| 120 | { |
| 121 | /* This function checks for following limitations set |
| 122 | * by the hardware (all conditions must be true): |
| 123 | * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 |
| 124 | * ARM_CK >= TC_CK |
| 125 | * DSP_CK >= TC_CK |
| 126 | * DSPMMU_CK >= TC_CK |
| 127 | * |
| 128 | * In addition following rules are enforced: |
| 129 | * LCD_CK <= TC_CK |
| 130 | * ARMPER_CK <= TC_CK |
| 131 | * |
| 132 | * However, maximum frequencies are not checked for! |
| 133 | */ |
| 134 | __u8 per_exp; |
| 135 | __u8 lcd_exp; |
| 136 | __u8 arm_exp; |
| 137 | __u8 dsp_exp; |
| 138 | __u8 tc_exp; |
| 139 | __u8 dspmmu_exp; |
| 140 | |
| 141 | per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3; |
| 142 | lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3; |
| 143 | arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3; |
| 144 | dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3; |
| 145 | tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3; |
| 146 | dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3; |
| 147 | |
| 148 | if (dspmmu_exp < dsp_exp) |
| 149 | dspmmu_exp = dsp_exp; |
| 150 | if (dspmmu_exp > dsp_exp+1) |
| 151 | dspmmu_exp = dsp_exp+1; |
| 152 | if (tc_exp < arm_exp) |
| 153 | tc_exp = arm_exp; |
| 154 | if (tc_exp < dspmmu_exp) |
| 155 | tc_exp = dspmmu_exp; |
| 156 | if (tc_exp > lcd_exp) |
| 157 | lcd_exp = tc_exp; |
| 158 | if (tc_exp > per_exp) |
| 159 | per_exp = tc_exp; |
| 160 | |
| 161 | newval &= 0xf000; |
| 162 | newval |= per_exp << CKCTL_PERDIV_OFFSET; |
| 163 | newval |= lcd_exp << CKCTL_LCDDIV_OFFSET; |
| 164 | newval |= arm_exp << CKCTL_ARMDIV_OFFSET; |
| 165 | newval |= dsp_exp << CKCTL_DSPDIV_OFFSET; |
| 166 | newval |= tc_exp << CKCTL_TCDIV_OFFSET; |
| 167 | newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET; |
| 168 | |
| 169 | return newval; |
| 170 | } |
| 171 | |
| 172 | static int calc_dsor_exp(struct clk *clk, unsigned long rate) |
| 173 | { |
| 174 | /* Note: If target frequency is too low, this function will return 4, |
| 175 | * which is invalid value. Caller must check for this value and act |
| 176 | * accordingly. |
| 177 | * |
| 178 | * Note: This function does not check for following limitations set |
| 179 | * by the hardware (all conditions must be true): |
| 180 | * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 |
| 181 | * ARM_CK >= TC_CK |
| 182 | * DSP_CK >= TC_CK |
| 183 | * DSPMMU_CK >= TC_CK |
| 184 | */ |
| 185 | unsigned long realrate; |
| 186 | struct clk * parent; |
| 187 | unsigned dsor_exp; |
| 188 | |
| 189 | if (unlikely(!(clk->flags & RATE_CKCTL))) |
| 190 | return -EINVAL; |
| 191 | |
| 192 | parent = clk->parent; |
| 193 | if (unlikely(parent == 0)) |
| 194 | return -EIO; |
| 195 | |
| 196 | realrate = parent->rate; |
| 197 | for (dsor_exp=0; dsor_exp<4; dsor_exp++) { |
| 198 | if (realrate <= rate) |
| 199 | break; |
| 200 | |
| 201 | realrate /= 2; |
| 202 | } |
| 203 | |
| 204 | return dsor_exp; |
| 205 | } |
| 206 | |
| 207 | static void omap1_ckctl_recalc(struct clk * clk) |
| 208 | { |
| 209 | int dsor; |
| 210 | |
| 211 | /* Calculate divisor encoded as 2-bit exponent */ |
