blob: 03e3ec74f3fbaf821f2a28b0aa7bc6391bbcc571 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/* Change Log
32 * 5.3.12 6/7/04
33 * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34 * - if_mii support and associated kcompat for older kernels
35 * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36 * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37 *
38 * 5.7.1 12/16/04
39 * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
40 * fix was removed as it caused system instability. The suspected cause of
41 * this is the called to e1000_irq_disable in e1000_intr. Inlined the
42 * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
43 * 5.7.0 12/10/04
44 * - include fix to the condition that determines when to quit NAPI - Robert Olsson
45 * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
46 * 5.6.5 11/01/04
47 * - Enabling NETIF_F_SG without checksum offload is illegal -
48 John Mason <jdmason@us.ibm.com>
49 * 5.6.3 10/26/04
50 * - Remove redundant initialization - Jamal Hadi
51 * - Reset buffer_info->dma in tx resource cleanup logic
52 * 5.6.2 10/12/04
53 * - Avoid filling tx_ring completely - shemminger@osdl.org
54 * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
55 * nacc@us.ibm.com
56 * - Sparse cleanup - shemminger@osdl.org
57 * - Fix tx resource cleanup logic
58 * - LLTX support - ak@suse.de and hadi@cyberus.ca
59 */
60
61char e1000_driver_name[] = "e1000";
62char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
63#ifndef CONFIG_E1000_NAPI
64#define DRIVERNAPI
65#else
66#define DRIVERNAPI "-NAPI"
67#endif
68#define DRV_VERSION "5.7.6-k2"DRIVERNAPI
69char e1000_driver_version[] = DRV_VERSION;
70char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
71
72/* e1000_pci_tbl - PCI Device ID Table
73 *
74 * Last entry must be all 0s
75 *
76 * Macro expands to...
77 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
78 */
79static struct pci_device_id e1000_pci_tbl[] = {
80 INTEL_E1000_ETHERNET_DEVICE(0x1000),
81 INTEL_E1000_ETHERNET_DEVICE(0x1001),
82 INTEL_E1000_ETHERNET_DEVICE(0x1004),
83 INTEL_E1000_ETHERNET_DEVICE(0x1008),
84 INTEL_E1000_ETHERNET_DEVICE(0x1009),
85 INTEL_E1000_ETHERNET_DEVICE(0x100C),
86 INTEL_E1000_ETHERNET_DEVICE(0x100D),
87 INTEL_E1000_ETHERNET_DEVICE(0x100E),
88 INTEL_E1000_ETHERNET_DEVICE(0x100F),
89 INTEL_E1000_ETHERNET_DEVICE(0x1010),
90 INTEL_E1000_ETHERNET_DEVICE(0x1011),
91 INTEL_E1000_ETHERNET_DEVICE(0x1012),
92 INTEL_E1000_ETHERNET_DEVICE(0x1013),
93 INTEL_E1000_ETHERNET_DEVICE(0x1014),
94 INTEL_E1000_ETHERNET_DEVICE(0x1015),
95 INTEL_E1000_ETHERNET_DEVICE(0x1016),
96 INTEL_E1000_ETHERNET_DEVICE(0x1017),
97 INTEL_E1000_ETHERNET_DEVICE(0x1018),
98 INTEL_E1000_ETHERNET_DEVICE(0x1019),
99 INTEL_E1000_ETHERNET_DEVICE(0x101D),
100 INTEL_E1000_ETHERNET_DEVICE(0x101E),
101 INTEL_E1000_ETHERNET_DEVICE(0x1026),
102 INTEL_E1000_ETHERNET_DEVICE(0x1027),
103 INTEL_E1000_ETHERNET_DEVICE(0x1028),
104 INTEL_E1000_ETHERNET_DEVICE(0x1075),
105 INTEL_E1000_ETHERNET_DEVICE(0x1076),
106 INTEL_E1000_ETHERNET_DEVICE(0x1077),
107 INTEL_E1000_ETHERNET_DEVICE(0x1078),
108 INTEL_E1000_ETHERNET_DEVICE(0x1079),
109 INTEL_E1000_ETHERNET_DEVICE(0x107A),
110 INTEL_E1000_ETHERNET_DEVICE(0x107B),
111 INTEL_E1000_ETHERNET_DEVICE(0x107C),
112 INTEL_E1000_ETHERNET_DEVICE(0x108A),
113 /* required last entry */
114 {0,}
115};
116
117MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
118
119int e1000_up(struct e1000_adapter *adapter);
120void e1000_down(struct e1000_adapter *adapter);
121void e1000_reset(struct e1000_adapter *adapter);
122int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
123int e1000_setup_tx_resources(struct e1000_adapter *adapter);
124int e1000_setup_rx_resources(struct e1000_adapter *adapter);
125void e1000_free_tx_resources(struct e1000_adapter *adapter);
126void e1000_free_rx_resources(struct e1000_adapter *adapter);
127void e1000_update_stats(struct e1000_adapter *adapter);
128
129/* Local Function Prototypes */
130
131static int e1000_init_module(void);
132static void e1000_exit_module(void);
133static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134static void __devexit e1000_remove(struct pci_dev *pdev);
135static int e1000_sw_init(struct e1000_adapter *adapter);
136static int e1000_open(struct net_device *netdev);
137static int e1000_close(struct net_device *netdev);
138static void e1000_configure_tx(struct e1000_adapter *adapter);
139static void e1000_configure_rx(struct e1000_adapter *adapter);
140static void e1000_setup_rctl(struct e1000_adapter *adapter);
141static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
142static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
143static void e1000_set_multi(struct net_device *netdev);
144static void e1000_update_phy_info(unsigned long data);
145static void e1000_watchdog(unsigned long data);
146static void e1000_watchdog_task(struct e1000_adapter *adapter);
147static void e1000_82547_tx_fifo_stall(unsigned long data);
148static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
149static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
150static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
151static int e1000_set_mac(struct net_device *netdev, void *p);
152static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
153static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
154#ifdef CONFIG_E1000_NAPI
155static int e1000_clean(struct net_device *netdev, int *budget);
156static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
157 int *work_done, int work_to_do);
158#else
159static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
160#endif
161static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
162static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
163static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
164 int cmd);
165void e1000_set_ethtool_ops(struct net_device *netdev);
166static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
167static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
168static void e1000_tx_timeout(struct net_device *dev);
169static void e1000_tx_timeout_task(struct net_device *dev);
170static void e1000_smartspeed(struct e1000_adapter *adapter);
171static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
172 struct sk_buff *skb);
173
174static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
175static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
176static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
177static void e1000_restore_vlan(struct e1000_adapter *adapter);
178
179static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
180static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
181#ifdef CONFIG_PM
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184
185#ifdef CONFIG_NET_POLL_CONTROLLER
186/* for netdump / net console */
187static void e1000_netpoll (struct net_device *netdev);
188#endif
189
190struct notifier_block e1000_notifier_reboot = {
191 .notifier_call = e1000_notify_reboot,
192 .next = NULL,
193 .priority = 0
194};
195
196/* Exported from other modules */
197
198extern void e1000_check_options(struct e1000_adapter *adapter);
199
200static struct pci_driver e1000_driver = {
201 .name = e1000_driver_name,
202 .id_table = e1000_pci_tbl,
203 .probe = e1000_probe,
204 .remove = __devexit_p(e1000_remove),
205 /* Power Managment Hooks */
206#ifdef CONFIG_PM
207 .suspend = e1000_suspend,
208 .resume = e1000_resume
209#endif
210};
211
212MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
213MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
214MODULE_LICENSE("GPL");
215MODULE_VERSION(DRV_VERSION);
216
217static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
218module_param(debug, int, 0);
219MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
220
221/**
222 * e1000_init_module - Driver Registration Routine
223 *
224 * e1000_init_module is the first routine called when the driver is
225 * loaded. All it does is register with the PCI subsystem.
226 **/
227
228static int __init
229e1000_init_module(void)
230{
231 int ret;
232 printk(KERN_INFO "%s - version %s\n",
233 e1000_driver_string, e1000_driver_version);
234
235 printk(KERN_INFO "%s\n", e1000_copyright);
236
237 ret = pci_module_init(&e1000_driver);
238 if(ret >= 0) {
239 register_reboot_notifier(&e1000_notifier_reboot);
240 }
241 return ret;
242}
243
244module_init(e1000_init_module);
245
246/**
247 * e1000_exit_module - Driver Exit Cleanup Routine
248 *
249 * e1000_exit_module is called just before the driver is removed
250 * from memory.
251 **/
252
253static void __exit
254e1000_exit_module(void)
255{
256 unregister_reboot_notifier(&e1000_notifier_reboot);
257 pci_unregister_driver(&e1000_driver);
258}
259
260module_exit(e1000_exit_module);
261
262/**
263 * e1000_irq_disable - Mask off interrupt generation on the NIC
264 * @adapter: board private structure
265 **/
266
267static inline void
268e1000_irq_disable(struct e1000_adapter *adapter)
269{
270 atomic_inc(&adapter->irq_sem);
271 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
272 E1000_WRITE_FLUSH(&adapter->hw);
273 synchronize_irq(adapter->pdev->irq);
274}
275
276/**
277 * e1000_irq_enable - Enable default interrupt generation settings
278 * @adapter: board private structure
279 **/
280
281static inline void
282e1000_irq_enable(struct e1000_adapter *adapter)
283{
284 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
285 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
286 E1000_WRITE_FLUSH(&adapter->hw);
287 }
288}
289
290int
291e1000_up(struct e1000_adapter *adapter)
292{
293 struct net_device *netdev = adapter->netdev;
294 int err;
295
296 /* hardware has been reset, we need to reload some things */
297
298 /* Reset the PHY if it was previously powered down */
299 if(adapter->hw.media_type == e1000_media_type_copper) {
300 uint16_t mii_reg;
301 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
302 if(mii_reg & MII_CR_POWER_DOWN)
303 e1000_phy_reset(&adapter->hw);
304 }
305
306 e1000_set_multi(netdev);
307
308 e1000_restore_vlan(adapter);
309
310 e1000_configure_tx(adapter);
311 e1000_setup_rctl(adapter);
312 e1000_configure_rx(adapter);
313 e1000_alloc_rx_buffers(adapter);
314
Malli Chilakalafa4f7ef2005-04-28 19:39:13 -0700315#ifdef CONFIG_PCI_MSI
316 if(adapter->hw.mac_type > e1000_82547_rev_2) {
317 adapter->have_msi = TRUE;
318 if((err = pci_enable_msi(adapter->pdev))) {
319 DPRINTK(PROBE, ERR,
320 "Unable to allocate MSI interrupt Error: %d\n", err);
321 adapter->have_msi = FALSE;
322 }
323 }
324#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700325 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
326 SA_SHIRQ | SA_SAMPLE_RANDOM,
327 netdev->name, netdev)))
328 return err;
329
330 mod_timer(&adapter->watchdog_timer, jiffies);
331 e1000_irq_enable(adapter);
332
333#ifdef CONFIG_E1000_NAPI
334 netif_poll_enable(netdev);
335#endif
336 return 0;
337}
338
339void
340e1000_down(struct e1000_adapter *adapter)
341{
342 struct net_device *netdev = adapter->netdev;
343
344 e1000_irq_disable(adapter);
345 free_irq(adapter->pdev->irq, netdev);
Malli Chilakalafa4f7ef2005-04-28 19:39:13 -0700346#ifdef CONFIG_PCI_MSI
347 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
348 adapter->have_msi == TRUE)
349 pci_disable_msi(adapter->pdev);
350#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700351 del_timer_sync(&adapter->tx_fifo_stall_timer);
352 del_timer_sync(&adapter->watchdog_timer);
353 del_timer_sync(&adapter->phy_info_timer);
354
355#ifdef CONFIG_E1000_NAPI
356 netif_poll_disable(netdev);
357#endif
358 adapter->link_speed = 0;
359 adapter->link_duplex = 0;
360 netif_carrier_off(netdev);
361 netif_stop_queue(netdev);
362
363 e1000_reset(adapter);
364 e1000_clean_tx_ring(adapter);
365 e1000_clean_rx_ring(adapter);
366
367 /* If WoL is not enabled
368 * Power down the PHY so no link is implied when interface is down */
369 if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
370 uint16_t mii_reg;
371 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
372 mii_reg |= MII_CR_POWER_DOWN;
373 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
374 }
375}
376
377void
378e1000_reset(struct e1000_adapter *adapter)
379{
380 uint32_t pba;
381
382 /* Repartition Pba for greater than 9k mtu
383 * To take effect CTRL.RST is required.