| 212 | dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset)); |
| 213 | |
| 214 | if (unlikely(clk->rate == clk->parent->rate / dsor)) |
| 215 | return; /* No change, quick exit */ |
| 216 | clk->rate = clk->parent->rate / dsor; |
| 217 | |
| 218 | if (unlikely(clk->flags & RATE_PROPAGATES)) |
| 219 | propagate_rate(clk); |
| 220 | } |
| 221 | |
| 222 | static void omap1_ckctl_recalc_dsp_domain(struct clk * clk) |
| 223 | { |
| 224 | int dsor; |
| 225 | |
| 226 | /* Calculate divisor encoded as 2-bit exponent |
| 227 | * |
| 228 | * The clock control bits are in DSP domain, |
| 229 | * so api_ck is needed for access. |
| 230 | * Note that DSP_CKCTL virt addr = phys addr, so |
| 231 | * we must use __raw_readw() instead of omap_readw(). |
| 232 | */ |
| 233 | omap1_clk_use(&api_ck.clk); |
| 234 | dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset)); |
| 235 | omap1_clk_unuse(&api_ck.clk); |
| 236 | |
| 237 | if (unlikely(clk->rate == clk->parent->rate / dsor)) |
| 238 | return; /* No change, quick exit */ |
| 239 | clk->rate = clk->parent->rate / dsor; |
| 240 | |
| 241 | if (unlikely(clk->flags & RATE_PROPAGATES)) |
| 242 | propagate_rate(clk); |
| 243 | } |
| 244 | |
| 245 | /* MPU virtual clock functions */ |
| 246 | static int omap1_select_table_rate(struct clk * clk, unsigned long rate) |
| 247 | { |
| 248 | /* Find the highest supported frequency <= rate and switch to it */ |
| 249 | struct mpu_rate * ptr; |
| 250 | |
| 251 | if (clk != &virtual_ck_mpu) |
| 252 | return -EINVAL; |
| 253 | |
| 254 | for (ptr = rate_table; ptr->rate; ptr++) { |
| 255 | if (ptr->xtal != ck_ref.rate) |
| 256 | continue; |
| 257 | |
| 258 | /* DPLL1 cannot be reprogrammed without risking system crash */ |
| 259 | if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate) |
| 260 | continue; |
| 261 | |
| 262 | /* Can check only after xtal frequency check */ |
| 263 | if (ptr->rate <= rate) |
| 264 | break; |
| 265 | } |
| 266 | |
| 267 | if (!ptr->rate) |
| 268 | return -EINVAL; |
| 269 | |
| 270 | /* |
| 271 | * In most cases we should not need to reprogram DPLL. |
| 272 | * Reprogramming the DPLL is tricky, it must be done from SRAM. |
| 273 | */ |
| 274 | omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val); |
| 275 | |
| 276 | ck_dpll1.rate = ptr->pll_rate; |
| 277 | propagate_rate(&ck_dpll1); |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate) |
| 282 | { |
| 283 | int ret = -EINVAL; |
| 284 | int dsor_exp; |
| 285 | __u16 regval; |
| 286 | |
| 287 | if (clk->flags & RATE_CKCTL) { |
| 288 | dsor_exp = calc_dsor_exp(clk, rate); |
| 289 | if (dsor_exp > 3) |
| 290 | dsor_exp = -EINVAL; |
| 291 | if (dsor_exp < 0) |
| 292 | return dsor_exp; |
| 293 | |
| 294 | regval = __raw_readw(DSP_CKCTL); |
| 295 | regval &= ~(3 << clk->rate_offset); |
| 296 | regval |= dsor_exp << clk->rate_offset; |
| 297 | __raw_writew(regval, DSP_CKCTL); |
| 298 | clk->rate = clk->parent->rate / (1 << dsor_exp); |
| 299 | ret = 0; |
| 300 | } |
| 301 | |
| 302 | if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) |
| 303 | propagate_rate(clk); |
| 304 | |
| 305 | return ret; |
| 306 | } |
| 307 | |
| 308 | static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate) |
| 309 | { |
| 310 | /* Find the highest supported frequency <= rate */ |
| 311 | struct mpu_rate * ptr; |
| 312 | long highest_rate; |
| 313 | |
| 314 | if (clk != &virtual_ck_mpu) |
| 315 | return -EINVAL; |
| 316 | |
| 317 | highest_rate = -EINVAL; |
| 318 | |
| 319 | for (ptr = rate_table; ptr->rate; ptr++) { |
| 320 | if (ptr->xtal != ck_ref.rate) |
| 321 | continue; |
| 322 | |
| 323 | highest_rate = ptr->rate; |
| 324 | |
| 325 | /* Can check only after xtal frequency check */ |
| 326 | if (ptr->rate <= rate) |
| 327 | break; |
| 328 | } |
| 329 | |
| 330 | return highest_rate; |
| 331 | } |
| 332 | |
| 333 | static unsigned calc_ext_dsor(unsigned long rate) |
| 334 | { |
| 335 | unsigned dsor; |
| 336 | |
| 337 | /* MCLK and BCLK divisor selection is not linear: |
| 338 | * freq = 96MHz / dsor |
| 339 | * |
| 340 | * RATIO_SEL range: dsor <-> RATIO_SEL |
| 341 | * 0..6: (RATIO_SEL+2) <-> (dsor-2) |
| 342 | * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6) |
| 343 | * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9 |
| 344 | * can not be used. |
| 345 | */ |
| 346 | for (dsor = 2; dsor < 96; ++dsor) { |
| 347 | if ((dsor & 1) && dsor > 8) |
| 348 | continue; |
| 349 | if (rate >= 96000000 / dsor) |
| 350 | break; |
| 351 | } |
| 352 | return dsor; |
| 353 | } |
| 354 | |
| 355 | /* Only needed on 1510 */ |
| 356 | static int omap1_set_uart_rate(struct clk * clk, unsigned long rate) |
| 357 | { |
| 358 | unsigned int val; |
| 359 | |
| 360 | val = omap_readl(clk->enable_reg); |
| 361 | if (rate == 12000000) |
| 362 | val &= ~(1 << clk->enable_bit); |
| 363 | else if (rate == 48000000) |
| 364 | val |= (1 << clk->enable_bit); |
| 365 | else |
| 366 | return -EINVAL; |
| 367 | omap_writel(val, clk->enable_reg); |
| 368 | clk->rate = rate; |
| 369 | |
| 370 | return 0; |
| 371 | } |
| 372 | |
| 373 | /* External clock (MCLK & BCLK) functions */ |
| 374 | static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate) |
| 375 | { |
| 376 | unsigned dsor; |
| 377 | __u16 ratio_bits; |
| 378 | |
| 379 | dsor = calc_ext_dsor(rate); |
| 380 | clk->rate = 96000000 / dsor; |
| 381 | if (dsor > 8) |
| 382 | ratio_bits = ((dsor - 8) / 2 + 6) << 2; |
| 383 | else |
| 384 | ratio_bits = (dsor - 2) << 2; |
| 385 | |
| 386 | ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd; |
| 387 | omap_writew(ratio_bits, clk->enable_reg); |
| 388 | |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate) |
| 393 | { |
| 394 | return 96000000 / calc_ext_dsor(rate); |
| 395 | } |
| 396 | |
| 397 | static void omap1_init_ext_clk(struct clk * clk) |
| 398 | { |
| 399 | unsigned dsor; |
| 400 | __u16 ratio_bits; |
| 401 | |
| 402 | /* Determine current rate and ensure clock is based on 96MHz APLL */ |
| 403 | ratio_bits = omap_readw(clk->enable_reg) & ~1; |
| 404 | omap_writew(ratio_bits, clk->enable_reg); |
| 405 | |
| 406 | ratio_bits = (ratio_bits & 0xfc) >> 2; |
| 407 | if (ratio_bits > 6) |
| 408 | dsor = (ratio_bits - 6) * 2 + 8; |
| 409 | else |
| 410 | dsor = ratio_bits + 2; |
| 411 | |
| 412 | clk-> rate = 96000000 / dsor; |
| 413 | } |
| 414 | |
| 415 | static int omap1_clk_use(struct clk *clk) |