384 */
385
386 if(adapter->hw.mac_type < e1000_82547) {
387 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
388 pba = E1000_PBA_40K;
389 else
390 pba = E1000_PBA_48K;
391 } else {
392 if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
393 pba = E1000_PBA_22K;
394 else
395 pba = E1000_PBA_30K;
396 adapter->tx_fifo_head = 0;
397 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
398 adapter->tx_fifo_size =
399 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
400 atomic_set(&adapter->tx_fifo_stall, 0);
401 }
402 E1000_WRITE_REG(&adapter->hw, PBA, pba);
403
404 /* flow control settings */
405 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
406 E1000_FC_HIGH_DIFF;
407 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
408 E1000_FC_LOW_DIFF;
409 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
410 adapter->hw.fc_send_xon = 1;
411 adapter->hw.fc = adapter->hw.original_fc;
412
413 e1000_reset_hw(&adapter->hw);
414 if(adapter->hw.mac_type >= e1000_82544)
415 E1000_WRITE_REG(&adapter->hw, WUC, 0);
416 if(e1000_init_hw(&adapter->hw))
417 DPRINTK(PROBE, ERR, "Hardware Error\n");
418
419 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
420 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
421
422 e1000_reset_adaptive(&adapter->hw);
423 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
424}
425
426/**
427 * e1000_probe - Device Initialization Routine
428 * @pdev: PCI device information struct
429 * @ent: entry in e1000_pci_tbl
430 *
431 * Returns 0 on success, negative on failure
432 *
433 * e1000_probe initializes an adapter identified by a pci_dev structure.
434 * The OS initialization, configuring of the adapter private structure,
435 * and a hardware reset occur.
436 **/
437
438static int __devinit
439e1000_probe(struct pci_dev *pdev,
440 const struct pci_device_id *ent)
441{
442 struct net_device *netdev;
443 struct e1000_adapter *adapter;
444 static int cards_found = 0;
445 unsigned long mmio_start;
446 int mmio_len;
447 int pci_using_dac;
448 int i;
449 int err;
450 uint16_t eeprom_data;
451 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
452
453 if((err = pci_enable_device(pdev)))
454 return err;
455
456 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
457 pci_using_dac = 1;
458 } else {
459 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
460 E1000_ERR("No usable DMA configuration, aborting\n");
461 return err;
462 }
463 pci_using_dac = 0;
464 }
465
466 if((err = pci_request_regions(pdev, e1000_driver_name)))
467 return err;
468
469 pci_set_master(pdev);
470
471 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
472 if(!netdev) {
473 err = -ENOMEM;
474 goto err_alloc_etherdev;
475 }
476
477 SET_MODULE_OWNER(netdev);
478 SET_NETDEV_DEV(netdev, &pdev->dev);
479
480 pci_set_drvdata(pdev, netdev);
481 adapter = netdev->priv;
482 adapter->netdev = netdev;
483 adapter->pdev = pdev;
484 adapter->hw.back = adapter;
485 adapter->msg_enable = (1 << debug) - 1;
486
487 mmio_start = pci_resource_start(pdev, BAR_0);
488 mmio_len = pci_resource_len(pdev, BAR_0);
489
490 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
491 if(!adapter->hw.hw_addr) {
492 err = -EIO;
493 goto err_ioremap;
494 }
495
496 for(i = BAR_1; i <= BAR_5; i++) {
497 if(pci_resource_len(pdev, i) == 0)
498 continue;
499 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
500 adapter->hw.io_base = pci_resource_start(pdev, i);
501 break;
502 }
503 }
504
505 netdev->open = &e1000_open;
506 netdev->stop = &e1000_close;
507 netdev->hard_start_xmit = &e1000_xmit_frame;
508 netdev->get_stats = &e1000_get_stats;
509 netdev->set_multicast_list = &e1000_set_multi;
510 netdev->set_mac_address = &e1000_set_mac;
511 netdev->change_mtu = &e1000_change_mtu;
512 netdev->do_ioctl = &e1000_ioctl;
513 e1000_set_ethtool_ops(netdev);
514 netdev->tx_timeout = &e1000_tx_timeout;
515 netdev->watchdog_timeo = 5 * HZ;
516#ifdef CONFIG_E1000_NAPI
517 netdev->poll = &e1000_clean;
518 netdev->weight = 64;
519#endif
520 netdev->vlan_rx_register = e1000_vlan_rx_register;
521 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
522 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
523#ifdef CONFIG_NET_POLL_CONTROLLER
524 netdev->poll_controller = e1000_netpoll;
525#endif
526 strcpy(netdev->name, pci_name(pdev));
527
528 netdev->mem_start = mmio_start;
529 netdev->mem_end = mmio_start + mmio_len;
530 netdev->base_addr = adapter->hw.io_base;
531
532 adapter->bd_number = cards_found;
533
534 /* setup the private structure */
535
536 if((err = e1000_sw_init(adapter)))
537 goto err_sw_init;
538
539 if(adapter->hw.mac_type >= e1000_82543) {
540 netdev->features = NETIF_F_SG |
541 NETIF_F_HW_CSUM |
542 NETIF_F_HW_VLAN_TX |
543 NETIF_F_HW_VLAN_RX |
544 NETIF_F_HW_VLAN_FILTER;
545 }
546
547#ifdef NETIF_F_TSO
548 if((adapter->hw.mac_type >= e1000_82544) &&
549 (adapter->hw.mac_type != e1000_82547))
550 netdev->features |= NETIF_F_TSO;
551#endif
552 if(pci_using_dac)
553 netdev->features |= NETIF_F_HIGHDMA;
554
555 /* hard_start_xmit is safe against parallel locking */
556 netdev->features |= NETIF_F_LLTX;
557
558 /* before reading the EEPROM, reset the controller to
559 * put the device in a known good starting state */
560
561 e1000_reset_hw(&adapter->hw);
562
563 /* make sure the EEPROM is good */
564
565 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
566 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
567 err = -EIO;
568 goto err_eeprom;
569 }
570
571 /* copy the MAC address out of the EEPROM */
572
573 if (e1000_read_mac_addr(&adapter->hw))
574 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
575 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
576
577 if(!is_valid_ether_addr(netdev->dev_addr)) {
578 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
579 err = -EIO;
580 goto err_eeprom;
581 }
582
583 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
584
585 e1000_get_bus_info(&adapter->hw);
586
587 init_timer(&adapter->tx_fifo_stall_timer);
588 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
589 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
590
591 init_timer(&adapter->watchdog_timer);
592 adapter->watchdog_timer.function = &e1000_watchdog;
593 adapter->watchdog_timer.data = (unsigned long) adapter;
594
595 INIT_WORK(&adapter->watchdog_task,
596 (void (*)(void *))e1000_watchdog_task, adapter);
597
598 init_timer(&adapter->phy_info_timer);
599 adapter->phy_info_timer.function = &e1000_update_phy_info;
600 adapter->phy_info_timer.data = (unsigned long) adapter;
601
602 INIT_WORK(&adapter->tx_timeout_task,
603 (void (*)(void *))e1000_tx_timeout_task, netdev);
604
605 /* we're going to reset, so assume we have no link for now */
606
607 netif_carrier_off(netdev);
608 netif_stop_queue(netdev);
609
610 e1000_check_options(adapter);
611
612 /* Initial Wake on LAN setting
613 * If APM wake is enabled in the EEPROM,
614 * enable the ACPI Magic Packet filter
615 */
616
617 switch(adapter->hw.mac_type) {
618 case e1000_82542_rev2_0:
619 case e1000_82542_rev2_1:
620 case e1000_82543:
621 break;
622 case e1000_82544:
623 e1000_read_eeprom(&adapter->hw,
624 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
625 eeprom_apme_mask = E1000_EEPROM_82544_APM;
626 break;
627 case e1000_82546:
628 case e1000_82546_rev_3:
629 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
630 && (adapter->hw.media_type == e1000_media_type_copper)) {
631 e1000_read_eeprom(&adapter->hw,
632 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
633 break;
634 }
635 /* Fall Through */
636 default:
637 e1000_read_eeprom(&adapter->hw,
638 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
639 break;
640 }
641 if(eeprom_data & eeprom_apme_mask)
642 adapter->wol |= E1000_WUFC_MAG;
643
644 /* reset the hardware with the new settings */
645 e1000_reset(adapter);
646
647 strcpy(netdev->name, "eth%d");
648 if((err = register_netdev(netdev)))
649 goto err_register;
650
651 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
652
653 cards_found++;
654 return 0;
655
656err_register:
657err_sw_init:
658err_eeprom:
659 iounmap(adapter->hw.hw_addr);
660err_ioremap:
661 free_netdev(netdev);
662err_alloc_etherdev:
663 pci_release_regions(pdev);
664 return err;
665}
666
667/**
668 * e1000_remove - Device Removal Routine
669 * @pdev: PCI device information struct
670 *
671 * e1000_remove is called by the PCI subsystem to alert the driver
672 * that it should release a PCI device. The could be caused by a
673 * Hot-Plug event, or because the driver is going to be removed from
674 * memory.
675 **/
676
677static void __devexit
678e1000_remove(struct pci_dev *pdev)
679{
680 struct net_device *netdev = pci_get_drvdata(pdev);
681 struct e1000_adapter *adapter = netdev->priv;
682 uint32_t manc;
683
684 flush_scheduled_work();
685
686 if(adapter->hw.mac_type >= e1000_82540 &&
687 adapter->hw.media_type == e1000_media_type_copper) {
688 manc = E1000_READ_REG(&adapter->hw, MANC);
689 if(manc & E1000_MANC_SMBUS_EN) {
690 manc |= E1000_MANC_ARP_EN;
691 E1000_WRITE_REG(&adapter->hw, MANC, manc);
692 }
693 }
694
695 unregister_netdev(netdev);
696
697 e1000_phy_hw_reset(&adapter->hw);
698
699 iounmap(adapter->hw.hw_addr);
700 pci_release_regions(pdev);
701
702 free_netdev(netdev);
703
704 pci_disable_device(pdev);
705}
706
707/**
708 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
709 * @adapter: board private structure to initialize
710 *
711 * e1000_sw_init initializes the Adapter private data structure.
712 * Fields are initialized based on PCI device information and
713 * OS network device settings (MTU size).
714 **/
715
716static int __devinit
717e1000_sw_init(struct e1000_adapter *adapter)
718{
719 struct e1000_hw *hw = &adapter->hw;
720 struct net_device *netdev = adapter->netdev;
721 struct pci_dev *pdev = adapter->pdev;
722
723 /* PCI config space info */
724
725 hw->vendor_id = pdev->vendor;
726 hw->device_id = pdev->device;
727 hw->subsystem_vendor_id = pdev->subsystem_vendor;
728 hw->subsystem_id = pdev->subsystem_device;
729
730 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
731
732 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
733
734 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
735 hw->max_frame_size = netdev->mtu +
736 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
737 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
738
739 /* identify the MAC */
740
741 if(e1000_set_mac_type(hw)) {
742 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
743 return -EIO;
744 }
745
746 /* initialize eeprom parameters */
747
748 e1000_init_eeprom_params(hw);
749
750 switch(hw->mac_type) {
751 default:
752 break;
753 case e1000_82541:
754 case e1000_82547:
755 case e1000_82541_rev_2:
756 case e1000_82547_rev_2:
757 hw->phy_init_script = 1;
758 break;
759 }
760
761 e1000_set_media_type(hw);
762
763 hw->wait_autoneg_complete = FALSE;
764 hw->tbi_compatibility_en = TRUE;
765 hw->adaptive_ifs = TRUE;
766
767 /* Copper options */
768
769 if(hw->media_type == e1000_media_type_copper) {
770 hw->mdix = AUTO_ALL_MODES;
771 hw->disable_polarity_correction = FALSE;
772 hw->master_slave = E1000_MASTER_SLAVE;
773 }
774
775 atomic_set(&adapter->irq_sem, 1);
776 spin_lock_init(&adapter->stats_lock);
777 spin_lock_init(&adapter->tx_lock);
778
779 return 0;
780}
781
782/**
783 * e1000_open - Called when a network interface is made active
784 * @netdev: network interface device structure
785 *
786 * Returns 0 on success, negative value on failure
787 *
788 * The open entry point is called when a network interface is made
789 * active by the system (IFF_UP). At this point all resources needed
790 * for transmit and receive operations are allocated, the interrupt
791 * handler is registered with the OS, the watchdog timer is started,
792 * and the stack is notified that the interface is ready.
793 **/
794
795static int
796e1000_open(struct net_device *netdev)
797{
798 struct e1000_adapter *adapter = netdev->priv;
799 int err;
800
801 /* allocate transmit descriptors */
802
803 if((err = e1000_setup_tx_resources(adapter)))
804 goto err_setup_tx;
805
806 /* allocate receive descriptors */
807
808 if((err = e1000_setup_rx_resources(adapter)))
809 goto err_setup_rx;
810
811 if((err = e1000_up(adapter)))
812 goto err_up;
813
814 return E1000_SUCCESS;
815
816err_up:
817 e1000_free_rx_resources(adapter);
818err_setup_rx:
819 e1000_free_tx_resources(adapter);
820err_setup_tx:
821 e1000_reset(adapter);
822
823 return err;
824}
825
826/**
827 * e1000_close - Disables a network interface
828 * @netdev: network interface device structure
829 *
830 * Returns 0, this is not allowed to fail
831 *
832 * The close entry point is called when an interface is de-activated
833 * by the OS. The hardware is still under the drivers control, but
834 * needs to be disabled. A global MAC reset is issued to stop the
835 * hardware, and all transmit and receive resources are freed.
836 **/
837
838static int
839e1000_close(struct net_device *netdev)
840{
841 struct e1000_adapter *adapter = netdev->priv;
842
843 e1000_down(adapter);
844
845 e1000_free_tx_resources(adapter);
846 e1000_free_rx_resources(adapter);
847
848 return 0;
849}
850
851/**
852 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
853 * @adapter: address of board private structure
854 * @begin: address of beginning of memory
855 * @end: address of end of memory
856 **/
857static inline boolean_t
858e1000_check_64k_bound(struct e1000_adapter *adapter,
859 void *start, unsigned long len)
860{
861 unsigned long begin = (unsigned long) start;
862 unsigned long end = begin + len;
863
864 /* first rev 82545 and 82546 need to not allow any memory
865 * write location to cross a 64k boundary due to errata 23 */
866 if (adapter->hw.mac_type == e1000_82545 ||
867 adapter->hw.mac_type == e1000_82546 ) {
868
869 /* check buffer doesn't cross 64kB */
870 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
871 }
872
873 return TRUE;
874}
875
876/**
877 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
878 * @adapter: board private structure
879 *
880 * Return 0 on success, negative on failure
881 **/
882
883int
884e1000_setup_tx_resources(struct e1000_adapter *adapter)
885{
886 struct e1000_desc_ring *txdr = &adapter->tx_ring;
887 struct pci_dev *pdev = adapter->pdev;
888 int size;
889
890 size = sizeof(struct e1000_buffer) * txdr->count;
891 txdr->buffer_info = vmalloc(size);
892 if(!txdr->buffer_info) {
893 DPRINTK(PROBE, ERR,
894 "Unable to Allocate Memory for the Transmit descriptor ring\n");
895 return -ENOMEM;
896 }
897 memset(txdr->buffer_info, 0, size);
898
899 /* round up to nearest 4K */
900
901 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
902 E1000_ROUNDUP(txdr->size, 4096);
903
904 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
905 if(!txdr->desc) {
906setup_tx_desc_die:
907 DPRINTK(PROBE, ERR,
908 "Unable to Allocate Memory for the Transmit descriptor ring\n");
909 vfree(txdr->buffer_info);
910 return -ENOMEM;
911 }
912
913 /* fix for errata 23, cant cross 64kB boundary */
914 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
915 void *olddesc = txdr->desc;
916 dma_addr_t olddma = txdr->dma;
917 DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
918 txdr->size, txdr->desc);
919 /* try again, without freeing the previous */
920 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
921 /* failed allocation, critial failure */
922 if(!txdr->desc) {
923 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
924 goto setup_tx_desc_die;
925 }
926
927 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
928 /* give up */
929 pci_free_consistent(pdev, txdr->size,
930 txdr->desc, txdr->dma);
931 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
932 DPRINTK(PROBE, ERR,
933 "Unable to Allocate aligned Memory for the Transmit"
934 " descriptor ring\n");
935 vfree(txdr->buffer_info);
936 return -ENOMEM;
937 } else {
938 /* free old, move on with the new one since its okay */
939 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
940 }
941 }
942 memset(txdr->desc, 0, txdr->size);
943
944 txdr->next_to_use = 0;
945 txdr->next_to_clean = 0;
946
947 return 0;
948}
949
950/**
951 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
952 * @adapter: board private structure
953 *
954 * Configure the Tx unit of the MAC after a reset.
955 **/
956
957static void
958e1000_configure_tx(struct e1000_adapter *adapter)
959{
960 uint64_t tdba = adapter->tx_ring.dma;
961 uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
962 uint32_t tctl, tipg;
963
964 E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
965 E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
966
967 E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
968
969 /* Setup the HW Tx Head and Tail descriptor pointers */
970
971 E1000_WRITE_REG(&adapter->hw, TDH, 0);
972 E1000_WRITE_REG(&adapter->hw, TDT, 0);
973
974 /* Set the default values for the Tx Inter Packet Gap timer */
975
976 switch (adapter->hw.mac_type) {
977 case e1000_82542_rev2_0:
978 case e1000_82542_rev2_1:
979 tipg = DEFAULT_82542_TIPG_IPGT;
980 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
981 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
982 break;
983 default:
984 if(adapter->hw.media_type == e1000_media_type_fiber ||
985 adapter->hw.media_type == e1000_media_type_internal_serdes)
986 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
987 else
988 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
989 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
990 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
991 }
992 E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
993
994 /* Set the Tx Interrupt Delay register */
995
996 E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
997 if(adapter->hw.mac_type >= e1000_82540)
998 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
999
1000 /* Program the Transmit Control Register */
1001
1002 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1003
1004 tctl &= ~E1000_TCTL_CT;
1005 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1006 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1007
1008 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1009
1010 e1000_config_collision_dist(&adapter->hw);
1011
1012 /* Setup Transmit Descriptor Settings for eop descriptor */
1013 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1014 E1000_TXD_CMD_IFCS;
1015
1016 if(adapter->hw.mac_type < e1000_82543)
1017 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1018 else
1019 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1020
1021 /* Cache if we're 82544 running in PCI-X because we'll
1022 * need this to apply a workaround later in the send path. */
1023 if(adapter->hw.mac_type == e1000_82544 &&
1024 adapter->hw.bus_type == e1000_bus_type_pcix)
1025 adapter->pcix_82544 = 1;
1026}
1027
1028/**
1029 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1030 * @adapter: board private structure
1031 *
1032 * Returns 0 on success, negative on failure
1033 **/
1034
1035int
1036e1000_setup_rx_resources(struct e1000_adapter *adapter)
1037{
1038 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1039 struct pci_dev *pdev = adapter->pdev;
1040 int size;
1041
1042 size = sizeof(struct e1000_buffer) * rxdr->count;
1043 rxdr->buffer_info = vmalloc(size);
1044 if(!rxdr->buffer_info) {
1045 DPRINTK(PROBE, ERR,
1046 "Unable to Allocate Memory for the Recieve descriptor ring\n");
1047 return -ENOMEM;
1048 }
1049 memset(rxdr->buffer_info, 0, size);
1050
1051 /* Round up to nearest 4K */
1052
1053 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054 E1000_ROUNDUP(rxdr->size, 4096);
1055
1056 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1057
1058 if(!rxdr->desc) {
1059setup_rx_desc_die:
1060 DPRINTK(PROBE, ERR,
1061 "Unble to Allocate Memory for the Recieve descriptor ring\n");
1062 vfree(rxdr->buffer_info);
1063 return -ENOMEM;
1064 }
1065
1066 /* fix for errata 23, cant cross 64kB boundary */
1067 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1068 void *olddesc = rxdr->desc;
1069 dma_addr_t olddma = rxdr->dma;
1070 DPRINTK(RX_ERR,ERR,
1071 "rxdr align check failed: %u bytes at %p\n",
1072 rxdr->size, rxdr->desc);
1073 /* try again, without freeing the previous */
1074 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1075 /* failed allocation, critial failure */
1076 if(!rxdr->desc) {
1077 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1078 goto setup_rx_desc_die;
1079 }
1080
1081 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1082 /* give up */
1083 pci_free_consistent(pdev, rxdr->size,
1084 rxdr->desc, rxdr->dma);
1085 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1086 DPRINTK(PROBE, ERR,
1087 "Unable to Allocate aligned Memory for the"
1088 " Receive descriptor ring\n");
1089 vfree(rxdr->buffer_info);
1090 return -ENOMEM;
1091 } else {
1092 /* free old, move on with the new one since its okay */
1093 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1094 }
1095 }
1096 memset(rxdr->desc, 0, rxdr->size);
1097
1098 rxdr->next_to_clean = 0;
1099 rxdr->next_to_use = 0;
1100
1101 return 0;
1102}
1103
1104/**
1105 * e1000_setup_rctl - configure the receive control register
1106 * @adapter: Board private structure
1107 **/
1108
1109static void
1110e1000_setup_rctl(struct e1000_adapter *adapter)
1111{
1112 uint32_t rctl;
1113
1114 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1115
1116 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1117
1118 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1119 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1120 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1121
1122 if(adapter->hw.tbi_compatibility_on == 1)
1123 rctl |= E1000_RCTL_SBP;
1124 else
1125 rctl &= ~E1000_RCTL_SBP;
1126
1127 /* Setup buffer sizes */
1128 rctl &= ~(E1000_RCTL_SZ_4096);
1129 rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
1130 switch (adapter->rx_buffer_len) {
1131 case E1000_RXBUFFER_2048:
1132 default:
1133 rctl |= E1000_RCTL_SZ_2048;
1134 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
1135 break;
1136 case E1000_RXBUFFER_4096:
1137 rctl |= E1000_RCTL_SZ_4096;
1138 break;
1139 case E1000_RXBUFFER_8192:
1140 rctl |= E1000_RCTL_SZ_8192;
1141 break;
1142 case E1000_RXBUFFER_16384:
1143 rctl |= E1000_RCTL_SZ_16384;
1144 break;
1145 }
1146
1147 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1148}
1149
1150/**
1151 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1152 * @adapter: board private structure
1153 *
1154 * Configure the Rx unit of the MAC after a reset.