| 416 | { |
| 417 | int ret = 0; |
| 418 | if (clk->usecount++ == 0) { |
| 419 | if (likely(clk->parent)) { |
| 420 | ret = omap1_clk_use(clk->parent); |
| 421 | |
| 422 | if (unlikely(ret != 0)) { |
| 423 | clk->usecount--; |
| 424 | return ret; |
| 425 | } |
| 426 | |
| 427 | if (clk->flags & CLOCK_NO_IDLE_PARENT) |
| 428 | if (!cpu_is_omap24xx()) |
| 429 | omap1_clk_deny_idle(clk->parent); |
| 430 | } |
| 431 | |
| 432 | ret = clk->enable(clk); |
| 433 | |
| 434 | if (unlikely(ret != 0) && clk->parent) { |
| 435 | omap1_clk_unuse(clk->parent); |
| 436 | clk->usecount--; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | return ret; |
| 441 | } |
| 442 | |
| 443 | static void omap1_clk_unuse(struct clk *clk) |
| 444 | { |
| 445 | if (clk->usecount > 0 && !(--clk->usecount)) { |
| 446 | clk->disable(clk); |
| 447 | if (likely(clk->parent)) { |
| 448 | omap1_clk_unuse(clk->parent); |
| 449 | if (clk->flags & CLOCK_NO_IDLE_PARENT) |
| 450 | if (!cpu_is_omap24xx()) |
| 451 | omap1_clk_allow_idle(clk->parent); |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | static int omap1_clk_enable(struct clk *clk) |
| 457 | { |
| 458 | __u16 regval16; |
| 459 | __u32 regval32; |
| 460 | |
| 461 | if (clk->flags & ALWAYS_ENABLED) |
| 462 | return 0; |
| 463 | |
| 464 | if (unlikely(clk->enable_reg == 0)) { |
| 465 | printk(KERN_ERR "clock.c: Enable for %s without enable code\n", |
| 466 | clk->name); |
| 467 | return 0; |
| 468 | } |
| 469 | |
| 470 | if (clk->flags & ENABLE_REG_32BIT) { |
| 471 | if (clk->flags & VIRTUAL_IO_ADDRESS) { |
| 472 | regval32 = __raw_readl(clk->enable_reg); |
| 473 | regval32 |= (1 << clk->enable_bit); |
| 474 | __raw_writel(regval32, clk->enable_reg); |
| 475 | } else { |
| 476 | regval32 = omap_readl(clk->enable_reg); |
| 477 | regval32 |= (1 << clk->enable_bit); |
| 478 | omap_writel(regval32, clk->enable_reg); |
| 479 | } |
| 480 | } else { |
| 481 | if (clk->flags & VIRTUAL_IO_ADDRESS) { |
| 482 | regval16 = __raw_readw(clk->enable_reg); |
| 483 | regval16 |= (1 << clk->enable_bit); |
| 484 | __raw_writew(regval16, clk->enable_reg); |
| 485 | } else { |
| 486 | regval16 = omap_readw(clk->enable_reg); |
| 487 | regval16 |= (1 << clk->enable_bit); |
| 488 | omap_writew(regval16, clk->enable_reg); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | static void omap1_clk_disable(struct clk *clk) |
| 496 | { |
| 497 | __u16 regval16; |
| 498 | __u32 regval32; |
| 499 | |
| 500 | if (clk->enable_reg == 0) |
| 501 | return; |
| 502 | |
| 503 | if (clk->flags & ENABLE_REG_32BIT) { |
| 504 | if (clk->flags & VIRTUAL_IO_ADDRESS) { |
| 505 | regval32 = __raw_readl(clk->enable_reg); |
| 506 | regval32 &= ~(1 << clk->enable_bit); |
| 507 | __raw_writel(regval32, clk->enable_reg); |
| 508 | } else { |
| 509 | regval32 = omap_readl(clk->enable_reg); |
| 510 | regval32 &= ~(1 << clk->enable_bit); |
| 511 | omap_writel(regval32, clk->enable_reg); |
| 512 | } |
| 513 | } else { |
| 514 | if (clk->flags & VIRTUAL_IO_ADDRESS) { |
| 515 | regval16 = __raw_readw(clk->enable_reg); |
| 516 | regval16 &= ~(1 << clk->enable_bit); |
| 517 | __raw_writew(regval16, clk->enable_reg); |