1155 **/
1156
1157static void
1158e1000_configure_rx(struct e1000_adapter *adapter)
1159{
1160 uint64_t rdba = adapter->rx_ring.dma;
1161 uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1162 uint32_t rctl;
1163 uint32_t rxcsum;
1164
1165 /* disable receives while setting up the descriptors */
1166 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1167 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1168
1169 /* set the Receive Delay Timer Register */
1170 E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1171
1172 if(adapter->hw.mac_type >= e1000_82540) {
1173 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1174 if(adapter->itr > 1)
1175 E1000_WRITE_REG(&adapter->hw, ITR,
1176 1000000000 / (adapter->itr * 256));
1177 }
1178
1179 /* Setup the Base and Length of the Rx Descriptor Ring */
1180 E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1181 E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1182
1183 E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1184
1185 /* Setup the HW Rx Head and Tail Descriptor Pointers */
1186 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1187 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1188
1189 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1190 if((adapter->hw.mac_type >= e1000_82543) &&
1191 (adapter->rx_csum == TRUE)) {
1192 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1193 rxcsum |= E1000_RXCSUM_TUOFL;
1194 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1195 }
1196
1197 /* Enable Receives */
1198 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1199}
1200
1201/**
1202 * e1000_free_tx_resources - Free Tx Resources
1203 * @adapter: board private structure
1204 *
1205 * Free all transmit software resources
1206 **/
1207
1208void
1209e1000_free_tx_resources(struct e1000_adapter *adapter)
1210{
1211 struct pci_dev *pdev = adapter->pdev;
1212
1213 e1000_clean_tx_ring(adapter);
1214
1215 vfree(adapter->tx_ring.buffer_info);
1216 adapter->tx_ring.buffer_info = NULL;
1217
1218 pci_free_consistent(pdev, adapter->tx_ring.size,
1219 adapter->tx_ring.desc, adapter->tx_ring.dma);
1220
1221 adapter->tx_ring.desc = NULL;
1222}
1223
1224static inline void
1225e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1226 struct e1000_buffer *buffer_info)
1227{
1228 struct pci_dev *pdev = adapter->pdev;
1229
1230 if(buffer_info->dma) {
1231 pci_unmap_page(pdev,
1232 buffer_info->dma,
1233 buffer_info->length,
1234 PCI_DMA_TODEVICE);
1235 buffer_info->dma = 0;
1236 }
1237 if(buffer_info->skb) {
1238 dev_kfree_skb_any(buffer_info->skb);
1239 buffer_info->skb = NULL;
1240 }
1241}
1242
1243/**
1244 * e1000_clean_tx_ring - Free Tx Buffers
1245 * @adapter: board private structure
1246 **/
1247
1248static void
1249e1000_clean_tx_ring(struct e1000_adapter *adapter)
1250{
1251 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1252 struct e1000_buffer *buffer_info;
1253 unsigned long size;
1254 unsigned int i;
1255
1256 /* Free all the Tx ring sk_buffs */
1257
1258 if (likely(adapter->previous_buffer_info.skb != NULL)) {
1259 e1000_unmap_and_free_tx_resource(adapter,
1260 &adapter->previous_buffer_info);
1261 }
1262
1263 for(i = 0; i < tx_ring->count; i++) {
1264 buffer_info = &tx_ring->buffer_info[i];
1265 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1266 }
1267
1268 size = sizeof(struct e1000_buffer) * tx_ring->count;
1269 memset(tx_ring->buffer_info, 0, size);
1270
1271 /* Zero out the descriptor ring */
1272
1273 memset(tx_ring->desc, 0, tx_ring->size);
1274
1275 tx_ring->next_to_use = 0;
1276 tx_ring->next_to_clean = 0;
1277
1278 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1279 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1280}
1281
1282/**
1283 * e1000_free_rx_resources - Free Rx Resources
1284 * @adapter: board private structure
1285 *
1286 * Free all receive software resources
1287 **/
1288
1289void
1290e1000_free_rx_resources(struct e1000_adapter *adapter)
1291{
1292 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1293 struct pci_dev *pdev = adapter->pdev;
1294
1295 e1000_clean_rx_ring(adapter);
1296
1297 vfree(rx_ring->buffer_info);
1298 rx_ring->buffer_info = NULL;
1299
1300 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1301
1302 rx_ring->desc = NULL;
1303}
1304
1305/**
1306 * e1000_clean_rx_ring - Free Rx Buffers
1307 * @adapter: board private structure
1308 **/
1309
1310static void
1311e1000_clean_rx_ring(struct e1000_adapter *adapter)
1312{
1313 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1314 struct e1000_buffer *buffer_info;
1315 struct pci_dev *pdev = adapter->pdev;
1316 unsigned long size;
1317 unsigned int i;
1318
1319 /* Free all the Rx ring sk_buffs */
1320
1321 for(i = 0; i < rx_ring->count; i++) {
1322 buffer_info = &rx_ring->buffer_info[i];
1323 if(buffer_info->skb) {
1324
1325 pci_unmap_single(pdev,
1326 buffer_info->dma,
1327 buffer_info->length,
1328 PCI_DMA_FROMDEVICE);
1329
1330 dev_kfree_skb(buffer_info->skb);
1331 buffer_info->skb = NULL;
1332 }
1333 }
1334
1335 size = sizeof(struct e1000_buffer) * rx_ring->count;
1336 memset(rx_ring->buffer_info, 0, size);
1337
1338 /* Zero out the descriptor ring */
1339
1340 memset(rx_ring->desc, 0, rx_ring->size);
1341
1342 rx_ring->next_to_clean = 0;
1343 rx_ring->next_to_use = 0;
1344
1345 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1346 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1347}
1348
1349/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1350 * and memory write and invalidate disabled for certain operations
1351 */
1352static void
1353e1000_enter_82542_rst(struct e1000_adapter *adapter)
1354{
1355 struct net_device *netdev = adapter->netdev;
1356 uint32_t rctl;
1357
1358 e1000_pci_clear_mwi(&adapter->hw);
1359
1360 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1361 rctl |= E1000_RCTL_RST;
1362 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1363 E1000_WRITE_FLUSH(&adapter->hw);
1364 mdelay(5);
1365
1366 if(netif_running(netdev))
1367 e1000_clean_rx_ring(adapter);
1368}
1369
1370static void
1371e1000_leave_82542_rst(struct e1000_adapter *adapter)
1372{
1373 struct net_device *netdev = adapter->netdev;
1374 uint32_t rctl;
1375
1376 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1377 rctl &= ~E1000_RCTL_RST;
1378 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1379 E1000_WRITE_FLUSH(&adapter->hw);
1380 mdelay(5);
1381
1382 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1383 e1000_pci_set_mwi(&adapter->hw);
1384
1385 if(netif_running(netdev)) {
1386 e1000_configure_rx(adapter);
1387 e1000_alloc_rx_buffers(adapter);
1388 }
1389}
1390
1391/**
1392 * e1000_set_mac - Change the Ethernet Address of the NIC
1393 * @netdev: network interface device structure
1394 * @p: pointer to an address structure
1395 *
1396 * Returns 0 on success, negative on failure
1397 **/
1398
1399static int
1400e1000_set_mac(struct net_device *netdev, void *p)
1401{
1402 struct e1000_adapter *adapter = netdev->priv;
1403 struct sockaddr *addr = p;
1404
1405 if(!is_valid_ether_addr(addr->sa_data))
1406 return -EADDRNOTAVAIL;
1407
1408 /* 82542 2.0 needs to be in reset to write receive address registers */
1409
1410 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1411 e1000_enter_82542_rst(adapter);
1412
1413 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1414 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1415
1416 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1417
1418 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1419 e1000_leave_82542_rst(adapter);
1420
1421 return 0;
1422}
1423
1424/**
1425 * e1000_set_multi - Multicast and Promiscuous mode set
1426 * @netdev: network interface device structure
1427 *
1428 * The set_multi entry point is called whenever the multicast address
1429 * list or the network interface flags are updated. This routine is
1430 * responsible for configuring the hardware for proper multicast,
1431 * promiscuous mode, and all-multi behavior.
1432 **/
1433
1434static void
1435e1000_set_multi(struct net_device *netdev)
1436{
1437 struct e1000_adapter *adapter = netdev->priv;
1438 struct e1000_hw *hw = &adapter->hw;
1439 struct dev_mc_list *mc_ptr;
1440 uint32_t rctl;
1441 uint32_t hash_value;
1442 int i;
1443 unsigned long flags;
1444
1445 /* Check for Promiscuous and All Multicast modes */
1446
1447 spin_lock_irqsave(&adapter->tx_lock, flags);
1448
1449 rctl = E1000_READ_REG(hw, RCTL);
1450
1451 if(netdev->flags & IFF_PROMISC) {
1452 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1453 } else if(netdev->flags & IFF_ALLMULTI) {
1454 rctl |= E1000_RCTL_MPE;
1455 rctl &= ~E1000_RCTL_UPE;
1456 } else {
1457 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1458 }
1459
1460 E1000_WRITE_REG(hw, RCTL, rctl);
1461
1462 /* 82542 2.0 needs to be in reset to write receive address registers */
1463
1464 if(hw->mac_type == e1000_82542_rev2_0)
1465 e1000_enter_82542_rst(adapter);
1466
1467 /* load the first 14 multicast address into the exact filters 1-14
1468 * RAR 0 is used for the station MAC adddress
1469 * if there are not 14 addresses, go ahead and clear the filters
1470 */
1471 mc_ptr = netdev->mc_list;
1472
1473 for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1474 if(mc_ptr) {
1475 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1476 mc_ptr = mc_ptr->next;
1477 } else {
1478 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1479 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1480 }
1481 }
1482
1483 /* clear the old settings from the multicast hash table */
1484
1485 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1486 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1487
1488 /* load any remaining addresses into the hash table */
1489
1490 for(; mc_ptr; mc_ptr = mc_ptr->next) {
1491 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1492 e1000_mta_set(hw, hash_value);
1493 }
1494
1495 if(hw->mac_type == e1000_82542_rev2_0)
1496 e1000_leave_82542_rst(adapter);
1497
1498 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1499}
1500
1501/* Need to wait a few seconds after link up to get diagnostic information from
1502 * the phy */
1503
1504static void
1505e1000_update_phy_info(unsigned long data)
1506{
1507 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1508 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1509}
1510
1511/**
1512 * e1000_82547_tx_fifo_stall - Timer Call-back
1513 * @data: pointer to adapter cast into an unsigned long
1514 **/
1515
1516static void
1517e1000_82547_tx_fifo_stall(unsigned long data)
1518{
1519 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1520 struct net_device *netdev = adapter->netdev;
1521 uint32_t tctl;
1522
1523 if(atomic_read(&adapter->tx_fifo_stall)) {
1524 if((E1000_READ_REG(&adapter->hw, TDT) ==
1525 E1000_READ_REG(&adapter->hw, TDH)) &&
1526 (E1000_READ_REG(&adapter->hw, TDFT) ==
1527 E1000_READ_REG(&adapter->hw, TDFH)) &&
1528 (E1000_READ_REG(&adapter->hw, TDFTS) ==
1529 E1000_READ_REG(&adapter->hw, TDFHS))) {
1530 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1531 E1000_WRITE_REG(&adapter->hw, TCTL,
1532 tctl & ~E1000_TCTL_EN);
1533 E1000_WRITE_REG(&adapter->hw, TDFT,
1534 adapter->tx_head_addr);
1535 E1000_WRITE_REG(&adapter->hw, TDFH,
1536 adapter->tx_head_addr);
1537 E1000_WRITE_REG(&adapter->hw, TDFTS,
1538 adapter->tx_head_addr);
1539 E1000_WRITE_REG(&adapter->hw, TDFHS,
1540 adapter->tx_head_addr);
1541 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1542 E1000_WRITE_FLUSH(&adapter->hw);
1543
1544 adapter->tx_fifo_head = 0;
1545 atomic_set(&adapter->tx_fifo_stall, 0);
1546 netif_wake_queue(netdev);
1547 } else {
1548 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1549 }
1550 }
1551}
1552
1553/**
1554 * e1000_watchdog - Timer Call-back
1555 * @data: pointer to adapter cast into an unsigned long
1556 **/
1557static void
1558e1000_watchdog(unsigned long data)
1559{
1560 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1561
1562 /* Do the rest outside of interrupt context */
1563 schedule_work(&adapter->watchdog_task);
1564}
1565
1566static void
1567e1000_watchdog_task(struct e1000_adapter *adapter)
1568{
1569 struct net_device *netdev = adapter->netdev;
1570 struct e1000_desc_ring *txdr = &adapter->tx_ring;
1571 uint32_t link;
1572
1573 e1000_check_for_link(&adapter->hw);
1574
1575 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1576 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1577 link = !adapter->hw.serdes_link_down;
1578 else
1579 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1580
1581 if(link) {
1582 if(!netif_carrier_ok(netdev)) {
1583 e1000_get_speed_and_duplex(&adapter->hw,
1584 &adapter->link_speed,
1585 &adapter->link_duplex);
1586
1587 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1588 adapter->link_speed,
1589 adapter->link_duplex == FULL_DUPLEX ?
1590 "Full Duplex" : "Half Duplex");
1591
1592 netif_carrier_on(netdev);
1593 netif_wake_queue(netdev);
1594 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1595 adapter->smartspeed = 0;
1596 }
1597 } else {
1598 if(netif_carrier_ok(netdev)) {
1599 adapter->link_speed = 0;
1600 adapter->link_duplex = 0;
1601 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1602 netif_carrier_off(netdev);
1603 netif_stop_queue(netdev);
1604 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1605 }
1606
1607 e1000_smartspeed(adapter);
1608 }
1609
1610 e1000_update_stats(adapter);
1611
1612 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1613 adapter->tpt_old = adapter->stats.tpt;
1614 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1615 adapter->colc_old = adapter->stats.colc;
1616
1617 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1618 adapter->gorcl_old = adapter->stats.gorcl;
1619 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1620 adapter->gotcl_old = adapter->stats.gotcl;
1621
1622 e1000_update_adaptive(&adapter->hw);
1623
1624 if(!netif_carrier_ok(netdev)) {
1625 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1626 /* We've lost link, so the controller stops DMA,
1627 * but we've got queued Tx work that's never going
1628 * to get done, so reset controller to flush Tx.
1629 * (Do the reset outside of interrupt context). */
1630 schedule_work(&adapter->tx_timeout_task);
1631 }
1632 }
1633
1634 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1635 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1636 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1637 * asymmetrical Tx or Rx gets ITR=8000; everyone
1638 * else is between 2000-8000. */
1639 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1640 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
1641 adapter->gotcl - adapter->gorcl :
1642 adapter->gorcl - adapter->gotcl) / 10000;
1643 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1644 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1645 }
1646
1647 /* Cause software interrupt to ensure rx ring is cleaned */
1648 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1649
1650 /* Force detection of hung controller every watchdog period*/
1651 adapter->detect_tx_hung = TRUE;
1652
1653 /* Reset the timer */
1654 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1655}
1656
1657#define E1000_TX_FLAGS_CSUM 0x00000001
1658#define E1000_TX_FLAGS_VLAN 0x00000002
1659#define E1000_TX_FLAGS_TSO 0x00000004
1660#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
1661#define E1000_TX_FLAGS_VLAN_SHIFT 16
1662
1663static inline int
1664e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1665{
1666#ifdef NETIF_F_TSO
1667 struct e1000_context_desc *context_desc;
1668 unsigned int i;
1669 uint32_t cmd_length = 0;
1670 uint16_t ipcse, tucse, mss;
1671 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1672 int err;
1673
1674 if(skb_shinfo(skb)->tso_size) {
1675 if (skb_header_cloned(skb)) {
1676 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1677 if (err)
1678 return err;
1679 }
1680
1681 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1682 mss = skb_shinfo(skb)->tso_size;
1683 skb->nh.iph->tot_len = 0;
1684 skb->nh.iph->check = 0;
1685 skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
1686 skb->nh.iph->daddr,
1687 0,
1688 IPPROTO_TCP,
1689 0);
1690 ipcss = skb->nh.raw - skb->data;
1691 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1692 ipcse = skb->h.raw - skb->data - 1;
1693 tucss = skb->h.raw - skb->data;
1694 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1695 tucse = 0;
1696
1697 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1698 E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
1699 (skb->len - (hdr_len)));
1700
1701 i = adapter->tx_ring.next_to_use;
1702 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1703
1704 context_desc->lower_setup.ip_fields.ipcss = ipcss;
1705 context_desc->lower_setup.ip_fields.ipcso = ipcso;
1706 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
1707 context_desc->upper_setup.tcp_fields.tucss = tucss;
1708 context_desc->upper_setup.tcp_fields.tucso = tucso;
1709 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1710 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
1711 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1712 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1713
1714 if(++i == adapter->tx_ring.count) i = 0;
1715 adapter->tx_ring.next_to_use = i;
1716
1717 return 1;
1718 }
1719#endif
1720
1721 return 0;
1722}
1723
1724static inline boolean_t
1725e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1726{
1727 struct e1000_context_desc *context_desc;
1728 unsigned int i;
1729 uint8_t css;
1730
1731 if(likely(skb->ip_summed == CHECKSUM_HW)) {
1732 css = skb->h.raw - skb->data;
1733
1734 i = adapter->tx_ring.next_to_use;
1735 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1736
1737 context_desc->upper_setup.tcp_fields.tucss = css;
1738 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1739 context_desc->upper_setup.tcp_fields.tucse = 0;
1740 context_desc->tcp_seg_setup.data = 0;
1741 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1742
1743 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1744 adapter->tx_ring.next_to_use = i;
1745
1746 return TRUE;
1747 }
1748
1749 return FALSE;
1750}
1751
1752#define E1000_MAX_TXD_PWR 12
1753#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
1754
1755static inline int
1756e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1757 unsigned int first, unsigned int max_per_txd,
1758 unsigned int nr_frags, unsigned int mss)
1759{
1760 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1761 struct e1000_buffer *buffer_info;
1762 unsigned int len = skb->len;
1763 unsigned int offset = 0, size, count = 0, i;
1764 unsigned int f;
1765 len -= skb->data_len;
1766
1767 i = tx_ring->next_to_use;
1768
1769 while(len) {
1770 buffer_info = &tx_ring->buffer_info[i];
1771 size = min(len, max_per_txd);
1772#ifdef NETIF_F_TSO
1773 /* Workaround for premature desc write-backs
1774 * in TSO mode. Append 4-byte sentinel desc */
1775 if(unlikely(mss && !nr_frags && size == len && size > 8))
1776 size -= 4;
1777#endif
1778 /* Workaround for potential 82544 hang in PCI-X. Avoid
1779 * terminating buffers within evenly-aligned dwords. */
1780 if(unlikely(adapter->pcix_82544 &&
1781 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
1782 size > 4))
1783 size -= 4;
1784
1785 buffer_info->length = size;
1786 buffer_info->dma =
1787 pci_map_single(adapter->pdev,
1788 skb->data + offset,
1789 size,
1790 PCI_DMA_TODEVICE);
1791 buffer_info->time_stamp = jiffies;
1792
1793 len -= size;
1794 offset += size;
1795 count++;
1796 if(unlikely(++i == tx_ring->count)) i = 0;
1797 }
1798
1799 for(f = 0; f < nr_frags; f++) {
1800 struct skb_frag_struct *frag;
1801
1802 frag = &skb_shinfo(skb)->frags[f];
1803 len = frag->size;
1804 offset = frag->page_offset;
1805
1806 while(len) {
1807 buffer_info = &tx_ring->buffer_info[i];
1808 size = min(len, max_per_txd);
1809#ifdef NETIF_F_TSO
1810 /* Workaround for premature desc write-backs
1811 * in TSO mode. Append 4-byte sentinel desc */
1812 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
1813 size -= 4;
1814#endif
1815 /* Workaround for potential 82544 hang in PCI-X.
1816 * Avoid terminating buffers within evenly-aligned
1817 * dwords. */
1818 if(unlikely(adapter->pcix_82544 &&
1819 !((unsigned long)(frag->page+offset+size-1) & 4) &&
1820 size > 4))
1821 size -= 4;
1822
1823 buffer_info->length = size;
1824 buffer_info->dma =
1825 pci_map_page(adapter->pdev,
1826 frag->page,
1827 offset,
1828 size,
1829 PCI_DMA_TODEVICE);
1830 buffer_info->time_stamp = jiffies;
1831
1832 len -= size;
1833 offset += size;
1834 count++;
1835 if(unlikely(++i == tx_ring->count)) i = 0;
1836 }
1837 }
1838
1839 i = (i == 0) ? tx_ring->count - 1 : i - 1;
1840 tx_ring->buffer_info[i].skb = skb;
1841 tx_ring->buffer_info[first].next_to_watch = i;
1842
1843 return count;
1844}
1845
1846static inline void
1847e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
1848{
1849 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1850 struct e1000_tx_desc *tx_desc = NULL;
1851 struct e1000_buffer *buffer_info;
1852 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1853 unsigned int i;
1854
1855 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1856 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
1857 E1000_TXD_CMD_TSE;
1858 txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
1859 }
1860
1861 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1862 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
1863 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
1864 }
1865
1866 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1867 txd_lower |= E1000_TXD_CMD_VLE;
1868 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
1869 }
1870
1871 i = tx_ring->next_to_use;
1872
1873 while(count--) {
1874 buffer_info = &tx_ring->buffer_info[i];
1875 tx_desc = E1000_TX_DESC(*tx_ring, i);
1876 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1877 tx_desc->lower.data =
1878 cpu_to_le32(txd_lower | buffer_info->length);
1879 tx_desc->upper.data = cpu_to_le32(txd_upper);
1880 if(unlikely(++i == tx_ring->count)) i = 0;
1881 }
1882
1883 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
1884
1885 /* Force memory writes to complete before letting h/w
1886 * know there are new descriptors to fetch. (Only
1887 * applicable for weak-ordered memory model archs,
1888 * such as IA-64). */
1889 wmb();
1890
1891 tx_ring->next_to_use = i;
1892 E1000_WRITE_REG(&adapter->hw, TDT, i);
1893}
1894
1895/**
1896 * 82547 workaround to avoid controller hang in half-duplex environment.
1897 * The workaround is to avoid queuing a large packet that would span
1898 * the internal Tx FIFO ring boundary by notifying the stack to resend
1899 * the packet at a later time. This gives the Tx FIFO an opportunity to
1900 * flush all packets. When that occurs, we reset the Tx FIFO pointers
1901 * to the beginning of the Tx FIFO.