| 518 | } else { |
| 519 | regval16 = omap_readw(clk->enable_reg); |
| 520 | regval16 &= ~(1 << clk->enable_bit); |
| 521 | omap_writew(regval16, clk->enable_reg); |
| 522 | } |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | static long omap1_clk_round_rate(struct clk *clk, unsigned long rate) |
| 527 | { |
| 528 | int dsor_exp; |
| 529 | |
| 530 | if (clk->flags & RATE_FIXED) |
| 531 | return clk->rate; |
| 532 | |
| 533 | if (clk->flags & RATE_CKCTL) { |
| 534 | dsor_exp = calc_dsor_exp(clk, rate); |
| 535 | if (dsor_exp < 0) |
| 536 | return dsor_exp; |
| 537 | if (dsor_exp > 3) |
| 538 | dsor_exp = 3; |
| 539 | return clk->parent->rate / (1 << dsor_exp); |
| 540 | } |
| 541 | |
| 542 | if(clk->round_rate != 0) |
| 543 | return clk->round_rate(clk, rate); |
| 544 | |
| 545 | return clk->rate; |
| 546 | } |
| 547 | |
| 548 | static int omap1_clk_set_rate(struct clk *clk, unsigned long rate) |
| 549 | { |
| 550 | int ret = -EINVAL; |
| 551 | int dsor_exp; |
| 552 | __u16 regval; |
| 553 | |
| 554 | if (clk->set_rate) |
| 555 | ret = clk->set_rate(clk, rate); |
| 556 | else if (clk->flags & RATE_CKCTL) { |
| 557 | dsor_exp = calc_dsor_exp(clk, rate); |
| 558 | if (dsor_exp > 3) |
| 559 | dsor_exp = -EINVAL; |
| 560 | if (dsor_exp < 0) |
| 561 | return dsor_exp; |
| 562 | |
| 563 | regval = omap_readw(ARM_CKCTL); |
| 564 | regval &= ~(3 << clk->rate_offset); |
| 565 | regval |= dsor_exp << clk->rate_offset; |
| 566 | regval = verify_ckctl_value(regval); |
| 567 | omap_writew(regval, ARM_CKCTL); |
| 568 | clk->rate = clk->parent->rate / (1 << dsor_exp); |
| 569 | ret = 0; |
| 570 | } |
| 571 | |
| 572 | if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) |
| 573 | propagate_rate(clk); |
| 574 | |
| 575 | return ret; |
| 576 | } |
| 577 | |
| 578 | /*------------------------------------------------------------------------- |
| 579 | * Omap1 clock reset and init functions |
| 580 | *-------------------------------------------------------------------------*/ |
| 581 | |
| 582 | #ifdef CONFIG_OMAP_RESET_CLOCKS |
| 583 | /* |
| 584 | * Resets some clocks that may be left on from bootloader, |
| 585 | * but leaves serial clocks on. See also omap_late_clk_reset(). |
| 586 | */ |
| 587 | static inline void omap1_early_clk_reset(void) |
| 588 | { |
| 589 | //omap_writel(0x3 << 29, MOD_CONF_CTRL_0); |
| 590 | } |
| 591 | |
| 592 | static int __init omap1_late_clk_reset(void) |
| 593 | { |
| 594 | /* Turn off all unused clocks */ |
| 595 | struct clk *p; |
| 596 | __u32 regval32; |
| 597 | |
| 598 | /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */ |
| 599 | regval32 = omap_readw(SOFT_REQ_REG) & (1 << 4); |
| 600 | omap_writew(regval32, SOFT_REQ_REG); |
| 601 | omap_writew(0, SOFT_REQ_REG2); |
| 602 | |
| 603 | list_for_each_entry(p, &clocks, node) { |
| 604 | if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) || |
| 605 | p->enable_reg == 0) |
| 606 | continue; |
| 607 | |
| 608 | /* Clocks in the DSP domain need api_ck. Just assume bootloader |
| 609 | * has not enabled any DSP clocks */ |
| 610 | if ((u32)p->enable_reg == DSP_IDLECT2) { |
| 611 | printk(KERN_INFO "Skipping reset check for DSP domain " |