1902 **/
1903
1904#define E1000_FIFO_HDR 0x10
1905#define E1000_82547_PAD_LEN 0x3E0
1906
1907static inline int
1908e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
1909{
1910 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1911 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
1912
1913 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
1914
1915 if(adapter->link_duplex != HALF_DUPLEX)
1916 goto no_fifo_stall_required;
1917
1918 if(atomic_read(&adapter->tx_fifo_stall))
1919 return 1;
1920
1921 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1922 atomic_set(&adapter->tx_fifo_stall, 1);
1923 return 1;
1924 }
1925
1926no_fifo_stall_required:
1927 adapter->tx_fifo_head += skb_fifo_len;
1928 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
1929 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1930 return 0;
1931}
1932
1933#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
1934static int
1935e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1936{
1937 struct e1000_adapter *adapter = netdev->priv;
1938 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
1939 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
1940 unsigned int tx_flags = 0;
1941 unsigned int len = skb->len;
1942 unsigned long flags;
1943 unsigned int nr_frags = 0;
1944 unsigned int mss = 0;
1945 int count = 0;
1946 int tso;
1947 unsigned int f;
1948 len -= skb->data_len;
1949
1950 if(unlikely(skb->len <= 0)) {
1951 dev_kfree_skb_any(skb);
1952 return NETDEV_TX_OK;
1953 }
1954
1955#ifdef NETIF_F_TSO
1956 mss = skb_shinfo(skb)->tso_size;
1957 /* The controller does a simple calculation to
1958 * make sure there is enough room in the FIFO before
1959 * initiating the DMA for each buffer. The calc is:
1960 * 4 = ceil(buffer len/mss). To make sure we don't
1961 * overrun the FIFO, adjust the max buffer len if mss
1962 * drops. */
1963 if(mss) {
1964 max_per_txd = min(mss << 2, max_per_txd);
1965 max_txd_pwr = fls(max_per_txd) - 1;
1966 }
1967
1968 if((mss) || (skb->ip_summed == CHECKSUM_HW))
1969 count++;
1970 count++; /* for sentinel desc */
1971#else
1972 if(skb->ip_summed == CHECKSUM_HW)
1973 count++;
1974#endif
1975 count += TXD_USE_COUNT(len, max_txd_pwr);
1976
1977 if(adapter->pcix_82544)
1978 count++;
1979
1980 nr_frags = skb_shinfo(skb)->nr_frags;
1981 for(f = 0; f < nr_frags; f++)
1982 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
1983 max_txd_pwr);
1984 if(adapter->pcix_82544)
1985 count += nr_frags;
1986
1987 local_irq_save(flags);
1988 if (!spin_trylock(&adapter->tx_lock)) {
1989 /* Collision - tell upper layer to requeue */
1990 local_irq_restore(flags);
1991 return NETDEV_TX_LOCKED;
1992 }
1993
1994 /* need: count + 2 desc gap to keep tail from touching
1995 * head, otherwise try next time */
1996 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
1997 netif_stop_queue(netdev);
1998 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1999 return NETDEV_TX_BUSY;
2000 }
2001
2002 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2003 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2004 netif_stop_queue(netdev);
2005 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2006 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2007 return NETDEV_TX_BUSY;
2008 }
2009 }
2010
2011 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2012 tx_flags |= E1000_TX_FLAGS_VLAN;
2013 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2014 }
2015
2016 first = adapter->tx_ring.next_to_use;
2017
2018 tso = e1000_tso(adapter, skb);
2019 if (tso < 0) {
2020 dev_kfree_skb_any(skb);
2021 return NETDEV_TX_OK;
2022 }
2023
2024 if (likely(tso))
2025 tx_flags |= E1000_TX_FLAGS_TSO;
2026 else if(likely(e1000_tx_csum(adapter, skb)))
2027 tx_flags |= E1000_TX_FLAGS_CSUM;
2028
2029 e1000_tx_queue(adapter,
2030 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2031 tx_flags);
2032
2033 netdev->trans_start = jiffies;
2034
2035 /* Make sure there is space in the ring for the next send. */
2036 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2037 netif_stop_queue(netdev);
2038
2039 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2040 return NETDEV_TX_OK;
2041}
2042
2043/**
2044 * e1000_tx_timeout - Respond to a Tx Hang
2045 * @netdev: network interface device structure
2046 **/
2047
2048static void
2049e1000_tx_timeout(struct net_device *netdev)
2050{
2051 struct e1000_adapter *adapter = netdev->priv;
2052
2053 /* Do the reset outside of interrupt context */
2054 schedule_work(&adapter->tx_timeout_task);
2055}
2056
2057static void
2058e1000_tx_timeout_task(struct net_device *netdev)
2059{
2060 struct e1000_adapter *adapter = netdev->priv;
2061
2062 e1000_down(adapter);
2063 e1000_up(adapter);
2064}
2065
2066/**
2067 * e1000_get_stats - Get System Network Statistics
2068 * @netdev: network interface device structure
2069 *
2070 * Returns the address of the device statistics structure.
2071 * The statistics are actually updated from the timer callback.
2072 **/
2073
2074static struct net_device_stats *
2075e1000_get_stats(struct net_device *netdev)
2076{
2077 struct e1000_adapter *adapter = netdev->priv;
2078
2079 e1000_update_stats(adapter);
2080 return &adapter->net_stats;
2081}
2082
2083/**
2084 * e1000_change_mtu - Change the Maximum Transfer Unit
2085 * @netdev: network interface device structure
2086 * @new_mtu: new value for maximum frame size
2087 *
2088 * Returns 0 on success, negative on failure
2089 **/
2090
2091static int
2092e1000_change_mtu(struct net_device *netdev, int new_mtu)
2093{
2094 struct e1000_adapter *adapter = netdev->priv;
2095 int old_mtu = adapter->rx_buffer_len;
2096 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2097
2098 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2099 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2100 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2101 return -EINVAL;
2102 }
2103
2104 if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
2105 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2106
2107 } else if(adapter->hw.mac_type < e1000_82543) {
2108 DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
2109 return -EINVAL;
2110
2111 } else if(max_frame <= E1000_RXBUFFER_4096) {
2112 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2113
2114 } else if(max_frame <= E1000_RXBUFFER_8192) {
2115 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2116
2117 } else {
2118 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2119 }
2120
2121 if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
2122 e1000_down(adapter);
2123 e1000_up(adapter);
2124 }
2125
2126 netdev->mtu = new_mtu;
2127 adapter->hw.max_frame_size = max_frame;
2128
2129 return 0;
2130}
2131
2132/**
2133 * e1000_update_stats - Update the board statistics counters
2134 * @adapter: board private structure
2135 **/
2136
2137void
2138e1000_update_stats(struct e1000_adapter *adapter)
2139{
2140 struct e1000_hw *hw = &adapter->hw;
2141 unsigned long flags;
2142 uint16_t phy_tmp;
2143
2144#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2145
2146 spin_lock_irqsave(&adapter->stats_lock, flags);
2147
2148 /* these counters are modified from e1000_adjust_tbi_stats,
2149 * called from the interrupt context, so they must only
2150 * be written while holding adapter->stats_lock
2151 */
2152
2153 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2154 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2155 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2156 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2157 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2158 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2159 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2160 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2161 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2162 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2163 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2164 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2165 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2166
2167 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2168 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2169 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2170 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2171 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2172 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2173 adapter->stats.dc += E1000_READ_REG(hw, DC);
2174 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2175 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2176 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2177 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2178 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2179 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2180 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2181 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2182 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2183 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2184 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2185 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2186 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2187 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2188 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2189 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2190 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2191 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2192 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2193 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2194 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2195 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2196 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2197 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2198 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2199 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2200 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2201
2202 /* used for adaptive IFS */
2203
2204 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2205 adapter->stats.tpt += hw->tx_packet_delta;
2206 hw->collision_delta = E1000_READ_REG(hw, COLC);
2207 adapter->stats.colc += hw->collision_delta;
2208
2209 if(hw->mac_type >= e1000_82543) {
2210 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2211 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2212 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2213 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2214 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2215 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2216 }
2217
2218 /* Fill out the OS statistics structure */
2219
2220 adapter->net_stats.rx_packets = adapter->stats.gprc;
2221 adapter->net_stats.tx_packets = adapter->stats.gptc;
2222 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2223 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2224 adapter->net_stats.multicast = adapter->stats.mprc;
2225 adapter->net_stats.collisions = adapter->stats.colc;
2226
2227 /* Rx Errors */
2228
2229 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2230 adapter->stats.crcerrs + adapter->stats.algnerrc +
2231 adapter->stats.rlec + adapter->stats.rnbc +
2232 adapter->stats.mpc + adapter->stats.cexterr;
2233 adapter->net_stats.rx_dropped = adapter->stats.rnbc;
2234 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2235 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2236 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2237 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2238 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2239
2240 /* Tx Errors */
2241
2242 adapter->net_stats.tx_errors = adapter->stats.ecol +
2243 adapter->stats.latecol;
2244 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2245 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2246 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2247
2248 /* Tx Dropped needs to be maintained elsewhere */
2249
2250 /* Phy Stats */
2251
2252 if(hw->media_type == e1000_media_type_copper) {
2253 if((adapter->link_speed == SPEED_1000) &&
2254 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2255 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2256 adapter->phy_stats.idle_errors += phy_tmp;
2257 }
2258
2259 if((hw->mac_type <= e1000_82546) &&
2260 (hw->phy_type == e1000_phy_m88) &&
2261 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2262 adapter->phy_stats.receive_errors += phy_tmp;
2263 }
2264
2265 spin_unlock_irqrestore(&adapter->stats_lock, flags);
2266}
2267
2268/**
2269 * e1000_intr - Interrupt Handler
2270 * @irq: interrupt number
2271 * @data: pointer to a network interface device structure
2272 * @pt_regs: CPU registers structure
2273 **/
2274
2275static irqreturn_t
2276e1000_intr(int irq, void *data, struct pt_regs *regs)
2277{
2278 struct net_device *netdev = data;
2279 struct e1000_adapter *adapter = netdev->priv;
2280 struct e1000_hw *hw = &adapter->hw;
2281 uint32_t icr = E1000_READ_REG(hw, ICR);
2282#ifndef CONFIG_E1000_NAPI
2283 unsigned int i;
2284#endif
2285
2286 if(unlikely(!icr))
2287 return IRQ_NONE; /* Not our interrupt */
2288
2289 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2290 hw->get_link_status = 1;
2291 mod_timer(&adapter->watchdog_timer, jiffies);
2292 }
2293
2294#ifdef CONFIG_E1000_NAPI
2295 if(likely(netif_rx_schedule_prep(netdev))) {
2296
2297 /* Disable interrupts and register for poll. The flush
2298 of the posted write is intentionally left out.
2299 */
2300
2301 atomic_inc(&adapter->irq_sem);
2302 E1000_WRITE_REG(hw, IMC, ~0);
2303 __netif_rx_schedule(netdev);
2304 }
2305#else
2306 /* Writing IMC and IMS is needed for 82547.
2307 Due to Hub Link bus being occupied, an interrupt
2308 de-assertion message is not able to be sent.
2309 When an interrupt assertion message is generated later,
2310 two messages are re-ordered and sent out.
2311 That causes APIC to think 82547 is in de-assertion
2312 state, while 82547 is in assertion state, resulting
2313 in dead lock. Writing IMC forces 82547 into
2314 de-assertion state.