| 612 | "clock \"%s\"\n", p->name); |
| 613 | continue; |
| 614 | } |
| 615 | |
| 616 | /* Is the clock already disabled? */ |
| 617 | if (p->flags & ENABLE_REG_32BIT) { |
| 618 | if (p->flags & VIRTUAL_IO_ADDRESS) |
| 619 | regval32 = __raw_readl(p->enable_reg); |
| 620 | else |
| 621 | regval32 = omap_readl(p->enable_reg); |
| 622 | } else { |
| 623 | if (p->flags & VIRTUAL_IO_ADDRESS) |
| 624 | regval32 = __raw_readw(p->enable_reg); |
| 625 | else |
| 626 | regval32 = omap_readw(p->enable_reg); |
| 627 | } |
| 628 | |
| 629 | if ((regval32 & (1 << p->enable_bit)) == 0) |
| 630 | continue; |
| 631 | |
| 632 | /* FIXME: This clock seems to be necessary but no-one |
| 633 | * has asked for its activation. */ |
| 634 | if (p == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera |
| 635 | || p == &ck_dpll1out.clk // FIX: SoSSI, SSR |
| 636 | || p == &arm_gpio_ck // FIX: GPIO code for 1510 |
| 637 | ) { |
| 638 | printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n", |
| 639 | p->name); |
| 640 | continue; |
| 641 | } |
| 642 | |
| 643 | printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name); |
| 644 | p->disable(p); |
| 645 | printk(" done\n"); |
| 646 | } |
| 647 | |
| 648 | return 0; |
| 649 | } |
| 650 | late_initcall(omap1_late_clk_reset); |
| 651 | |
| 652 | #else |
| 653 | #define omap1_early_clk_reset() {} |
| 654 | #endif |
| 655 | |
| 656 | static struct clk_functions omap1_clk_functions = { |
| 657 | .clk_use = omap1_clk_use, |
| 658 | .clk_unuse = omap1_clk_unuse, |
| 659 | .clk_round_rate = omap1_clk_round_rate, |
| 660 | .clk_set_rate = omap1_clk_set_rate, |
| 661 | }; |
| 662 | |
| 663 | int __init omap1_clk_init(void) |
| 664 | { |
| 665 | struct clk ** clkp; |
| 666 | const struct omap_clock_config *info; |
| 667 | int crystal_type = 0; /* Default 12 MHz */ |
| 668 | |
| 669 | omap1_early_clk_reset(); |
| 670 | clk_init(&omap1_clk_functions); |
| 671 | |
| 672 | /* By default all idlect1 clocks are allowed to idle */ |
| 673 | arm_idlect1_mask = ~0; |
| 674 | |
| 675 | for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) { |
| 676 | if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) { |
| 677 | clk_register(*clkp); |
| 678 | continue; |
| 679 | } |
| 680 | |
| 681 | if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) { |
| 682 | clk_register(*clkp); |
| 683 | continue; |
| 684 | } |
| 685 | |
| 686 | if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) { |
| 687 | clk_register(*clkp); |
| 688 | continue; |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config); |
| 693 | if (info != NULL) { |
| 694 | if (!cpu_is_omap1510()) |
| 695 | crystal_type = info->system_clock_type; |
| 696 | } |
| 697 | |
| 698 | #if defined(CONFIG_ARCH_OMAP730) |
| 699 | ck_ref.rate = 13000000; |
| 700 | #elif defined(CONFIG_ARCH_OMAP16XX) |
| 701 | if (crystal_type == 2) |
| 702 | ck_ref.rate = 19200000; |
| 703 | #endif |
| 704 | |
| 705 | printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n", |
| 706 | omap_readw(ARM_SYSST), omap_readw(DPLL_CTL), |
| 707 | omap_readw(ARM_CKCTL)); |
| 708 | |
| 709 | /* We want to be in syncronous scalable mode */ |
| 710 | omap_writew(0x1000, ARM_SYSST); |