2315 */
2316 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2317 atomic_inc(&adapter->irq_sem);
2318 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2319 }
2320
2321 for(i = 0; i < E1000_MAX_INTR; i++)
2322 if(unlikely(!e1000_clean_rx_irq(adapter) &
2323 !e1000_clean_tx_irq(adapter)))
2324 break;
2325
2326 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2327 e1000_irq_enable(adapter);
2328#endif
2329
2330 return IRQ_HANDLED;
2331}
2332
2333#ifdef CONFIG_E1000_NAPI
2334/**
2335 * e1000_clean - NAPI Rx polling callback
2336 * @adapter: board private structure
2337 **/
2338
2339static int
2340e1000_clean(struct net_device *netdev, int *budget)
2341{
2342 struct e1000_adapter *adapter = netdev->priv;
2343 int work_to_do = min(*budget, netdev->quota);
2344 int tx_cleaned;
2345 int work_done = 0;
2346
2347 tx_cleaned = e1000_clean_tx_irq(adapter);
2348 e1000_clean_rx_irq(adapter, &work_done, work_to_do);
2349
2350 *budget -= work_done;
2351 netdev->quota -= work_done;
2352
2353 /* if no Tx and not enough Rx work done, exit the polling mode */
2354 if((!tx_cleaned && (work_done < work_to_do)) ||
2355 !netif_running(netdev)) {
2356 netif_rx_complete(netdev);
2357 e1000_irq_enable(adapter);
2358 return 0;
2359 }
2360
2361 return 1;
2362}
2363
2364#endif
2365/**
2366 * e1000_clean_tx_irq - Reclaim resources after transmit completes
2367 * @adapter: board private structure
2368 **/
2369
2370static boolean_t
2371e1000_clean_tx_irq(struct e1000_adapter *adapter)
2372{
2373 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2374 struct net_device *netdev = adapter->netdev;
2375 struct e1000_tx_desc *tx_desc, *eop_desc;
2376 struct e1000_buffer *buffer_info;
2377 unsigned int i, eop;
2378 boolean_t cleaned = FALSE;
2379
2380 i = tx_ring->next_to_clean;
2381 eop = tx_ring->buffer_info[i].next_to_watch;
2382 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2383
2384 while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2385 /* pre-mature writeback of Tx descriptors */
2386 /* clear (free buffers and unmap pci_mapping) */
2387 /* previous_buffer_info */
2388 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2389 e1000_unmap_and_free_tx_resource(adapter,
2390 &adapter->previous_buffer_info);
2391 }
2392
2393 for(cleaned = FALSE; !cleaned; ) {
2394 tx_desc = E1000_TX_DESC(*tx_ring, i);
2395 buffer_info = &tx_ring->buffer_info[i];
2396 cleaned = (i == eop);
2397
2398 /* pre-mature writeback of Tx descriptors */
2399 /* save the cleaning of the this for the */
2400 /* next iteration */
2401 if (cleaned) {
2402 memcpy(&adapter->previous_buffer_info,
2403 buffer_info,
2404 sizeof(struct e1000_buffer));
2405 memset(buffer_info,
2406 0,
2407 sizeof(struct e1000_buffer));
2408 } else {
2409 e1000_unmap_and_free_tx_resource(adapter,
2410 buffer_info);
2411 }
2412
2413 tx_desc->buffer_addr = 0;
2414 tx_desc->lower.data = 0;
2415 tx_desc->upper.data = 0;
2416
2417 cleaned = (i == eop);
2418 if(unlikely(++i == tx_ring->count)) i = 0;
2419 }
2420
2421 eop = tx_ring->buffer_info[i].next_to_watch;
2422 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2423 }
2424
2425 tx_ring->next_to_clean = i;
2426
2427 spin_lock(&adapter->tx_lock);
2428
2429 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2430 netif_carrier_ok(netdev)))
2431 netif_wake_queue(netdev);
2432
2433 spin_unlock(&adapter->tx_lock);
2434
2435 if(adapter->detect_tx_hung) {
2436 /* detect a transmit hang in hardware, this serializes the
2437 * check with the clearing of time_stamp and movement of i */
2438 adapter->detect_tx_hung = FALSE;
2439 if(tx_ring->buffer_info[i].dma &&
2440 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
2441 !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
2442 netif_stop_queue(netdev);
2443 }
2444
2445 return cleaned;
2446}
2447
2448/**
2449 * e1000_rx_checksum - Receive Checksum Offload for 82543
2450 * @adapter: board private structure
2451 * @rx_desc: receive descriptor
2452 * @sk_buff: socket buffer with received data
2453 **/
2454
2455static inline void
2456e1000_rx_checksum(struct e1000_adapter *adapter,
2457 struct e1000_rx_desc *rx_desc,
2458 struct sk_buff *skb)
2459{
2460 /* 82543 or newer only */
2461 if(unlikely((adapter->hw.mac_type < e1000_82543) ||
2462 /* Ignore Checksum bit is set */
2463 (rx_desc->status & E1000_RXD_STAT_IXSM) ||
2464 /* TCP Checksum has not been calculated */
2465 (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
2466 skb->ip_summed = CHECKSUM_NONE;
2467 return;
2468 }
2469
2470 /* At this point we know the hardware did the TCP checksum */
2471 /* now look at the TCP checksum error bit */
2472 if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
2473 /* let the stack verify checksum errors */
2474 skb->ip_summed = CHECKSUM_NONE;
2475 adapter->hw_csum_err++;
2476 } else {
2477 /* TCP checksum is good */
2478 skb->ip_summed = CHECKSUM_UNNECESSARY;
2479 adapter->hw_csum_good++;
2480 }
2481}
2482
2483/**
2484 * e1000_clean_rx_irq - Send received data up the network stack
2485 * @adapter: board private structure
2486 **/
2487
2488static boolean_t
2489#ifdef CONFIG_E1000_NAPI
2490e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2491 int work_to_do)
2492#else
2493e1000_clean_rx_irq(struct e1000_adapter *adapter)
2494#endif
2495{
2496 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2497 struct net_device *netdev = adapter->netdev;
2498 struct pci_dev *pdev = adapter->pdev;
2499 struct e1000_rx_desc *rx_desc;
2500 struct e1000_buffer *buffer_info;
2501 struct sk_buff *skb;
2502 unsigned long flags;
2503 uint32_t length;
2504 uint8_t last_byte;
2505 unsigned int i;
2506 boolean_t cleaned = FALSE;
2507
2508 i = rx_ring->next_to_clean;
2509 rx_desc = E1000_RX_DESC(*rx_ring, i);
2510
2511 while(rx_desc->status & E1000_RXD_STAT_DD) {
2512 buffer_info = &rx_ring->buffer_info[i];
2513#ifdef CONFIG_E1000_NAPI
2514 if(*work_done >= work_to_do)
2515 break;
2516 (*work_done)++;
2517#endif
2518 cleaned = TRUE;
2519
2520 pci_unmap_single(pdev,
2521 buffer_info->dma,
2522 buffer_info->length,
2523 PCI_DMA_FROMDEVICE);
2524
2525 skb = buffer_info->skb;
2526 length = le16_to_cpu(rx_desc->length);
2527
2528 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2529 /* All receives must fit into a single buffer */
2530 E1000_DBG("%s: Receive packet consumed multiple"
2531 " buffers\n", netdev->name);
2532 dev_kfree_skb_irq(skb);
2533 goto next_desc;
2534 }
2535
2536 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2537 last_byte = *(skb->data + length - 1);
2538 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2539 rx_desc->errors, length, last_byte)) {
2540 spin_lock_irqsave(&adapter->stats_lock, flags);
2541 e1000_tbi_adjust_stats(&adapter->hw,
2542 &adapter->stats,
2543 length, skb->data);
2544 spin_unlock_irqrestore(&adapter->stats_lock,
2545 flags);
2546 length--;
2547 } else {
2548 dev_kfree_skb_irq(skb);
2549 goto next_desc;
2550 }
2551 }
2552
2553 /* Good Receive */
2554 skb_put(skb, length - ETHERNET_FCS_SIZE);
2555
2556 /* Receive Checksum Offload */
2557 e1000_rx_checksum(adapter, rx_desc, skb);
2558
2559 skb->protocol = eth_type_trans(skb, netdev);
2560#ifdef CONFIG_E1000_NAPI
2561 if(unlikely(adapter->vlgrp &&
2562 (rx_desc->status & E1000_RXD_STAT_VP))) {
2563 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2564 le16_to_cpu(rx_desc->special) &
2565 E1000_RXD_SPC_VLAN_MASK);
2566 } else {
2567 netif_receive_skb(skb);
2568 }
2569#else /* CONFIG_E1000_NAPI */
2570 if(unlikely(adapter->vlgrp &&
2571 (rx_desc->status & E1000_RXD_STAT_VP))) {
2572 vlan_hwaccel_rx(skb, adapter->vlgrp,
2573 le16_to_cpu(rx_desc->special) &
2574 E1000_RXD_SPC_VLAN_MASK);
2575 } else {
2576 netif_rx(skb);
2577 }
2578#endif /* CONFIG_E1000_NAPI */
2579 netdev->last_rx = jiffies;
2580
2581next_desc:
2582 rx_desc->status = 0;
2583 buffer_info->skb = NULL;
2584 if(unlikely(++i == rx_ring->count)) i = 0;
2585
2586 rx_desc = E1000_RX_DESC(*rx_ring, i);
2587 }
2588
2589 rx_ring->next_to_clean = i;
2590
2591 e1000_alloc_rx_buffers(adapter);
2592
2593 return cleaned;
2594}
2595
2596/**
2597 * e1000_alloc_rx_buffers - Replace used receive buffers
2598 * @adapter: address of board private structure
2599 **/
2600
2601static void
2602e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
2603{
2604 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2605 struct net_device *netdev = adapter->netdev;
2606 struct pci_dev *pdev = adapter->pdev;
2607 struct e1000_rx_desc *rx_desc;
2608 struct e1000_buffer *buffer_info;
2609 struct sk_buff *skb;
2610 unsigned int i, bufsz;
2611
2612 i = rx_ring->next_to_use;
2613 buffer_info = &rx_ring->buffer_info[i];
2614
2615 while(!buffer_info->skb) {
2616 bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
2617
2618 skb = dev_alloc_skb(bufsz);
2619 if(unlikely(!skb)) {
2620 /* Better luck next round */
2621 break;
2622 }
2623
2624 /* fix for errata 23, cant cross 64kB boundary */
2625 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2626 struct sk_buff *oldskb = skb;
2627 DPRINTK(RX_ERR,ERR,
2628 "skb align check failed: %u bytes at %p\n",
2629 bufsz, skb->data);
2630 /* try again, without freeing the previous */
2631 skb = dev_alloc_skb(bufsz);
2632 if (!skb) {
2633 dev_kfree_skb(oldskb);
2634 break;
2635 }
2636 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
2637 /* give up */
2638 dev_kfree_skb(skb);
2639 dev_kfree_skb(oldskb);
2640 break; /* while !buffer_info->skb */
2641 } else {
2642 /* move on with the new one */
2643 dev_kfree_skb(oldskb);
2644 }
2645 }
2646
2647 /* Make buffer alignment 2 beyond a 16 byte boundary
2648 * this will result in a 16 byte aligned IP header after
2649 * the 14 byte MAC header is removed
2650 */
2651 skb_reserve(skb, NET_IP_ALIGN);
2652
2653 skb->dev = netdev;
2654
2655 buffer_info->skb = skb;
2656 buffer_info->length = adapter->rx_buffer_len;
2657 buffer_info->dma = pci_map_single(pdev,
2658 skb->data,
2659 adapter->rx_buffer_len,
2660 PCI_DMA_FROMDEVICE);
2661
2662 /* fix for errata 23, cant cross 64kB boundary */
2663 if(!e1000_check_64k_bound(adapter,
2664 (void *)(unsigned long)buffer_info->dma,
2665 adapter->rx_buffer_len)) {
2666 DPRINTK(RX_ERR,ERR,
2667 "dma align check failed: %u bytes at %ld\n",
2668 adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
2669
2670 dev_kfree_skb(skb);
2671 buffer_info->skb = NULL;
2672
2673 pci_unmap_single(pdev,
2674 buffer_info->dma,
2675 adapter->rx_buffer_len,
2676 PCI_DMA_FROMDEVICE);
2677
2678 break; /* while !buffer_info->skb */
2679 }
2680
2681 rx_desc = E1000_RX_DESC(*rx_ring, i);
2682 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2683
2684 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
2685 /* Force memory writes to complete before letting h/w
2686 * know there are new descriptors to fetch. (Only
2687 * applicable for weak-ordered memory model archs,
2688 * such as IA-64). */
2689 wmb();
2690
2691 E1000_WRITE_REG(&adapter->hw, RDT, i);
2692 }
2693
2694 if(unlikely(++i == rx_ring->count)) i = 0;
2695 buffer_info = &rx_ring->buffer_info[i];
2696 }
2697
2698 rx_ring->next_to_use = i;
2699}
2700
2701/**
2702 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
2703 * @adapter:
2704 **/
2705
2706static void
2707e1000_smartspeed(struct e1000_adapter *adapter)
2708{
2709 uint16_t phy_status;
2710 uint16_t phy_ctrl;
2711
2712 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
2713 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2714 return;
2715
2716 if(adapter->smartspeed == 0) {
2717 /* If Master/Slave config fault is asserted twice,
2718 * we assume back-to-back */
2719 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2720 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2721 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
2722 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
2723 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2724 if(phy_ctrl & CR_1000T_MS_ENABLE) {
2725 phy_ctrl &= ~CR_1000T_MS_ENABLE;
2726 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
2727 phy_ctrl);
2728 adapter->smartspeed++;
2729 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2730 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
2731 &phy_ctrl)) {