| 711 | |
| 712 | #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER |
| 713 | /* Use values set by bootloader. Determine PLL rate and recalculate |
| 714 | * dependent clocks as if kernel had changed PLL or divisors. |
| 715 | */ |
| 716 | { |
| 717 | unsigned pll_ctl_val = omap_readw(DPLL_CTL); |
| 718 | |
| 719 | ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */ |
| 720 | if (pll_ctl_val & 0x10) { |
| 721 | /* PLL enabled, apply multiplier and divisor */ |
| 722 | if (pll_ctl_val & 0xf80) |
| 723 | ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7; |
| 724 | ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1; |
| 725 | } else { |
| 726 | /* PLL disabled, apply bypass divisor */ |
| 727 | switch (pll_ctl_val & 0xc) { |
| 728 | case 0: |
| 729 | break; |
| 730 | case 0x4: |
| 731 | ck_dpll1.rate /= 2; |
| 732 | break; |
| 733 | default: |
| 734 | ck_dpll1.rate /= 4; |
| 735 | break; |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | propagate_rate(&ck_dpll1); |
| 740 | #else |
| 741 | /* Find the highest supported frequency and enable it */ |
| 742 | if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) { |
| 743 | printk(KERN_ERR "System frequencies not set. Check your config.\n"); |
| 744 | /* Guess sane values (60MHz) */ |
| 745 | omap_writew(0x2290, DPLL_CTL); |
| 746 | omap_writew(0x1005, ARM_CKCTL); |
| 747 | ck_dpll1.rate = 60000000; |
| 748 | propagate_rate(&ck_dpll1); |
| 749 | } |
| 750 | #endif |
| 751 | /* Cache rates for clocks connected to ck_ref (not dpll1) */ |
| 752 | propagate_rate(&ck_ref); |
| 753 | printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): " |
| 754 | "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n", |
| 755 | ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10, |
| 756 | ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10, |
| 757 | arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10); |
| 758 | |
| 759 | #ifdef CONFIG_MACH_OMAP_PERSEUS2 |
| 760 | /* Select slicer output as OMAP input clock */ |
| 761 | omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL); |
| 762 | #endif |
| 763 | |
| 764 | /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */ |
| 765 | omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL); |
| 766 | |
| 767 | /* Put DSP/MPUI into reset until needed */ |
| 768 | omap_writew(0, ARM_RSTCT1); |
| 769 | omap_writew(1, ARM_RSTCT2); |
| 770 | omap_writew(0x400, ARM_IDLECT1); |
| 771 | |
| 772 | /* |
| 773 | * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8) |
| 774 | * of the ARM_IDLECT2 register must be set to zero. The power-on |
| 775 | * default value of this bit is one. |
| 776 | */ |
| 777 | omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */ |
| 778 | |
| 779 | /* |
| 780 | * Only enable those clocks we will need, let the drivers |
| 781 | * enable other clocks as necessary |
| 782 | */ |
| 783 | clk_use(&armper_ck.clk); |
| 784 | clk_use(&armxor_ck.clk); |
| 785 | clk_use(&armtim_ck.clk); /* This should be done by timer code */ |
| 786 | |
| 787 | if (cpu_is_omap1510()) |
| 788 | clk_enable(&arm_gpio_ck); |
| 789 | |
| 790 | return 0; |
| 791 | } |
| 792 | |