2732 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2733 MII_CR_RESTART_AUTO_NEG);
2734 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
2735 phy_ctrl);
2736 }
2737 }
2738 return;
2739 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
2740 /* If still no link, perhaps using 2/3 pair cable */
2741 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
2742 phy_ctrl |= CR_1000T_MS_ENABLE;
2743 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
2744 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
2745 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
2746 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
2747 MII_CR_RESTART_AUTO_NEG);
2748 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
2749 }
2750 }
2751 /* Restart process after E1000_SMARTSPEED_MAX iterations */
2752 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
2753 adapter->smartspeed = 0;
2754}
2755
2756/**
2757 * e1000_ioctl -
2758 * @netdev:
2759 * @ifreq:
2760 * @cmd:
2761 **/
2762
2763static int
2764e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2765{
2766 switch (cmd) {
2767 case SIOCGMIIPHY:
2768 case SIOCGMIIREG:
2769 case SIOCSMIIREG:
2770 return e1000_mii_ioctl(netdev, ifr, cmd);
2771 default:
2772 return -EOPNOTSUPP;
2773 }
2774}
2775
2776/**
2777 * e1000_mii_ioctl -
2778 * @netdev:
2779 * @ifreq:
2780 * @cmd:
2781 **/
2782
2783static int
2784e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2785{
2786 struct e1000_adapter *adapter = netdev->priv;
2787 struct mii_ioctl_data *data = if_mii(ifr);
2788 int retval;
2789 uint16_t mii_reg;
2790 uint16_t spddplx;
2791
2792 if(adapter->hw.media_type != e1000_media_type_copper)
2793 return -EOPNOTSUPP;
2794
2795 switch (cmd) {
2796 case SIOCGMIIPHY:
2797 data->phy_id = adapter->hw.phy_addr;
2798 break;
2799 case SIOCGMIIREG:
2800 if (!capable(CAP_NET_ADMIN))
2801 return -EPERM;
2802 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
2803 &data->val_out))
2804 return -EIO;
2805 break;
2806 case SIOCSMIIREG:
2807 if (!capable(CAP_NET_ADMIN))
2808 return -EPERM;
2809 if (data->reg_num & ~(0x1F))
2810 return -EFAULT;
2811 mii_reg = data->val_in;
2812 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
2813 mii_reg))
2814 return -EIO;
2815 if (adapter->hw.phy_type == e1000_phy_m88) {
2816 switch (data->reg_num) {
2817 case PHY_CTRL:
2818 if(mii_reg & MII_CR_POWER_DOWN)
2819 break;
2820 if(mii_reg & MII_CR_AUTO_NEG_EN) {
2821 adapter->hw.autoneg = 1;
2822 adapter->hw.autoneg_advertised = 0x2F;
2823 } else {
2824 if (mii_reg & 0x40)
2825 spddplx = SPEED_1000;
2826 else if (mii_reg & 0x2000)
2827 spddplx = SPEED_100;
2828 else
2829 spddplx = SPEED_10;
2830 spddplx += (mii_reg & 0x100)
2831 ? FULL_DUPLEX :
2832 HALF_DUPLEX;
2833 retval = e1000_set_spd_dplx(adapter,
2834 spddplx);
2835 if(retval)
2836 return retval;
2837 }
2838 if(netif_running(adapter->netdev)) {
2839 e1000_down(adapter);
2840 e1000_up(adapter);
2841 } else
2842 e1000_reset(adapter);
2843 break;
2844 case M88E1000_PHY_SPEC_CTRL:
2845 case M88E1000_EXT_PHY_SPEC_CTRL:
2846 if (e1000_phy_reset(&adapter->hw))
2847 return -EIO;
2848 break;
2849 }
2850 } else {
2851 switch (data->reg_num) {
2852 case PHY_CTRL:
2853 if(mii_reg & MII_CR_POWER_DOWN)
2854 break;
2855 if(netif_running(adapter->netdev)) {
2856 e1000_down(adapter);
2857 e1000_up(adapter);
2858 } else
2859 e1000_reset(adapter);
2860 break;
2861 }
2862 }
2863 break;
2864 default:
2865 return -EOPNOTSUPP;
2866 }
2867 return E1000_SUCCESS;
2868}
2869
2870void
2871e1000_pci_set_mwi(struct e1000_hw *hw)
2872{
2873 struct e1000_adapter *adapter = hw->back;
2874
2875 int ret;
2876 ret = pci_set_mwi(adapter->pdev);
2877}
2878
2879void
2880e1000_pci_clear_mwi(struct e1000_hw *hw)
2881{
2882 struct e1000_adapter *adapter = hw->back;
2883
2884 pci_clear_mwi(adapter->pdev);
2885}
2886
2887void
2888e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2889{
2890 struct e1000_adapter *adapter = hw->back;
2891
2892 pci_read_config_word(adapter->pdev, reg, value);
2893}
2894
2895void
2896e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
2897{
2898 struct e1000_adapter *adapter = hw->back;
2899
2900 pci_write_config_word(adapter->pdev, reg, *value);
2901}
2902
2903uint32_t
2904e1000_io_read(struct e1000_hw *hw, unsigned long port)
2905{
2906 return inl(port);
2907}
2908
2909void
2910e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
2911{
2912 outl(value, port);
2913}
2914
2915static void
2916e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
2917{
2918 struct e1000_adapter *adapter = netdev->priv;
2919 uint32_t ctrl, rctl;
2920
2921 e1000_irq_disable(adapter);
2922 adapter->vlgrp = grp;
2923
2924 if(grp) {
2925 /* enable VLAN tag insert/strip */
2926 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2927 ctrl |= E1000_CTRL_VME;
2928 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2929
2930 /* enable VLAN receive filtering */
2931 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2932 rctl |= E1000_RCTL_VFE;
2933 rctl &= ~E1000_RCTL_CFIEN;
2934 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2935 } else {
2936 /* disable VLAN tag insert/strip */
2937 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2938 ctrl &= ~E1000_CTRL_VME;
2939 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
2940
2941 /* disable VLAN filtering */
2942 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2943 rctl &= ~E1000_RCTL_VFE;
2944 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2945 }
2946
2947 e1000_irq_enable(adapter);
2948}
2949
2950static void
2951e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
2952{
2953 struct e1000_adapter *adapter = netdev->priv;
2954 uint32_t vfta, index;
2955
2956 /* add VID to filter table */
2957 index = (vid >> 5) & 0x7F;
2958 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2959 vfta |= (1 << (vid & 0x1F));
2960 e1000_write_vfta(&adapter->hw, index, vfta);
2961}
2962
2963static void
2964e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
2965{
2966 struct e1000_adapter *adapter = netdev->priv;
2967 uint32_t vfta, index;
2968
2969 e1000_irq_disable(adapter);
2970
2971 if(adapter->vlgrp)
2972 adapter->vlgrp->vlan_devices[vid] = NULL;
2973
2974 e1000_irq_enable(adapter);
2975
2976 /* remove VID from filter table */
2977 index = (vid >> 5) & 0x7F;
2978 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
2979 vfta &= ~(1 << (vid & 0x1F));
2980 e1000_write_vfta(&adapter->hw, index, vfta);
2981}
2982
2983static void
2984e1000_restore_vlan(struct e1000_adapter *adapter)
2985{
2986 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2987
2988 if(adapter->vlgrp) {
2989 uint16_t vid;
2990 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2991 if(!adapter->vlgrp->vlan_devices[vid])
2992 continue;
2993 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2994 }
2995 }
2996}
2997
2998int
2999e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3000{
3001 adapter->hw.autoneg = 0;
3002
3003 switch(spddplx) {
3004 case SPEED_10 + DUPLEX_HALF:
3005 adapter->hw.forced_speed_duplex = e1000_10_half;
3006 break;
3007 case SPEED_10 + DUPLEX_FULL:
3008 adapter->hw.forced_speed_duplex = e1000_10_full;
3009 break;
3010 case SPEED_100 + DUPLEX_HALF:
3011 adapter->hw.forced_speed_duplex = e1000_100_half;
3012 break;
3013 case SPEED_100 + DUPLEX_FULL:
3014 adapter->hw.forced_speed_duplex = e1000_100_full;
3015 break;
3016 case SPEED_1000 + DUPLEX_FULL:
3017 adapter->hw.autoneg = 1;
3018 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3019 break;
3020 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3021 default:
3022 DPRINTK(PROBE, ERR,
3023 "Unsupported Speed/Duplexity configuration\n");
3024 return -EINVAL;
3025 }
3026 return 0;
3027}
3028
3029static int
3030e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
3031{
3032 struct pci_dev *pdev = NULL;
3033
3034 switch(event) {
3035 case SYS_DOWN:
3036 case SYS_HALT:
3037 case SYS_POWER_OFF:
3038 while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
3039 if(pci_dev_driver(pdev) == &e1000_driver)
3040 e1000_suspend(pdev, 3);
3041 }
3042 }
3043 return NOTIFY_DONE;
3044}
3045
3046static int
3047e1000_suspend(struct pci_dev *pdev, uint32_t state)
3048{
3049 struct net_device *netdev = pci_get_drvdata(pdev);
3050 struct e1000_adapter *adapter = netdev->priv;
3051 uint32_t ctrl, ctrl_ext, rctl, manc, status;
3052 uint32_t wufc = adapter->wol;
3053
3054 netif_device_detach(netdev);
3055
3056 if(netif_running(netdev))
3057 e1000_down(adapter);
3058
3059 status = E1000_READ_REG(&adapter->hw, STATUS);
3060 if(status & E1000_STATUS_LU)
3061 wufc &= ~E1000_WUFC_LNKC;
3062
3063 if(wufc) {
3064 e1000_setup_rctl(adapter);
3065 e1000_set_multi(netdev);
3066
3067 /* turn on all-multi mode if wake on multicast is enabled */
3068 if(adapter->wol & E1000_WUFC_MC) {
3069 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3070 rctl |= E1000_RCTL_MPE;
3071 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3072 }
3073
3074 if(adapter->hw.mac_type >= e1000_82540) {
3075 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3076 /* advertise wake from D3Cold */
3077 #define E1000_CTRL_ADVD3WUC 0x00100000
3078 /* phy power management enable */
3079 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3080 ctrl |= E1000_CTRL_ADVD3WUC |
3081 E1000_CTRL_EN_PHY_PWR_MGMT;
3082 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3083 }
3084
3085 if(adapter->hw.media_type == e1000_media_type_fiber ||
3086 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3087 /* keep the laser running in D3 */
3088 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3089 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3090 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3091 }
3092
3093 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3094 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3095 pci_enable_wake(pdev, 3, 1);
3096 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3097 } else {
3098 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3099 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3100 pci_enable_wake(pdev, 3, 0);
3101 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3102 }
3103
3104 pci_save_state(pdev);
3105
3106 if(adapter->hw.mac_type >= e1000_82540 &&
3107 adapter->hw.media_type == e1000_media_type_copper) {
3108 manc = E1000_READ_REG(&adapter->hw, MANC);
3109 if(manc & E1000_MANC_SMBUS_EN) {
3110 manc |= E1000_MANC_ARP_EN;
3111 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3112 pci_enable_wake(pdev, 3, 1);
3113 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3114 }
3115 }
3116
3117 pci_disable_device(pdev);
3118
3119 state = (state > 0) ? 3 : 0;
3120 pci_set_power_state(pdev, state);
3121
3122 return 0;
3123}
3124
3125#ifdef CONFIG_PM
3126static int
3127e1000_resume(struct pci_dev *pdev)
3128{
3129 struct net_device *netdev = pci_get_drvdata(pdev);
3130 struct e1000_adapter *adapter = netdev->priv;
3131 uint32_t manc, ret;
3132
3133 pci_set_power_state(pdev, 0);
3134 pci_restore_state(pdev);
3135 ret = pci_enable_device(pdev);
3136 if (pdev->is_busmaster)
3137 pci_set_master(pdev);
3138
3139 pci_enable_wake(pdev, 3, 0);
3140 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3141
3142 e1000_reset(adapter);
3143 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3144
3145 if(netif_running(netdev))
3146 e1000_up(adapter);
3147
3148 netif_device_attach(netdev);
3149
3150 if(adapter->hw.mac_type >= e1000_82540 &&
3151 adapter->hw.media_type == e1000_media_type_copper) {
3152 manc = E1000_READ_REG(&adapter->hw, MANC);
3153 manc &= ~(E1000_MANC_ARP_EN);
3154 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3155 }
3156
3157 return 0;
3158}
3159#endif
3160
3161#ifdef CONFIG_NET_POLL_CONTROLLER
3162/*
3163 * Polling 'interrupt' - used by things like netconsole to send skbs
3164 * without having to re-enable interrupts. It's not called while
3165 * the interrupt routine is executing.
3166 */
3167static void
3168e1000_netpoll (struct net_device *netdev)
3169{
3170 struct e1000_adapter *adapter = netdev->priv;
3171 disable_irq(adapter->pdev->irq);
3172 e1000_intr(adapter->pdev->irq, netdev, NULL);
3173 enable_irq(adapter->pdev->irq);
3174}
3175#endif
3176
3177/* e1000_main.c */